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Abstract. For time-dependent PDEs, the numerical schemes can be rendered bound-preserving
without losing conservation and accuracy, by a post processing procedure of solving a constrained
minimization in each time step. Such a constrained optimization can be formulated as a nonsmooth
convex minimization, which can be efficiently solved by first order optimization methods, if using the
optimal algorithm parameters. By analyzing the asymptotic linear convergence rate of the generalized
Douglas–Rachford splitting method, optimal algorithm parameters can be approximately expressed
as a simple function of the number of out-of-bounds cells. We demonstrate the efficiency of this simple
choice of algorithm parameters by applying such a limiter to cell averages of a discontinuous Galerkin
scheme solving phase field equations for 3D demanding problems. Numerical tests on a sophisticated
3D Cahn–Hilliard–Navier–Stokes system indicate that the limiter is high order accurate, very efficient,
and well-suited for large-scale simulations. For each time step, it takes at most 20 iterations for the
Douglas–Rachford splitting to enforce bounds and conservation up to the round-off error, for which
the computational cost is at most 80𝑁 with 𝑁 being the total number of cells.
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1. Introduction.

1.1. Objective and motivation. We are interested in a simple approach to
enforce bound-preserving property of a high order accurate scheme for phase field
models, without destroying conservation and accuracy. Many numerical methods,
especially high order accurate schemes, do not preserve bounds. For the sake of both
physical meaningfulness and robustness of numerical computation, it is critical to
enforce both conservation and bounds.

Bound-preserving schemes have been well studied in the literature for equations
like hyperbolic and parabolic PDEs. One popular approach of constructing a bound-
preserving high order scheme was introduced in [44, 45] for conservation laws, which
can be extended to parabolic equations [40, 39] and Navier–Stokes equations [12, 43],
as well as implicit or semi-implicit time discretizations [35, 31]. However, this method,
and most of other popular bound-preserving schemes for conservation laws and para-
bolic equations such as exponential time differencing [10], are based on the fact that
the simplest low order scheme is bound-preserving, which is no longer true for a fourth
order PDE like the Cahn–Hilliard equation, unless a very special implementation is
used such as implicit treatment of a logarithmic potential [6].

A simple cut-off without enforcing conservation does not destroy accuracy but
it is of little interest, because convergence might be lost due to loss of conservation.
A meaningful objective is to enforce bounds without destroying conservation. For
the Cahn–Hilliard equation, an exponential function transform approach was used in
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[23], with conservation achieved up to some small time error. If the logarithmic energy
potential is used and treated implicitly, bounds can also be ensured [6]. A Lagrange
multiplier approach in [7, 8] provides a new interpretation for the cut-off method, and
can preserve mass by solving a nonlinear algebraic equation for the additional space
independent Lagrange multiplier. Even though the flux limiting [25, 42, 22, 11] can
be formally extended to Cahn–Hilliard equation [17, 30], it is not clear whether flux
limiters can preserve high order accuracy for a fourth order PDE. Recently a bound-
preserving finite volume scheme, which is first order accurate in time and second order
accurate in space, has been constructed for the Cahn–Hilliard equation [1].

In practice, the logarithmic potential causes additional difficulty in nonlinear
system solvers in many schemes, thus the double well polynomial potential with a
degenerate mobility is often used as an easier surrogate. With the double well poten-
tial, numerical schemes might violate the bounds much more since it does not enforce
bounds 𝜙 ∈ [−1, 1] like the log potential. In this paper, we will explore a simple
and efficient high order accurate post processing procedure for preserving bounds and
conservation up to round-off errors, such that it can be easily applied to any numerical
method solving the Cahn–Hillard equation, especially for the polynomial potential.

1.2. A bound-preserving limiter via convex minimization. Consider a
scalar PDE as an example. Assume its solution 𝑢 satisfies 𝑚 ≤ 𝑢 ≤ 𝑀 for all time
and location, where 𝑚 and 𝑀 are constant bounds. For simplicity, we only consider
enforcing cell averages in a high order accurate discontinuous Galerkin (DG) scheme
by the convex minimization, then using the simple Zhang–Shu limiter in [44, 45] to
enforce bounds of point values of the DG solution. But this convex minimization
approach can be easily extended to enforcing bounds of point values for any other
numerical scheme such as finite difference and continuous finite element methods.

Let �̄�𝑖 (𝑖 = 1, · · · , 𝑁) be all the DG solution cell averages at time step 𝑛 on a

uniform mesh. Given 𝒖 =
[
�̄�1 �̄�2 · · · �̄�𝑁

]T ∈ R𝑁 , we would like to post process

it to 𝒙 =
[
𝑥1 𝑥2 · · · 𝑥𝑁

]T ∈ R𝑁 such that it is bound preserving 𝑥𝑖 ∈ [𝑚, 𝑀],
conservative

∑
𝑖 𝑥𝑖 =

∑
𝑖 �̄�𝑖 , and accurate in the sense that ∥𝒙 − 𝒖∥ should be small.

Namely, we consider minimize ∥𝒙 − 𝒖∥ under constraints 𝑥𝑖 ∈ [𝑚, 𝑀] and ∑𝑁
𝑖=1 𝑥𝑖 =∑𝑁

𝑖=1 �̄�𝑖 . To change as few cell averages as possible, the convex ℓ1-norm is often used
to approximate the NP-hard ℓ0-norm. The ℓ1-norm is nonsmooth without any strong
convexity, thus the minimization might still be too expensive to solve. For the sake
of efficiency, we propose the ℓ2-norm instead:

(1.1) min
𝒙

∥𝒙 − 𝒖∥22 s.t. 𝑥𝑖 ∈ [𝑚, 𝑀] and

𝑁∑
𝑖=1

𝑥𝑖 =

𝑁∑
𝑖=1

�̄�𝑖 .

Obviously, the minimizer to (1.1) is conservative and bound-preserving. The
justification of accuracy is also straightforward, as long as 𝒖 is an accurate numerical
solution, which is a reasonable assumption and has been proved to hold for many DG
schemes of a variety of PDEs, e.g., see [29] for Cahn–Hilliard–Navier–Stokes (CHNS)
equations. Let �̄�∗

𝑖
and �̄�0

𝑖
be the cell averages of the exact solution at time 𝑡𝑛 and

initial condition, respectively. Then
∑
𝑖 �̄�

∗
𝑖
=

∑
𝑖 �̄�

0
𝑖
=

∑
𝑖 �̄�𝑖 and �̄�∗

𝑖
∈ [𝑚, 𝑀] imply

that 𝒖∗ is a feasible point satisfying the constraints of (1.1). The minimizer 𝒙∗ to (1.1)
then satisfies ∥𝒙∗−𝒖∥2 ≤ ∥𝒖∗−𝒖∥2, thus ∥𝒙∗−𝒖∗∥2 ≤ ∥𝒙∗−𝒖∥2+∥𝒖−𝒖∗∥2 ≤ 2∥𝒖∗−𝒖∥2.
Therefore, the limiter (1.1) does not lose the order of accuracy.
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1.3. Efficient convex optimization algorithms. The main catch of using
(1.1) in a large scale computation, is the possible huge cost of solving (1.1) to machine
accuracy, unless proven or shown otherwise, which is our main focus. It is a convention

use the indicator function 𝜄Ω(𝒙) =
{
0, 𝒙 ∈ Ω

+∞, 𝒙 ∉ Ω
for any set Ω, to rewrite (1.1) as:

(1.2) min
𝒙

𝛼
2
∥𝒙 − 𝒖∥22 + 𝜄Λ1

(𝒙) + 𝜄Λ2
(𝒙),

where 𝛼 > 0 is a parameter and the sets Λ1 and Λ2 are Λ1 = {𝒙 :
∑
𝑖 𝑥𝑖 =∑

𝑖 �̄�𝑖}, Λ2 = {𝒙 : 𝑥𝑖 ∈ [𝑚, 𝑀]}. The two indicator functions in (1.2) are convex
but nonsmooth, and the ℓ2 term is strongly convex, thus (1.2) has a unique minimizer
𝒙∗. Many optimization algorithms, e.g., fast proximal gradient (FISTA) [34, 3] ap-
plied to (1.2), can be proven to converge linearly. But a provable global linear rate is
usually quite pessimistic, much slower than the actual convergence rate. It is possible
to obtain sharp asymptotic rate for methods like the generalized Douglas–Rachford
splitting solving ℓ1 minimization [9], which can be used for designing best parameters.
So we consider the generalized Douglas–Rachford splitting [26], which is equivalent
to some other popular methods such as PDHG [5], ADMM [13], dual split Bregman
[20], see also [9] and references therein for the equivalence.

1.4. The generalized Douglas–Rachford splitting method. Splitting al-
gorithms naturally arise for composite optimization of the form

(1.3a) min
𝒙

𝑓 (𝒙) + 𝑔(𝒙),

where functions 𝑓 and 𝑔 are convex and have simple subdifferentials and resolvents.
Let 𝜕 𝑓 and 𝜕𝑔 denote the subdifferentials of 𝑓 and 𝑔. Their resolvents are defined as

J𝛾𝜕 𝑓 = (I + 𝛾𝜕 𝑓 )−1 = argmin𝒛𝛾 𝑓 (𝒛) +
1

2
∥𝒛 − 𝒙∥22 , 𝛾 > 0,

J𝛾𝜕𝑔 = (I + 𝛾𝜕𝑔)−1 = argmin𝒛𝛾𝑔(𝒛) +
1

2
∥𝒛 − 𝒙∥22 , 𝛾 > 0.

We rewrite (1.2) into min𝒙 𝑓 (𝒙) + 𝑔(𝒙) by defining

(1.3b) 𝑓 (𝒙) = 𝛼
2
∥𝒙 − 𝒖∥22 + 𝜄Λ1

(𝒙) and 𝑔(𝒙) = 𝜄Λ2
(𝒙),

where two sets are Λ1 = {𝒙 : A𝒙 = 𝑏} and Λ2 = {𝒙 : 𝑚 ≤ 𝒙 ≤ 𝑀}, with
A =

[
1 · · · 1

]
, 𝑏 =

∑
𝑖 �̄�𝑖 , and 𝑚 ≤ 𝒙 ≤ 𝑀 denoting entrywise inequality. The

subdifferentials and resolvents can be explicitly given as

(1.4) 𝜕 𝑓 (𝒙) = 𝛼(𝒙 − 𝒖) + ℛ(AT), J𝛾𝜕 𝑓 (𝒙) =
1

𝛾𝛼 + 1

(
A+(𝑏 − A𝒙) + 𝒙

)
+ 𝛾𝛼

𝛾𝛼 + 1
𝒖 ,

[𝜕𝑔(𝒙)]𝑖 =


[0,+∞], if 𝑥𝑖 = 𝑀,

0, if 𝑥𝑖 ∈ (𝑚, 𝑀),
[−∞, 0], if 𝑥𝑖 = 𝑚.

[J𝛾𝜕𝑔(𝒙)]𝑖 = min (max (𝑥𝑖 , 𝑚), 𝑀),(1.5)

where ℛ(AT) denotes the range of the matrix AT and A+ = AT(AAT)−1.
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Define reflection operators as R𝛾𝜕 𝑓 = 2J𝛾𝜕 𝑓 − I and R𝛾𝜕𝑔 = 2J𝛾𝜕𝑔 − I, where I
denotes the identity operator. The generalized Douglas–Rachford splitting for (1.3a)
can be written as:

(1.6)

𝒚
𝑘+1 = 𝜆

R𝛾𝜕 𝑓R𝛾𝜕𝑔 + I

2
𝒚𝑘 + (1 − 𝜆)𝒚𝑘 = 𝜆J𝛾𝜕 𝑓 ◦ (2J𝛾𝜕𝑔 − I)𝒚𝑘 + (I − 𝜆J𝛾𝜕𝑔)𝒚𝑘

𝒙𝑘+1 = J𝛾𝜕𝑔(𝒚𝑘+1)
.

where 𝒚 is an auxiliary variable, 𝛾 > 0 is step size, and 𝜆 ∈ (0, 2) is a parameter.
For two convex functions 𝑓 (𝒙) and 𝑔(𝒙), (1.6) converges for any 𝛾 > 0 and any fixed
𝜆 ∈ (0, 2), see [26]. If one function is strongly convex, then 𝜆 = 2 also converges.

1.5. The bound-preserving post processing procedure for DG schemes.
At time step 𝑛, let 𝑢𝑖(𝑥, 𝑦, 𝑧) be the DG polynomial on a uniform mesh in the 𝑖-th
cell with cell average �̄�𝑖 . We define the following bound-preserving limiter:

Step I: Solve (1.2) to post process the cell averages. Let 𝑐 = 1
𝛼𝛾+1 , then the

iteration (1.6) on (1.3) can be explicitly written as:

(1.7a)


𝒙𝑘 = min (max (𝒚𝑘 , 𝑚), 𝑀)
𝒛𝑘 = 2𝒙𝑘 − 𝒚𝑘

𝒚𝑘+1 = 𝜆𝑐(𝒛𝑘 − 1[ 1
𝑁 (∑𝑖 𝑧

𝑘
𝑖
− 𝑏)]) + 𝜆(1 − 𝑐)𝒖 + 𝒚𝑘 − 𝜆𝒙𝑘

,

where 1 is the constant one vector of size 𝑁 and 𝑏 =
∑
𝑖 �̄�𝑖 is a constant, 𝜆 ∈ (0, 2]

is the fixed relaxation parameter. Each iterate 𝒙𝑘 is bound-preserving but is not
conservative until converging to the minimizer 𝒙∗. We iterate (1.7a) until relative
change is small enough ∥𝒚𝑘+1 − 𝒚𝑘 ∥2 ≤ 𝜖, to get an approximated minimizer 𝒙∗ to
(1.2), for which the conservation would be satisfied up to round-off errors. We then
modify DG polynomials by modifying the cell averages, i.e., shift them by a constant:

(1.7b) �̃�𝑖(𝑥, 𝑦, 𝑧) = 𝑢𝑖(𝑥, 𝑦, 𝑧) − �̄�𝑖 + 𝑥∗𝑖 , 𝑖 = 1, · · · , 𝑁.
Step II: Cell averages of modified DG polynomials �̃�𝑖(𝑥, 𝑦, 𝑧) are in the range

[𝑚, 𝑀], so we can apply the simple scaling limiter by Zhang and Shu in [44, 45] to
further enforce bounds at quadrature points, without losing conservation and accu-
racy. Let 𝑆𝑖 be the set of interested points in each cell, then the Zhang–Shu limiter
for the polynomial �̃�𝑖(𝑥, 𝑦, 𝑧) with cell average 𝑥∗

𝑖
∈ [𝑚, 𝑀] is given as

(1.8) �̂�𝑖(𝑥, 𝑦, 𝑧) = 𝜃(�̃�𝑖(𝑥, 𝑦, 𝑧) − 𝑥∗𝑖 ) + 𝑥
∗
𝑖 , 𝜃 = min

{
1,

|𝑚 − 𝑥∗
𝑖
|

|𝑚𝑖 − 𝑥∗𝑖 |
,
|𝑀 − 𝑥∗

𝑖
|

|𝑀𝑖 − 𝑥∗𝑖 |

}
,

where 𝑚𝑖 = min
(𝑥,𝑦,𝑧)∈𝑆𝑖

�̃�𝑖(𝑥, 𝑦, 𝑧) and 𝑀𝑖 = max
(𝑥,𝑦,𝑧)∈𝑆𝑖

�̃�𝑖(𝑥, 𝑦, 𝑧). See the appendix in [43]

for a rigorous proof of the high order accuracy of (1.8).
We emphasize that the Zhang-Shu limiter (1.8) can preserve bounds or positiv-

ity provided that the cell averages are within bounds or are positive, which can be
proven for DG methods coupled with the limiter (1.8) for hyperbolic problems in-
cluding scalar conservation laws, compressible Euler and compressible Navier-Stokes
equations [44, 45, 43], because DG methods with suitable numerical fluxes satisfy a
weak monotonicity property for these problems [43]. However, such a weak mono-
tonicity property is simply not true for high order DG schemes solving fourth order
PDEs. Thus, if using only the limiter (1.8), the high order DG methods will not be
bound-preserving for Cahn-Hilliard equations. For all the numerical tests shown in
this paper, DG methods with only the Zhang-Shu limiter will produce cell averages
outside of the range [−1, 1].
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1.6. The main results. We will analyze asymptotic convergence rate of itera-
tion (1.7a) and give a sharp convergence rate formula, by which it is possible to pick
up nearly optimal combination of parameters 𝑐 = 1

𝛼𝛾+1 and 𝜆 to achieve fast conver-

gence for the iteration (1.7a). The asymptotic linear convergence rate we derive for
(1.2) is similar to the one for ℓ1 minimization in [9]. These rate formulae depend on
the unknown 𝒙∗, so usually it is impossible to use the formulae for tuning algorithm
parameters, unless 𝒙∗ can be easily estimated. For (1.2), it is possible to pick up a
nearly optimal combination of optimization algorithm parameters by only calculating
number of bad cells �̄�𝑖 ∉ [𝑚, 𝑀], which is the first main result of this paper.

Let 𝑟 be the number of bad cells �̄�𝑖 ∉ [𝑚, 𝑀], and let �̂� = cos−1
√

𝑟
𝑁 , then our

analysis suggests the following simple choice of nearly optimal parameters:

(1.9)


𝑐 = 1

2 ,𝜆 = 4

2−cos (2�̂�) , if �̂� ∈ ( 38𝜋, 12𝜋],
𝑐 = 1

(cos �̂�+sin �̂�)2 ,𝜆 = 2
1+ 1

1+cot �̂�−
1

(cos �̂�+sin �̂�)2
, if �̂� ∈ ( 14𝜋, 38𝜋],

𝑐 = 1

(cos �̂�+sin �̂�)2 ,𝜆 = 2, if �̂� ∈ (0, 14𝜋].

We emphasize that both 𝑐 and 𝜆 should be the constants w.r.t. iteration index 𝑘 in
(1.7a), once they are chosen by (1.9). Notice that 𝜆(1− 𝑐)𝒖 is a constant for the itera-
tion (1.7a) and each entry of 𝒛𝑘−1[ 1

𝑁 (∑𝑖 𝑧
𝑘
𝑖
−𝑏)] can be computed by 𝑧𝑘

𝑖
−[ 1

𝑁 (∑𝑖 𝑧
𝑘
𝑖
−𝑏)],

thus if only counting number of computing multiplications, min, and max, the compu-
tational complexity of each iteration in (1.7a) is 4𝑁 . By using the parameters (1.9),
it takes at most 20 iterations of (1.7a) to converge in all our numerical tests, thus
the cost of iterating (1.7a) until convergence would be at most 80𝑁 , which is highly
efficient and well-suited for large-scale simulations.

The numerical observation of at most 20 iterations can also be explained by the
asymptotic convergence rate analysis, which is another main result. Assuming the
number of bad cells �̄�𝑖 ∉ [𝑚, 𝑀] is much smaller than the number of total cells 𝑁 , we
will show that the asymptotic convergence rate of (1.7a) using (1.9) is given by

(1.10) − cos (2𝜃)
2 − cos (2𝜃) ≈ − cos (2�̂�)

2 − cos (2�̂�)
=

1 − 2 cos �̂�2

3 − 2 cos �̂�2
=

1 − 2 𝑟
𝑁

3 − 2 𝑟
𝑁

≈ 1

3
, if 𝑟 ≪ 𝑁,

with 𝜃(𝒙∗) being an unknown angle, which can be approximated by �̂�. If the ratio of
bad cells is very small, (1.7a) will have a local convergence rate almost like ∥𝒚𝑘−𝒚∗∥ ≤
𝐶
(
1
3

) 𝑘
, which would take around 30 iterations to reach around 1E-15 if 𝐶 = 1.

1.7. Organization of the paper. The rest of the paper is organized as follows.
In Section 2, we analyze the asymptotic linear convergence rate of the Douglas–
Rachford splitting (1.6) and (1.7a), and derive the parameter guideline (1.9). In
Section 3, we discuss an application of our bound-preserving limiting strategy to an
important phase-field model, the CHNS system. The numerical tests are given in
Section 4. Section 5 are concluding remarks.

2. Asymptotic linear convergence rate analysis. In this section, we de-
rive the asymptotic linear convergence rate of generalized Douglas–Rachford splitting
(1.6) for solving the minimization problem (1.3). The discussion in this section fol-
lows closely the analysis for ℓ1 minimization in [9]. Even though ℓ1 minimization is
harder than ℓ2 minimization, the analysis for (1.3) is not necessarily a straightforward
extension of those in [9] because (1.4) and (1.5) are different from operators in [9].
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For convenience, let 𝐹 = 𝜕 𝑓 and 𝐺 = 𝜕𝑔 denote the subdifferential operators. Let
S(𝒙) be the cut-off operator, i.e., [J𝛾𝐺(𝒙)]𝑖 = [S(𝒙)]𝑖 = min (max (𝑥𝑖 , 𝑚), 𝑀).

We keep the discussion a bit more general by considering a general linear con-
straint A𝒙 = 𝑏 = A𝒖 in the function 𝑓 (𝒙) in (1.3b), and assume A has less number of
rows than the number of columns, with full row rank such that A+ = AT(AAT)−1 is
well defined. When needed, we will plug in the special case A =

[
1 1 · · · 1

]
.

2.1. The fixed point set. Let P(𝒙) = A+(𝑏 − A𝒙) + 𝒙 denote the projection
operator. Then, the resolvents can be written as J𝛾𝐹(𝒙) = 1

𝛾𝛼+1P(𝒙) +
𝛾𝛼

𝛾𝛼+1𝒖 and

J𝛾𝐺(𝒙) = S(𝒙). Let T𝛾 denote the iteration operator for 𝒚 in (1.6), then it becomes:

(2.1) T𝛾 =
𝜆

𝛾𝛼 + 1
P ◦ (2S − I) + (I − 𝜆S) + 𝜆𝛾𝛼

𝛾𝛼 + 1
𝒖.

The fixed point 𝒚∗ of T𝛾 is not the minimizer of (1.3), while 𝒙∗ = J𝛾𝐺(𝒚∗) = S(𝒚∗) is
the minimizer. The fixed point set of the operator T𝛾 has the following structure.

Theorem 2.1. The set of fixed point of operator T𝛾 is

Π = {𝒚∗ : 𝒚∗ = 𝒙∗ + 𝛾𝜼, 𝜼 ∈ −𝜕 𝑓 (𝒙∗) ∩ 𝜕𝑔(𝒙∗)}.

Proof. We first show any 𝒚∗ ∈ Π is a fixed point of the operator T𝛾. ∀𝜼 ∈ 𝜕𝑔(𝒙∗)
in (1.5), we have S(𝒚∗) = 𝒙∗, since the 𝑖-th entry of the vector 𝒚∗ = 𝒙∗ + 𝛾𝜼 satisfies

[𝒚∗]𝑖


∈ [𝑀,+∞], if 𝑥∗

𝑖
= 𝑀,

= 𝑥∗
𝑖
, if 𝑥∗

𝑖
∈ (𝑚, 𝑀),

∈ [−∞, 𝑚], if 𝑥∗
𝑖
= 𝑚.

Thus, we have P ◦ (2S − I)𝒚∗ = P(2𝒙∗ − 𝒚∗) = P(𝒙∗ − 𝛾𝜼) = 𝒙∗ − 𝛾𝜼 + 𝛾A+A𝜼, where
A𝒙∗ = 𝑏 is used. And 𝜼 ∈ −𝜕 𝑓 (𝒙∗) in (1.4) implies that there exists 𝝃 such that
𝜼 = −𝛼(𝒙∗ − 𝒖) + AT𝝃. Multiplying both sides by A, with A𝒙∗ = 𝑏 = A𝒖 we get
A𝜼 = AAT𝝃, thus 𝝃 = (AAT)−1A𝜼 and 𝛾𝜼 = −𝛾𝛼(𝒙∗ − 𝒖) + 𝛾A+A𝜼. Then, we have
P ◦ (2S − I)𝒚∗ = (𝛾𝛼 + 1)𝒙∗ − 𝛾𝛼𝒖. Therefore

T𝛾(𝒚∗) = 𝜆
𝛾𝛼 + 1

(
(𝛾𝛼 + 1)𝒙∗ − 𝛾𝛼𝒖

)
+ 𝒚∗ − 𝜆𝒙∗ + 𝜆𝛾𝛼

𝛾𝛼 + 1
𝒖 = 𝒚∗.

Next, we show any fixed point 𝒚∗ belongs to set Π. Let 𝜼 = (𝒚∗ − 𝒙∗)/𝛾. Then, 𝒚∗

being a fixed point implies J𝛾𝐺(𝒚∗) = 𝒙∗. Recall that J𝛾𝐺 = S, we have

i. if 𝑥∗
𝑖
+ 𝛾𝜂𝑖 ≥ 𝑀, then 𝑥∗

𝑖
= S(𝑥∗

𝑖
+ 𝛾𝜂𝑖) = 𝑀, thus 𝜂𝑖 ∈ [0,+∞];

ii. if 𝑥∗
𝑖
+ 𝛾𝜂𝑖 ∈ (𝑚, 𝑀), then 𝑥∗

𝑖
= S(𝑥∗

𝑖
+ 𝛾𝜂𝑖) = 𝑥∗

𝑖
+ 𝛾𝜂𝑖 , thus 𝜂𝑖 = 0;

iii. if 𝑥∗
𝑖
+ 𝛾𝜂𝑖 ≤ 𝑚, then 𝑥∗

𝑖
= S(𝑥∗

𝑖
+ 𝛾𝜂𝑖) = 𝑚, thus 𝜂𝑖 ∈ [−∞, 0].

So 𝜼 ∈ 𝜕𝑔(𝒙∗). And 𝒚∗ = T𝛾(𝒚∗) is equivalent to 𝒚∗ = 𝜆
2 (R𝛾𝐹R𝛾𝐺 + I)𝒚∗ + (1 − 𝜆)𝒚∗,

which implies 𝒚∗ = R𝛾𝐹R𝛾𝐺(𝒚∗). Recall J𝛾𝐺(𝒚∗) = 𝒙∗ and 𝒚∗ = 𝒙∗ + 𝛾𝜼, we have

𝒚∗ = R𝛾𝐹(2J𝛾𝐺(𝒚∗) − 𝒚∗) = R𝛾𝐹(𝒙∗ − 𝛾𝜼) = 2J𝛾𝐹(𝒙∗ − 𝛾𝜼) − (𝒙∗ − 𝛾𝜼).

So 𝒙∗ = J𝛾𝐹(𝒙∗ − 𝛾𝜼), which implies 𝒙∗ = argmin𝒛𝛾 𝑓 (𝒛) + 1
2 ∥𝒛 − (𝒙∗ − 𝛾𝜼)∥22. By the

critical point equation, we have 0 ∈ 𝛾𝜕 𝑓 (𝒙∗) + 𝛾𝜼 thus 𝜼 ∈ −𝜕 𝑓 (𝒙∗).
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Let ℬ𝑟(𝒛) denote a closed ball in ℓ2-norm centered at 𝒛 with radius 𝑟. Define set 𝒬:

𝒬 = 𝑄1 ⊗ 𝑄2 ⊗ · · · ⊗ 𝑄𝑛 , where 𝑄𝑖 =


[𝑀,+∞], if 𝑥∗

𝑖
= 𝑀,

(𝑚, 𝑀), if 𝑥∗
𝑖
∈ (𝑚, 𝑀),

[−∞, 𝑚], if 𝑥∗
𝑖
= 𝑚.

For any fixed point 𝒚∗, the Theorem 2.1 implies there exists an 𝜼 = 1
𝛾 (𝒚∗−𝒙∗) ∈ 𝜕𝑔(𝒙∗)

and by (1.5) we have 𝒙∗ + 𝛾𝜼 ∈ 𝒬 for any 𝛾 > 0, which gives 𝒚∗ ∈ 𝒬. Let 𝜖 ≥ 0 be the
least upper bound such that ℬ𝜖(𝒚∗) ⊂ 𝒬. If 𝜖 > 0, then 𝒚∗ is an interior fixed point
and we call this the standard case; otherwise, 𝒚∗ is a boundary fixed point and we
call this the non-standard case. In the standard case that the sequence 𝒚𝑘 converges
to an interior fixed point 𝒚∗. There exists a large enough integer 𝐾 > 0 such that
∥𝒚𝐾 − 𝒚∗∥2 < 𝜖 holds. For any 𝑘 ≥ 𝐾, the operator T𝛾 is nonexpansive [26], so

∥𝒚𝑘 − 𝒚∗∥2 = ∥T𝛾(𝒚𝑘−1) − T𝛾(𝒚∗)∥2 ≤ ∥𝒚𝑘−1 − 𝒚∗∥2 ≤ · · · ≤ ∥𝒚𝐾 − 𝒚∗∥2 < 𝜖.

Thus, after taking the generalized Douglas–Rachford iteration (1.6) sufficiently many
times, the iterates will always belong to the ball ℬ𝜖(𝒚∗) ⊂ 𝒬, namely the iteration
enters the asymptotic convergence regime and the cut-off location does not change.

In the rest of this paper, we only focus on the standard case. The non-standard
case can be analyzed by utilizing the same technique as in [9]. The non-standard case
has not been observed in our numerical experiments.

2.2. The characterization of the operator T𝛾. Assume the unique solution
𝒙∗ of the minimization problem (1.3) has 𝑟 components equal to 𝑚 or 𝑀. We further
assume 𝑟 < 𝑁 , e.g., not all the cell averages will touch the boundary 𝑚 or 𝑀, which
is a quite reasonable assumption. We emphasize that 𝑟 is unknown, unless 𝒙∗ is given.

Let 𝒆𝑖 (𝑖 = 1, · · · , 𝑁) be the standard basis of R𝑁 . Let 𝒆 𝑗 (𝑗 = 𝑖1 , · · · , 𝑖𝑟) de-
note the basis vectors corresponding to entries 𝒙∗ of being 𝑚 or 𝑀. Let B be the
corresponding 𝑟 × 𝑁 selector matrix, i. e., B = [𝒆𝑖1 , · · · , 𝒆𝑖𝑟 ]T.

Recall that we only discuss the standard case, i.e., 𝒚∗ is in the interior of 𝒬.
Then, in the asymptotic convergence regime, i.e., after sufficiently many iterations,
the iterate 𝒚𝑘 will stay in the interior of 𝒬, thus the operator S has an expression

(2.2) S(𝒚) = 𝒚 − B+B𝒚 +
∑

𝑗∈{𝑖1 ,··· ,𝑖𝑟 }
𝑥∗𝑗𝒆 𝑗 .

Note, the 𝑗-th component of 𝒙∗, namely the 𝑥∗
𝑗
in (2.2), takes value 𝑚 or 𝑀 for any

𝑗 ∈ {𝑖1 , · · · , 𝑖𝑟}. Let I𝑁 denote an 𝑁 × 𝑁 identity matrix.

Lemma 2.2. For any 𝒚 in the interior of 𝒬, and a standard fixed point 𝒚∗ in the
interior of 𝒬, we have T𝛾(𝒚) − T𝛾(𝒚∗) = T𝑐,𝜆(𝒚 − 𝒚∗), where the matrix T𝑐,𝜆 is given
by

T𝑐,𝜆 = 𝜆
(
𝑐(I𝑁 − A+A)(I𝑁 − B+B) + 𝑐A+AB+B + (1 − 𝑐)B+B

)
+ (1 − 𝜆)I𝑁 .

Here, 𝑐 = 1
𝛾𝛼+1 is a constant in (0, 1).
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Proof. By (2.2), S(𝒚) − S(𝒚∗) = (I𝑁 − B+B)(𝒚 − 𝒚∗). So by (2.1),

T𝛾(𝒚) −T𝛾(𝒚∗)= 𝜆
𝛾𝛼 + 1

(
P(2S(𝒚) − 𝒚) − P(2S(𝒚∗) − 𝒚∗)

)
+ (𝒚 − 𝒚∗) − 𝜆(S(𝒚) − S(𝒚∗))

=
𝜆

𝛾𝛼 + 1
(I𝑁 − A+A)(I𝑁 − 2B+B)(𝒚 − 𝒚∗) + (𝒚 − 𝒚∗) − 𝜆(I𝑁 − B+B)(𝒚 − 𝒚∗)

=
𝜆

𝛾𝛼 + 1
(I𝑁 − A+A)(I𝑁 − B+B)(𝒚 − 𝒚∗) + 𝜆

𝛾𝛼 + 1
A+AB+B(𝒚 − 𝒚∗)

+ 𝜆𝛾𝛼

𝛾𝛼 + 1
B+B(𝒚 − 𝒚∗) + (1 − 𝜆)(𝒚 − 𝒚∗).

Therefore, the matrix T𝑐,𝜆 can be expressed as follows:

T𝑐,𝜆 =
𝜆

𝛾𝛼 + 1

(
(I𝑁 − A+A)(I𝑁 − B+B) + A+AB+B

)
+ 𝜆𝛾𝛼

𝛾𝛼 + 1
B+B + (1 − 𝜆)I𝑁 .

Definition 2.3. Let 𝒰 and 𝒱 be two subspaces of R𝑁 with dim(𝒰) = 𝑝 ≤
dim(𝒱). The principal angles 𝜃𝑘 ∈ [0, 𝜋2 ] (𝑘 = 1, · · · , 𝑝) between 𝒰 and 𝒱 are
recursively defined by

cos𝜃𝑘 = 𝒖T
𝑘 𝒗𝑘 = max

𝒖∈𝒰
max
𝒗∈𝒱

𝒖T𝒗 ,

such that ∥𝒖∥2 = ∥𝒗∥2 = 1, 𝒖T
𝑗 𝒖 = 0, 𝒗T

𝑗 𝒗 = 0, 𝑗 = 1, 2, · · · , 𝑘 − 1.

The vectors (𝒖1 , · · · , 𝒖𝑝) and (𝒗1 , · · · , 𝒗𝑝) are principal vectors.

Our next goal is to decompose the matrix T𝑐,𝜆 with principal angles between subspaces
𝒩(A) and 𝒩(B). To simplify the writeup, we define matrix T = (I𝑁 − A+A)(I𝑁 −
B+B) + A+AB+B. Thus, we rewrite T𝑐,𝜆 = 𝜆(𝑐T + (1 − 𝑐)B+B) + (1 − 𝜆)I𝑁 . Let A0

be an 𝑁 × (𝑁 − 1) matrix whose columns are orthogonal basis of 𝒩(A) and A1 be an
𝑁 × 1 matrix whose columns are orthogonal basis of ℛ(AT). Similarly, let B0 be an
𝑁 × (𝑁 − 𝑟) matrix whose columns are orthogonal basis of 𝒩(B) and B1 be an 𝑁 × 𝑟
matrix whose columns are orthogonal basis of ℛ(BT).

Since both A+A and A1A
T
1 represent the projection to ℛ(AT), we have A+A =

A1A
T
1 . Similarly, I𝑁 − A+A = A0A

T
0 . Thus we have T = A0A

T
0 B0B

T
0 + A1A

T
1 B1B

T
1 .

Define matrix E0 = AT
0 B0 and matrix E1 = AT

1 B0. Since A0A
T
0 + A1A

T
1 = I𝑁 , we

have B0 = (A0A
T
0 + A1A

T
1 )B0 = A0E0 + A1E1. Therefore, we rewrite

B0B
T
0 = (A0E0 + A1E1)(ET

0 A
T
0 + ET

1 A
T
1 ) =

[
A0 A1

] [E0E
T
0 E0E

T
1

E1E
T
0 E1E

T
1

] [
AT

0

AT
1

]
.(2.3)

The singular value decomposition (SVD) of the (𝑁 − 1) × (𝑁 − 𝑟) matrix E0 is E0 =

U0 cosΘVT with singular values cos𝜃1, · · · , cos𝜃𝑁−𝑟 in nonincreasing order. We
know that 𝜃𝑖 (𝑖 = 1, · · · , 𝑁 − 𝑟) are the principal angles between 𝒩(A) and 𝒩(B).

Notice ET
1 E1 = BT

0 A1A
T
1 B0 and A1A

T
1 = I𝑁 − A0A

T
0 , we have ET

1 E1 = BT
0 B0 −

BT
0 A0A

T
0 B0 = I𝑁−𝑟 −ET

0 E0. Recall the SVD of E0, we have E
T
1 E1 = V sin2 ΘVT. Thus

E1 can be expressed as U1 sinΘVT, which is however not the SVD of E1. To this end,
let matrix Ã = [A0U0 A1U1], then (2.3) becomes

(2.4) B0B
T
0 = Ã

[
cos2 Θ sinΘ cosΘ

sinΘ cosΘ sin2 Θ

]
ÃT.
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Because of B1B
T
1 = I𝑁 − B0B

T
0 and ÃÃT = I𝑁 , we have the decomposition

(2.5) B1B
T
1 = Ã

[
sin2 Θ − sinΘ cosΘ

− sinΘ cosΘ cos2 Θ

]
ÃT.

Notice A0A
T
0 Ã = [A0U0 O𝑁×(𝑁−𝑟)] and A1A

T
1 Ã = [O𝑁×(𝑁−𝑟) A1U1], by (2.4) and

(2.5), we obtain

(2.6) T = Ã

[
cos2 Θ sinΘ cosΘ

− sinΘ cosΘ cos2 Θ

]
ÃT.

Therefore, use (2.6) and consider B+B = B1B
T
1 , the matrix T𝑐,𝜆 becomes

(2.7) T𝑐,𝜆 = Ã

[
𝜆𝑐 cos2 Θ + 𝜆(1 − 𝑐) sin2 Θ + (1 − 𝜆)I𝑁−𝑟 𝜆(2𝑐 − 1) sinΘ cosΘ

−𝜆 sinΘ cosΘ 𝜆 cos2 Θ + (1 − 𝜆)I𝑁−𝑟

]
ÃT.

2.3. Asymptotic convergence rate. With the assumption 𝑟 < 𝑁 , there exists
a nonzero principal angle between subspaces 𝒩(A) and 𝒩(B). The following lemma
gives values of all the principal angles.

Lemma 2.4. The principal angles 𝜃𝑖, 𝑖 = 1, · · · , 𝑁 − 𝑟, between subspaces 𝒩(A)
and 𝒩(B) satisfy

(2.8) cos𝜃1 = · · · = cos𝜃𝑁−𝑟−1 = 1 and cos𝜃𝑁−𝑟 =

√
𝑟

𝑁
.

Proof. Let 𝒩(A)⊥ denote the orthogonal complement of space 𝒩(A). Since A =[
1 1 · · · 1

]
∈ R1×𝑁 , we have 𝒩(A)⊥ = span{1}. Recall the columns of B0 are

the orthogonal basis of 𝒩(B). The principal angles between 𝒩(A)⊥ and 𝒩(B) can be
computed via the SVD of 1√

𝑁
1TB0. Each column of B0 is a standard basis 𝒆 𝑗 , where

𝑗 ≠ 𝑖1 , · · · , 𝑖𝑟 . Thus

( 1√
𝑁
1TB0

)T ( 1√
𝑁
1TB0

)
=

1

𝑁


1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

 (𝑁−𝑟)×(𝑁−𝑟)

.

The eigenvalues of the (𝑁 − 𝑟) × (𝑁 − 𝑟) matrix consisting of all ones, are 𝑁 − 𝑟 and

0, · · · , 0. So the singular values of 1√
𝑁
1TB0 are

√
𝑁−𝑟
𝑁 and 0, · · · , 0. We conclude

cos𝜃𝑁−𝑟 =
√

𝑟
𝑁 , since the non-trivial principal angles between 𝒩(A) and 𝒩(B) and

the corresponding non-trivial principal angles between 𝒩(A)⊥ and 𝒩(B) sum up to
𝜋
2 , see the Theorem 2.7 in [24]. In addition, since the dimension of 𝒩(A) is 𝑁 − 1
and the dimension of 𝒩(B) is 𝑁 − 𝑟, then as long as 𝑁 − 𝑟 > 1, from the definition of
principal angles, it is straightforward to see cos𝜃1 = · · · = cos𝜃𝑁−𝑟−1 = 1.

By Lemma 2.4, there exists only one nonzero principal angle 𝜃𝑁−𝑟 . By eliminating
zero columns in (2.7), (2.7) can be simplified as

T𝑐,𝜆 = [A0U0 A1]

0𝑟−1

(1 − 𝜆 + 𝜆𝑐)I𝑁−𝑟−1
𝜆𝑐 cos2 𝜃𝑁−𝑟 + 𝜆(1 − 𝑐) sin2 𝜃𝑁−𝑟 + (1 − 𝜆) 𝜆(2𝑐 − 1) sin𝜃𝑁−𝑟 cos𝜃𝑁−𝑟

−𝜆 sin𝜃𝑁−𝑟 cos𝜃𝑁−𝑟 𝜆 cos2 𝜃𝑁−𝑟 + (1 − 𝜆)


[
UT

0 A
T
0

AT
1

]
.
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From (2.7) we know the matrix T𝑐,𝜆 is a nonnormal matrix, thus ∥T𝑘
𝑐,𝜆∥2 is sig-

nificantly smaller than ∥T𝑐,𝜆∥𝑘2 for sufficiently large 𝑘. Therefore, the asymptotic

convergence rate is governed by lim𝑘→∞ ∥T𝑘
𝑐,𝜆∥

1
𝑘

2 , which is equal to the norm of the
eigenvalue of T𝑐,𝜆 with the largest magnitude. We have

det(T𝑐,𝜆 − 𝜌I) = (𝜌 − 1 + 𝜆 − 𝜆𝑐)𝑁−𝑟−1(𝜌 − 1 + 𝜆𝑐)𝑟−1

×
[
𝜌2 − (𝜆(𝑐 cos 2𝜃𝑁−𝑟 − 1) + 2)𝜌 + 𝜆2𝑐 sin2 𝜃𝑁−𝑟 + 𝜆(𝑐 cos 2𝜃𝑁−𝑟 − 1) + 1

]
.

By Lemma 2.4, the matrix T𝑐,𝜆 has eigenvalues 𝜌0 = 1 − 𝜆𝑐 and 𝜌1 = 1 − 𝜆(1 − 𝑐)
corresponding to the principle angles 𝜃1 , · · · , 𝜃𝑁−𝑟−1, Corresponding to the principle
angle 𝜃𝑁−𝑟 , the matrix T𝑐,𝜆 has another two eigenvalues, 𝜌2 and 𝜌3, satisfying the
following quadratic equation:

(2.9) 𝜌2 − (𝜆(𝑐 cos 2𝜃𝑁−𝑟 − 1) + 2)𝜌 + 𝜆2𝑐 sin2 𝜃𝑁−𝑟 + 𝜆(𝑐 cos 2𝜃𝑁−𝑟 − 1) + 1 = 0.

The discriminant of above equation is Δ = 𝜆2(𝑐2 cos2 2𝜃𝑁−𝑟−2𝑐+1). The two solutions
of Δ = 0 are [1 ± sin(2𝜃𝑁−𝑟)]/cos2(2𝜃𝑁−𝑟). Notice that [1 + sin(2𝜃)]/cos2(2𝜃) ≥ 1
for any 𝜃 ∈ [0, 𝜋2 ] and 𝑐 ∈ (0, 1). Let 𝑐∗ = [1 − sin(2𝜃𝑁−𝑟)]/cos2(2𝜃𝑁−𝑟), then the
magnitudes of 𝜌2 and 𝜌3 are:

if 𝑐 ≤ 𝑐∗ , then |𝜌2 | =
1

2
|𝜆𝑐 cos(2𝜃𝑁−𝑟) − 𝜆 + 2 + 𝜆

√
cos2(2𝜃𝑁−𝑟)𝑐2 − 2𝑐 + 1 |,

|𝜌3 | =
1

2
|𝜆𝑐 cos(2𝜃𝑁−𝑟) − 𝜆 + 2 − 𝜆

√
cos2(2𝜃𝑁−𝑟)𝑐2 − 2𝑐 + 1 |,

if 𝑐 > 𝑐∗ , then |𝜌2 | = |𝜌3 | =
√
𝑐𝜆2 sin2 𝜃𝑁−𝑟 − (1 − 𝑐 cos(2𝜃𝑁−𝑟))𝜆 + 1 .

Recall the generalized Douglas–Rachford splitting (1.6) and (1.7a) converges due to
convexity [26]. When the iterations enter the asymptotic regime (after the cut-off
location of the operator S does not change), the convergence rate is governed by the
largest magnitude of eigenvalues 𝜌0, 𝜌1, 𝜌2, and 𝜌3:

Theorem 2.5. For a standard fixed point of generalized Douglas–Rachford split-
ting iteration as defined in Section 2.1, the asymptotic convergence rate of (1.6) solv-
ing (1.3) is linear. There exists a sufficiently large 𝐾 > 0, such that for any integer
𝑘 ≥ 𝐾, we have

∥𝒚𝑘 − 𝒚∗∥2 ≤ 𝐶
(
min
𝑐,𝜆

max{|𝜌0 |, |𝜌1 |, |𝜌2 |, |𝜌3 |}
) 𝑘
,

where 𝐾 and 𝐶 may depend on A, 𝑏, and 𝒚0.

2.4. A simple strategy of choosing nearly optimal parameters. For solv-
ing problem (1.3), after the iteration of algorithm (1.6) enters the asymptotic linear
convergence regime, the rate of convergence is governed by the largest magnitude of
𝜌0, 𝜌1, 𝜌2, and 𝜌3. For seeking optimal parameters, we can safely ignore 𝜌0 because it
is straightforward to verify that 𝜌0 ≤ 𝜌1 with the optimal parameters derived below.
It is highly preferred to construct a guideline for selecting parameters 𝑐 and 𝜆 such
that for max{|𝜌1 |, |𝜌2 |, |𝜌3 |} is reasonably small.

We first consider the case 𝜃𝑁−𝑟 ∈ (𝜋4 , 𝜋2 ]. It is easy to check 𝑐∗= 1
(cos𝜃𝑁−𝑟+sin𝜃𝑁−𝑟 )2 ∈

( 12 , 1]. Define surfaces Γ𝑖 = {(𝑐,𝜆, 𝑧) : 0 < 𝑐 < 𝑐∗ , 0 < 𝜆 ≤ 2, 𝑧 = |𝜌𝑖 |}, where



AN EFFICIENT CONVEX OPTIMIZATION BOUND-PRESERVING LIMITER 11

𝑖 ∈ {1, 2, 3}. For any point (𝑐,𝜆, 𝑧) ∈ Γ2 ∩ Γ3, due to the fact that |𝑎 + 𝑏 | = |𝑎 − 𝑏 |
implies 𝑎𝑏 = 0 for any 𝑎, 𝑏 ∈ R, we have (𝜆𝑐 cos(2𝜃𝑁−𝑟) − 𝜆 + 2)

√
Δ = 0. When 𝑐 < 𝑐∗

the discriminant Δ > 0, we get 𝜆𝑐 cos(2𝜃𝑁−𝑟) −𝜆+ 2 = 0. Thus, if there exists a point
belongs to Γ1 ∩ Γ2 ∩ Γ3, then it satisfies{

|1 − 𝜆(1 − 𝑐)| = 𝜆
2

√
cos2(2𝜃𝑁−𝑟)𝑐2 − 2𝑐 + 1 ,

𝜆𝑐 cos(2𝜃𝑁−𝑟) − 𝜆 + 2 = 0.

On surfaces Γ𝑖 , 𝑖 ∈ {1, 2, 3}, the parameters 𝑐 ∈ (0, 𝑐∗) and 𝜆 ∈ (0, 2] implies above
equations only have one solution 𝑐 = 1

2 and 𝜆 = 4
2−cos (2𝜃𝑁−𝑟 ) . Thus, we have

(2.10) Γ1 ∩ Γ2 ∩ Γ3 =

{(1
2
,

4

2 − cos (2𝜃𝑁−𝑟)
,− cos (2𝜃𝑁−𝑟)

2 − cos (2𝜃𝑁−𝑟)
)}
.

Therefore, we know when 𝜃𝑁−𝑟 ∈ (𝜋4 , 𝜋2 ], the minimum of max{|𝜌1 |, |𝜌2 |, |𝜌3 |} for

𝑐 ∈ (0, 𝑐∗) and 𝜆 ∈ (0, 2] is not greater than − cos (2𝜃𝑁−𝑟 )
2−cos (2𝜃𝑁−𝑟 ) . To deal with 𝑐 ∈ [𝑐∗ , 1), we

need the following lemma.

Lemma 2.6. Assume 𝜌1 and 𝜌2 are functions of 𝑐 and 𝜆, for which the minimum
can be attained. Then, the following inequality holds.

min
𝑐,𝜆

max{|𝜌1 |, |𝜌2 |} ≥ max{min
𝑐,𝜆

|𝜌1 |,min
𝑐,𝜆

|𝜌2 |}.

Proof. Assume the minimum of max{|𝜌1 |, |𝜌2 |} is achieved at (𝑐0 ,𝜆0). We have

i. If |𝜌1(𝑐0 ,𝜆0)| ≥ |𝜌2(𝑐0 ,𝜆0)|, then min𝑐,𝜆 max{|𝜌1 |, |𝜌2 |} = |𝜌1(𝑐0 ,𝜆0)| ≥
min𝑐,𝜆 |𝜌1 |.

ii. If |𝜌1(𝑐0 ,𝜆0)| < |𝜌2(𝑐0 ,𝜆0)|, then min𝑐,𝜆 max{|𝜌1 |, |𝜌2 |} = |𝜌2(𝑐0 ,𝜆0)| >
|𝜌1(𝑐0 ,𝜆0)|. Proof by contradiction: assume min

𝑐,𝜆
max{|𝜌1 |, |𝜌2 |} < min

𝑐,𝜆
|𝜌1 |,

then it implies |𝜌1(𝑐0 ,𝜆0)| < min
𝑐,𝜆

|𝜌1 |, which is impossible.

Thus, min
𝑐,𝜆

max{|𝜌1 |, |𝜌2 |} ≥ min
𝑐,𝜆

|𝜌1 |. Similarly, min
𝑐,𝜆

max{|𝜌1 |, |𝜌2 |} ≥ min
𝑐,𝜆

|𝜌2 |.

When 𝑐 ∈ [𝑐∗ , 1), the magnitude of 𝜌2 and 𝜌3 are equal, namely we only need to find
suitable parameters 𝑐 and 𝜆 such that the max{|𝜌1 |, |𝜌2 |} is reasonably small. It is
easy to verify that, when 𝑐 ∈ [𝑐∗ , 1) and 𝜆 ∈ (0, 2], the function 𝜌1 is monotonically
increasing with respect to 𝑐 and monotonically decreasing with respect to 𝜆. Thus,
𝜌1(𝑐∗ , 2) = 2𝑐∗ − 1 > 0 gives |𝜌1 | = 𝜌1. Associated with 𝜆 greater or less than

− cos (2𝜃𝑁−𝑟 )
sin2 𝜃𝑁−𝑟

, we have two cases.

1. When 𝜆 ∈ (0,− cos (2𝜃𝑁−𝑟 )
sin2 𝜃𝑁−𝑟

], recall the monotonicity of 𝜌1, we have

min
𝑐∈[𝑐∗ ,1), 𝜆∈(0,− cos (2𝜃𝑁−𝑟 )

sin2 𝜃𝑁−𝑟
]
|𝜌1 | = 𝜌1

(
𝑐∗ ,−cos (2𝜃𝑁−𝑟)

sin2 𝜃𝑁−𝑟

)
= 1 + cos (2𝜃𝑁−𝑟)

sin2 𝜃𝑁−𝑟

(
1 − 1

(cos𝜃𝑁−𝑟 + sin𝜃𝑁−𝑟)2
)
>

1

2
> − cos (2𝜃𝑁−𝑟)

2 − cos (2𝜃𝑁−𝑟)
.

By Lemma 2.6, when the principal angle 𝜃𝑁−𝑟 ∈ (𝜋4 , 𝜋2 ], we know

min
𝑐∈[𝑐∗ ,1), 𝜆∈(0,− cos (2𝜃𝑁−𝑟 )

sin2 𝜃𝑁−𝑟
]
max{|𝜌1 |, |𝜌2 |} > − cos (2𝜃𝑁−𝑟)

2 − cos (2𝜃𝑁−𝑟)
.
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Therefore, the common point of the three surfaces Γ1, Γ2, and Γ3 in (2.10) is
still a good choice.

2. When 𝜆 ∈ (− cos (2𝜃𝑁−𝑟 )
sin2 𝜃𝑁−𝑟

, 2], define 𝜅 = 𝑐𝜆2 sin2 𝜃𝑁−𝑟−(1−𝑐 cos(2𝜃𝑁−𝑟))𝜆+1.We

have 𝜕𝜅
𝜕𝑐 = 𝜆(𝜆 sin2 𝜃𝑁−𝑟 + cos (2𝜃𝑁−𝑟)) > 0, which implies 𝜅 is monotonically

increasing with respect to 𝑐 in the interval [𝑐∗ , 1). Thus, for any 𝑐 ≥ 𝑐∗, the
|𝜌2(𝑐,𝜆)| ≥ |𝜌2(𝑐∗ ,𝜆)| holds. Again, recall the monotonicity of 𝜌1, we obtain

min
𝑐∈[𝑐∗ ,1), 𝜆∈(− cos (2𝜃𝑁−𝑟 )

sin2 𝜃𝑁−𝑟
,2]
max{|𝜌1 |, |𝜌2 |} = min

𝜆∈(− cos (2𝜃𝑁−𝑟 )
sin2 𝜃𝑁−𝑟

,2]
max{|𝜌1(𝑐∗ ,𝜆)|, |𝜌2(𝑐∗ ,𝜆)|}.

Since |𝜌1(𝑐∗ ,𝜆)| = 1 − 𝜆(1 − 𝑐∗) and |𝜌2(𝑐∗ ,𝜆)| = |1 − 𝜆
1+cot𝜃𝑁−𝑟

|, when 𝜃𝑁−𝑟 ∈
(𝜋4 , 𝜋2 ], 1

1+cot𝜃𝑁−𝑟
> 1 − 𝑐∗, then the equation |𝜌1(𝑐∗ ,𝜆)| = |𝜌2(𝑐∗ ,𝜆)| has one

and only one root

𝜆∗ =
2

1 + 1
1+cot𝜃𝑁−𝑟

− 1
(cos𝜃𝑁−𝑟+sin𝜃𝑁−𝑟 )2

.

Therefore, we know when 𝜃𝑁−𝑟 ∈ (𝜋4 , 𝜋2 ], the minimum of max{|𝜌1 |, |𝜌2 |, |𝜌3 |}
for 𝑐 ∈ [𝑐∗ , 1) and 𝜆 ∈ (− cos (2𝜃𝑁−𝑟 )

sin2 𝜃𝑁−𝑟
, 2] is not larger than 1 − 𝜆∗(1 − 𝑐∗).

Next, let us consider the case 𝜃𝑁−𝑟 ∈ (0, 𝜋4 ]. When 𝑐 ∈ (0, 𝑐∗) and 𝜆 ∈ (0, 2], the
discriminant Δ > 0, namely the quadratic equation (2.9) has two real roots. Moreover,
|𝜌2 | > |𝜌3 | obviously. Thus, we only need to minimize the max{|𝜌1 |, |𝜌2 |}. Define

�̃� = 𝜆𝑐 cos(2𝜃𝑁−𝑟) − 𝜆 + 2 + 𝜆
√
cos2(2𝜃𝑁−𝑟)𝑐2 − 2𝑐 + 1.

Since for any 𝜃𝑁−𝑟 ∈ (0, 𝜋4 ], 𝑐 ∈ (0, 𝑐∗), and 𝜆 ∈ (0, 2] the 𝜆𝑐 cos(2𝜃𝑁−𝑟) − 𝜆 + 2 > 0,
we have |𝜌2 | = 1

2 �̃�. From

𝜕�̃�

𝜕𝑐
= 𝜆

(
cos(2𝜃𝑁−𝑟) +

𝑐 cos2(2𝜃𝑁−𝑟) − 1√
cos2(2𝜃𝑁−𝑟)𝑐2 − 2𝑐 + 1

)
≤ 0,

𝜕�̃�

𝜕𝜆
= 𝑐 cos(2𝜃𝑁−𝑟) − 1 +

√
cos2(2𝜃𝑁−𝑟)𝑐2 − 2𝑐 + 1 ≤ 0,

we know the �̃� is monotonically decreasing with respect to both 𝑐 and 𝜆. Thus �̃� take
minimum at 𝑐 = 𝑐∗ and 𝜆 = 2. By Lemma 2.6, when the principal angle 𝜃𝑁−𝑟 ∈ (0, 𝜋4 ],
we know

(2.11) min
𝑐∈(0,𝑐∗), 𝜆∈(0,2]

max{|𝜌1 |, |𝜌2 |} ≥ min
𝑐∈(0,𝑐∗), 𝜆∈(0,2]

|𝜌2 | =
1

2
�̃�(𝑐∗ , 2) = 𝑐∗ cos 2𝜃𝑁−𝑟 .

Notice, when 𝑐 = 𝑐∗ and 𝜆 = 2, the magnitude of 𝜌1 and 𝜌2 can be simplified as
|𝜌1 | = |2𝑐∗ − 1| and |𝜌2 | = 𝑐∗ cos 2𝜃𝑁−𝑟 , where 𝑐∗ = 1

(cos𝜃𝑁−𝑟+sin𝜃𝑁−𝑟 )2 . It is easy to

check that |𝜌2 | > |𝜌1 | holds for any 𝜃𝑁−𝑟 ∈ (0, 𝜋4 ]. We have

min
𝑐∈(0,𝑐∗), 𝜆∈(0,2]

max{|𝜌1 |, |𝜌2 |} ≤ max{|𝜌1(𝑐∗ , 2)|, |𝜌2(𝑐∗ , 2)|} = |𝜌2(𝑐∗ , 2)| = 𝑐∗ cos 2𝜃𝑁−𝑟 .
(2.12)

From above (2.11) and (2.12), we obtain the minimum of max{|𝜌1 |, |𝜌2 |, |𝜌3 |} equals
𝑐∗ cos 2𝜃𝑁−𝑟 , which is achieved at 𝑐 = 𝑐∗ and 𝜆 = 2. When 𝑐 ∈ [𝑐∗ , 2), following the
similar argument as above, we can show |𝜌1 | = 1 − 𝜆(1 − 𝑐), which is monotonically
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increasing with respect to 𝑐 and monotonically decreasing with respect to 𝜆. In
addition, we also have |𝜌2 | = |𝜌3 | which is monotonically increasing with respect to
𝑐. Thus, we have

min
𝑐∈[𝑐∗ ,1), 𝜆∈(0,2]

max{|𝜌1 |, |𝜌2 |, |𝜌3 |} = min
𝜆∈(0,2]

max{|𝜌1(𝑐∗ ,𝜆)|, |𝜌2(𝑐∗ ,𝜆)|}

= min
𝜆∈(0,2]

1

2
𝜆𝑐∗ cos(2𝜃𝑁−𝑟) −

1

2
𝜆 + 1.

The last equality above is due to the fact the |𝜌1(𝑐∗ ,𝜆)| ≤ |𝜌2(𝑐∗ ,𝜆)| holds for any
𝜃𝑁−𝑟 ∈ (0, 𝜋4 ]. From 𝜆𝑐∗ cos(2𝜃𝑁−𝑟) − 𝜆 is monotonically decreasing with respect to
𝜆, we know, in this case, the minimum equals 𝑐∗ cos(2𝜃𝑁−𝑟), which is taken at 𝑐 = 𝑐∗

and 𝜆 = 2.
To this end, let us make a summary of the parameter selection principle as follows.

1. When 𝜃𝑁−𝑟 ∈ ( 38𝜋, 12𝜋], a suitable choice of parameters are: 𝑐 = 1
2 , 𝜆 = 4

2−cos (2𝜃𝑁−𝑟 ) .

The associated asymptotic linear convergence rate is governed by − cos (2𝜃𝑁−𝑟 )
2−cos (2𝜃𝑁−𝑟 ) .

2. When 𝜃𝑁−𝑟 ∈ ( 14𝜋, 38𝜋], a suitable choice of parameters are: 𝑐 = 𝑐∗, 𝜆 = 𝜆∗. The
associated asymptotic linear convergence rate is governed by 1 − 𝜆∗(1 − 𝑐∗).

3. When 𝜃𝑁−𝑟 ∈ (0, 14𝜋], a suitable choice of parameters are: 𝑐 = 𝑐∗, 𝜆 = 2. The
associated asymptotic linear convergence rate is governed by 𝑐∗ cos(2𝜃𝑁−𝑟).
Remark 2.7. The exact value of the principal angle 𝜃𝑁−𝑟 in (2.8) is unknown.

But it is simple to estimate 𝜃𝑁−𝑟 by counting the number of bad cells, e.g., let 𝑟 be
the number of 𝑢𝑖 ∉ [𝑚, 𝑀] and use 𝑟 instead of 𝑟 in (2.8) to compute 𝜃𝑁−𝑟 . This gives
a simple guideline (1.9) for choosing nearly optimal parameters, which is efficient in
all our numerical tests as shown in Section 4.

Remark 2.8. In a large scale 3D problem, usually the ratio of bad cells with cell
averages out of bound in the DG scheme is quite small. In such a case, we expect
𝑟 ≪ 𝑁 , with which 𝜃𝑁−𝑟 is very close to zero. In this case, by the discussions

above, the convergence rate in Theorem 2.5 becomes − cos (2𝜃𝑁−𝑟 )
2−cos (2𝜃𝑁−𝑟 ) . If 𝑟 is also a good

approximation to 𝑟, which is usually true in this context, then we get the rate (1.10).

With the guideline (1.9) for choosing nearly optimal parameters in (1.7a), we can
use the two-step limiter as explained in Section 1.5 to enforce bounds of DG solutions.

3. Application to phase-field equations. One of the popular approaches for
modeling multi-phase fluid flow in micro-to-millimeter pore structures is to use phase-
field equations [15]. Efficient and accurate pore-scale fluid dynamics simulators have
important applications in digital rock physics (DRP), which has been extensively used
in the petroleum industry for optimizing enhanced oil recovery schemes.

3.1. Mathematical model. In an open bounded domain Ω ⊂ R𝑑 over a time
interval (0, 𝑇], the dimensionless CHNS equations are given by:

𝜕𝑡𝜙 − 1

Pe
∇ · (ℳ(𝜙)∇𝜇) + ∇ · (𝜙𝒗) = 0 in (0, 𝑇] ×Ω,(3.1a)

𝜇 + Cn2Δ𝜙 −Φ′(𝜙) = 0 in (0, 𝑇] ×Ω,(3.1b)

𝜕𝑡𝒗 + 𝒗 · ∇𝒗 − 2

Re
∇ · 𝜺(𝒗) + 1

ReCa
∇𝑝 − 3

2
√
2ReCaCn

𝜇∇𝜙 = 0 in (0, 𝑇] ×Ω,(3.1c)

∇ · 𝒗 = 0 in (0, 𝑇] ×Ω,(3.1d)
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where 𝜙, 𝜇, 𝒗, and 𝑝 are order parameter, chemical potential, velocity, and pressure.
The non-dimensional quantities Pe, Cn, Re, and Ca denote the Péclet number, Cahn
number, Reynolds number, and capillary number, respectively. The strain tensor is
given by 𝜺(𝒗) = 1

2 (∇𝒗 + (∇𝒗)T). The function ℳ denotes mobility. Typical choices of
ℳ include the constant mobility ℳ(𝜙) = ℳ0 > 0, where ℳ0 can be set to 1 after
nondimensionalization, and the degenerate mobility ℳ(𝜙) = 1 − 𝜙2. The function
Φ is a scalar potential, which is also called chemical energy density. Classical and
widely used forms are the polynomial Ginzburg–Landau (GL) double well potential:
Φ(𝜙) = 1

4 (1 − 𝜙)2(1 + 𝜙)2 and the Flory–Huggins (FH) logarithmic potential with

parameters 𝛼 and 𝛽: Φ(𝜙) = 𝛼
2

(
(1 + 𝜙) ln

( 1+𝜙
2

)
+ (1 − 𝜙) ln

( 1−𝜙
2

) )
+ 𝛽

2 (1 − 𝜙2).
We supplement (3.1) with initials 𝜙 = 𝜙0 and 𝒗 = 𝒗0 on {0} ×Ω. Let 𝒏 denote

the unit outward normal to domain Ω. We decompose the boundary 𝜕Ω into three
disjoint subsets 𝜕Ω = 𝜕Ωwall∪𝜕Ωin∪𝜕Ωout, where 𝜕Ωwall denotes fluid–solid interface
and 𝜕Ωin and 𝜕Ωout are inflow boundary and outflow boundary

𝜕Ωin = {𝒙 ∈ 𝜕Ω : 𝒗 · 𝒏 < 0} and 𝜕Ωout = 𝜕Ω \ (𝜕Ωwall ∪ 𝜕Ωin).

We prescribe Dirichlet boundary conditions 𝜙 = 𝜙D and 𝒗 = 𝒗D on (0, 𝑇] × 𝜕Ωin.
For velocity, the no-slip boundary condition 𝒗 = 0 is used on (0, 𝑇] × 𝜕Ωwall and “do
nothing” boundary condition (2𝜺(𝒗) − 1

Ca𝑝I)𝒏 = 0 is applied on (0, 𝑇] × 𝜕Ωout. Wet-

tability is modeled by a contact angle 𝜗 that is enforced by: ∇𝜙 · 𝒏 = − 2
√
2 cos(𝜗)
3Cn g′(𝜙)

on (0, 𝑇] × (𝜕Ωwall ∪ 𝜕Ωout), where the function g is a blending function. The closed-
form expression of g depends on the choice of chemical energy density [4]. For the
Ginzburg–Landau potential, we have g(𝜙) = 1

4 (𝜙3 − 3𝜙 + 2). In addition, we employ
the homogeneous Neumann boundary condition ℳ(𝜙)∇𝜇 · 𝒏 = 0 on (0, 𝑇] × 𝜕Ω to
ensure the global mass conservation.

The order parameter 𝜙 is the difference between the mass fraction 𝜙A and 𝜙B of
the phase A and phase B. With constraint 𝜙A+𝜙B = 1 for a two-component mixture
as well as mass fractions belonging to [0, 1], a physically meaningful range of the order
parameter field is [−1, 1]. The Cahn–Hilliard equation with the degenerate mobility
or with the logarithmic potential enjoys bound-preserving property [41]. However,
for constant mobility with GL polynomial potential, the analytical solution of Cahn–
Hilliard equation is not bound-preserving [2]. For a given initial data 𝜙0 ∈ [−1, 1], it is
an open question whether the solution of a fully coupled CHNS system should have a
bounded order parameter in [−1, 1]. On the other hand, empirically we would expect
a reasonable solution, e.g., the discrete order parameter field, should be bounded by
−1 and 1 for any time 𝑡 > 0.

3.2. Time discretization. The CHNS equations form a highly nonlinear cou-
pled system. One of the popular approaches of constructing efficient numerical algo-
rithms for large-scale simulations in complex computational domains is to use splitting
methods, e.g., to decouple the mass and momentum equations and to further split
the convection from the incompressibility constraint [37]. Also, see [21, 19] for an
overview of the splitting methods for time-dependent incompressible flows.

We uniformly partition the interval [0, 𝑇] into 𝑁st subintervals. Let 𝜏 denote the
time step size. For the chemical energy density, we adopt a convex–concave decom-
position of the form Φ = Φ++Φ−, where the convex part Φ+ is treated time implicitly
and the concave part Φ− is treated time explicitly. For the nonlinear convection
𝒗 · ∇𝒗, the form 𝒞(·, ·) is a semi-discretization that satisfies a positivity property, see
the equation (12) in [27]. For any 1 ≤ 𝑛 ≤ 𝑁st, our first-order time discretization
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algorithm consists of the following steps:
Step 1. Given (𝜙𝑛−1 ,𝒘𝑛−1), compute (𝜙𝑛 , 𝜇𝑛) such that

𝜙𝑛 − 𝜏
Pe

∇ · (ℳ(𝜙𝑛−1)∇𝜇𝑛) + 𝜏∇ · (𝜙𝑛𝒘𝑛−1) = 𝜙𝑛−1 in Ω,

−𝜇𝑛 − Cn2Δ𝜙𝑛 +Φ+
′(𝜙𝑛) = −Φ−

′(𝜙𝑛−1) in Ω.

Step 2. Given (𝜙𝑛 , 𝜇𝑛 , 𝒗𝑛−1 , 𝑝𝑛−1 ,𝜓𝑛−1), compute 𝒗𝑛 such that

𝒗𝑛 + 𝜏𝒞(𝒗𝑛−1 , 𝒗𝑛) − 2𝜏
Re

∇ · 𝜺(𝒗𝑛) = 𝒗𝑛−1

− 𝜏
ReCa

∇(𝑝𝑛−1 + 𝜓𝑛−1) + 3𝜏

2
√
2ReCaCn

𝜇𝑛∇𝜙𝑛 in Ω.

Step 3. Given 𝒗𝑛 , compute 𝜓𝑛 such that

−Δ𝜓𝑛 = −ReCa

𝜏
∇ · 𝒗𝑛 in Ω.

Step 4. Given (𝒗𝑛 , 𝑝𝑛−1 ,𝜓𝑛), compute (𝒘𝑛 , 𝑝𝑛) such that

𝒘𝑛 = 𝒗𝑛 − 𝜏
ReCa

∇𝜓𝑛 ,

𝑝𝑛 = 𝑝𝑛−1 + 𝜓𝑛 − 𝜎𝜒Ca∇ · 𝒗𝑛 .

The parameter 𝜎𝜒 is equal to 2
𝑑
, namely, we use 𝜎𝜒 = 2

3 for our numerical simulations
in three dimensions. To start time marching, we set 𝑝0 = 0 and 𝜓0 = 0. The functions
𝜙0 and 𝒘0 = 𝒗0 are given initial data.

Remark 3.1. The above scheme is a combination of the convex splitting approach
for the Cahn–Hilliard equation with the classical rotational pressure-correction algo-
rithm (see Section 3.4 in [21]) for the Navier–Stokes equations. More precisely, Step 2
to Step 4 can be rewritten as follows:

1

𝜏
(𝒗𝑛 −𝒘𝑛−1) + 𝒞(𝒗𝑛−1 , 𝒗𝑛) − 2

Re
∇ · 𝜺(𝒗𝑛) = − 1

ReCa
∇𝑝𝑛−1 + 3

2
√
2ReCaCn

𝜇𝑛∇𝜙𝑛 ,{ 1
𝜏
(𝒘𝑛 − 𝒗𝑛) + 1

ReCa
∇𝜓𝑛 = 0,

∇ ·𝒘𝑛 = 0,
𝜓𝑛 = 𝑝𝑛 − 𝑝𝑛−1 + 𝜎𝜒Ca∇ · 𝒗𝑛 .

We use 𝒘𝑛−1, instead of 𝒗𝑛−1, in the advection term in Step 1, since ∇ ·𝒘𝑛−1 = 0.
For the sake of simplicity, we only presented a first-order version of the scheme,

although high-order version can be constructed accordingly. On the other hand, it
is also possible to construct energy dissipating schemes as in [38]. Since our focus in
this paper is in preserving bounds for a DG spacial discretization, we employ a simple
time-marching strategy.

3.3. Space discretization. Decoupled splitting algorithms combined with inte-
rior penalty DG spatial formations have been constructed to solve various CHNS mod-
els in large-scale complex-domain DRP simulations [15, 28, 30]. Also, see [29, 32, 33]
for solvability, stability, and optimal error estimates on using DG with decoupled split-
ting schemes for CHNS equations and viscous incompressible flow. Here, we briefly
review the fully discrete scheme.
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Let 𝒯ℎ = {𝐸𝑖} be a family of conforming nondegenerate (regular) meshes of the
domain Ω with maximum element diameter ℎ. Let Γℎ be the set of interior faces. For
each interior face 𝑒 ∈ Γℎ shared by elements 𝐸𝑖− and 𝐸𝑖+ , with 𝑖− < 𝑖+, we define a
unit normal vector 𝒏𝑒 that points from 𝐸𝑖− into 𝐸𝑖+ . For a boundary face, 𝑒 ⊂ 𝜕Ω,
the normal vector 𝒏𝑒 is taken to be the unit outward vector to 𝜕Ω. Let P𝑘(𝐸𝑖) denote
the set of all polynomials of degree at most 𝑘 on an element 𝐸𝑖 . Define the broken
polynomial spaces 𝑋ℎ and Xℎ , for any 𝑘 ≥ 1,

𝑋ℎ = {𝜒ℎ ∈ 𝐿2(Ω) : 𝜒ℎ |𝐸𝑖 ∈ P𝑘(𝐸𝑖), ∀𝐸𝑖 ∈ 𝒯ℎ},
Xℎ = {𝜽ℎ ∈ 𝐿2(Ω)𝑑 : 𝜽ℎ |𝐸𝑖 ∈ P𝑘(𝐸𝑖)𝑑 , ∀𝐸𝑖 ∈ 𝒯ℎ}.

The average and jump for any scalar quantity 𝜒 on a boundary face coincide with its
trace; and on interior faces they are defined by

{|𝜒 |}|𝑒 =
1

2
𝜒 |𝐸𝑖− + 1

2
𝜒 |𝐸𝑖+ , ⟦𝜒⟧ |𝑒 = 𝜒 |𝐸𝑖− − 𝜒 |𝐸𝑖+ , ∀𝑒 = 𝜕𝐸𝑖− ∩ 𝜕𝐸𝑖+ .

The related definitions for any vector quantity are similar. For more details see [36].
Let (·, ·)𝒪 denote the 𝐿2 inner product over 𝒪. For instance, on any face 𝑒 the 𝐿2

inner product is denoted by (·, ·)𝑒 . We make use of the following compact notation
for the 𝐿2 inner product on the interior and boundary faces

(·, ·)𝒪 =
∑
𝑒∈𝒪

(·, ·)𝑒 , where 𝒪 = Γℎ , 𝜕Ω, 𝜕Ω
in , 𝜕Ωout , · · · .

For convenience, we omit the subscript when 𝒪 = Ω, namely denote (·, ·) = (·, ·)Ω. We
still use ∇ and ∇ · to denote the broken gradient and broken divergence.

For completeness, let us recall the DG forms below and we skip their derivation.
Associated with the advection term ∇ · (𝜙𝒘) and the convection term 𝒗 ·∇𝒛, we define

𝑎adv(𝜙,𝒘 , 𝜒) = −(𝜙,𝒘 · ∇𝜒) + (𝜙↑{|𝒘 · 𝒏𝑒 |}, ⟦𝜒⟧)Γℎ ,

𝑎conv(𝒗; 𝒛, 𝜽) = (𝒗 · ∇𝒛, 𝜽) + 1

2
(∇ · 𝒗 , 𝒛 · 𝜽)

− 1

2
(⟦𝒗 · 𝒏𝑒⟧ , {|𝒛 · 𝜽 |})Γℎ∪𝜕Ωin +

∑
𝐸∈𝒯ℎ

(|{|𝒗 |} · 𝒏𝐸 |, (𝒛int − 𝒛ext) · 𝜽int)𝜕𝐸𝒗− .

The superscript int (resp. ext) refers to the trace of a function on a face of 𝐸 coming
from the interior (resp. exterior). The set 𝜕𝐸𝒗

− is the upwind part of 𝜕𝐸, defined by
𝜕𝐸𝒗

− = {𝒙 ∈ 𝜕𝐸 : {|𝒗 |} · 𝒏𝐸 < 0}, where 𝒏𝐸 is the unit outward normal vector to 𝐸 [18].
The upwind quantity 𝜙↑ on an interior face 𝑒 is evaluated by

𝜙↑
���
𝑒∈Γℎ

=

{
𝜙
��
𝐸𝑖−

if {|𝒘 |} · 𝒏𝑒 ≥ 0,

𝜙
��
𝐸𝑖+

if {|𝒘 |} · 𝒏𝑒 < 0.

Associated with the operator −∇ · (𝑧∇𝜉), we define

𝑎diff (𝑧; 𝜉, 𝜒) = (𝑧∇𝜉,∇𝜒) − ({|𝑧∇𝜉 · 𝒏𝑒 |}, ⟦𝜒⟧)Γℎ
− ({|𝑧∇𝜒 · 𝒏𝑒 |}, ⟦𝜉⟧)Γℎ +

𝜎
ℎ
(⟦𝜉⟧ , ⟦𝜒⟧)Γℎ .
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Associated with the Laplace operator −Δ𝜉 (for terms −Δ𝜙 and −Δ𝜓), we define

−Δ𝜉 +Dirichlet on 𝜕Ωin { 𝑎diff ,in(𝜉, 𝜒) = 𝑎diff (1; 𝜉, 𝜒) − (∇𝜉 · 𝒏𝑒 , 𝜒)𝜕Ωin

− (∇𝜒 · 𝒏𝑒 , 𝜉)𝜕Ωin + 𝜎
ℎ
(𝜉, 𝜒)𝜕Ωin ,

−Δ𝜉 +Dirichlet on 𝜕Ωout { 𝑎diff ,out(𝜉, 𝜒) = 𝑎diff (1; 𝜉, 𝜒) − (∇𝜉 · 𝒏𝑒 , 𝜒)𝜕Ωout

− (∇𝜒 · 𝒏𝑒 , 𝜉)𝜕Ωout + 𝜎
ℎ
(𝜉, 𝜒)𝜕Ωout .

Associated with the diffusion term −2∇ · 𝜺(𝒗), we define

𝑎ellip(𝒗 , 𝜽) = 2(𝜺(𝒗), 𝜺(𝜽)) − 2({|𝜺(𝒗)𝒏𝑒 |}, ⟦𝜽⟧)Γℎ − 2({|𝜺(𝜽)𝒏𝑒 |}, ⟦𝒗⟧)Γℎ
+ 𝜎
ℎ
(⟦𝒗⟧ , ⟦𝜽⟧)Γℎ − 2(𝜺(𝒗)𝒏𝑒 , 𝜽)𝜕Ωin − 2(𝜺(𝜽)𝒏𝑒 , 𝒗)𝜕Ωin + 𝜎

ℎ
(𝒗 , 𝜽)𝜕Ωin .

The remaining forms in the right-hand sides of the discrete equations account for the
boundary conditions (see 𝑏diff and 𝑏vel) and the pressure and potential (see 𝑏pres):

𝑏diff (𝜉, 𝜒) = −(𝜙D ,∇𝜒 · 𝒏𝑒)𝜕Ωin+ 𝜎
ℎ
(𝜙D , 𝜒)𝜕Ωin− 2

√
2𝛿 cos(𝜗)
3Cn

(g′(𝜉), 𝜒)𝜕Ωwall∪𝜕Ωout ,

𝑏pres(𝑝,𝜓, 𝜽) = −(𝑝,∇ · 𝜽) + ({|𝑝 |}, ⟦𝜽 · 𝒏𝑒⟧)Γℎ∪𝜕Ω + (∇𝜓, 𝜽),

𝑏vel(𝜽) = −3

2
(𝒗D · 𝒏 , 𝒗D · 𝜽)𝜕Ωin − 2

Re
(𝜺(𝜽)𝒏𝑒 , 𝒗D)𝜕Ωin + 𝜎

ℎRe
(𝒗D , 𝜽)𝜕Ωin .

In 𝑏diff , the parameter 𝛿 is a scalar field that equals the constant one for smooth solid
boundaries only and that otherwise corrects the numerical impact of the jaggedness
of the solid boundaries obtained from micro-CT scanning. The derivation of this
boundary condition and the wettability model can be found in [16].

For any 1 ≤ 𝑛 ≤ 𝑁st, our fully discrete scheme for solving the CHNS equations
(3.1) is as follows.

Algorithm CHNS. At time 𝑡𝑛 , given scalar functions 𝜙𝑛−1
ℎ

, 𝑝𝑛−1
ℎ

,𝜓𝑛−1
ℎ

in 𝑋ℎ and

vector functions 𝒗𝑛−1
ℎ

,𝒘𝑛−1
ℎ

in Xℎ .
Step 1. Compute 𝜙𝑛

ℎ
, 𝜇𝑛

ℎ
∈ 𝑋ℎ , such that for all 𝜒ℎ ∈ 𝑋ℎ ,

(𝜙𝑛
ℎ
, 𝜒ℎ) +

𝜏
Pe
𝑎diff (ℳ(𝜙𝑛−1

ℎ
);𝜇𝑛

ℎ
, 𝜒ℎ) + 𝜏𝑎adv(𝜙𝑛ℎ ,𝒘

𝑛−1
ℎ

, 𝜒ℎ)

= (𝜙𝑛−1
ℎ

, 𝜒ℎ) + 𝜏(𝜙D𝒘𝑛−1
ℎ

· 𝒏𝑒 , 𝜒ℎ)𝜕Ωin ,

−(𝜇𝑛
ℎ
, 𝜒ℎ) + Cn2𝑎diff ,in(𝜙𝑛ℎ , 𝜒ℎ) + (Φ+

′(𝜙𝑛
ℎ
), 𝜒ℎ)

= Cn2𝑏diff (𝜙𝑛−1ℎ
, 𝜒ℎ) − (Φ−

′(𝜙𝑛−1
ℎ

), 𝜒ℎ).

Step 2. Compute 𝒗𝑛
ℎ
∈ Xℎ , such that for all 𝜽ℎ ∈ Xℎ ,

(𝒗𝑛
ℎ
, 𝜽ℎ) + 𝜏𝑎conv(𝒗𝑛−1ℎ

, 𝒗𝑛
ℎ
, 𝜽ℎ) +

𝜏
Re

𝑎ellip(𝒗𝑛ℎ , 𝜽ℎ) = (𝒗𝑛−1
ℎ

, 𝜽ℎ)

− 𝜏
ReCa

𝑏pres(𝑝𝑛−1ℎ
,𝜓𝑛−1

ℎ
, 𝜽ℎ) +

3𝜏

2
√
2ReCaCn

(𝜇𝑛
ℎ
∇𝜙𝑛

ℎ
, 𝜽ℎ) + 𝜏𝑏vel(𝜽ℎ).

Step 3. Compute 𝜓𝑛
ℎ
∈ 𝑋ℎ , such that for all 𝜒ℎ ∈ 𝑋ℎ ,

𝑎diff ,out(𝜓𝑛
ℎ
, 𝜒ℎ) = −ReCa

𝜏
(∇ · 𝒗𝑛

ℎ
, 𝜒ℎ).
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Step 4. Compute 𝒘𝑛
ℎ
∈ Xℎ and 𝑝𝑛

ℎ
∈ 𝑋ℎ , such that for all 𝜽 ∈ Xℎ and 𝜒ℎ ∈ 𝑋ℎ ,

(𝒘𝑛
ℎ
, 𝜽ℎ) + 𝜎div(∇ ·𝒘𝑛

ℎ
,∇ · 𝜽ℎ) = (𝒗𝑛

ℎ
, 𝜽ℎ) −

𝜏
ReCa

(∇𝜓𝑛
ℎ
, 𝜽ℎ),

(𝑝𝑛
ℎ
, 𝜒ℎ) = (𝑝𝑛−1

ℎ
, 𝜒ℎ) + (𝜓𝑛

ℎ
, 𝜒ℎ) − 𝜎𝜒Ca(∇ · 𝒗𝑛

ℎ
, 𝜒ℎ).

For the initial conditions, we set 𝑝0
ℎ
= 𝜓0

ℎ
= 0, 𝒘0

ℎ
= 𝒗0

ℎ
; we compute 𝜙0

ℎ
from the

𝐿2 projection of 𝜙0 followed with Zhang–Shu limiter and we obtain 𝒗0
ℎ
from the 𝐿2

projection of 𝒗0.
To obtain a bound-preserving discrete order parameter field, at each time step

after finishing computing Step 1 in the Algorithm CHNS, we apply the two-stage
limiting strategy, see Section 1.5, to postprocess discrete order parameter 𝜙𝑛

ℎ
. For the

simulations in Section 4, we choose 𝑚 = −1 and 𝑀 = 1.

4. Numerical experiments. In this section, we first verify the high order ac-
curacy of our cell average limiter (1.7) for a manufactured smooth solution. Then
we verify the efficiency of the limiter (1.7) when using the parameters (1.9) on some
representative physical simulations including spinodal decomposition, flows in micro
structure, and merging droplets.

We use P2 scheme, e.g., discontinuous piecewise quadratic polynomials for space
approximation, on cubic partitions of 3D domains. More details can be found in [14].

The penalty parameters for all tests are as follows. We use 𝜎 = 8 on Γℎ for 𝑎diff ;
𝜎 = 16 on 𝜕Ω for 𝑎diff ,in and 𝑎diff ,out; 𝜎 = 32 on Γℎ and 𝜎 = 64 on 𝜕Ωin for 𝑎ellip. In
addition, we set tolerance 𝜖 = 10−13 to terminate Douglas–Rachford iterations.

4.1. Accuracy test. We use the manufactured solution method on domain Ω =

(0, 1)3 with end time 𝑇 = 0.1 to test the spatial order of convergence for our cell average
limiter (1.7).

To trigger the cell average limiter (1.7), e.g., produce a fully discrete solution
with cell average out of [−1, 1] at each time step, we use constant mobility with GL
polynomial potential and choose the prescribed order parameter field as an expres-
sion of a cosine function to power eight, as follows: 𝜙 = 1− 2 cos8

(
𝑡 + 2𝜋

3 (𝑥 + 𝑦 + 𝑧)
)
.

The chemical potential 𝜇 is an intermediate variable, which value is derived by the
order parameter 𝜙. The prescribed velocity and pressure fields are taken from the
Beltrami flow [32], which enjoys the property that the nonlinear convection is bal-
anced by the pressure gradient and the velocity is parallel to vorticity. We have

𝒗 =


−𝑒−𝑡+𝑥 sin (𝑦 + 𝑧) − 𝑒−𝑡+𝑧 cos (𝑥 + 𝑦)
−𝑒−𝑡+𝑦 sin (𝑥 + 𝑧) − 𝑒−𝑡+𝑥 cos (𝑦 + 𝑧)
−𝑒−𝑡+𝑧 sin (𝑥 + 𝑦) − 𝑒−𝑡+𝑦 cos (𝑥 + 𝑧)

 and 𝑝 = −𝑒−2𝑡(𝑒𝑥+𝑧 sin (𝑦 + 𝑧) cos (𝑥 + 𝑦) +

𝑒𝑥+𝑦 sin (𝑥 + 𝑧) cos (𝑦 + 𝑧)+ 𝑒𝑦+𝑧 sin (𝑥 + 𝑦) cos (𝑥 + 𝑧)+ 1
2 𝑒

2𝑥 + 1
2 𝑒

2𝑦 + 1
2 𝑒

2𝑧 − 𝑝0), where
𝑝0 = 7.63958172715414 guarantees zero average pressure over Ω for any 𝑡 > 0 up to
round-off error. The initial conditions and Dirichlet boundary condition for velocity
are imposed by above manufactured solutions. For order parameter and chemical
potential, we apply Neumann boundary condition. In addition, the right-hand side
terms is evaluated by the prescribed solution.

Let us estimate the spatial rates of convergence by computing solutions on a
sequence of uniformly refined meshes with fixed time step size 𝜏 = 10−4. In our
experiments, the time step size is small enough such that the spatial error dominates.
We choose Re = 1, Ca = 1, Pe = 1, Cn = 1, and the contact angle 𝜗 = 90◦ on
𝜕Ω. If errℎ denotes the error on a mesh with resolution ℎ, then the rate is given by
ln(errℎ/errℎ/2)/ln 2.
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We compare the 𝐿2
ℎ
rate and the 𝐿∞

ℎ
rate of order parameter in three scenarios: not

applying any limiter, only applying the cell average limiter (1.7), and applying both
limiters (1.7) and (1.8). In those applied cell average limiter (1.7) cases, the limiter
is triggered at each time step, see Figure 1 for the ratio of the number of trouble cells
to the number of total elements. The convergence of our original DG scheme without
applying any limiter is optimal, see the top rows in Table 1. The middle and bottom
rows in Table 1 show optimal convergence of the cases that only apply cell average
limiter (1.7) and apply both cell average limiter (1.7) and Zhang–Shu limiter (1.8).
Our limiting strategy preserves high order accuracy. We emphasize that DG methods
with only the Zhang-Shu limiter will produce cell averages outside of the range [−1, 1]
for this particular test.

Fig. 1. The performance of limiting strategy in the accuracy test of applying both limiters (1.7)
and (1.8) with mesh resolution ℎ = 1/25. Left: the percentage of trouble cells at each time step for
the cell average limiter (1.7). Right: the number of Douglas–Rachford iterations at each time step.
For each time step, at most 15 iterations are needed for (1.7a)

.

ℎ ∥𝜙𝑁st

ℎ
− 𝜙(𝑇)∥𝐿2

ℎ
rate ∥𝜙𝑁st

ℎ
− 𝜙(𝑇)∥𝐿∞

ℎ
rate

n
o
li
m
it
er 1/22 2.034E−1 — 5.636E−1 —

1/23 4.903E−2 2.053 1.400E−1 2.009
1/24 5.714E−3 3.101 2.731E−2 2.358
1/25 4.833E−4 3.564 4.699E−3 2.548

D
R

1/22 2.053E−1 — 5.826E−1 —
1/23 4.954E−2 2.051 1.485E−1 1.972
1/24 5.720E−3 3.115 2.799E−2 2.408
1/25 4.834E−4 3.565 4.734E−3 2.564

D
R
+Z

S 1/22 2.872E−1 — 7.631E−1 —
1/23 5.970E−2 2.266 2.561E−1 1.575
1/24 7.181E−3 3.057 3.926E−2 2.706
1/25 4.833E−4 3.893 4.734E−3 3.052

Table 1
Errors and spatial convergence rates of order parameter. Top: the original DG scheme without

applying any limiters. Middle: only apply the cell average limiter (1.7) (DR). Bottom: apply both
of the cell average limiter (1.7) and Zhang–Shu limiter (1.8).

4.2. Spinodal decomposition. Spinodal decomposition is a phase separation
mechanism, by which an initially thermodynamically unstable homogeneous mixture
spontaneously decomposes into two separated phases that are more thermodynam-
ically favorable. The spinodal decomposition test is a widely used benchmark for
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validating CHNS simulators. In this part, we employ the degenerate mobility with
GL polynomial potential.

We define a trefoil-shaped pipe, which is a set of points whose distance away
from the following parametric curve is less than 0.09. A trefoil knot: 𝑥(𝑡) = 1

8 (cos 𝑡 +
2 cos 2𝑡)+ 1

2 , 𝑦(𝑡) = 1
8 (sin 𝑡−2 sin 2𝑡)+ 1

2 , and 𝑧(𝑧) = 1
4 sin 3𝑡+ 1

2 , where 𝑡 ∈ [0, 2𝜋]. Let
us uniformly partition the unit cube (0, 1)3 into cubic cells with the mesh resolution
ℎ = 1/100. A cell is marked as fluid if its center is in the above pipe, otherwise is
marked as solid. The computational domain Ω is defined as the union of all fluid cells.
We consider a closed system, i.e., 𝜕Ω = 𝜕Ωwall. The initial order parameter field is
generated by sampling numbers from a discrete uniform distribution, 𝑐0 |𝐸𝑖 ∼ U{−1, 1},
and the initial velocity field is taken to be zero. We take the time step size 𝜏 = 1×10−3.
For physical parameters, we choose Re = 1, Ca = 0.1, Pe = 1, Cn = ℎ, and the contact
angle 𝜗 = 90◦ on 𝜕Ω.

Figure 2 shows snapshots of the order parameter field. We employ a rainbow color
scale that maps the values in [−1, 1] from transparent blue to non-transparent red
for plotting the order parameter field. The center of the diffusive interface is colored
green. We observe that the homogeneous mixture decomposes into two separate
phases. With a neutral wall, i.e., the contact angle 𝜗 = 90◦, in the final stage of the
simulation, each of the two phases occupies several disjoint sections of the domain.
The interfaces are perpendicular to the solid surface. Our limiters remove overshoots
and undershoots. The global mass is conserved, see the left subfigure of Figure 3.

The middle subfigure of Figure 3 records the number of iterations of the Douglas–
Rachford algorithm on each time step. To measure the convergence rate, we run
the Douglas–Rachford algorithm for 103 iterations with a very small tolerance to
approximate 𝒚∗ and 𝒙∗ numerically. Then we plot ∥𝒚𝑘 − 𝒚∗∥2 and ∥𝒙𝑘 − 𝒙∗∥2. The
right subfigure of Figure 3 shows asymptotic linear convergence rates at the selected
time step 128. We see the convergence rates match our analysis in Theorem 2.5. In
addition, we check the convergence rates on all of the rest steps that match with our
analysis.

Fig. 2. Selected snapshots at time steps 2𝑛 , where 𝑛 = 3, 5, · · · , 11. 3D views of the evolution
of order parameter field.

4.3. Micro structure simulations. This example involves large Péclet flows in
a microfluidic device, making it an interesting test for validating our bound-preserving
scheme in simulating advection-dominated CHNS problems. In this part, we use the
constant mobility with GL polynomial potential.

The microstructure image is a set of 334 × 210 × 10 cubic cells of resolution
ℎ = 1/350. Analogous to the lab experiment setup, we add a buffer of 16×210×70 cells
to the left side. The pore space together with the buffer region form our computational
domain Ω, see Figure 4. We refer to phase A the bulk phase with order parameter
equals to +1 and phase B the bulk phase with order parameter equals to −1. The
buffer zone is initially filled with phase A and the microstructure is initially filled with



AN EFFICIENT CONVEX OPTIMIZATION BOUND-PRESERVING LIMITER 21

Fig. 3. Left: the average of order parameter at each time step, which shows the conservation
is preserved. Middle: the number of Douglas–Rachford iterations at each time step. Right: the
asymptotic linear convergence at time step 128. The predicted rate is the rate given in Theorem 2.5.

phase B, respectively. The initial velocity field is taken to be zero. The left boundary
of Ω is inflow, the right boundary of Ω is outflow, and the rest boundaries of Ω are
fluid–solid interfaces. On the inflow boundary, we prescribe 𝜙D = 1, e.g., the phase
A is injected, and 𝒗D = 10000

9 (𝑦 − 0.2)(𝑦 − 0.8)(𝑧 − 0.4)(𝑧 − 0.6). We the take time step
size 𝜏 = 5 × 10−4. For physical parameters, we choose Re = 1, Ca = 1, Pe = 100, and
Cn = ℎ. The microstructure surface is hydrophobic with respect to phase A with a
contact angle 𝜗 = 135◦. The buffer surface and outflow boundary are neutral, namely
𝜗 = 90◦.

Figure 5 shows snapshots of the order parameter field as well as its values along
the plane {(𝑥, 𝑦, 𝑧) ∈ Ω : 𝑧 = 0.5} in mountain views. Similar to the previous example,
we employ a rainbow color scale that maps the values in [−1, 1] from blue to red for
plotting the order parameter field. The center of the diffusive interface is colored green.
The values outside [−1, 1] are marked in black. We observe that phase A invades
the microstructure while staying away from the solid surfaces due to the wettability
constraint. The top two rows correspond to the simulation without applying any
limiter whereas the bottom two rows correspond to the simulation applying our two-
stage limiting strategy. Our limiters remove overshoot and undershoot. The fluid
dynamics are similar for both cases.

Figure 6 shows the number of iterations of the Douglas–Rachford algorithm on
each time step as well as the asymptotic linear convergence rates of selected time
steps. Here, the errors ∥𝒚𝑘 − 𝒚∗∥2 and ∥𝒙𝑘 − 𝒙∗∥2 are measured in a similar way as
explained in the previous example. A numerical way of getting an exact value of 𝑟
is to run the Douglas–Rachford iterations sufficiently many times with small enough
tolerance and count the number of entries that stay out of the bounds in 𝒚∗. Using
the exact 𝑟 to compute the principal angle 𝜃𝑁−𝑟 , the numerical results match our
analysis, see Figure 6.

Fig. 4. The computational domain of the microstructure simulation.

4.4. Merging droplets. This example deals with droplets of fluid surrounded
by another fluid. In a capillary-forces-dominated merging process, the large drop-
let wobbles several times and eventually evolves into the most thermodynamically
favorable configuration, e.g., a single spherical droplet.



22 C. LIU, B. RIVIERE, J. SHEN, AND X. ZHANG

Fig. 5. Selected snapshots at time steps 50, 100, 150, 200, and 250. The first and third rows:
3D views of the evolution of the order parameter field. The second and fourth rows: plots of order
parameter warped along the plane {𝑧 = 0.5}. The top two rows are without limiters and the bottom
two rows are with our limiters.

Fig. 6. The left top figure shows the number of Douglas–Rachford iterations at each time step.
The middle and right figures show the asymptotic linear convergence at time steps 150 and 250,
where the principal angle 𝜃𝑁−𝑟 is computed by using exact values of 𝑟.

Let us consider four different scenarios. In the first scenario, we use constant
mobility with GL polynomial potential and we do not apply any limiter. In the
rest scenarios, we apply our two-stage limiting strategy. In the second scenario, we
use constant mobility with GL polynomial potential. In the third scenario, we use
constant mobility with FH logarithmic potential (parameters 𝛼 = 0.3 and 𝛽 = 1). And
in the fourth scenario, we use degenerate mobility with GL polynomial potential.

Let Ω = (0, 1)3 to be a closed system, 𝜕Ω = 𝜕Ωwall and set the initial velocity
field 𝒗0 = 0. Four droplets of phase A are initially in a non-equilibrium configuration,
surrounded by phase B, i.e., the initial order parameter field is prescribed by

𝜙0 = max
{
− 1, tanh

(
𝑟1−∥𝒙−𝒂0∥√

2Cn

)
, tanh

(
𝑟1−∥𝒙−𝒂1∥√

2Cn

)
, tanh

(
𝑟2−∥𝒙−𝒂2∥√

2Cn

)
, tanh

(
𝑟2−∥𝒙−𝒂3∥√

2Cn

)}
,

where 𝒂0 = [0.35, 0.35, 0.35]T and 𝒂1 = [0.65, 0.65, 0.65]T are the centers of the
two initial larger droplets with radius 𝑟1 = 0.25; and 𝒂2 = [0.75, 0.25, 0.25]T and
𝒂3 = [0.25, 0.75, 0.75]T are the centers of the two initial smaller droplets with radius
𝑟2 = 0.16. For the FH logarithmic potential, we use 0.997𝜙0 as the initial order
parameter field to make its value away from the singularity. We uniformly partition
domain Ω by cubic elements with the mesh resolution ℎ = 1/50 and take the time
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step size 𝜏 = 10−4. For physical parameters, we choose Re = 1, Ca = 10−4, Pe = 1,
Cn = ℎ, and the contact angle 𝜗 = 90◦ on 𝜕Ω.

Figure 7 shows snapshots of the order parameter field. The center of the diffusive
interface is colored green and the bulk phases are colored transparent. We see the
merging of the four droplets, the intermediate wobbling stages, and the final equilib-
rium configuration of a spherical droplet. We observe from Figure 7 that the fluid
dynamics are visually similar in these scenarios. However, there are visible differences
in certain one dimensional profiles, see Figure 8 for the order parameters at the line
{(𝑥, 𝑦, 𝑧) ∈ Ω : 𝑥 = 𝑦 = 𝑧}.

Figure 8 shows values of order parameter along the diagonal {(𝑥, 𝑦, 𝑧) ∈ Ω : 𝑥 =

𝑦 = 𝑧} of the computational domain. In scenario 1, we observe bulk shift at near
steady state, which is as expected since no limiters are applied. In secnarios 2 and 4,
our limiters remove overshoots and undershoots. In scenario 3, the FH logarithmic
potential ensures bounds without bulk shift. The cell average limiter (1.7) is not
triggered but the Zhang–Shu limiter is triggered. The global mass is conserved, see
the left subfigure in Figure 9.

We plot the number of iterations of the Douglas–Rachford algorithm on each
time step, see the right two subfigures in Figure 9. We check the asymptotic linear
convergence rates and they match with our analysis. The errors ∥𝒚𝑘 − 𝒚∗∥2 and
∥𝒙𝑘 − 𝒙∗∥2 are measured in a similar way as in the previous example.

5. Conclusion. In this paper, we have analyzed the asymptotic linear conver-
gence rate for using Douglas–Rachford splitting methods of a simple nonsmooth con-
vex minimization, which forms a high order accurate cell average limiter. We obtain
an explicit dependence of the convergence rate on the parameters, which gives a prin-
ciple of parameter selection for accelerating the asymptotic convergence rate. Our
optimization scheme is efficient and our two-stage limiting strategy is well-suited for
high order accurate DG schemes for large-scale simulations.
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