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AN OPERATOR-SPLITTING OPTIMIZATION APPROACH FOR

PHASE-FIELD SIMULATION OF EQUILIBRIUM SHAPES OF

CRYSTALS∗

ZEYU ZHOU† , WEN HUANG‡ , WEI JIANG§ , AND ZHEN ZHANG¶

Abstract. Computing equilibrium shapes of crystals (ESC) is a challenging problem in materials
science that involves minimizing an orientation-dependent (i.e., anisotropic) surface energy functional
subject to a prescribed mass constraint. The highly nonlinear and singular anisotropic terms in
the problem make it very challenging from both the analytical and numerical aspects. Especially,
when the strength of anisotropy is very strong (i.e., strongly anisotropic cases), the ESC will form
some singular, sharp corners even if the surface energy function is smooth. Traditional numerical
approaches, such as the H−1 gradient flow, are unable to produce true sharp corners due to the
necessary addition of a high-order regularization term that penalizes sharp corners and rounds them
off. In this paper, we propose a new numerical method based on the Davis-Yin splitting (DYS)
optimization algorithm to predict the ESC instead of using gradient flow approaches. We discretize
the infinite-dimensional phase-field energy functional in the absence of regularization terms and
transform it into a finite-dimensional constraint minimization problem. The resulting optimization
problem is solved using the DYS method which automatically guarantees the mass-conservation
and bound-preserving properties. We also prove the global convergence of the proposed algorithm.
These desired properties are numerically observed. In particular, the proposed method can produce
real sharp corners with satisfactory accuracy. Finally, we present numerous numerical results to
demonstrate that the ESC can be well simulated under different types of anisotropic surface energies,
which also confirms the effectiveness and efficiency of the proposed method.

Key words. phase-field, anisotropy, optimization approach, equilibrium shapes of crystals,
Davis-Yin splitting

MSC codes. 74G15, 74G65, 65Z05

1. Introduction. Computing equilibrium shapes of crystals (ESC) is an impor-
tant and centuries-old interface problem arising from materials science. Meanwhile,
it is very challenging to design materials with specific functional properties for many
nano-technological applications [3, 12, 26]. The ESC problem can be mathemati-
cally described as finding a minimizer of an orientation-dependent (i.e., anisotropic)
surface energy functional with a prescribed mass constraint [17]. The geometric con-
struction of ESC was given by the famous Wulff construction in 1901 [29], which
was rigorously proved by using geometric measure theory [16]. However, the highly
nonlinear, singular anisotropic terms in surface energy would bring considerable chal-
lenges to theoretical analysis, modeling and numerical simulations. Especially, when
the strength of anisotropy is strong enough, some sharp corners will appear in the
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ESC even if the anisotropic surface energy function is smooth, and this phenomenon
is very difficult to capture in numerical simulations [28, 27, 9].

Generally, there exist two widely-used classes of mathematical models in the liter-
ature which can be applied to simulate the ESC, i.e., the sharp-interface models [17, 4]
and the phase-field models [20, 27]. In this paper, we mainly focus on the phase-field
models. To begin with, we consider the interface problem in a fixed, bounded domain
Ω ⊂ R

d, where d = 2, 3 is the space dimension. Let φ be a phase variable which takes
the values ±1 in the two phases with a smooth transition layer between them. We use
the zero level set {x ∈ Ω : φ(x, t) = 0} to represent the interface curve/surface, i.e.,
the shape of crystals. We denote the gradient of φ as q = ∇φ, and the corresponding
normal vector as n = (n1, · · · , nd) =

q

|q| , provided that |q| 6= 0. We consider the fol-

lowing anisotropic Kobayashi-type free energy [20] subject to the mass-conservation
constraint:

(1.1) E(φ) =

∫

Ω

(

f(φ) +
ε2

2
γ2(n)|q|2

)

dx, subject to

∫

Ω

φ dx = const,

where f(φ) =
(φ2−1)

2

4 is the double-well potential, ε is a small parameter which
controls the thickness of the transition layer, and γ(n) is the surface energy density.
For instance, except otherwise specified, we will use the following four-fold surface
energy density throughout this paper,

(1.2) γ(n) = 1 + α (4

d
∑

i=1

n4
i − 3),

where α > 0 controls the strength of anisotropy. More precisely, when α = 0, the sur-
face energy is isotropic; otherwise, it is anisotropic. In particular, the surface energy
becomes strongly anisotropic if α > 1

15 , and in this case the ESC will exhibit sharper
and sharper corners as α increases. It is noteworthy that other types of anisotropic
surface energy exist in the literature, for example, the Torabi-type energy [27], which
results in an interface with uniform thickness and independent of orientation. How-
ever, due to its complexity, this type of surface energy functional is beyond the scope
of current work and will be left for our future study.

The commonly used approach to minimizing the anisotropic free energy functional
(1.1) subject to the mass-conservation constraint is via the H−1 gradient flow induced
by the energy functional, i.e., solving the following anisotropic Cahn-Hilliard equation
([28, 10]) until its steady state:

(1.3)











∂tφ = ∆µ,

µ = f ′(φ)− ε2∇ ·m,

m = γ2(n)∇φ + γ(n)|∇φ|(I − n⊗ n)∇nγ(n),

where ∇n denotes the gradient operator with respect to n, I represents the iden-
tity matrix, and ⊗ denotes the Kronecker tensor product. It is worth noting that
the anisotropic Cahn-Hilliard equation (1.3) reduces to the classical isotropic Cahn-
Hilliard equation when the surface energy function γ(n) ≡ 1. Nevertheless, solving
the partial differential equation (PDE) (1.3) would be challenging from both analytical
and numerical aspects due to the high nonlinearity and singularity of the anisotropic
terms. In particular, one needs to develop energy stable and bound-preserving (on
[−1, 1]) numerical schemes, which is not easy. Another critical difficulty arises from
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the fact that the anisotropic Cahn-Hilliard equation may become ill-posed due to the
anti-diffusion in ∇ ·m when the surface energy density is strongly anisotropic [28].

In order to tackle the ill-posedness of the dynamic problem arising from the
strongly anisotropic surface energy, a commonly-used approach in the literature is in-
troducing high-order regularization, for instance, adding a bi-harmonic regularization
term

∫

Ω
(∆φ)2dx [28] into the Kobayashi-type energy functional (1.1), or a Willmore

regularization term
∫

Ω
(∆φ− 1

ε2
f(φ))2dx [9, 22] into the Torabi-type energy functional.

However, the high-order regularization terms would bring other difficulties in numer-
ical simulations. More importantly, it would change the ESC for strongly anisotropic
systems by penalizing sharp corners and rounding them off in a small length scale,
which is unphysical and deviates from experimental observations. Therefore, devel-
oping alternative approaches to capturing real sharp corners of the ESC in strongly
anisotropic systems is in great demand.

To overcome these difficulties, we consider the direct minimization of the energy
functional in (1.1) subject to both the mass-conservation and box constraints,

(1.4) argmin
φ

E(φ), subject to:

∫

Ω

φ dx = constant and ‖φ‖∞ 6 1.

This problem can be numerically solved by a discretization-then-optimization ap-
proach. We first approximate φ by a finite-dimensional vector and discretize spatial
derivatives of all the terms in the energy functional. Then, (1.4) is approximated
by a finite-dimensional optimization problem, which can be solved efficiently and
accurately using finite-dimensional optimization techniques. The main idea of this
approach is illustrated in Figure 1.1.

Optimization problemEnergy functional

Equilibrium state

gradient flow

discretize functional

numerical schemes

optimization method

PDE

Fig. 1.1: A diagram for the discretization-then-optimization approach versus the gra-
dient flow approach, whose flowcharts are depicted by the red solid lines and the black
dash lines respectively.

The discretization-then-optimization approach is widely used in solving flow con-
trol problems [18]. Hereby it is the first attempt in the literature to apply this ap-
proach for obtaining the ESC of anisotropic phase-field models. The major difficulty
arises from the constrainted non-convex optimization problem after discretization. To
solve this finite-dimensional optimization efficiently with guaranteed convergence, we
reformulated the problem into a combination of three properly organized functions
and applied the Davis-Yin splitting (DYS) algorithm [13]. The DYS algorithm is a
three-operator splitting method that was initially designed for convex optimizations,
with its convergence being proved as a particular case of fixed-point iteration. Re-
cently this splitting was generalized for non-convex optimizations with guaranteed
global convergence to critical points [6]. For the problem (1.4) under our considera-
tion, we decomposed the objective function into the difference of two convex functions
(the DC technique in the optimization literature [1], or the convex splitting technique
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in numerical PDE literature [15]), and introduced an indicator function to enforce the
constraints. The three split functions were shown to enjoy the desired properties such
that the DYS algorithm has global convergence. Moreover, this particularly devised
DYS algorithm was efficiently implemented based on fast solvers. As a byproduct,
the mass-conservation and the box constraint are satisfied exactly at each step in
the iteration. Various numerical experiments have demonstrated the capability of the
proposed numerical method in accurately computing the ESC while maintaining real
sharp corners for strongly anisotropic surface energies.

The rest of the paper is organized as follows. In Section 2, we introduce necessary
mathematical notations and discretize the ESC problem into a finite-dimensional op-
timization problem. In Section 3, we present our numerical method based on the DYS
algorithm for solving the ESC problem and depict the global convergence result of the
algorithm, while leaving detailed proofs in the appendices. Section 4 is devoted to the
numerical performance of the proposed method when applied to different anisotropic
surface energy densities. Concluding remarks are made in Section 5.

2. Numerical discretization. We first introduce necessary notations to dis-
cretize the energy functional (1.1). Consider a rectangular domain Ω = [0, 1]× [0, 1]
in two-dimension (three-dimension is similar). Let h = 1

m
be the mesh size, where

m ∈ Z+ is the number of grid points. We discretize φ as a grid vector φi,j := φ(xi, yj)
where xi = (i − 1

2 )h, yj = (j − 1
2 )h with i, j = 1, 2, · · · ,m. This grid vector can be

rearranged to be a column vector φ := (φ1, φ2, · · · , φm2)T , with φi+m(j−1) := φi,j .
Without loss of generality, we adopt periodic boundary conditions. For simplicity

of our presentation, we define the one-dimensional one-sided difference matrix by

D :=
1

h















−1 1
−1 1

. . .
. . .

−1 1
1 −1















.

High-order difference matrices can be used if one seeks more accurate approxima-
tions. The two-dimensional difference matrices in x− and y−directions can be defined
through Kronecker tensor product:

Dx := Im ⊗D, Dy := D ⊗ Im,

where Im is an m×m identity matrix. The discrete negative Laplacian operator is

(2.1) L := DT
xDx +DT

yDy.

With these notations, we can discretize ∇φ as

(2.2) p =

[

Dx

Dy

]

φ, and pk =

[

eTk
eTk

]

p =

[

eTkDx

eTkDy

]

φ, k = 1, 2, . . . ,m2.

Here pk is the approximation of ∇φ at each grid point and p is their collection,
ek = (0, · · · , 1, · · · , 0)T is an m2 × 1 canonical vector with only the k-th element
being 1. Then the corresponding unit normal vector at each grid point is

(2.3) nk =
pk

|pk|
, k = 1, 2, . . . ,m2, when pk 6= 0.
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We set nk = 0 when pk = 0, which leads to a continuous gradient of the discrete
energy function.

Consequently, the finite-dimensional discretization of (1.4) becomes

argmin
φ

Eh(φ) =

m2
∑

k=1

(

f(φk) +
ε2

2
γ2(nk)|pk|2

)

,

subject to: 1Tφ = constant and ‖φ‖∞ 6 1.

(2.4)

where 1 = (1, 1, · · · , 1)T is an m2 × 1 vector.

3. Numerical method. In this section, we explore the Davis-Yin splitting
(DYS) algorithm for simulating the ESC problem. The DYS algorithm, originally
introduced as a three-operator splitting technique in [13] for convex optimizations,
was recently generalized for non-convex problems with its global convergence estab-
lished in [6]. In Section 3.1, we first introduce the generic DYS algorithm and give
its convergence results. Then, we propose the numerical method for solving the ESC
problem based on the DYS algorithm in Section 3.2. Its convergence is verified through
the validation of the key properties of the split functions in Section 3.3.

3.1. The Davis-Yin splitting algorithm. The DYS algorithm aims to solve
an optimization problem in the form of

(3.1) argmin
x∈Rn

F (x) +G(x) +H(x),

where F, G, and H satisfy Assumption 3.1 shown below.

Assumption 3.1. The functions F andH are Lipschitz continuously differentiable,
i.e., there exist positive constants L

F
, L

H
such that

‖∇F (x1)−∇F (x2)‖ ≤ LF
‖x1 − x2‖ ∀x1,x2 ∈ R

n,

‖∇H (x1)−∇H (x2)‖ ≤ LH
‖x1 − x2‖ ∀x1,x2 ∈ R

n,

and the function G is an indicator function of a nonempty closed convex set.

The DYS algorithm is stated in Algorithm 3.1.

Algorithm 3.1 DYS for problem (3.1)

Require: An initial x(0) and a step size τ ;
1: while a termination criterion is not met, do
2: Set

y
(n+1)

∈ argmin
y

{

F (y) +
1

2τ

∥

∥

∥
y − x

(n)
∥

∥

∥

2
}

,(3.2)

z
(n+1)

∈ argmin
z

{

G(z) +
1

2τ

∥

∥

∥
z −

(

2y(n+1)
− τ∇H(y(n+1))− x

(n)
)
∥

∥

∥

2
}

,(3.3)

x
(n+1) = x

(n) + (z(n+1)
− y

(n+1));(3.4)

3: n = n+ 1;
4: end while
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The first-order optimality conditions for the subproblems in Algorithm 3.1 are

0 = ∇F (y(n+1)) +
1

τ
(y(n+1) − x(n)),(3.5)

0 ∈ ∂G(z(n+1)) +
1

τ
(z(n+1) − 2y(n+1) + τ∇H(y(n+1)) + x(n)),(3.6)

where ∂ denotes the Clarke generalized subdifferential [11]. Combining (3.5) and (3.6)
together, we have

(3.7)
y(n+1) − z(n+1)

τ
∈ ∇F (y(n+1)) + ∂G(z(n+1)) +∇H(y(n+1)).

This implies that if the sequence {x(n+1), y(n+1), z(n+1)}n>0 has a cluster point
(x∗, y∗, z∗) and lim

n→∞
‖y(n+1) − z(n+1)‖ = 0, then z∗ is a critical point of Prob-

lem (3.1).
It has been shown in [6] that the DYS algorithm is a descent algorithm with

respect to the function

Θτ (x,y, z) =F (y) +G(z) +H(y) +
1

2τ
‖2y − z − x− τ∇H(y)‖2

− 1

2τ
‖x− y + τ∇H(y)‖2 − 1

τ
‖y − z‖2

(3.8)

for certain τ > 0 in the sense that
(3.9)

Θτ

(

x(n+1),y(n+1), z(n+1)
)

−Θτ

(

x(n),y(n), z(n)
)

6 −D(τ)
∥

∥

∥
y(n+1) − y(n)

∥

∥

∥

2

.

There exists a threshold τ̄ such that D(τ) > 0 if 0 < τ < τ̄ . Especially, if F is convex,
then the threshold τ̄ is

(3.10) τ̄ = min

{

1

L
F

,
−(2L

H
+ 6L

F
) +

√

(2L
H
+ 6L

F
)2 + 12L

H
L

F

6L
H
L

F

}

.

The global convergence of the DYS algorithm is given by the following theorem.

Theorem 3.2 (global convergence of the whole sequence [6]). Let Assump-
tion 3.1 be satisfied and let the parameter τ in Algorithm 3.1 be such that D(τ) > 0.
Let

{(

x(n),y(n), z(n)
)}

n>1
be a sequence generated by Algorithm 3.1 which has a

cluster point (x∗,y∗, z∗). If the functions F , G and H are semi-algebraic (see Ap-
pendix A), then the following statements hold:
(i) 0 ∈ ∇F (z∗) + ∂G (z∗) +∇H (z∗), i.e., z∗ is a critical point.
(ii) The limit limn→∞ Θτ

(

x(n),y(n), z(n)
)

exists and

Θ∗ := lim
t→∞

Θτ

(

x(n),y(n), z(n)
)

= Θτ (x
∗,y∗, z∗) .

(iii)
∑

n>1

∥

∥x(n+1) − x(n)
∥

∥ ,
∑

n>1

∥

∥y(n+1) − y(n)
∥

∥ and
∑

n>1

∥

∥z(n+1) − z(n)
∥

∥ are
all convergent series.

3.2. DYS algorithm for the ESC problem. Motivated by the convex split-
ting technique [15] and the linear stabilization method [24] in numerical methods
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of phase-field equations, or the DC technique [1] in the optimization literature, we
propose the following splitting of the objective function:

(3.11)

F (φ) = a
ε2

2
φTLφ+

b

2

m2
∑

k=1

φ2k,

G(φ) = δC(φ),

H(φ) =

m2
∑

k=1

(

f(φk)−
b

2
φ2k +

ε2

2
γ2(nk)|pk|2

)

− aε
2

2
φTLφ,

where a and b are positive constants such that H(φ) is a concave function in the set
C defined by

(3.12) C = {φ : 1Tφ = V0 = constant, and ‖φ‖∞ 6 1},
and δC(φ) is its indicator function, i.e., δC(φ) = 0 if φ ∈ C, otherwise δC(φ) = +∞.

Since F and G are convex functions, the solutions of Subproblems (3.2) and (3.3)
are unique. The first-order optimality condition of Subproblem (3.2) yields

y(n+1) − x(n)

τ
= −(aε2L+ bIm2)y(n+1),

which can be solved efficiently by the fast Fourier transformation (FFT). The solution
of Subproblem (3.3) is computed in a closed form:

z(n+1) = PC

(

2y(n+1) − τ∇H
(

y(n+1)
)

− x(n)
)

,

where PC is the projection operator of C that is given by the following lemma [5].

Lemma 3.3 (Projection onto the set C [5]). If C is a set defined in (3.12), then

PC(φ) = PBox[−1,1](φ− λ∗1) = (min {max {(φ− λ∗1)i,−1} , 1})m
2

i=1,

where λ∗ is a root of the equation

(3.13) f̃(λ) := 1TPBox[−1,1](φ− λ1)− V0 = 0,

and the projection PBox[−1,1](ψ) is a cut-off operator, i.e., for any ψ ∈ R
m2

,

PBox[−1,1](ψ) = (min {max {ψi,−1} , 1})m
2

i=1.

Since the scalar function f̃(λ) is nonincreasing, its root λ∗ can be found efficiently.
In this paper, the bisection method is used for the numerical computation of λ∗.

Computing the gradient of H is a little cumbersome. We provide it in Lemma 3.4
and leave its proof in Appendix C.

Lemma 3.4 (The gradient of H(φ)). The gradient of H(φ) is given by

(3.14) ∇H(φ) =









f ′(φ1)− bφ1
f ′(φ2)− bφ2

· · ·
f ′(φm2)− bφm2









+ ε2









DT
x









A1(p1)
A1(p2)
· · ·

A1(pm2)









+DT
y









A2(p1)
A2(p2)
· · ·

A2(pm2)

















,

where A1(pk) and A2(pk) are scalar components defined through
[

A1(pk)
A2(pk)

]

:= (γ2(nk)− a)pk + γ(nk)|pk|(I2 −nk ⊗nk)∇nγ(nk), k = 1, 2, · · · ,m2.
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Using these two lemmas, we can compute the ESC through Algorithm 3.1 with a
prescribed threshold τ̄ for the step size.

However, the theoretical value of τ̄ given in (3.10) is too restricted due to its
complexity and may not be useful in practice. We adopt a more practical strategy for
variably selecting τ as follows [25, 21, 6]:

We initialize the algorithm with a large τ0. If τ > τ̄ , and the iteration satisfies
either ‖y(n+1) − y(n)‖ > c0/n or ‖y(n+1)‖ > c1 for some predefined c0, c1 > 0, then
we reduce τ by a factor 1

2 .
In the worst case, τ 6 τ̄ after finitely many decreases which ensures the conver-

gence of the sequence by Theorem 3.2. Otherwise, we have ‖y(n+1) − y(n)‖ 6 c0/n
and ‖y(n+1)‖ 6 c1 for all sufficiently large n. Combining the fact that z(n+1) is
bounded and (3.5), we know that the sequence

{(

x(n),y(n), z(n)
)}

n>1
is bounded

which leads to the existence of cluster points. In addition, (3.4) and (3.5) imply that
‖y(n+1) − z(n+1)‖ 6 (1 + τL

F
)‖y(n+1) − y(n)‖, leading to the convergence of the

sequence by (3.7). In fact, this practical step-size strategy can not only accelerate
the convergence speed numerically but also have the potential to avoid the iteration
getting stuck at ‘bad’ critical points [21].

The implemented DYS algorithm for computing the ESC is given in Algorithm 3.2.

Algorithm 3.2 DYS for (3.11) with dynamic step size

1: Initialize y(0), τ = τ0, x
(0) = y(0) + τ(aε2L+ bIm2)y(0) and parameters (c0, c1).

2: for n = 0, 1, · · · , do
3: Use FFT to solve y(n+1)−x(n)

τ
= −(aε2L+ bIm2)y(n+1) for y(n+1).

4: z(n+1) = PC

(

2y(n+1) − τ∇H
(

y(n+1)
)

− x(n)
)

.

5: x(n+1) = x(n) +
(

z(n+1) − y(n+1)
)

.
6: If a termination criterion is met, break.
7: Update τ : if ‖y(n+1) − y(n)‖ > c0/n or ‖y(n+1)‖ > c1, then τ ← τ/2.
8: end for

9: return z(n+1).

3.3. Convergence property. The original double well potential f(φ) = (φ2−1)2

4
does not have Lipschitz continuous gradient. This presents difficulties in the conver-
gence analysis of the algorithm due to the violation of Assumption 3.1. A commonly
used modification is to truncate the double-well potential f(φ) and concatenate it
with a quadratic growth function [24], i.e.,

(3.15) f̂(φ) =











3M2−1
2 φ2 − 2M3φ+ 1

4

(

3M4 + 1
)

, φ > M,
1
4

(

φ2 − 1
)2
, φ ∈ [−M,M ],

3M2−1
2 φ2 + 2M3φ+ 1

4

(

3M4 + 1
)

, φ < −M,

for some positive number M > 1. Then there exists a constant Lf such that

(3.16) max
φ∈R

|f̂ ′′(φ)| 6 Lf .

Sufficient numerical experiments ([28, 24, 8, 10]) show that the energy functional
with this modified potential yields bounded equilibrium solutions with bounds nearby
±1. Moreover, the box constraint in (2.4) also guarantees the boundedness of the
equilibrium profiles. This suggests that we can take M = 1 throughout this paper.
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Nevertheless, numerical experiments indicate that the proposed algorithm also works
well even if we take the original double-well potential f(φ) = 1

4 (φ
2 − 1)2.

As a major technical result, we will show that the sequence generated by the
DYS algorithm associated with the splitting (3.11) converges to a critical point of
(2.4). To this end, we verify the assumptions of Theorem 3.2 for the ESC problem.
The first condition is the existence of a clustering point, which can be ensured by the
boundedness of the sequence generated by the DYS algorithm. A sufficient condition
for the boundedness has been given in [6], which is unfortunately not satisfied for the
ESC problem. Hereby we show the boundedness in Theorem 3.5 by further exploring
the particular structure of the ESC problem and mimicing the analysis in [6]. Its
proof is provided in Appendix B.

Theorem 3.5 (Boundedness). Let Assumption 3.1 hold and the parameter τ in
Algorithm 3.1 satisfy D(τ) > 0. Suppose that the function F is bounded below and
coercive (i.e., ‖F (x)‖ → +∞, if ‖x‖ → ∞), the function G is an indicator function
of a bounded set, and the function H is a concave function. Then, the sequence
{(

x(n),y(n), z(n)
)}

n>1
generated by Algorithm 3.1 is bounded.

Based on Theorem 3.2 and Theorem 3.5, we can summarize the conditions that
need to be verifed as follows:
(i) F is bounded below, coercive and has a Lipschitz continuous gradient.
(ii) G is an indicator function of a nonempty closed convex set.
(iii) H is a concave function and has a Lipschitz continuous gradient;
(iv) F , G and H are semi-algebraic.

For (i), since L is positive definite, it follows that F is bounded below. The
coercivity of F is obvious due to its quadratic form. Moreover, because ‖∇2F (φ)‖2 6

aε2‖L‖2 + b, F has a Lipschitz continuous gradient.
(ii) is a direct consequence of the fact that the bounded set C is the intersection

of a box and a hyperplane.
To verify (iii), we first splitH intoH(φ) = h1(φ)+h2(φ), with h1 being a function

solely depending on φ and h2 depending only on its first-order finite differences:

(3.17) h1(φ) =
m2
∑

k=1

(

f̂(φk)−
b

2
φ2k

)

, h2(φ) =
m2
∑

k=1

ε2

2
(γ2(nk)− a)|pk|2,

where we have used the identity φTLφ =
∑m2

k=1 |pk|2.
An insightful observation is that the summands in h2 can always be written in

terms of some fractional functions if γ2 is a polynomial. For example, if γ(n) = n1,

then γ2(n)|q|2 =
q21|q|

2

|q|2 . Thus to analyze h2, it suffices to study the function ζ
l
of the

following form:

(3.18) ζ
l
(x) =

{

η
l+2

(x)

|x|l
, x ∈ R

2\{0},
0, x = 0,

where η
l+2

(x) is a homogeneous polynomial with degree l + 2. This function has the
following properties whose proof is given in Appendix D.

Lemma 3.6. Let ζ
l
(x) be defined by (3.18). Then ∇xζl is continuous, and there

exists a constant Cl such that
∣

∣

∣

∂2ζ
l

∂xi∂xj

∣

∣

∣ 6 Cl for any x ∈ R
2\{0} and i, j = 1, 2.



10 Z. ZHOU, W. HUANG, W. JIANG AND Z. ZHANG

Using (3.18), if γ2 is a (q − 1)-degree polynomial, we can represent h2(φ) as

(3.19) h2(φ) =

m2
∑

k=1

ε2

2

q−1
∑

l=0

ζ
l
(pk).

Then we can verify the condition (iii) in the following lemma.

Lemma 3.7 (H is concave and has a Lipschitz continuous gradient). Let γ2(n) be
a polynomial. Then H has a Lipschitz continuous gradient. Moreover, if the splitting
parameter a > maxl ‖∇2

xζl‖2 with ζ
l
’s defined in (3.19), and b > Lf , then H(φ) is a

concave function.

Proof. It suffices to show that both h1 and h2 are concave and have Lipschitz
continuous gradients. Since∇2h1(φ) is a diagonal matrix whose k-th entry is f̂ ′′(φk)−
b. By (3.16), we have h1(φ) is concave and has a Lipschitz continuous gradient.

The differential of h2(φ) can be calculated through chain rule as

(3.20) ∇h2(φ) =
ε2

2

m2
∑

k=1

q−1
∑

l=0

[

DT
x DT

y

]

[

ek
ek

]

∇xζl(pk).

For any φ, φ̄ ∈ R
m2

, we can apply the notations in (2.2) to define their corresponding
discrete gradients p, p̄ and pk, p̄k. By (2.1), the following estimate can be established:

(3.21) ‖pk − p̄k‖2 6

∥

∥

∥

∥

[

eTk
eTk

]∥

∥

∥

∥

2

∥

∥

∥

∥

[

Dx

Dy

]∥

∥

∥

∥

2

‖φ− φ̄‖2 = ‖L‖
1
2
2 ‖φ− φ̄‖2.

To show h2 has a Lipschitz continuous gradient, we have an estimate that
(3.22)

‖∇h2(φ)−∇h2(φ̄)‖2 6
qε2

2
‖L‖

1
2
2 ·max

l

∥

∥

∥

∥

m2
∑

k=1

[

ek
ek

](

∇xζl(pk)−∇xζl(p̄k)

)∥

∥

∥

∥

2

=
qε2

2
‖L‖

1
2
2 ·max

k,i,l

∣

∣

∣

∣

∂ζ
l

∂xi
(pk)−

∂ζ
l

∂xi
(p̄k)

∣

∣

∣

∣

.

On the one hand, if the line segment from pk to p̄k does not pass through the
origin 0, then by mean value theorem, Lemma 3.6 and (3.21), we have that

(3.23)

∣

∣

∣

∣

∂ζ
l

∂xi
(pk)−

∂ζ
l

∂xi
(p̄k)

∣

∣

∣

∣

6 Cl ‖pk − p̄k‖2 6 Cl ‖L‖
1
2
2 ‖φ− φ̄‖2.

On the other hand, if the line segment from pk to p̄k pass through the origin 0,
we have ‖pk‖2 + ‖p̄k‖2 = ‖pk − p̄k‖2. Again by mean value theorem, it follows

(3.24)

∣

∣

∣

∣

∂ζ
l

∂xi
(pk)−

∂ζ
l

∂xi
(p̄k)

∣

∣

∣

∣

6

∣

∣

∣

∣

∂ζ
l

∂xi
(pk)−

∂ζ
l

∂xi
(0)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂ζ
l

∂xi
(0)− ∂ζ

l

∂xi
(p̄k)

∣

∣

∣

∣

6Cl(‖pk‖2 + ‖p̄k‖2) = Cl ‖L‖
1
2
2 ‖φ− φ̄‖2.

Combining (3.22), (3.23) and (3.24), we obtain

‖∇h2(φ)−∇h2(φ̄)‖2 6
Cqε2

2
‖L‖2 ‖φ− φ̄‖2,
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where C = maxl Cl. Hence, h2 has a Lipschitz continuous gradient.
At last, we prove −h2 is convex. Since the composition of a convex function and

an affine function is still convex, by (3.17) we only need to show (a− γ2(nk))|pk|2 is
convex with respect to pk. Because γ

2 is a polynomial function and the summations
of convex functions are still convex, it suffices to prove ĥ2(x) := a|x|2−ζ

l
(x) is convex

for any x ∈ R
2. This is easily verified since its Hessian matrix ∇2

xĥ2 = aI − ∇2
xζl

is positive-definite in R
2\{0}. Combining the continuity of ∇xĥ2 and Lemma 2.4 of

[10], we obtain that ĥ2 is convex which implies h2 is concave.

Remark 3.8. In this lemma, we have assumed γ2 is a polynomial. This form
includes a broad class of anisotropy functions:

1. A function of the form: γ(n) = α0 +
∑d

i=1 α1,i
ni +

∑d
i=1 α2,i

n2
i + · · · . This

includes two-, three-, four-, six-fold anisotropy functions [28, 10].
2. Riemannian metric form [14]: γ(n) =

√
Rn · n where the matrix R is a sym-

metric positive definite matrix. This expression includes ellipsoidal anisotropy
[30] and some Riemannian metric anisotropy as its particular cases [19].

Remark 3.9. The condition a > maxl ‖∇2
xζl‖2 can be relaxed for γ(n) with given

explicit expressions. For example, an estimate for four-fold anisotropy (1.2) has been
established in Ref. [10]. In practice, a can also be adjusted by a close observation in
the optimality conditions or numerical convergence trends.

Finally, we verify the condition (iv).

Lemma 3.10 (Semi-algebraic function). Let γ2 be a polynomial. Then F , G and
H are semi-algebraic.

Proof. Items 1 and 2 in Property A.2 implies F , G and h1 are semi-algebraic.
The remaining problem is to prove that h2 is also semi-algebraic. By items 3 and 4
in Property A.2 and (3.19), we only need to show ζ

l
is semi-algebraic. This is easily

seen from the definition since the graph of ζ
l
(pk) can be written as

{

(pk, t) ∈ R
d × R : t =

η
l+2

(pk)

|pk|l
}

=

{

(pk, t) ∈ R
d × R : t2|pk|2l − η2l+2

(pk) = 0

}

.

Now we can summarize our main results in the following theorem.

Theorem 3.11 (global convergence for the ESC problem). Let the step size
τ be smaller than the threshold τ̄ in (3.10), where LF and LH are determined in
Assumption 3.1 for given γ. If γ2 is a polynomial, and the parameters satisfy a >

maxl ‖∇2
xζl‖2 with ζ

l
’s defined in (3.19) and b > Lf , then the sequence generated by

the DYS algorithm associated with the splitting (3.11) converges to a critical point of
(2.4).

4. Numerical simulations. In this section, we apply the DYS algorithm to
compute the ESC for different anisotropic surface energy densities. If not explicitly
specified, the computational domain is chosen as Ω = (0, 1)d, where d = 2, 3. The
mesh size is set to be h = 1/256. Additionally, we initialize the step size as τ0 = 1,
and choose the splitting parameters a = 10 and b = 2. The parameters for updating
the step size are selected as c0 = 1 and c1 = 10. The initial condition is represented
by a circle centered at (0.5, 0.5), as depicted in Figure 4.1(a). Specifically, it is defined
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by

(4.1) φ(x, y, t = 0) = − tanh

(

√

(x− 0.5)2 + (y − 0.5)2 − 0.3

2
√
2× 10−2

)

.

This function is discretized as in Section 2 to produce an initial guess for y(0). As
the output of Algorithm 3.2, z(n+1) approximates the ESC after reshaping into a
matrix representation. The iterations are terminated when the condition ‖y(n+1) −
z(n+1)‖/τ < 10−8 is satisfied during the course of our simulations.

4.1. Strongly anisotropic cases for four-fold anisotropy. The equilibrium
shapes exhibit pyramidal structures with sharp corners when the anisotropy strength
α > 1

15 for four-fold anisotropy (1.2), which presents numerical challenges in simula-
tions. We will show that this difficulty can be well circumvented using the proposed
method in our comprehensive numerical investigation.

4.1.1. Convergence for diminishing ε. We consider ε = 0.08, 0.04, 0.02, 0.01,
and fix the anisotropy strength α = 0.2. The corresponding zero level-sets of z(n+1)

representing the ESC are depicted in Figure 4.1(b). Apparently, sharp corners are well
captured in the numerical results and the four “facets” are clearly observed for this
four-fold symmetry, consistent with the theoretical solution obtained via the Wulff
construction [29]. A zoom-in plot reveals the monotone convergence of the numerical
solution towards the exact one as ε decreases.

0 0.2 0.4 0.6 0.8 1

x

0.2

0.4

0.6

0.8

1

y

(b)

Fig. 4.1: Numerical convergence for diminishing ε. (a) shows that the initial shape
is a circle. In (b), the zero level-sets for different thickness parameters ranging from
ε = 0.08 (blue dotted line) to ε = 0.01 (purple dashed-dot line) are plotted in the
strongly anisotropic case with α = 0.2. These numerical results are compared with
the theoretical solution obtained via the Wulff construction (red solid line), where the
convergence trend is clearly observed, and sharp corners are well captured.

To quantify the convergence rate in ε, we employ the manifold distance metric
introduced in [31] as an error measure. Let Ω1 and Ω2 be the regions enclosed by
the simple closed curves Γ1 and Γ2, respectively. The manifold distance M(Γ1,Γ2) is
defined as the area of the symmetric difference between Ω1 and Ω2:

M(Γ1,Γ2) = |(Ω1\Ω2) ∪ (Ω2\Ω1)| = |Ω1|+ |Ω2| − 2 |Ω1 ∩ Ω2| ,
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where |Ω| denotes the area of Ω. In Table 4.1, the manifold distance is evaluated as
ε gradually decreases from 0.08 to 0.01. It is observed that the convergence rate in ε
is first-order.

ε Distance Order
0.08 4.57× 10−2 /
0.04 1.51× 10−2 1.59
0.02 4.82× 10−3 1.64
0.01 1.79× 10−3 1.43

Table 4.1: Manifold distance between the equilibrium shapes obtained by the proposed
method and the exact shape under different thickness parameters ε.

4.1.2. Comparisons with H−1 gradient flow. We make a systematic com-
parison of our proposed method with theH−1 gradient flow approach in the simulation
of the ESC.

For the gradient flow approach, we solve the anisotropic Cahn-Hilliard equa-
tion (1.3) with a bi-harmonic regularization by modifying the chemical potential as
µ = f ′(φ) − ε2∇ ·m + βε2∆2φ, where β controls the regularization strength. This
regularization is necessary for tackling the ill-posedness of the gradient flow dynamics
of strongly anisotropic surface energy [28]. The regularized anisotropic Cahn-Hilliard
equation is numerically solved using the convex splitting method [10]. The parameter
are fixed at ε = 0.02 and β = 10−4. The time step size is 10−3, and the termination
criterion is set to be ‖φ(n+1) − φ(n)‖ 6 10−8.

We first show a visual comparison of the ESC computed by the proposed method
and the gradient flow approach under four different strengths of anisotropy α =
0.1 ∼ 0.4. As shown in Figure 4.2, the four-fold pyramidal shapes are observed for
both methods and the computed ESCs look very similar. However, a closer look at
their corners suggests significant differences. For the proposed method, sharp corners
always appear for all strong anisotropy strengths α, and the corners become sharper
and more pronounced as α increases. In contrast, in the numerical results obtained
by the gradient flow approach, the corners are smooth and round-off which does not
align with the theoretical prediction.

To give a more quantitative investigation, we focus on the case with α = 0.2. We
show the ESCs of the proposed method, the gradient flow approach, and the theoretic
solution in Figure 4.3(a). It is observed that both methods provide promising nu-
merical approximations to the theoretical solution and the computed contours almost
agree with each other except at the corners. The different performance of the two
methods can be further analyzed by computing the orientations of the contours. We
represent the orientation of a contour curve by the angle between its tangent vec-
tor and the y-axis. Then the behavior of a contour curve is clearly revealed by the
orientation plot versus the arc length (starting at the left corner point), as depicted
in Figure 4.3(b). It is evident that the numerical solution obtained by the proposed
method agrees well with the exact one in terms of orientation, and there is a signif-
icant change in orientation near the left corner, indicating the presence of a sharp
corner. In contrast, the gradient flow approach gives relatively smooth results with
a gradually varying orientation near the left corner. Although a diminishing β can
enhance the transition in the orientation and improve the approximation to the exact
solution, there is still a much larger error nearby the sharp corner in comparison with
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Fig. 4.2: Comparison of the equilibrium zero level-sets obtained by the proposed
method (shown in (a)) and the H−1 gradient flow approach (shown in (b)) for four
different anisotropy strengths α. The zoom-in plots indicate that the corners of the
pyramids are always sharp for the proposed method, while they are round-off for the
gradient flow approach.

our proposed method.
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Fig. 4.3: Comparison of the ESCs obtained by the proposed method, theH−1 gradient
flow approach, and the theoretic result. The contour plots are given in (a), while the
orientation plots near the left corners of the ESCs are shown in (b). The gradient flow
results with different regularization strengths β are provided to show the convergence
tendency as β → 0.

As an important indicator for optimization problems, the extent to which the
optimality condition is violated is usually checked. We compute the L2 norm of the
residual of the optimality condition [2]

‖PBox[−1,1](z
n −∇F (zn)−∇H(zn)− λ1)− zn‖2,

with λ being a constant minimizing this norm, and plot it versus the CPU time cost
in Figure 4.4(a) for the above two approaches. It is remarkable that the residual
of the optimality condition is seriously reduced with time for the proposed method,
leading to a much milder violation of the optimality condition than the gradient flow
approach does. The residual of the optimality condition for the gradient flow approach
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is confined at the order of O(10−4), which may be attributed to the violation of the
box constraint.

Finally, we also test the original energy decay of these two methods. We set the
initial step size τ0 = 0.1 for the proposed method, and depict the evolution of the
original energy function with the CPU time in Figure 4.4(b). Both methods exhibit
energy decaying behavior. It is noteworthy that the ESC computed by the proposed
method enjoys a lower original energy than that of the gradient flow approach.
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Fig. 4.4: The residual of the optimality condition (shown in (a)) and the original
energy (shown in (b)) versus the CPU time. The proposed method achieves a smaller
residual of the optimality condition at about 10−7 while the gradient flow approach
remains confined to a scale around 10−4. Moreover, the proposed method favors lower
original energy.

4.1.3. Mass-conservation and bound-preservation. As an encouraging fea-
ture of the proposed method, the mass-conservation and the box constraint can be
naturally guaranteed during the iteration due to the projection in the three-operator-
splitting. As shown in Figure 4.5(a), the bounds of z(n+1) are well preserved within
the range [−1, 1]. Moreover, we also compute the relative loss in the discrete total

mass of z(n+1), namely 1
T z(n+1)

1Tz(1) − 1. As shown in Figure 4.5(b), the relative loss is
very close to zero within the machine precision at the magnitude of O(10−15). These
results numerically validate the mass-conservation and bound-preserving properties
of the proposed method.
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Fig. 4.5: Mass-conservation and bound preservation. (a) shows the upper and lower
bounds of z(n+1). (b) shows the relative loss in the discrete mass of z(n+1).
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4.1.4. Different initial profiles. We investigate the effects of different initial
profiles. We first consider an initial condition given by two circles with different sizes:

φ(x, y, t = 0) =− tanh

(

√

(x− 0.4)2 + (y − 0.6)2 − 0.25

ε

)

− tanh

(

√

(x− 0.8)2 + (y − 0.2)2 − 0.16

ε

)

+ 1.

Figure 4.6 illustrates the energy decaying effect under the parameters α = 0.2 and τ0 =
0.1 during the iterations. It is evident that both the original energy and the modified
energy (3.8) exhibit two distinct rapid decreases. The first significant decreases occur
immediately when the iteration begins, and the two circles evolve rapidly to two four-
fold pyramids induced by the anisotropy. Then it follows that these two pyramids
merge into one, during which the second rapid decrease in the energies takes place.
Notably, similar effects are also observed in a different simulation framework via H−1

gradient flow approach [23, 8].
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Fig. 4.6: The evolution of energy functions when the initial profile is two-circle. Both
the original and modified energies decay with iteration. The inset plots indicate
two particular snapshots of crystal profiles around which the energies behave quite
differently.

As a second example, we consider the random initial concentration field given by

φ(x, y, t = 0) = −0.5 + 0.001 rand(x, y),

whose profile is displayed in Figure 4.7(a). We choose α = 0.2, ε = 0.02, and the
splitting parameter a = 100. As depicted in Figure 4.7(b), a four-fold pyramid is
observed as the ESC as a result of periodic boundary conditions, indicating the phase
separation effect of the phase-field model.

4.2. Anisotropy with different symmetries. In two-dimensional cases, the
anisotropy function γ(n) = γ(θ) can be represented as a periodic function of θ with
tan(θ) = n2/n1. The commonly used k-fold smooth anisotropy function is

γ(θ) = 1 + α cos(kθ), θ ∈ (−π, π],

where α controls the strength of anisotropy, and k denotes the symmetry parameter.
For instance, when k = 4, it corresponds to the two-dimensional case of the four-fold
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Fig. 4.7: The ESC (shown in (b)) for random initial profile (shown in (a)).

anisotropy (1.2) whose ESC is invariant under a π
2 -rotation. In this subsection, we nu-

merically study the ESCs of anisotropic energy functionals with different symmetries
using our proposed method. Specifically, we consider k = 2, 3, 6.

When α > 1
k2−1 , the systems exhibit strong anisotropy [28]. In our numerical

simulations, we set α = 0.4 and illustrate the corresponding ESCs for different k in
Figure 4.8. Notably, the computed ESCs with correct numbers of “facets” and sharp
corners are obtained.

(a) k = 2 (b) k = 3 (c) k = 6

Fig. 4.8: The ESCs of anisotropic energy functionals with different symmetry param-
eters k = 2, 3, 6.

4.3. Anisotropy of Riemannian metric form. Besides the k-fold type an-
isotropy, there is another commonly-used anisotropy, namely the anisotropy of Rie-
mannian metric form, which is defined as follows [14, 19]:

(4.2) γ(n) =
K
∑

k=1

√

Gkn · n, Gk = R(−ψk)D(δk)R(ψk), k = 1, 2, . . . ,K,

where the matrices D and R are given by

D(δ) =

(

1 0
0 δ2

)

, R(ψ) =

(

cosψ sinψ
− sinψ cosψ

)

.

We consider two sets of parameters:
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1. K = 2, ψ1 = 0, ψ2 = π
2 , and δk = δ for k = 1, 2;

2. K = 3, ψ1 = 0, ψ2 = π
3 , ψ3 = 2π

3 , and δk = δ for k = 1, 2, 3.

For the first set of parameters, γ(n) =
√

n2
1 + δ2n2

2+
√

δ2n2
1 + n2

2. It can be viewed as
a regularization for the non-smooth anisotropy γ(n) = |n1|+|n2| whose corresponding
ESC also has sharp corners (arising from the non-smoothness of γ(n)). The parameter
δ plays a role of penalizing the sharp corners. When δ decreases to zero, the ESC
will exhibit “sharper and sharper” corners, although its contour is still smooth for
non-zero δ.

By employing our proposed method, we conduct numerical investigations for a
sequence of decreasing regularization parameters δ2 = 0.01, 0.001, 0.0001 with the
corresponding splitting parameters a = 10, 50, 100. As depicted in Figure 4.9, the
ESCs of square and hexagon shapes are respectively observed for the two sets of
parameters. Apparently, the corners become “sharper” as δ decreases. Interestingly,
the facets of the ESCs are flatter than that of the smooth k-fold anisotropy, making
them look more like standard squares and hexagons. These findings are in agreement
with the observations reported in [19].
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Fig. 4.9: The ESCs of anisotropic functionals of Riemannian metric form. The pa-
rameters used in simulations are: (i) K = 2, ψ1 = 0,ψ2 = π

2 (shown in (a)); (ii)
K = 3, ψ1 = 0, ψ2 = π

3 , ψ3 = 2π
3 (shown in (b)). Zoom-in plots nearby the corners

are also shown to demonstrate the regularization effect for decreasing δ.

4.4. Three-dimensional simulations. In three-dimensional cases, we conduct
numerical simulations for two types of anisotropy.

For the first type, we consider an ellipsoidal anisotropy of the form γ(n) =
√

2n2
1 + n2

2 + n2
3. The theoretical prediction for the ESC under this anisotropy is

a self-similar ellipsoid given by x2

2 + y2 + z2 = 1 [30]. In our simulations, we initialize
with a ball-shaped concentration field:

φ(x, y, z, t = 0) = − tanh

(

√

(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 − 0.3√
2ε

)

.

The computed ESC indeed exhibits an ellipsoidal shape, as shown in Figure 4.10(a).
Finally, we study the four-fold anisotropy (1.2) with α = 0.2 and ε = 0.02 as the

second type of anisotropy. The initial condition is also set to be the ball-shaped con-
centration field. The computed ESC under this anisotropy is a double-sided pyramid
with sharp corners, as depicted in Figure 4.10(b).
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Fig. 4.10: The ESCs for ellipsoid anisotropy (shown in (a)) and four-fold anisotropy
(shown in (b)).

5. Conclusion and discussion. In this paper, we proposed a novel numer-
ical method based on the DYS algorithm for determining the ESCs. By splitting
the discretized anisotropic surface energy function into a convex function, a concave
function and an indicator function of a bounded convex set, we solved the energy
minimization problem under the mass-conservation and the box constraint using the
DYS algorithm. The proposed method has the advantage of conserving the total
mass and preserving the bound automatically at each iteration. This algorithm was
efficiently implemented using fast solvers. More importantly, we proved that the pro-
posed method has global convergence to some critical points. In comparison with the
H−1 gradient flow approach for minimizing anisotropic energy functionals with regu-
larizations, the computed ESCs based on our proposed method exhibit sharp corners,
which is consistent with the theoretical prediction and yields better accuracy.

We employed the proposed method to successfully simulate the ESCs for k-fold
anisotropic surface energies and Riemannian metric types of anisotropy. The desired
properties, including mass-conservation, bound-preservation, energy decay and con-
vergence to theoretical solutions, were numerically observed. In addition, the ESC
computed by the proposed method shows a lower residual of the optimality condition
and a lower original energy than that by the gradient flow approach does.

Despite the encouraging performance in simulating the ESC, the proposed method
cannot be directly applied to predict evolution dynamics of crystals. This motivates
us to investigate the connection between the evolution dynamics of the proposed
method and the gradient flow dynamics. Furthermore, for more complex anisotropic
energy functionals, the equilibrium states can be more complicated and more ESCs
may exist. This is quite typical in solid-state dewetting problems where boundary en-
ergies are included. We will study the performance of operator-splitting optimization
approaches in predicting the equilibrium states of solid-state dewetting problems [4].

Appendix A. Semi-algebraic functions. Semi-algebraic function plays an
important role in the convergence study of optimization algorithms. This appendix
introduces its definition and provides some typical examples (c.f. [7]).

Definition A.1 (Semi-algebraic sets and functions).
1. A subset S of Rn is a real semi-algebraic set if there exists a finite number of
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real polynomial functions fij , gij : R
n → R such that

S =

p
⋃

j=1

q
⋂

i=1

{x ∈ R
n : fij(x) = 0 and gij(x) < 0} .

2. A function f : Rn → (−∞,+∞] is called semi-algebraic if its graph

{

(x, t) ∈ R
n+1 : f(x) = t

}

is a semi-algebraic subset of Rn+1.

property A.2. The following functions are the semi-algebraic functions:
1. Real polynomial functions;
2. Indicator functions of semi-algebraic sets;
3. Finite sums and product of semi-algebraic functions;
4. Composition of semi-algebraic functions.

Appendix B. Proof of Theorem 3.5.

Because F has a Lipschitz continuous gradient, for x̃ = x− 1
L

F

∇F (x) we have

F (x̃) 6 F (x) + 〈∇F (x), x̃− x〉+ L
F

2
‖x̃− x‖2 = F (x)− 1

2L
F

‖∇F (x)‖2.

This inequality together with the lower boundedness of ∇F implies there exists a
constant ζ∗ > −∞ such that

(B.1) F (x)− 1

2L
F

‖∇F (x)‖2 > ζ∗.

From (3.4) and the first-order optimality condition (3.5), we have

(B.2) ‖x(n) − z(n)‖2 = ‖x(n−1) − y(n)‖2 = τ2‖∇F (y(n))‖2.

Moreover, since H is a concave function,

(B.3) H(z(n)) 6 H(y(n)) +
〈

∇H(y(n)), z(n) − y(n)
〉

.

Since G is an indicator function of a bounded set, by (3.3), we know z(n) is bounded
and G(z(n)) = 0. Combining (B.1), (B.2), (B.3) and (3.9), we obtain

Θτ

(

x(1),y(1), z(1)
)

> Θτ

(

x(n),y(n), z(n)
)

=F (y(n)) +H(y(n)) +
1

τ

〈

y(n) − z(n),y(n) − x(n) − τ∇H(y(n))
〉

− 1

2τ
‖y(n) − z(n)‖2

=F (y(n)) +H(y(n)) +
1

2τ
‖x(n) − y(n)‖2 − 1

2τ
‖x(n) − z(n)‖2

+
〈

∇H(y(n)), z(n) − y(n)
〉

=(1− τL
F
)F (y(n)) +

(

H(y(n)) +
〈

∇H(y(n)), z(n) − y(n)
〉)

+
1

2τ
‖x(n) − y(n)‖2

+ τL
F

(

F (y(n))− 1

2L
F

‖∇F (y(n))‖2
)

>(1− τL
F
)F (y(n)) +H(z(n)) +

1

2τ
‖x(n) − y(n)‖2 + τL

F
ζ∗,
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where the first equality is a direct rearrangement of Θτ and the second equality is a
result of the identity 2cd− d2 = c2 − (c − d)2. Due to the threshold (3.10), we have
1 − τL

F
> 0. Since z(n) is bounded and H is continuous, it follows that H(z(n)) is

bounded. As a result, both F (y(n)) and x(n) − y(n) are bounded, and the coercivity
of F implies the boundedness of y(n). Thus, the sequence

{(

x(n),y(n), z(n)
)}

n>1

generated by Algorithm 3.1 is bounded.

Appendix C. Proof of Lemma 3.4. We split H into two parts as shown in
(3.17). By the chain rule and the definition of p and pk in (2.2),

∇h2(φ) =
[

DT
x DT

y

]

m2
∑

k=1

[

ek
ek

]

∇pk
h2.

Moreover, by the definition of nk in (2.3)

∇pk
h2 = ε2

(

(γ2(nk)− a)pk + γ(nk)|pk|(I2 − nk ⊗ nk)∇nγ(nk)
)

= ε2
[

A1(pk)
A2(pk)

]

.

With these two equalities, we arrive at the conclusion after a direct calculation:

(C.1)

∇H(φ) =









f ′(φ1)− bφ1
f ′(φ2)− bφ2

· · ·
f ′(φm2)− bφm2









+ ε2
[

DT
x DT

y

]

m2
∑

k=1

[

ek
ek

] [

A1(pk)
A2(pk)

]

=









f ′(φ1)− bφ1
f ′(φ2)− bφ2

· · ·
f ′(φm2)− bφm2









+ ε2









DT
x









A1(p1)
A1(p2)
· · ·

A1(pm2)









+DT
y









A2(p1)
A2(p2)
· · ·

A2(pm2)

















.

Appendix D. Proof of Lemma 3.6. Let x = (x1, x2). According to the
Young’s inequality, for any positive integers m and 0 6 r 6 m, it follows that

|xr1xm−r
2 | 6 r

m
|x1|m +

m− r
m
|x2|m 6 |x|m,

which indicates that for any given homogeneous polynomial ξm of degree m, there
exists a constant C0 such that

(D.1) |ξm(x)| 6 C0|x|m.

Direct calculations lead to

∂ζ
l

∂xi
=

{

∂xi
η
l+2

|x|l − lxiηl+2

|x|l+2 , x = 0,

0, x 6= 0.

Because ∂xi
η
l+2

and lxiηl+2
are homogeneous polynomials of degree l + 1 and l + 3

respectively, it follows from (D.1) that limx→0

∂ζ
l

∂xi
= 0 which implies

∂ζ
l

∂xi
is continuous.

Similarly, for any x ∈ R
2\{0} and i, j = 1, 2, we have

∂2ζ
l

∂xi∂xj
=
∂xixj

η
l+2

|x|l − lxi∂xj
η
l+2

+ lxj∂xi
η
l+2

|x|l+2
+
l(l + 2)xixjηl+2

|x|l+4
.
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The same argument using (D.1) indicates that
∂2ζ

l
(x)

∂xi∂xj
is bounded.
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