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Uniform error bounds of the ensemble transform Kalman filter for
infinite-dimensional dynamics with multiplicative covariance inflation∗

Kota Takeda† and Takashi Sakajo‡

Abstract. Data assimilation is a method of uncertainty quantification to estimate the hidden true state by
updating the prediction owing to model dynamics with observation data. As a prediction model,
we consider a class of nonlinear dynamical systems on Hilbert spaces including the two-dimensional
Navier-Stokes equations and the Lorenz’63 and ’96 equations. For nonlinear model dynamics, the
ensemble Kalman filter (EnKF) is often used to approximate the mean and covariance of the proba-
bility distribution with a set of particles called an ensemble. In this paper, we consider a deterministic
version of the EnKF known as the ensemble transform Kalman filter (ETKF), performing well even
with limited ensemble sizes in comparision to other stochastic implementations of the EnKF. When
the ETKF is applied to large-scale systems, an ad-hoc numerical technique called a covariance in-
flation is often employed to reduce approximation errors. Despite the practical effectiveness of the
ETKF, little is theoretically known. The present study aims to establish the theoretical analysis
of the ETKF. We obtain that the estimation error of the ETKF with and without the covariance
inflation is bounded for any finite time. In particular, the uniform-in-time error bound is obtained
when an inflation parameter is chosen appropriately, justifying the effectiveness of the covariance
inflation in the ETKF.
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1. Introduction. Data assimilation is a method of uncertainty quantification to estimate
the hidden true state by combining model dynamics with observation data. Data assimilation
encompasses various problems such as interpolation of missing data by model dynamics. In this
paper, we consider the filtering problem [14, 18], where we estimate the time series of the true
state using observations up to the current time. We suppose that observation data is obtained
by applying a linear operator to the true state and adding noise, which is the standard setting
adopted in many filtering problems. We then solve the problem with a Bayesian approach,
in which the uncertainty in the state estimation is represented by a probability distribution.
One assimilation cycle consists of prediction and analysis steps. In the prediction step, the
dynamical model provides the prior distribution for the current state. It is then updated to
the posterior distribution by Bayes’ formula from the current observation in the analysis step.
The time series of the true state is estimated by repeating this assimilation cycle iteratively.
This approach is widely used in many problems. See the comprehensive textbooks [11, 18].
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2 K. TAKEDA AND T. SAKAJO

When the model dynamics is a linear system, the standard Bayesian assimilation method
is the Kalman filter (KF) [10], in which the probability distribution of the state is represented
by the Gaussian distribution. A remarkable property of linear dynamical systems is that they
transform one Gaussian distribution to another. Hence, we directly obtain the prior Gaussian
distribution for the current time from that for the previous time in the prediction step. Then,
in the analysis step, the prior Gaussian distribution is updated to the posterior one using
Bayes’ formula with the current observation through the linear observation operator. The
KF is theoretically well-understood, and it works practically as well under the assumption
that the additive observation noises and the probability distribution for the initial state follow
Gaussian distributions [14].

In the meantime, for nonlinear model dynamics, the ensemble Kalman filter (EnKF) [7] is
employed as an extension of the KF. Since the nonlinear dynamical system doesn’t necessarily
transfer one Gaussian distribution to another, we cannot assume the probability distribution
is always represented by a Gaussian distribution. Hence, the EnKF approximates probability
distributions by a set of particles called an ensemble. The well-known methods of the EnKF are
the perturbed observation (PO) method [2] and the ensemble transform Kalman filter (ETKF)
[1]. While both methods use the same prediction step in which each ensemble member evolves
according to the nonlinear dynamical model, they take different approaches to update the
ensemble in the analysis step. The PO method adds Gaussian noises to the observation data
in order to replicate artificial observations for each ensemble member. Each member of the
analysis ensemble is then obtained by the weighted average of a replicated observation and each
member of the prediction ensemble. When the ensemble size is large, this method performs
effectively despite that artificial noises give rise to further uncertainties. However, the PO
method can be inaccurate with small ensemble sizes. On the other hand, the ETKF generates
the analysis ensemble deterministically. The mean of the analysis ensemble is obtained by the
weighted average of the observation and the prediction ensemble mean. The deviations of the
analysis ensemble are determined by the linear transformation of the prediction ensemble so
that the covariance coincides with that obtained in the KF. It is numerically confirmed that the
ETKF performs well even with small ensemble sizes owing to its deterministic implementation
[1]. Another practical advantage of the ETKF is that it is unnecessary to evaluate the ensemble
covariance, avoiding redundant memory allocations in numerical computation [9]. Let us note
that both methods are theoretically consistent with the KF [13, 17]. That is to say, the
ensemble mean and covariance converge to those in the KF in the limit of N → ∞ when a
linear system with Gaussian noises is considered.

In the EnKF, the approximation of the covariance is often underestimated due to limited
ensemble sizes, which causes an inaccurate estimation of the true state. To handle the problem,
ad-hoc covariance inflation techniques [16, 20] are implemented in an additive or multiplicative
way. In an additive inflation, one adds a positive diagonal matrix to the ensemble prediction
covariance. This is applied to the PO method, and it enhances the accuracy of the state
estimation for a long time. However, it is not applied to the ETKF since the covariance is not
explicitly calculated in the method. Instead, a multiplicative inflation is considered, in which
one multiplies the covariance or ensemble deviation by a scaling factor.

While many nonlinear filtering problems are considered on finite-dimensional model dy-
namics [6, 14, 20], most dynamics such as the atmosphere and ocean are modeled by nonlinear
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and chaotic partial differential equations [11, 18], which are infinite-dimensional dynamical
systems. Hence, it is theoretically essential to study nonlinear data assimilation methods in
infinite dimensional spaces. For the PO method, Kelly et al. [12] shows that the filtering
error does not grow faster than exponentially over time. They also prove that an appropri-
ate additive inflation ensures a uniform-in-time error bound, clarifying the effect of additive
covariance inflation in the PO method. On the other hand, the error bound of the ETKF
remains unexplored due to the complexity of its elaborate algorithm. The purpose of this
paper is to establish the mathematical analysis of the ETKF for infinite-dimensional dynam-
ical systems. We reveal the basic properties of the ETKF with and without multiplicative
covariance inflation. This analysis theoretically validates the efficiency of the ETKF and the
multiplicative covariance inflation.

This paper is constructed as follows. In Section 2, we introduce some notations and
the concept of nonlinear filtering problems, and explain the algorithm of the ETKF and the
covariance inflation technique. In Section 3, we show the two main results for the error analysis
of the ETKF. Section 4 is a summary of the results and a discussion of future directions.

2. Nonlinear data assimilation problem and algorithm.

2.1. Notations. Let U be a separable Hilbert space endowed with the norm | · | and the
inner product 〈 · , · 〉, and L(U ,Y) denote the space of all bounded linear operators between
two Hilbert spaces U and Y ⊂ U . For N ∈ N, by IU and IN , we express the identity maps on
U and R

N respectively. For A ∈ L(U) := L(U ,U), |A|L represents the operator norm of A,
Ran(A) denotes the range of A, and A∗ is the adjoint of A. We also use u∗ ∈ U∗ as a dual
u ∈ U . For u, v ∈ U , we define their product u⊗ v ∈ L(U) by u ⊗ v : U ∋ w 7→ u 〈v,w〉 ∈ U ,
which is equivalent to uv∗ = u⊗ v.

Let Lsa(U) denote the space of all self-adjoint operators in L(U) (i.e., A∗ = A). For
A ∈ Lsa(U), by A � 0, we mean that A is positive semidefinite, i.e., 〈u,Au〉 ≥ 0 for all u ∈ U .
On the other hand, when there exists c > 0 such that 〈u,Au〉 ≥ c|u|2 for all u ∈ U , we say
A is positive define, denoted by A ≻ 0. For A,B ∈ Lsa(U), the order A ≻ (resp. �)B means
A−B ≻ (resp. �) 0.

Let N ∈ N, for U = [u(n)]Nn=1 and V = [v(n)]Nn=1 ∈ UN , the ℓ2-norm |U |2 and the products
UV ∗ ∈ L(U) and U∗V ∈ R

N×N are given by

|U |2 =

(
1

N

N∑

n=1

∣∣∣u(n)
∣∣∣
2
) 1

2

, UV ∗ =

N∑

n=1

u(n) ⊗ v(n), U∗V =
[〈

u(i), v(j)
〉]N

i,j=1
.

When we write u1 = [u, . . . , u] ∈ UN by 1 = (1, . . . , 1) ∈ (RN )∗, it holds that |u1|22 = |u|2 for
all u ∈ U . Moreover, for m ∈ U and T ∈ R

N×N , we define

m+ U = m1+ U = [m+ u(n)]Nn=1 ∈ UN , UT =

[
N∑

k=1

u(k)Tk,n

]N

n=1

∈ UN .

For an ensemble V = [v(n)]Nn=1 ∈ UN , v = 1
N

∑N
n=1 v

(n) is the ensemble mean and dV =

[v(n) − v]Nn=1 ∈ UN is the ensemble deviation. The ensemble V is then decomposed into the
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mean and the deviations, V = v1+ dV . The (unbiased) ensemble covariance Cov(V ) ∈ L(U)
is defined by

Cov(V ) =
1

N − 1
dV dV ∗.

Note that it is easy to see Cov(V ) = Cov(dV ) and Cov(V ) � 0.
The following lemma provides some equivalent representations of the ℓ2-norm in terms of

an ensemble V .

Lemma 2.1. The ℓ2-norm satisfies

|V |22 =
1

N
Tr (V ∗V ) =

1

N
Tr (V V ∗) = |v|2 + |dV |22.(2.1)

Proof. The first equality is derived from the definition of |V |2.

|V |22 =
1

N

N∑

n=1

|v(n)|2 =
1

N

N∑

n=1

〈
v(n), v(n)

〉
=

1

N
Tr (V ∗V ) .

Let (φi)i∈N be a complete orthonormal basis of U , we have

|V |22 =
1

N

N∑

n=1

|v(n)|2 =
1

N

N∑

n=1

∑

i∈N

〈
v(n), φi

〉2
=

1

N

∑

i∈N

N∑

n=1

〈
v(n), φi

〉2

=
1

N

∑

i∈N

N∑

n=1

〈
φi, (v

(n) ⊗ v(n))φi

〉
=

1

N
Tr (V V ∗) .

Owing to the relation dV 1
∗ = 0, we have V V ∗ = v11∗v∗ + dV dV ∗ = Nv v∗ + dV dV ∗. Hence,

we obtain 1
N Tr (V V ∗) = |v|2 + |dV |22.

2.2. State space model. We consider the following dynamical system on U .

du

dt
= F (u), u ∈ U .(2.2)

We suppose that a unique solution exists for any u0 ∈ U and it generates an analytic semigroup
Ψt : U → U for t ≥ 0. For a fixed period h > 0, we denote Ψ = Ψh and consider a discrete
dynamical system

uj = Ψ(uj−1), j ∈ N.(2.3)

The Hilbert space Y ⊂ U is the observation space. Then, the noisy observation yj ∈ Y is
obtained from uj for each j ∈ N,

yj = Huj + ξj , ξj ∼ N(0,Γ),(2.4)

where H ∈ L(U ,Y) is the observation operator and Γ ∈ Lsa(Y) is the covariance operator
with Γ ≻ 0. Remark that the assumption Γ ≻ 0 is necessary to ensure the bounded inverse
Γ−1, which makes the algorithm well-defined as discussed later.
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Let (Ω,F ,P) be a probability space and E denote expectation with respect to P. We
assume that the i.i.d. noise sequence (ξj)j∈N is independent of u0. The filtering problem aims
to construct an approximation of (uj)j∈N by a stochastic process (vj)j∈N adapted to the
filtration (Fj)j∈N ⊂ F where each σ-algebra Fj is generated by initial uncertainties u0, v0,

and the noise sequence (ξk)
j
k=1 for j ∈ N. The conditional probability distribution P

vj( · |Yj)

is called by the filtering distribution for provided observations Yj = (yk)
j
k=1. Here, we focus

on an algorithm computing P
vj ( · |Yj) from given P

vj−1( · |Yj−1) and yj. The algorithm consists
of two steps, which we refer to as the prediction and analysis steps. In the prediction step,
the estimate of the current state v̂j is provided by the time evolution of the dynamics v̂j =
Ψ(vj−1). Accordingly, the filtering distribution P

vj−1( · |Yj−1) is propagated into the predicted
distribution P

v̂j (·|Yj−1). In the analysis step, the current observation yj is assimilated into the
prediction v̂j to obtain vj , and the predicted distribution P

v̂j ( · |Yj−1) is updated to P
vj( · |Yj).

2.3. The ensemble transform Kalman filter. For N ∈ N, the ensemble transform Kalman
filter (ETKF) approximates the filtering distribution by the empirical distribution of an en-

semble of particles Vj = [v
(1)
j , . . . , v

(N)
j ] ∈ UN , Pvj( · |Yj) ≈ 1

N

∑N
n=1 δv(n)

j

( · ), where δa( · )

denotes the Dirac measure. In the prediction step, each particle is driven by the dynamics
(2.3). In the analysis step, the ensemble deviation is transformed by a matrix so that the pos-
terior ensemble covariance corresponds to that in the minimum variance posterior ensemble.
A detailed description is given as follows.

Definition 2.2. The algorithm of the ETKF is as follows.

(I) Draw N independent samples V0 = [v
(n)
0 ]Nn=1 from some probability distribution µ0.

(II) (the prediction step, input: Vj−1 → output: V̂j) Compute the time evolution v̂
(n)
j =

Ψ(v
(n)
j−1), n = 1, . . . , N and set V̂j = [v̂

(n)
j ]Nn=1 ∈ UN .

(III) (the analysis step, input: V̂j , yj → output: Vj) Decompose V̂j = v̂j1 + dV̂j , and put

Ĉj = Cov(V̂j). Update the mean

vj = v̂j +Kj(yj −Hv̂j)(2.5)

with the Kalman gain,

Kj = ĈjH
∗(HĈjH

∗ + Γ)−1.(2.6)

Take a symmetric transform matrix Tj ∈ R
N×N satisfying

1

N − 1
dV̂jTj(dV̂jTj)

∗ = (I −KjH)Ĉj ,(2.7)

and transform the ensemble deviation dVj = dV̂jTj . Finally, set the analysis ensemble
Vj = vj1+ dVj .

Practically, we can use the following analysis step instead of (III). This avoids redundant
memory allocations in practical numerical computation since we don’t need to evaluate the
covariance Ĉj explicitly.
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(III’) (Input: V̂j , yj → Output: Vj) Decompose V̂j = v̂j1+ dV̂j. Define the transform matrix

Tj =

(
IN +

1

N − 1
dV̂ ∗

j H
∗Γ−1HdV̂j

)− 1
2

,(2.8)

and

T̃j =
1

N − 1
T 2
j dV̂

∗
j H

∗Γ−1(yj −Hv̂j)1+ Tj .

Transform

Vj = v̂j1+ dV̂j T̃j .

Note that (III’) is equivalent to (III). The following theorem shows the existence of the trans-
form matrix Tj, which indicates that the ETKF is well-defined.

Theorem 1. For any V̂j ∈ UN , there exists a unique symmetric transform matrix Tj ∈
R
N×N satisfying (2.7).

To prove Theorem 1, let us summarize the key property of the Kalman gain Kj .

Lemma 2.3. Let Ĉj � 0, H ∈ L(U ,Y), and Γ ∈ L(Y) with Γ ≻ 0. The Kalman gain
satisfies

Kj = (IU −KjH)ĈjH
∗Γ−1,(2.9)

and (2.5) is equivalent to

(IU + ĈjH
∗Γ−1H)vj = v̂j + ĈjH

∗Γ−1yj.(2.10)

Proof. For simplicity, we omit the time index j in the following proofs since j ∈ N is
fixed. Owing to Ĉ � 0 and Γ ≻ 0, we have Γ +HĈH∗ ≻ 0 and it is thus invertible. Then,
IY + Γ−1HĈH∗ = Γ−1(Γ +HĈH∗) is also invertible since a product of two positive definite
operators has positive spectrum [8]. From (A.1) and the fact that (AB)−1 = B−1A−1 for
invertible A,B, we have

(Γ +HĈH∗)−1 = (IY + Γ−1HĈH∗)−1Γ−1 = [IY − (IY + Γ−1HĈH∗)−1Γ−1HĈH∗]Γ−1

= [IY − (Γ +HĈH∗)−1HĈH∗]Γ−1.

Hence, we have.

K = ĈH∗(Γ +HĈH∗)−1 = ĈH∗[IY − (Γ +HĈH∗)−1HĈH∗]Γ−1

= (IY −KH)ĈH∗Γ−1,

which is (2.9). On the other hand, from (2.9), we have

v = v̂ +K(y −Hv̂) = (IU −KH)v̂ +Ky = (IU −KH)v̂ + (IU −KH)ĈH∗Γ−1y.
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To show (2.10), it is sufficient to check (IU + ĈH∗Γ−1H)(IU −KH) = IU with (2.6). This is
confirmed straightforwardly as follows.

(IU + ĈH∗Γ−1H)(IU −KH)

= IU + ĈH∗Γ−1H − ĈH∗(Γ +HĈH∗)−1H − ĈH∗Γ−1HĈH∗(Γ +HĈH∗)−1H

= IU + ĈH∗Γ−1H − ĈH∗Γ−1Γ(Γ +HĈH∗)−1H − ĈH∗Γ−1HĈH∗(Γ +HĈH∗)−1H

= IU + ĈH∗Γ−1H − ĈH∗Γ−1(Γ +HĈH∗)(Γ +HĈH∗)−1H = IU .

Proof of Theorem 1. First, we prove the existence of Tj satisfying (2.7). Let dY = HdV̂ .

Then, the operator Γ+ 1
N−1dY dY ∗ = Γ+HĈH∗ is invertible, and we consider the symmetric

matrix

S = IN −
1

N − 1
dY ∗

(
Γ +HĈH∗

)−1
dY ∈ R

N×N .

Then, we have

1

N − 1
dV̂ SdV̂ ∗ =

1

N − 1
dV̂ dV̂ ∗ −

1

N − 1
dV̂ dY ∗

(
Γ +HĈH∗

)−1 1

N − 1
dY dV̂ ∗

= Ĉ − ĈH∗(Γ +HĈH∗)−1HĈ = (I −KH)Ĉ,

in which, we use 1
N−1dY dV̂ ∗ = HĈ. From (A.4), we have

S = (IN +
1

N − 1
dY ∗Γ−1dY )−1(2.11)

and S ≻ 0. We finally define the transform matrix T = S
1
2 , which is nothing but (2.8). Then

T becomes symmetric by definition.

We finally show another representation of the ensemble update.

Lemma 2.4. The following hold for the ensemble deviation and the transform matrix

dVj1
∗ = dV̂j1

∗ = 0 ∈ U ,(2.12)

Tj1
∗ = 1

∗.(2.13)

Moreover, the ensembles satisfy the relation

(IU + ĈjH
∗Γ−1H)Vj = V̂jT

−1
j + ĈjH

∗Γ−1yj1.(2.14)

Proof. The definition of the ensemble mean yields the first property (2.12).

dV 1
∗ =

N∑

n=1

(v(n) − v) = 0,

yielding

S−1
1
∗ =

(
IN +

1

N − 1
dV ∗H∗Γ−1HdV

)
1
∗ = 1

∗.
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Hence, we have

S1∗ = 1
∗.(2.15)

Then, we prove that 1
∗ is also an eigenvector of T = S

1
2 with an eigenvalue 1. Since S

is symmetric, it is diagonalized as S = UDU∗ for a unitary U ∈ R
N×N and a diagonal

D ∈ R
N×N . Then, (2.15) is equivalent to

S1∗ = 1
∗ ⇔ UDU∗

1
∗ = 1

∗ ⇔ DU∗
1
∗ = U∗

1
∗.

Putting u = U∗
1
∗ = (u1, · · · , uN )∗ ∈ R

N and dn > 0 as n-diagonal element of D for n =
1, . . . , N , the last equality is rewritten for each component

dnun = un, n = 1, . . . , N.

This implies that dn = 1 or un = 0 for each n = 1, . . . , N . Hence, the following also holds

d
1
2
nun = un, n = 1, . . . , N,

and we have D
1
2U∗

1
∗ = U∗

1
∗. By definition, T is written as T = UD

1
2U∗, and this yields

T1∗ = 1
∗, which is (2.13).

The last equality (2.14) is shown as follows. From (2.10), we have

(IU + ĈH∗Γ−1H)v = v̂ + ĈH∗Γ−1y ∈ U .

By using Ĉ = Cov(V̂ ), (2.11) and S = T 2, we obtain

(IU + ĈH∗Γ−1H)dV = (IU + ĈH∗Γ−1H)dV̂ T = dV̂

[
IU +

1

N − 1
dV̂ ∗H∗Γ−1HdV̂

]
T

= dV̂ S−1T = dV̂ T−1 ∈ UN .

Finally, owing to (2.10) and v̂1T−1 = v̂1,

(IU + ĈH∗Γ−1H)V = (IU + ĈH∗Γ−1H)(v1+ dV ) = v̂1+ ĈH∗Γ−1y1+ dV̂ T−1

= v̂1T−1 + dV̂ T−1 + ĈH∗Γ−1y1 = V̂ T−1 + ĈH∗Γ−1y1.

This finishes the proof.

3. Bounds for the filtering error of the ensemble transform Kalman filter. For each
j ∈ N ∪ {0}, we define the filtering ensemble error by

Ej = [e
(n)
j ]Nn=1 with e

(n)
j = v

(n)
j − uj, n = 1, . . . N.

Note that dEj = dVj , and hence, Ej = ej1+ dVj where ej = vj −uj ∈ U . Furthermore, owing
to (2.1), the decomposition of the norm of the ensemble error is given by

|Ej |
2
2 = |ej |

2 + |dV |22.(3.1)
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3.1. Well-posedness. We show the well-posedness of the ETKF, i.e., the ensemble error
does not blow up faster than an exponential function. To do this, we make some assumptions
on the dynamics and the observation to analyze the properties of the ETKF as in [12].

Assumption 1. There exists ρ > 0 such that Ψt has an absorbing ball B(ρ) = {v ∈ U | |v| ≤
ρ}, i.e., Ψt(v) ∈ B(ρ) for any v ∈ B(ρ) and t ≥ 0.

Assumption 2. There exists β > 0 such that, for any u ∈ B(ρ) and v ∈ U ,

〈F (u)− F (v), u − v〉 ≤ β|u− v|2.(3.2)

Note that Assumptions 1 and 2 are satisfied by Lorenz ’63, Lorenz ’96 models and the in-
compressible Navier-Stokes equations on a two-dimensional torus [15, 16, 19]. The following
lemma was established in [12], providing the upper bound of the error growth rate due to the
model dynamics.

Lemma 3.1. Suppose that Assumptions 1 and 2 hold. Then, for any u ∈ B(ρ), v ∈ U and
t > 0,

|Ψt(u)−Ψt(v)| ≤ eβt|u− v|.(3.3)

Proof. See Lemma 2.6 of [12].

Regarding the observation operator and its covariance operator, we assume that they are
trivial.

Assumption 3. The state is fully observed, i.e., H = IU and Γ = γ2IU for some γ > 0.

Theorem 2. Under Assumptions 1–3, we consider the ETKF provided in Definition 2.2.
Then, we have the following upper bound.

E
[
|Ej |

2
2

]
≤ e2βhjE

[
|E0|

2
2

]
+ (N − 1)γ2

e2βhj − 1

e2βh − 1
, j ∈ N.(3.4)

Proof. From Assumption 3, the relation (2.14) becomes

(IU + γ−2Ĉj)Vj = V̂jT
−1
j + γ−2Ĉjyj1.(3.5)

Let Uj = uj1 ∈ UN . From (2.13), we have Uj = UjT
−1
j . Hence,

(IU + γ−2Ĉj)Uj = Uj + γ−2ĈjUj = UjT
−1
j + γ−2ĈjUj .(3.6)

Setting Êj = V̂j − Uj and subtracting (3.6) from (3.5) yields

(IU + γ−2Ĉj)Ej = ÊjT
−1
j + γ−2Ĉj(yj − uj)1 = ÊjT

−1
j + γ−2Ĉjξj1.

Owing to γ−2Ĉj � 0, IU + γ−2Ĉj is invertible. Multiplying (IU + γ−2Ĉj)
−1, we obtain

Ej = (IU + γ−2Ĉj)
−1ÊjT

−1
j + (IU + γ−2Ĉj)

−1γ−2Ĉjξj1.
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Let us divide Ej into the following two terms and evaluate them separately.

R1 = (IU + γ−2Ĉj)
−1ÊjT

−1
j ,(3.7)

R2 = (IU + γ−2Ĉj)
−1γ−2Ĉjξj1.(3.8)

Here, the dimension of Ran(Cj) is N − 1 at most since Ĉj consists of N vectors with one
constraint. Let Πj be the projection to Ran(Cj), and we have

R2 = (IU + γ−2Ĉj)
−1γ−2ĈjΠjξj1.

From (A.2), we have (IU + γ−2Ĉj)
−1γ−2Ĉj � I owing to γ−2Ĉj � 0. This leads to

|R2|
2
2 ≤ |Πjξj1|

2
2 = |Πjξj|

2.(3.9)

Let J = IU + γ−2Ĉj. Then we have J, J−1 ∈ Lsa(U) and |J−1| ≤ 1. We obtain

R1R
∗
1 = J−1ÊjT

−2
j Ê∗

j J
−1.

Considering the relations dÊj = dV̂j and ÊjdV̂
∗
j = dV̂jÊ

∗
j = dV̂jdV̂

∗
j , we have

ÊjT
−2
j Ê∗

j = Êj

[
IN +

γ−2

N − 1
dV̂ ∗

j dV̂j

]
Ê∗

j

= êj1(êj1)
∗ + dV̂jdV̂

∗
j + dV̂jdV̂

∗
j γ

−2Ĉj

= êj1(êj1)
∗ + dV̂jdV̂

∗
j J,

where êj = v̂j − uj. Since J−1 is self-adjoint, we have

R1R
∗
1 = J−1êj1(êj1)

∗J−1 + J−1dV̂jdV̂
∗
j = J−1êj1(J

−1êj1)
∗ + J−1dV̂jdV̂

∗
j .

Then, |R1|
2
2 is bounded by

|R1|
2
2 = |J−1êj |

2 +
1

N
Tr
(
J−1dV̂jdV̂

∗
j

)
≤ |J−1|2|êj |

2 + |J−1|
1

N
Tr
(
dV̂jdV̂

∗
j

)

≤ |êj |
2 + |dV̂j |

2
2 = |Êj |

2
2.

The first inequality follows from the Hölder inequality about the trace norm and the operator
norm [5], and the second inequality is owing to |J−1| ≤ 1. From this with Lemma 3.1, we
obtain the upper bound of |R1|2 as follows.

|R1|
2
2 ≤ |Êj|

2
2 ≤ e2βh|Ej−1|

2
2.(3.10)

Since R1 and R2 is conditionally independent under Fj−1, it follows from (3.9) and (3.10)
that

Ej−1[|Ej |
2
2] = Ej−1[|R1|

2
2] + Ej−1[|R2|

2
2] ≤ e2βhEj−1[|Ej−1|

2
2] + Ej−1[|Πjξj|

2]

= e2βhEj−1[|Ej−1|
2
2] + (N − 1)γ2,

where the conditional expectation is denoted by Ej−1[ · ] := E[ · | Fj−1]. Here, the conditional
expectation satisfies E[Ej−1[ · ]] = E[ · ] in general. Therefore, taking the expectation yields

E[|Ej |
2
2] ≤ e2βhE[|Ej−1|

2
2] + (N − 1)γ2.

Applying this inequality repeatedly, we obtain (3.4).
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3.2. Error analysis with multiplicative covariance inflation. If the ensemble size N is
smaller than the dimension of U , the ensemble covariance Ĉj degenerates. This implies that

|J−1|L = |(IU + γ−2Ĉj)
−1|L = 1. In the PO method [12], a diagonal matrix to Ĉj is added to

avoid this degeneration. In the meantime, this additive inflation technique is not applicable to
the ETKF because Ĉj is not explicitly used in the computation of the transform matrix (2.8).
Hence, multiplicative covariance inflation is used, in which we multiply an inflation factor
α ≥ 1 by the deviations of the ensemble dV̂j after the prediction step (II) of Definition 2.2.

To be specific, for the prediction ensemble V̂j = v̂j + dV̂j , we define the inflated prediction

ensemble V̂ α
j by

V̂ α
j = v̂j + αdV̂j .

In the analysis step (III) of Definition 2.2, we use V̂ α
j instead of V̂j. First, it follows that

Ĉα
j = Cov(V̂ α

j ) = α2Ĉj. Then, the mean update (2.5) is given by

vαj = v̂j +Kα
j (yj −Hv̂j),

where the Kalman gain is Kα
j = Ĉα

j H
∗(HĈα

j H
∗+Γ)−1. Second, the transform matrix is given

by

Tα
j =

(
IN + (dV̂ α

j )∗H∗Γ−1HdV̂ α
j

)− 1
2
=
(
IN + α2dV̂ ∗

j H
∗Γ−1HdV̂j

)− 1
2
,

and the deviations are transformed by

dV α
j = dV̂ α

j Tα
j ,

and we define V α = vαj + dV α
j .

The relation between the prediction and analysis ensemble is summarized as follows. The
mean update (2.10) is given by

(IU + α2ĈjH
∗Γ−1H)vαj = v̂j + α2ĈjH

∗Γ−1yj,(3.11)

and the analysis covariance satisfies

Cα
j =

α2

N − 1
dV̂j(IN + α2dV̂ ∗

j H
∗Γ−1HdV̂j)

−1dV̂ ∗
j .(3.12)

In what follows, we omit the superscript α in the notations, since the changes in terms of α
explicitly appear as the multiplicative factor α2 in (3.11) and (3.12), and no confusion occurs.

It is known that the multiplicative inflation is insufficient to resolve the issue of the co-
variance degeneration when the state space is infinite-dimensional since it does not affect
the eigenvectors of the covariance. Hence, we need the following assumption that the ac-
tual dimension of the dynamics becomes finite and F is Lipschitz, which is stronger than
Assumption 2.
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Assumption 4. The dimension of the state space U is finite m ∈ N. For ρ > 0 in Assump-
tion 1 and F in (2.2), there exists β > 0 such that for any u, v ∈ B(ρ)

|F (u)− F (v)| ≤ β|u− v|.

Let u0 ∈ B(ρ) and v
(n)
0 ∈ B(ρ) for n = 1, . . . , N . We write vt = 1

N

∑N
n=1Ψt(v

(n)
0 ) and

ut = Ψt(u0). Then, we have the following lemma.

Lemma 3.2. Suppose Assumptions 1 and 4. Then, for any ǫ > 0, t > 0,

|vt − ut|
2 ≤ e2(β+ǫ)t(|v0 − u0|

2 +D)−D,(3.13)

where D = 2β2ρ2

2(β+ǫ)ǫ .

Proof. We write et = vt−ut and F t =
1
N

∑N
n=1 F (v

(n)
t ). Then, we have d

dtvt = F t. Hence,
we obtain

1

2

d

dt
|et|

2 =

〈
d

dt
et, et

〉
=
〈
F t − F (ut), et

〉

≤ |F t − F (ut)||et|

≤
(
|F (vt)− F (ut)|+ |F t − F (vt)|

)
|et|

≤
(
β|et|+ |F t − F (vt)|

)
|et|,(3.14)

where we can use Assumption 4 owing to vt, ut ∈ B(ρ). The second term is estimated by

|F t − F (vt)|
2 ≤

N

N2

N∑

n=1

|F (v
(n)
t )− F (vt)|

2 ≤
1

N

N∑

n=1

β2|v
(n)
t − vt|

2 ≤ 4β2ρ2.

Substituting it into (3.14) and using the Young inequality, we have

d

dt
|et|

2 ≤ 2β|et|
2 + 4βρ|et| = 2β|et|

2 + (2βρǫ−1/2)(2ǫ1/2|et|)

≤ 2β|et|
2 + 2β2ρ2ǫ−1 + 2ǫ|et|

2 = 2(β + ǫ)(|et|
2 +D),

for any ǫ > 0. Therefore, we obtain |et|
2 ≤ e2(β+ǫ)t(|e0|

2 + D) − D from the Gronwall
inequality.

We now consider the error between the ensemble mean and the true state.

ej = vj − uj ∈ U .

Here, λmin(C) denotes the minimum eigenvalue of a covariance operator C.

Theorem 3. Under Assumptions 1, 3, and 4, we consider the ETKF with the multiplicative
inflation with α ≥ 1. Suppose also that the ensemble size N ∈ N is large enough to satisfy

λmin(C0) ≥ λ0 with λ0 > 0, and that v
(n)
j ∈ B(ρ) for all n = 1, . . . , N and j ∈ N. Then,

for any ǫ > 0, there exists α0 = α0(ρ, β,N, λ0, γ, ǫ) ≥ 1 such that the following hold for any
α ≥ α0.
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(i) There exists λ∗ = λ∗(ρ, β,N, λ0, γ, α) > 0 such that λmin(Ĉj) > λ∗ for all j ∈ N.

(ii) For j ∈ N and θ = (1 + α2

γ2 λ∗)
−2e2(β+ǫ)h,

E[|ej |
2] ≤ θj(E[|e0|

2] +D) +mγ2
1− θj

1− θ
+

(
(1− θj)(1−Θ)

1− θ
− 1

)
D,(3.15)

where D = 2β2ρ2

2(β+ǫ)ǫ and Θ = (1 +
α2
0

γ2 λ∗)
−2. Moreover, if θ < 1, we have

lim sup
j→∞

E[|ej |
2] ≤

mγ2

1− θ
+

(
1−Θ

1− θ
− 1

)
D.(3.16)

Proof. For convenience, we write λ̂min
j = λmin(Ĉj) and λmin

j = λmin(Cj). We first estimate

the change from λmin
j−1 to λ̂min

j in the prediction step. To this end, we write v̂
(n)
t = Ψt(v

(n)
j−1),

Ĉt =
1

N−1

∑N
n=1(v̂

(n)
t − v̂t)⊗ (v̂

(n)
t − v̂t), λt = λmin(Ĉt) for t ∈ [0, h]. The differentiation of Ĉt

with respect to t yields

d

dt
Ĉt =

1

N − 1

N∑

n=1

(F (v̂
(n)
t )− F t)⊗ (v̂

(n)
t − v̂t) + (v̂

(n)
t − v̂t)⊗ (F (v̂

(n)
t )− F t),(3.17)

where F t =
1
N

∑N
n=1 F (v̂

(n)
t ). Owing to 1

N

∑N
n=1 v̂

(n)
t − v̂t = 0, we have

d

dt
Ĉt =

1

N − 1

N∑

n=1

(F (v̂
(n)
t )− F (v̂t))⊗ (v̂

(n)
t − v̂t) + (v̂

(n)
t − v̂t)⊗ (F (v̂

(n)
t )− F (v̂t)).(3.18)

With a similar argument on the derivative of the eigenvalue of the covariance matrix in
Section 3 of [6], there exists w ∈ U with |w| = 1 such that

d

dt
λt =

〈
w,

d

dt
Ĉtw

〉
.

To derive the lower bound d
dtλt, we consider the absolute value of the right-hand side of (3.18).

Owing to |w| = 1 and Assumption 4, we have

∣∣∣∣
〈
w,

d

dt
Ĉtw

〉∣∣∣∣ ≤
∣∣∣∣∣

2

N − 1

N∑

n=1

〈
F (v̂

(n)
t )− F (v̂t), w

〉〈
v̂
(n)
t − v̂t, w

〉∣∣∣∣∣

≤ 2

(
1

N − 1

N∑

n=1

〈
F (v̂

(n)
t )− F (v̂t), w

〉2
) 1

2
(

1

N − 1

N∑

n=1

〈
v̂
(n)
t − v̂t, w

〉2
) 1

2

≤ β
1

N − 1

N∑

n=1

|v̂
(n)
t − v̂t|

2 ≤ 8
N

N − 1
βρ2.
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The last inequality comes from owing to v̂
(n)
t ∈ B(ρ) by Assumption 1 and the assumption of

Theorem 3. Hence, for a = 8 N
N−1βρ

2 > 0,

d

dt
λt ≥ −a.

Integrating it from 0 to t = h, we have

λ̂min
j = λh ≥ e−ahλ0 = e−ahλmin

j−1 .(3.19)

The next step is to address the change in the eigenvalue in the analysis step. From
Assumption 3, we have

Cj−1 =
α2

N − 1
dV̂j−1(IN + α2γ−2C̃j−1)

−1dV̂ ∗
j−1,

where C̃j−1 =
1

N−1dV̂
∗
j−1dV̂j−1 ∈ R

N×N . Next, for fixed j ∈ N, we show that the eigenvectors

of Ĉj−1 are also the eigenvectors of Cj−1. Indeed, if φ ∈ U satisfies Ĉj−1φ = λφ with an
eigenvalue λ ≥ 0, we have

C̃j−1dV̂
∗
j−1φ =

1

N − 1
dV̂ ∗

j−1dV̂j−1dV̂
∗
j−1 = dV̂ ∗

j−1Ĉj−1φ = λdV̂ ∗
j−1φ.

Hence, it follows that

Cj−1φ =
α2

N − 1
dV̂j−1(IN + α2γ−2C̃j−1)

−1dV̂ ∗
j−1φ =

α2

N − 1
dV̂j−1

1

1 + α2γ−2λ
dV̂ ∗

j−1φ

=
α2

1 + α2γ−2λ
Ĉj−1φ =

α2λ

1 + α2γ−2λ
φ.

Since the map λ 7→ α2λ
1+α2γ−2λ is monotonically increasing, we obtain the relation between the

minimum eigenvalues

λmin
j−1 =

α2λ̂min
j−1

1 + α2

γ2 λ̂
min
j−1

.(3.20)

Combining (3.19) and (3.20), we obtain the inequality for λ̂min
j .

λ̂min
j ≥

e−ahα2λ̂min
j−1

1 + α2

γ2 λ̂
min
j−1

.

We now consider the following discrete dynamical system of the eigenvalue

λn+1 = g(λn), λ0 > 0,

where g(λ) = e−ahα2λ

1+α2

γ2
λ
. Note that λn > 0 for n ∈ N∪{0}. Let λ∞ = γ2

α2 (e
−ahα2− 1) be a fixed

point of the dynamical system, i.e., λ∞ = g(λ∞). Then, if e−ahα2 > 1, the ratio g(λ)
λ satisfies
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g(λ)
λ ≥ 1 (resp. < 1) for λ ≤ λ∞ (resp. λ > λ∞). Hence, we have limn→∞ λn = λ∞. On the

other hand, limn→∞ λn = 0 if e−ahα2 ≤ 1. Therefore, we obtain the lower bound

λ̂min
j ≥ min

{
λ̂min
0 ,

γ2

α2
(e−ahα2 − 1)

}
= min

{
e−ahλ0,

γ2

α2
(e−ahα2 − 1)

}
= λ∗ > 0.(3.21)

if and only if e−ahα2 > 1.
Finally, we establish the one-step inequality for E[|ej |

2]. From Assumption 3, equation
(3.11) is reduced to

(I + α2γ−2Ĉj)vj = v̂j + α2γ−2Ĉjyj .

As in the proof of Theorem 2, the error is devided into the two terms ej = r1 + r2, where

r1 = (IU + α2γ−2Ĉj)
−1êj ,(3.22)

r2 = (IU + α2γ−2Ĉj)
−1α2γ−2Ĉj(yj − uj),(3.23)

and êj = v̂j − uj. From (A.2), we have |(IU + α2γ−2Ĉj)
−1α2γ−2Ĉj| ≤ 1, and hence,

|r2| ≤ |yj − uj| = |ξj|.(3.24)

From this lower bound of the minimum eigenvalue (3.21), we have |(IU + α2γ−2Ĉj)
−1| ≤

(1 + α2

γ2 λ∗)
−1. Hence,

|r1|
2 ≤

1

(1 + α2

γ2 λ∗)2
|êj |

2 ≤
e2(β+ǫ)h

(1 + α2

γ2 λ∗)2
(|ej−1|

2 +D)−
D

(1 + α2

γ2 λ∗)2
,(3.25)

where Lemma 3.2 is used for any ǫ > 0.
As in the proof of Theorem 2, we treat r1 and r2 separately when computing the expec-

tation. Therefore, we obtain

E[|ej |
2] = E[|r1|

2] + E[|r2|
2] ≤ E

[
|r1|

2
]
+ E[|ξj |

2] = E
[
|r1|

2
]
+mγ2

≤
e2(β+ǫ)h

(1 + α2

γ2 λ∗)2
(E[|ej−1|

2] +D)−
D

(1 + α2

γ2 λ∗)2
+mγ2

≤ θ(E[|ej−1|
2] +D)−

D

(1 + α2

γ2 λ∗)2
+mγ2 = θ(E[|ej−1|

2] +D) + E ,

where E = mγ2 −ΘD. Then, we have

E[|ej |
2] +D ≤ θ(E[|ej−1|

2] +D) + E +D.

Applying this inequality repeatedly, we have

E[|ej |
2] ≤ θj(E[|e0|

2] +D) + (E +D)
1− θj

1− θ
−D

= θj(E[|e0|
2] +D) +

(
mγ2 + (1−Θ)D

) 1− θj

1− θ
−D

= θj(E[|e0|
2] +D) +mγ2

1− θj

1− θ
+

(
(1− θj)(1−Θ)

1− θ
− 1

)
D.

Moreover, if θ < 1, (3.16) holds in the limit of j → ∞.
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Remark 3.3. The explicit condition about α0 so that θ = (1+ α2

γ2 λ∗)
−2e2(β+ǫ)h < 1 is given

by

α0 = max{λ
− 1

2
0 γeah(e(β+ǫ)h − 1)

1
2 , e

1
2
(a+β+ǫ)h}.(3.26)

Indeed, the condition θ < 1 is simplified to

e(β+ǫ)h − 1 <
α2

γ2
λ∗ = min

{
α2

γ2
e−ahλ0, e

−ahα2 − 1

}
.

Hence, (3.26) is obtained by solving the inequalities for α.

Corollary 3.4. Under the same assumptions of Theorem 3, we consider the accurate obser-
vation limit (i.e., γ → 0). Then, the filtering error is the order of the observation noise.

lim sup
j→∞

E[|ej |
2] = O(γ2).

Proof. It is clear that Θ =
(

γ2

γ2+α2λ∗

)2
= O(γ4) and θ = O(γ4). Then, we have

1−Θ

1− θ
− 1 = (1−Θ)(1 + θ +O(Θ2))− 1 = 1−Θ+ θ +O(Θ2)− 1

= Θ(e2(β+ǫ)h − 1) +O(Θ2) = O(γ4).

Therefore, it follows that

lim sup
j→∞

E[|ej |
2] =

mγ2

1− θ
+

(
1−Θ

1− θ
− 1

)
D = mγ2(1 +O(γ4)) +O(γ4) = O(γ2).

4. Summary and discussion. The theoretical aspects of the ETKF are investigated for the
infinite-dimensional dynamics. We obtain that the filtering error of the ETKF is bounded for
any finite time without a covariance inflation. In addition, an appropriate multiplicative co-
variance inflation to the ETKF ensures the uniform-in-time error bound on a finite-dimensional
state space. Furthermore, we determin the minimum value of the inflation parameter suffi-
cient to obtain the uniform-in-time error bound. As a corollary, the leading order of the error
bound is equal to the scale γ of observation noises, indicating that the accuracy of the state
estimation is effectively improved by the accurate observation. These results are relevant to
those for the PO method with the additive inflation [12].

Let us discuss the future directions. Our analysis is limited to when the ensemble size
N is larger than or equal to the state space dimension m to prevent a degenerated ensemble
covariance. Hence, we need to establish the error bound for the ETKF when N is smaller than
m ≤ ∞. To this end, we can consider some detailed properties of the model dynamics in the
present analysis. For instance, it is useful to identify unstable directions of the filtering error
where the error grows through the evolution of the model dynamics. It is known that many
dissipative dynamical systems including the two-dimensional Navier-Stokes equations have a
finite number of such unstable directions [3, 4, 19]. Hence, it is reasonable to assume that the
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dynamics have a finite number of unstable directions, and perturbations to the trajectory in
the other directions decay through its evolution. In addition, we assume the N is larger than
or equal to the finite number of unstable directions. If the ETKF appropriately reduces the
error of these directions under these assumptions, the dynamics reduces the error of the other
directions, and we obtain a better error bound.

Acknowledgments. We used an AI tool to edit or polish the authors’ written text for
spelling, grammar, or general style.
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Appendix A. Linear operators on Hilbert space. Let H be a Hilbert space and I = IH.

Lemma A.1. Let A ∈ L(H). If I +A is invertible, then we have

(I +A)−1 = I − (I +A)−1A.(A.1)

Especially, if A ∈ Lsa(H) and A ≻ 0,

0 � A(A+ I)−1 = (A+ I)−1A � I, 0 � (A+ I)−1 � I.(A.2)

Proof. (A.1) is easily confirmed by

LHS = (I +A)−1(I +A−A) = I − (I +A)−1A.

Next, for (A.2), (A.1) yields A(A+I)−1 = (A+I)−1A. The inequalities hold from the spectral
mapping theorem.

Lemma A.2. Let Γ : H → H be invertible and V ∈ HN . Then, the operator V V ∗ + Γ is
invertible, and

(I + V ∗Γ−1V )−1V ∗Γ−1 = V ∗(V V ∗ + Γ)−1.(A.3)

Furthermore,

(I + V ∗Γ−1V )−1 = I − V ∗(V V ∗ + Γ)−1V.(A.4)

Proof. V V ∗ + Γ is invertible owing to V V ∗ � 0 and Γ ≻ 0. Then, we have

V ∗Γ−1(V V ∗ + Γ) = V ∗Γ−1V V ∗ + V ∗ = (I + V ∗Γ−1V )V ∗.

This is equivalent to (A.3). For (A.4), the assertion (A.3) yields

(I + V ∗Γ−1V )−1V ∗Γ−1V = V ∗(V V ∗ + Γ)−1V.

Hence, we have

I − V ∗(V V ∗ + Γ)−1V = I − (I + V ∗Γ−1V )−1V ∗Γ−1V = (I + V ∗Γ−1V )−1,

where the last equality holds from (A.1).
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