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ON NORM AND TIME OPTIMAL CONTROLS FOR SYSTEMS

DESCRIBED BY LINEAR PARABOLIC PDES

Marius Tucsnak∗

Institut de Mathématiques de Bordeaux
Université de Bordeaux

351, Cours de la Libération - F 33 405 TALENCE, France

Abstract. This work proposes a general theory of norm and time optimal

control for a class of null controllable systems. We provide sufficient conditions
for the existence and uniqueness of optimal controls, the bang-bang property

and for the equivalence between norm and time optimal control problems. The

obtained abstract theorems allow us to obtain several new results for systems
described by parabolic PDEs, with distributed or boundary controls.

1. Introduction

This paper addresses two important questions in control theory:

• Minimizing the energy necessary to steer a linear system to zero, i.e., solve
the norm optimal control problem.

• Minimizing the time necessary to steer a linear system to zero when the
control is constrained to a bounded set. This is the time optimal control
problem.

The study of norm and time optimal controls for finite dimensional linear time
invariant systems (designed as LTI’s in the remaining part of this work) is a well
understood subject. Most of the papers tackling this subject are related to Pon-
tryagyn’s maximum principle [4], which is a strong tool, adaptable to nonlinear
systems and to other cost functionals. We mention also here the pioneering work
on time optimal controls of Bellman, Glicksberg and Gross [3]. According to Fat-
torini [8, Chapter 1], the approach in [3] “was so elementary that invited to gen-
eralizations to infinite dimensional spaces”. Indeed, the theory for time optimal
control for infinite dimensional LTI’s has been initiated in a relatively short time,
as reported in Fattorini [9] and Lions [13] and then developed in a series of papers
such as Schmidt [19], Mizel and Seidman [17], Wang [24], Phung and Wang [18],
Kunisch and Wang [12], Micu, Roventa and Tucsnak [16] or Loheac and Tucsnak
[15]. Moreover, Fattorini in [8] and Wang, Wang, Xu and Zhang in [25] devoted
complete monographs to this subject.

The main contribution brought in by our work is that it proposes an abstract
theory, including the existence and uniqueness of optimal controls, the bang-bang
property and the relation between norm and time optimal controls. This theory
applies to systems described by parabolic PDEs, for which one of the difficulties is
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2 M. TUCSNAK

that the reachable set may have an empty interior. Our methods allow, in particular,
to handle two other difficulties encountered in this type of problem:

• The norm which we aim at minimizing is the L∞ one with respect to both
time and to space variables. Moreover, for the time optimal control problem
the constraints are pointwise, thus again involving only L∞ norms.

• We consider controls which aim at driving the states of the considered sys-
tems exactly to zero. Unlike in situations when the control aim is to drive
the state of system to a neighbourhood of the origin, no maximum principle
is available in the literature.

From a methodological view point one of the main novelties is to construct an
extension of the dual of an L∞ null controllable system, such that the extended
system is exactly observable. This is a surprising fact since, in the usual state space
formulation, this dual is only final state observable.

The precise statement of our main results, which we choose to give in an abstract
setting, requires some notation and preliminaries, so we postpone it to Section 3.
However, for reader’s convenience, we state below the consequences of our abstract
results for a basic example of system described by a parabolic PDE with distributed
control. These consequences will be formally established in Section 8, where we also
discuss other examples of application of our abstract results.

To formulate this introductory example, let n ⩾ 2 be a positive integer and let
Ω ⊂ Rn be an open and bounded set. Let O be a non-empty open subset of ∂Ω
and let χO be the characteristic function of O. We consider the parabolic equation

(1.1)
∂z

∂t
(t, x) = ∆z(t, x) ((t, x) ∈ (0,∞)× Ω),

with the boundary conditions

(1.2) z(t, x) = 0 ((t, x) ∈ (0,∞)× (∂Ω \ O)) ,

(1.3) z(t, x) = u(t, x) ((t, x) ∈ (0,∞)×O) ,

where u is the control function. Moreover, we consider the initial condition

(1.4) z(0, x) = ψ(x) (x ∈ Ω).

An important result, whose proof is recalled in Section 8, is that the above system
is L∞ null controllable in any time, i.e., that, given τ > 0, for every ψ ∈ H−1(Ω)
there exists u ∈ L∞([0,∞) × O) such that z(τ, ·) = 0. This fact enables us to
formulate the norm and time optimal control problems for the system described by
(1.1), (1.2), (1.3) and (1.4).

More precisely, given ψ ∈ L2(Ω) and τ > 0 the norm optimal control problem for
the system described by (1.1)-(1.4) consists in determining û ∈ L∞([0,∞)×O) with

∥û∥L∞([0,∞)×O) = min
u∈L∞([0,∞)×O)

z(τ,·)=0

∥u∥L∞([0,∞)×O).

If the above optimal control problem admits a solution û for some τ > 0, we denote
by N∞(τ) the optimal cost, i.e., we set N∞(τ) = ∥û∥L∞([0,∞)×O).

On the other hand, given ψ ∈ L2(Ω), M > 0 and setting

UM :=
{
u | u ∈ L∞((0,∞)×O) s.t. ∥u∥L∞((0,∞)×O) ⩽M

}
.

the time optimal control problem for the system described by (1.1)-(1.4) consists
in determining (τ∞(M), u∞M ) ∈ (0,∞) × UM such that u∞M drives the initial state
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ψ to zero in time τ∞(M), i.e., the state trajectory z∞M associated to u∞M satisfies
z∞M (τ, ·) = 0, and

τ∞(M) := min
u∈UM

{τ | ∃u ∈ UM with z(τ, ·) = 0} .

Our main result on the system (1.1)-(1.4) is:
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Proposition 1.1. With the above notation, assume that ∂Ω is of class C2 or that
Ω is a rectangular domain. Then we have:

(1) For every τ > 0 and ψ ∈ L2(Ω) \ {0} the norm optimal control problem for
the system (1.1)-(1.4) admits at least one solution. Moreover, this control
û can be chosen to have the bang-bang property, i.e.,

|û(t, x)| = N∞(τ) ((t, x) ∈ (0, τ)×O a.e.).

Finally, the function τ 7→ N∗(τ) is decreasing and lim
τ→∞

N(τ) = 0.

(2) For every ψ ∈ L2(Ω)\{0} and M > 0, the time optimal control problem for
the system (1.1)-(1.4) admits at least one solution (τ∞(M), u∞M ). Moreover,
u∞M can be selected such that it has the bang-bang property

|u∞M (t, x)| =M ((t, x) ∈ [0, τ∞(M)]×O a.e.).

(3) The functions N∞, τ∞ defined via the two assertions above satisfy

N∞(τ∞(M)) =M, τ∞(N∞(τ)) = τ (M, τ > 0).

Under the above hypothesis, as far as we know, all the results in Proposition 1.1
are new. Adding supplementary assumptions, the second assertion in Proposition
1.1 has been proved in [16] and in Apraiz et al. [2], where the uniqueness of the
time optimal control has also been obtained. If we also adopt the supplementary
assumption in [2], we obtain:

Proposition 1.2. With the notation and the assumptions in Proposition 1.1, as-
sume that O contains a real analytic manifold (in the sense of Definition 5 in [2] ).
Then the norm and time optimal controls obtained in Proposition 1.1 are unique.

The remaining part of this work is organised as follows. Section 2 is devoted
to notation and some control theoretic background. Our leading assumptions and
our main results are then stated in Section 3. In Section 4 we introduce and give
the main properties of the L∞ reachable space and the multiplier space, which
play a fundamental role in the present paper. In Section 5 we prove that the dual
of the considered systems can be extended to an exactly observable observation
system, with the multiplier state constructed in the previous section as state space.
Section 6 provides a construction of norm optimal controls via the minimization of
an auxiliary functional. Our main abstract results are proved in Section 7. Finally,
in Section 8 we describe the applications of our abstract results to systems described
by parabolic PDEs.

2. Notation and preliminaries

In this section we introduce some notation which will be constantly used in the
remaining part of this paper and we recall some basic facts on well-posed control
linear time invariant systems (LTI’s). We refer to Weiss [28], Tucsnak and Weiss
[22, Chapters 2,3,4] and [23] for detailed information on this subject.

Firstly, we introduce the Hilbert spaces U (the input space) and X (the state
space), which will be, for the remaining part of this work, identified with their duals.

Definition 2.1. A well-posed control LTI system with state space X and input
space U is a couple Σ = (T,Φ) of families of operators such that

(1) T = (Tt)t⩾0 is a C0 semigroup of bounded linear operators on X;
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(2) Φ = (Φt)t⩾0 is a family of bounded linear operators from L2([0,∞);U) to
X such that

(2.1) Φτ+t(u♢
τ
v) = TtΦτu+Φtv (t, τ ⩾ 0, u, v ∈ L2([0,∞);U)),

where the τ -concatenation of two signals u and v, denoted u♢
τ
v, is the

function

u♢
τ
v =

{
u(t) for t ∈ [0, τ),

v(t− τ) for t ⩾ τ.

The maps (Φt) are called input to state maps and RanΦτ is called the reachable
space in time τ .

We denote by A : D(A) → X the generator of T and by T∗ the adjoint semigroup.
We next denote D(A) by X1 and remark that, when endowed with norm

∥z0∥2X1
= ∥z0∥2 + ∥Az0∥2 (z0 ∈ X1),

X1 is a Hilbert space. Similarly, we denote by Xd
1 the Hilbert space obtained by

endowing D(A∗) (the domain of the adjoint A∗ of A) with the norm

(2.2) ∥z0∥2Xd
1
= ∥z0∥2 + ∥A∗z0∥2 (z0 ∈ Xd

1 ).

LetX−1 be the dual ofX
d
1 with respect to the pivot spaceX, so thatX1 ⊂ X ⊂ X−1

with continuous and dense embeddings. The duality product, using X as pivot
space, between X−1 and Xd

1 is denoted by ⟨·, ·⟩X−1,Xd
1
. We recall that, for each

k ∈ {−1, 1}, the original semigroup T has a restriction (or an extension) to Xk

that is the image of T through the unitary operator (βI −A)−k ∈ L(X,Xk), where
β ∈ ρ(A) (the resolvent set of A), see [22, Remark 2.10.5]. This restriction (or
extension) will be still denoted by T.

Remark 2.1. According to [28] and [23], assumptions (1) and (2) in Definition 2.1
imply that there exists a unique B ∈ L(U,X−1), called the control operator of Σ,
such that

(2.3) Φτu =

∫ τ

0

Tτ−σBu(σ) dσ (τ ⩾ 0, u ∈ L2([0,∞);U)).

Notice that in the above formula, T acts on X−1 and the integration is carried out in
X−1, yielding a result lying in X. This property of B is called admissibility. From
the above definitions it follows that if (T,Φ) is a wellposed control LTI system then
for all u ∈ L2([0,∞);U), t 7→ Φtu is a continuous function from [0,∞) to X. A
particular case of interest, which occurs when we consider PDE systems with control
distributed in the domain where the PDE holds, is when the control operator B is
bounded, i.e., B ∈ L(U,X), when the integral in (2.3) is carried out in X.

Remark 2.2. Given a wellposed control LTI system (T,Φ) and τ > 0, we frequently
use in the remaining part of this work the adjoint Φ∗

τ of the operator Φτ . This
adjoint is defined, within the remaining part of this work, by identifying X and U
with their duals, which means that

(2.4) ⟨Φτu, z0⟩X = ⟨u,Φ∗
τz0⟩L2([0,∞);U) (u ∈ L2([0,∞);U)), z0 ∈ X).

It is known (see, for instance, [22, Proposition 4.4.1]) that for z0 ∈ D(A∗) and t > 0
we have

(2.5) (Φ∗
t z0)(σ) =

{
B∗T∗

t−σz0 (σ ∈ [0, t]),

0 (σ > t),
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where B∗ ∈ L(Xd
1 , U) is defined by

⟨Bv, φ⟩X−1,Xd
1
= ⟨v,B∗φ⟩U (v ∈ U, φ ∈ Xd

1 ).

Since for every t > 0 we have Φ∗
t ∈ L(X,L2([0,∞);U)), from (2.5) it follows that

for every t > 0 there exists κt > 0 such that

(2.6)

∫ t

0

∥B∗T∗
σψ∥

2
U dσ ⩽ κ2t∥ψ∥2X (ψ ∈ D(A∗)).

On the other hand, it is known, see, for instance, [22, Proposition 4.2.5], that
the families T and Φ are the solution operators for the initial value problem

(2.7) ż(t) = Az(t) +Bu(t), z(0) = z0.

This means that for every τ > 0, z0 ∈ X and every u ∈ L2([0, τ ];U), the initial
value problem (2.7) has a unique solution

z ∈ C([0, τ ];X) ∩H1((0, τ);X−1),

given by

z(t) = Ttz0 +Φtu (t ∈ [0, τ ]).

We also recall the definitions (see, for instance, [22, Sections 4.2 and 11.1]):

Definition 2.2. The wellposed control LTI system Σ = (T,Φ) is approximatively
controllable in time τ if the range of Φτ , denoted RanΦτ , is dense in X.

The following duality result is a classical tool in the study of approximate con-
trollability of infinite dimensional systems. We refer to [22, Theorem 11.2.1] for the
proof and other related issues.

Proposition 2.1. The wellposed control LTI system (T,Φ) is approximatively con-
trollable in time τ if and only if KerΦ∗

τ = {0}, where Φ∗
τ has been defined in (2.4).

In the particular case when the corresponding control operator satisfies B ∈ L(U,X),
the system is approximatively controllable in time τ if and only if the only ψ ∈ X
such that B∗T∗

tψ = 0 for every t ∈ [0, τ ] is ψ = 0.

We define below a space which plays an important role in the remaining part of
this paper.

Definition 2.3. Let τ > 0 and let Σ = (T,Φ) be a well-posed control LTI system
with state space X and control space U = L2(O), where O is a compact Riemannian
manifold. The L∞ reachable space in time τ of Σ, denoted R∞

τ is

(2.8) R∞
τ = Φτ (L

∞([0,∞)×O)) .

It is easily seen that R∞
τ , endowed with the norm

(2.9) ∥ξ∥R∞
τ

= inf
u∈L∞([0,∞)×O)

Φτu=ξ

∥u∥L∞([0,τ ]×O) (ξ ∈ R∞
τ ),

is a normed space.
The controllability type which will be mostly used in this work is:

Definition 2.4. Let τ > 0 and let Σ = (T,Φ) be a well-posed control LTI system
with state pace X and control space U = L2(O), where O is a compact Riemannian
manifold. The system Σ is said L∞ null controllable in time τ if R∞

τ ⊃ RanTτ .
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We give below a second, less classical, duality result, which we state below in
the case when the adjoint semigroup T∗ has a backwards uniqueness property. We
refer, for instance, to [16, Proposition 2.5] for a proof of this result.

Proposition 2.2. Let Σ = (T,Φ) be a wellposed control LTI system with state
space X and control space U = L2(O), where O is a compact Riemannian manifold.
Assume that KerT∗

τ = {0} for some τ > 0. Then Σ is L∞ null controllable in time
τ if and only if

(2.10) Kτ := inf
η∈X\{0}

∥Φ∗
τη∥L1([0,∞)×O)

∥T∗
τη∥X

> 0.

Moreover, if (2.10) holds, then for every ψ ∈ X there exist u ∈ L∞([0,∞)×O) with

∥u∥L∞([0,∞)×O) ⩽ Kτ∥ψ∥X , Tτψ +Φτu = 0.

Remark 2.3. The conclusion of Proposition 2.2 holds, in particular, if the assump-
tion KerT∗

τ = {0} is replaced by the hypothesis that T is analytic. Indeed, in this
case T∗ is also analytic, which implies that it has the required backwards unique-
ness property. Moreover, assuming that T is analytic, the L∞ null controllability in
time τ of Σ implies its approximate controllability. Indeed, let ψ ∈ X be such that
(Φ∗

τψ)(t, x) = 0 for almost every t ∈ [0, τ ] and x ∈ O. Using (2.10) it follows that
T∗
τψ = 0. Since T∗ is an analytic semigroup, it follows that ψ = 0. The approximate

controllability of Σ in time τ follows now from Proposition 2.1.

3. Statement of the main abstract results

In this section we continue to use the notation introduced in the previous one,
so that, in particular, the state space X and the input space U are supposed to be
Hilbert. We denote by Σ = (T,Φ) a well-posed control LTI system with state space
X and input space U , so that the C0-semigroup T = (Tt)t⩾0 on X and the family
of linear operators Φ = (Φt)t⩾0 satisfy the conditions in Definition 2.1.

The main assumptions which will be used in the remaining part of this work are:

[H1] The input space U is given by U = L2(O), where O is a compact Riemannian
manifold (with or without boundary) of dimension d ∈ N.

[H2] The semigroup T is analytic and its generator A has compact resolvents in X.

[H3] The wellposed control LTI system Σ = (T,Φ) satisfies [H1] and it is L∞ null
controllable in any time τ > 0 (in the sense of Definition 2.4).

[H4] The wellposed control LTI system Σ = (T,Φ) satisfies [H1] and if τ > 0, ψ ∈ X
are such that (Φ∗

τψ) (t, x) = 0 for (t, x) in a subset of positive Lebesgue measure of
the product manifold [0, τ ]×O then ψ = 0. We refer, for instance, to Amann and
Escher [1, Ch.12] for the definition of the Lebesgue measure on manifolds.

In some of our results below assumptions [H3] and [H4] are replaced by the
(stronger) hypothesis:
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[H5] The wellposed control LTI system Σ = (T,Φ) satisfies [H1] and for every τ > 0
and every set of positive measure e ⊂ [0, τ ]×O there exists Kτ,e > 0 such that

(3.1) Kτ,e

∫
e

|(Φ∗
τψ) (t, x)| dxdt ⩾ ∥T∗

τψ∥X (ψ ∈ X).

In the above inequality dxdt stands for the Lebesgue measure on the product man-
ifold [0, τ ]×O, already used to state (H4) above.

Remark 3.1. We note that assumption [H2] above implies that the semigroup T∗

is analytic so that KerT∗
t = {0} for every t ⩾ 0. From this and Proposition 2.2 it

follows that assumption [H5] above implies [H3] and [H4].

With the above notation and assumptions we can state the main optimal control
problems considered in this work. The first one is the norm optimal control problem,
which can be stated as follows:

The norm optimal control problem (NP )τ : Let Σ = (T,Φ) be a wellposed control
LTI system satisfying [H3]. Given ψ ∈ X, we define N∞ : (0,∞) → [0,∞) by

N∞(τ) := ∥Tτψ∥R∞
τ
.

In other words, N∞(τ) is the lower bound of the L∞ norms of controls steering the
system from the initial state ψ to rest in time ψ. Thanks to [H3], N∞ is clearly well
defined and takes values in [0,∞). Moreover, N∞ clearly depends on the choice
of ψ ∈ X but, to avoid notational complexity, this dependence will not appear
explicitly in what follows.

A norm optimal control at time τ is an input function û which steers the initial
state ψ rest in time τ and its L∞ norm is minimal, i.e., such that

(3.2) Φτ û+ Tτψ = 0, ∥û∥L∞([0,τ ]×O) = N∞(τ).

The typical questions to be solved are the existence of such controls and the study
of their properties (such as optimality conditions or the bang-bang-property).

Our first result on the norm optimal control problem is:

Theorem 3.1. Let τ > 0 and let Σ = (T,Φ) a well-posed control LTI system with
state space X and input space U satisfying assumptions [H1]-[H4]. Then for every
ψ ∈ X \ {0} the norm optimal control problem (NP )τ admits at least one solution,
in the sense that there exists û ∈ L∞([0, τ ] × O) satisfying and (3.2). Moreover,
this control û can be chosen to have the bang-bang property, i.e.,

(3.3) |û(t, x)| = N∞(τ) ((t, x) ∈ (0, τ)×O a.e.).

Our second result on norm optimal control problems asserts that if assumptions
[H3] and [H4] in Theorem 3.1 are replaced by the stronger assumption [H5] (see
Remark 3.1) we have:

Theorem 3.2. Let τ > 0 and let Σ = (T,Φ) a well-posed control LTI system with
state space X and input space U satisfying assumptions [H1], [H2] and [H5]. Then
for every ψ ∈ X \ {0} the solution of the norm optimal control problem (NP )τ is
unique and satisfies (3.3).

Our third abstract result on norm optimal control is:
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Theorem 3.3. Let τ > 0 and let ψ ∈ X \ {0}. Then, the norm optimal function
N∞ : (0,∞) → (0,∞) is decreasing and continuous. Moreover, we have

(3.4) lim
τ→∞

N∞(τ) = N̂ ⩾ 0, lim
τ→0+

N∞(τ) = +∞,

with N̂ = 0 if T is an exponentially stable semigroup.

The second type of optimal control question to be studied below concerns time
optimal controls and it can be stated as follows:

The time optimal control problem (TP )M : Let Σ = (T,Φ) a wellposed control LTI
system satisfying [H3], let M > 0 and denote

UM :=
{
u | u ∈ L∞((0,∞)×O) s.t. ∥u∥L∞((0,∞)×O) ⩽M

}
.

Solving the time optimal control problem (TP )M consists in determining (τ∞(M), u∞M ) ∈
(0,∞)× UM such that u∞M drives the initial state ψ to zero in time τ∞(M), i.e.,

Tτ∞(M)ψ +Φτ∞(M)u
∞
M = 0,

and

(TP )M : τ∞(M) := min
u∈UM

{τ | ∃u ∈ UM with Tτψ +Φτu = 0} .

Here the main questions are the existence of optimal pairs (τ∞(M), u∞M ), describ-
ing qualitative properties of u∞M (namely bang-bang) and establishing the relation
between time and norm optimal control problems.

Our main result on the time optimal control problem (TP )M is:

Theorem 3.4. Let M > 0 and let Σ = (T,Φ) be a well-posed control LTI system
with state space X and input space U satisfying assumptions [H1]-[H4]. Then, given
ψ ∈ X \ {0}, the time optimal control problem (TP )M admits at least one solution

(τ∞(M), u∞M ) if and only if M > N̂ , where N̂ has been defined in (3.4). Moreover,

(3.5) N∞(τ∞(M)) =M (M > N̂),

(3.6) τ∞(N∞(τ)) = τ (τ ∈ (0,∞)).

and u∞M can be selected such that it has the bang-bang property

(3.7) |u∞M (t, x)| =M ((t, x) ∈ [0, τ∞(M)]×O a.e.).

By combining Theorem 3.4 with [16, Propositions 2.5 and 2.6] we immediately
obtain:

Corollary 3.1. Let M > N̂ , where N̂ has been defined in (3.4), and let Σ = (T,Φ)
a well-posed control LTI system with state space X and input space U satisfying
assumptions [H1], [H2] and [H5]. Then for every ψ ∈ X \ {0} the time optimal
control problem (TP )M admits a unique solution (τ∞(M), u∞M ). Moreover, this
solution satisfies (3.7).
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4. The L∞ reachable space and the multiplier space

In this section we continue to use the notation introduced in the previous ones,
so that Σ = (T,Φ) is a well-posed control LTI system with state space X and
input space U = L2(O), where O is a compact Riemannian manifold. Moreover, we
continue to assume that Σ satisfies the assumptions (H1)-(H4) formulated at the
beginning of Section 3.

In this section is to describe some of the properties of the L∞ reachable space of
Σ, defined in (2.8) and of the associated multiplier space. The latter, denoted, for
every τ > 0, by Zτ , is defined as the completion of X with respect to the norm

(4.1) ∥η∥Zτ =

∫ τ

0

∫
O
|(Φ∗

t η) (t, x)) |dx dt (η ∈ X),

where Φ∗
t has been defined in (2.4). The fact that the right hand side of (4.1) defines

a norm onX follows from the approximate controllability in time τ of Σ, see Remark
2.3. We clearly have that Zτ is a Banach space and that X ⊂ Zτ with continuous
and dense embedding. The term multiplier space to design Zτ is inspired to us by
the work of Fattorini [10] and it is potentially related to Pontryagin’s maximum
principle. We refer to [10] for more details on this relationship.

The result below shows that R∞
τ can be seen as the dual of Zτ with respect to

the pivot space X.

Proposition 4.1. Let τ > 0 and assume that the wellposed control LTI system Σ =
(T,Φ) satisfies assumptions (H1)-(H4) from Section 3. Let Zτ be the completion of
X with respect to the norm (4.1). Then

(4.2) R∞
τ = {ξ ∈ X | s.t. sup

η∈X
∥η∥Zτ ⩽1

|⟨η, ξ⟩X | <∞},

(4.3) ∥ξ∥R∞
τ

= sup
η∈X

∥η∥Zτ ⩽1

|⟨η, ξ⟩X | (ξ ∈ R∞
τ ).

Proof. We first remark that for every ξ ∈ R∞
τ , there exists a sequence (uξn) in

L∞([0, τ ]×O) such that Φτu
ξ
n = ξ for every n ∈ N and

lim
n→∞

∥uξn∥L∞([0,τ ]×O) = ∥ξ∥R∞
τ
.

We next note that for every η ∈ X and ξ ∈ R∞
τ \ {0} we have

1

∥ξ∥R∞
τ

|⟨ξ, η⟩X | = 1

∥ξ∥R∞
τ

∣∣⟨uξn,Φ∗
τη⟩L2([0,τ ];U)

∣∣
⩽

1

∥ξ∥R∞
τ

∥uξn∥L∞([0,τ ]×O)∥Φ∗
τη∥L1([0,τ ]×O) (n ∈ N).

Passing to the limit when n → ∞ in the last inequality we obtain that for every
η ∈ X and ξ ∈ R∞

τ \ {0} we have

1

∥ξ∥R∞
τ

|⟨ξ, η⟩X | ⩽ ∥η∥Zτ .

The last estimate clearly implies that

R∞
τ ⊂

ξ ∈ X | s.t. sup
η∈X

∥η∥Zτ ⩽1

|⟨η, ξ⟩X | <∞

 ,
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(4.4) sup
∥η∥Zτ ⩽1

|⟨η, ξ⟩X | ⩽ ∥ξ∥R∞
τ

(ξ ∈ RanΦτ ).

Let now ξ ∈ X be such that

(4.5) sup
∥η∥Zτ ⩽1

|⟨η, ξ⟩X | = cτ,ξ <∞.

Consider the subspace X of L1([0, τ ]×O) defined by

X = {Φ∗
τη | η ∈ X}.

Consider the linear functional F on X defined by

F(Φ∗
τη) = −⟨ξ, η⟩X (η ∈ X).

The fact that this functional is well defined follows from the approximate control-
lability in time τ of our system Σ. Moreover, using (4.5), it follows that

|Fv| ⩽ cτ,ξ∥η∥Zτ = cτ,ξ ∥v∥L1([0,τ ]×O) (v ∈ X ).

By the Hahn-Banach Theorem, F can be extended to a bounded linear functional

F̃ on L1([0, τ ]×O) such that

|F̃v| ⩽ Kτ ∥v∥L1([0,τ ]×O) (v ∈ L1([0, τ ]×O)).

By the Riesz representation theorem it follows that there exists u ∈ L∞([0, τ ]×O)
such that ∥u∥L∞([0,τ ]×O) ⩽ cτ,ξ and∫ τ

0

∫
O
u(τ − σ, x)Φ∗

τη + ⟨ξ, η⟩X = 0 (η ∈ X).

From the above formula, it follows that

⟨Φτu, η⟩X + ⟨ξ, η⟩X = 0 (η ∈ X),

which implies that

Φτu = ξ.

We have thus shown that

{ξ ∈ X | s.t. sup
∥η∥Zτ ⩽1

|⟨η, ξ⟩X | <∞} ⊂ R∞
τ .

The above inclusion and (4.4) imply the conclusion (4.2).
Moreover, we have seen that for every ξ ∈ X such that sup

∥η∥Zτ ⩽1

|⟨η, ξ⟩X | < ∞

(or, equivalently, ξ ∈ R∞
τ ), there exists u ∈ L∞([0, τ ]×O) such that Φτu = ξ and

∥u∥L∞([0,τ ]×O) ⩽ sup
∥η∥Zτ ⩽1

|⟨η, ξ⟩X |.

Consequently,

∥ξ∥R∞
τ

⩽ sup
∥η∥Zτ ⩽1

|⟨η, ξ⟩X | (ξ ∈ R∞
τ ).

The last estimate and (4.4) implies our second conclusion (4.3). □

Remark 4.1. The fact that, under the assumptions of Proposition 4.1, R∞
τ does

not depend on τ > 0 can also be proved directly. This can be achieved by following
Seidman’s proof [21] (see also Kellay, Normand and Tucsnak [11, Proposition 3.4]) of
the result asserting that RanΦτ (see Definition 2.2 for the meaning of this notation)
is independent of τ > 0.

An obvious consequence of Proposition 4.1 is:
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Corollary 4.1. With the notation and under the assumptions in Proposition 4.1
we have

(4.6) ∥Tτψ∥R∞
τ

= sup
η∈X\{0}

|⟨Tτψ, η⟩X |
∥η∥Zτ

.

The result below also follows from Proposition 4.1:

Corollary 4.2. With the notation and under the assumptions in Proposition 4.1,
R∞
τ , endowed with the norm defined in (2.9), is a Banach space.

Proof. Let (ξk)k∈N be a Cauchy sequence in R∞
τ . This implies, according to (4.3),

that for every η ∈ X there exists lη ∈ C with

(4.7) lim
k→∞

⟨η, ξk⟩X = lη, |lη| ⩽ sup
k∈N

∥ξk∥R∞
τ
∥η∥Zτ

.

The mapping η 7→ lη is obviously linear. Moreover, the above formulas and the
continuity of the embedding X ⊂ Zτ imply that there exits a ξ ∈ X such that

(4.8) lη = ⟨η, ξ⟩X (η ∈ X).

Putting together (4.7) and (4.8) it follows that

sup
η∈X

∥η∥Zτ ⩽1

|⟨η, ξ⟩X | <∞,

so that ξ ∈ R∞
τ . We have thus shown that the completion of R∞

τ with respect to
its norm is included in R∞

τ , so that R∞
τ is indeed a Banach space. □

We are now in a position to state the main results in this section.

Proposition 4.2. Assume that the wellposed control LTI system Σ = (T,Φ) satis-
fies assumptions (H1)-(H4) from Section 3. Then for h > 0 and η ∈ X we have

(4.9)

∫ τ+h

0

∫
O

∣∣(Φ∗
τ+hη

)
(t, x)

∣∣ dxdt ⩽ (
1 + κhK

−1
τ

) ∫ τ

0

∫
O
|(Φ∗

τη) (t, x)| dxdt,

where κh and Kτ are the constants introduced in (2.6) and (2.10), respectively.
Moreover, the spaces Zτ and R∞

τ do not depend on τ > 0.

Proof. An obvious density argument shows that if suffices to prove that (4.9) holds
for η ∈ D(A∗). To this aim we note that for every η ∈ D(A∗) and τ, h > 0 we have∫ τ+h

0

∫
O
|B∗T∗

t η|dxdt =
∫ τ

0

∫
O
|B∗T∗

t η|dxdt+
∫ τ+h

τ

∫
O
|B∗T∗

t η|dx dt

⩽
∫ τ

0

∫
O
|B∗T∗

t η|dxdt+ [hµ(O)]
1
2

[∫ τ+h

τ

∫
O
|B∗T∗

t η|2 dx dt

] 1
2

.

where µ(O) is the Lebesgue measure of O. On the other hand,∫ τ+h

τ

∫
O
|B∗T∗

t η|2 dxdt =
∫ h

0

∫
O
|B∗T∗

t+τη|2 dx dt

=

∫ h

0

∫
O
|B∗T∗

tT∗
τη|2 dxdt ⩽ κ2h∥T∗

τη∥2X (τ, h > 0, η ∈ D(A∗)),

where κh (depending only on h) is the constant introduced in (2.6). The above
inequality and (2.10) imply that (4.9) holds for η ∈ D(A∗) and thus for η ∈ X.



NORM AND TIME OPTIMAL CONTROLS 13

In order to show that Zτ does not depend on the choice of τ > 0 it suffices,
according to the definition of Zτ , to prove that, given τ1, τ2 > 0, the corresponding
norms defined in (4.1) are equivalent on X. With no loss of generality, assume that
0 < τ1 < τ2. Then we obviously have

∥η∥Zτ1
⩽ ∥η∥Zτ2

(η ∈ X).

Combining the last estimate and (4.9) yields that ∥ · ∥Zτ2
and ∥ · ∥Zτ1

are equivalent

on X, so that Zτ2 = Zτ1 . This equality and (4.2) imply also that R∞
τ2 = R∞

τ1 . □

5. On an extension of the adjoint semigroup

In this section we continue to use all the notation introduced in the previous
ones. In particular, Σ = (T,Φ) is a well-posed control LTI system with state space
X and input space U = L2(O), satisfying assumptions (H1)-(H4) formulated at
the beginning of Section 3. Moreover, R∞

τ and Zτ design the L∞ reachable space
and the multiplier space of Σ at time τ , respectively. We recall that R∞

τ has been
defined in (2.8), that Zτ is the completion of X with respect to the norm defined in
(4.1) and that, as shown in Proposition 4.2, the spaces R∞

τ and Zτ are independent
of the choice of τ > 0.

The main aim of this section is to show that for every τ > 0 the semigroup
(T∗
t )t⩾0 can be extended to a C0 semigroup on Zτ . The first step to achieve this

goal is the following result:

Proposition 5.1. Let τ > 0 and assume that the wellposed control LTI system
Σ = (T,Φ) satisfies assumptions (H1)-(H4) from Section 3. Then for every t ∈ (0, τ ]
the operator T∗

t uniquely extends to an operator St ∈ L(Zτ , X). Moreover, we have

(5.1) St+σ = StSσ (t, σ > 0),

(5.2) lim sup
t→0+

∥St∥L(Zτ ) <∞,

(5.3) ∥Sτη∥X ⩽ Kτ∥η∥Zτ
(η ∈ Zτ ),

where Kτ is the constant in (2.10).

Proof. Let η ∈ Zτ and let (ηk) be a sequence of X such that ∥ηk−η∥Zτ → 0. Then,
according to Proposition 4.2, we have that η ∈ Wt and ηk → η in Zt. Using (2.10)
it follows that the sequence (T∗

t ηk) converges to some γt ∈ X. Moreover, it is easy
to check that γt does not depend on the choice of the approximating sequence (ηk).
We can thus define the operator St by setting Stη = γt. This operator clearly lies
in L(Zt, X) (thus in L(Zτ , X)) and and it extends T∗

t and the fact that the family
(St)t>0 satisfies the property (5.1) follows from the corresponding property of T∗.

We next remark that, using the density of D(A∗) in X, we can assume that the
sequence (ηk) introduced at the beginning of this proof takes values in D(A∗). Since
(ηk) is bounded in Zτ we have that

(5.4) Mτ,η := sup
k∈N

∫ τ

0

∫
O
|B∗T∗

σηk|dxdσ <∞.
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It follows that for 0 < t ⩽ τ we have

(5.5) ∥Stη∥Zτ = lim
k→∞

∥T∗
t ηk∥Zτ = lim

k→∞

∫ τ

0

∫
O
|B∗T∗

σT∗
t ηk|dx dσ

= lim
k→∞

∫ τ

0

∫
O
|B∗T∗

t+σηk|dxdσ = lim
k→∞

∫ τ+t

t

∫
O
|B∗T∗

σηk|dxdσ

⩽ lim
k→∞

∫ τ+t

0

∫
O
|B∗T∗

σηk|dxdσ.

On the other hand, by combining (4.9) and (5.4) we have∫ τ+t

0

∫
O
|B∗T∗

t ηk|dxdt ⩽
(
1 + κtK

−1
τ

)
Mτ,η (k ∈ N),

where the constants kt and Kτ have been defined in (2.10) and (2.6), respectively.
The last estimate and (5.5) imply that

lim sup
t→0+

∥Stη∥Zτ
<∞ (τ > 0, η ∈ Zτ ).

The conclusion (5.2) follows now by applying the uniform boundedness principle.
Finally, (5.3) follows from (2.10) and the fact that Sτ ∈ L(Zτ , X). □

The main result of this section is:

Theorem 5.1. Assume that the wellposed control LTI system Σ = (T,Φ) satisfies
assumptions (H1)-(H4) from Section 3. Then for every τ > 0 the family (Sσ)σ⩾0

obtained by setting S0 = IZτ forms a C0 semigroup on Zτ .

Proof. Let η ∈ Zτ and ε > 0. Since X is dense in Zτ , there exists η1 ∈ X with

(5.6) ∥η − η1∥Zτ
⩽
ε

2
.

On the other hand, by backwards uniqueness for analytic semigroups, we have that
KerTτ = {0}, so that RanT∗

τ is dense in X. Consequently, denoting by cτ the norm
of the embedding of X into Zτ , there exists η2 ∈ X such that

(5.7) ∥T∗
τη2 − η1∥X ⩽

ε

2cτ
.

From the above estimate and (5.6) it follows that η2 ∈ X satisfies

(5.8) ∥Sτη2 − η∥Zτ = ∥T∗
τη2 − η∥Zτ ⩽ ε.

We have thus shown that Ran Sτ is dense in Zτ .
On the other hand, from Proposition 5.1 we have that Sτη2 ∈ X so that the

strong continuity of the semigroup T∗ on X implies that

lim
σ→0+

∥SσSτη2 − Sτη2∥X = lim
σ→0+

∥T∗
σSτη2 − Sτη2∥X = 0.

Consequently, using the continuous imbedding of X into Zτ , there exists δ > 0 with

∥SσSτη2 − Sτη2∥Zτ < ε (σ ∈ (0, δ)).

The above estimate, combined with (5.2) and with (5.8), yields the existence of
δ1 ∈ (0, δ) such that

∥Sση − η∥Zτ
⩽ ∥SσSτη2 − Sτη2∥Zτ

+ ∥Sσ(Sτη2 − η)− (Sτη2 − η)∥Zτ
⩽ 3ε (σ ∈ (0, δ1)).
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Since η ∈ Zτ and ε > 0 are arbitrary, it follows that indeed (Sσ)σ⩾0 is a strongly
continuous semigroup on Zτ . □

Using Theorem 5.1 above we can prove that the dual of Σ can be seen, in the
sense of inequality (5.12) below, as an exactly observable system, with state space
Zτ and output space L1(O). More precisely, we have:

Corollary 5.1. With the assumptions and the notation in Theorem 5.1, let τ > 0.
For every t ∈ [0, τ ] we define the operator Ψt by

(5.9) (Ψtη)(σ) =

{
B∗St−ση (σ ∈ [0, t), η ∈ Zt),

0 (σ > t, z0 ∈ Zt),

were S is the C0-semigroup introduced in Theorem 5.1. Then

(5.10) Ψt ∈ L(Zτ , L1([0,∞)×O)), Ψt|X = Φ∗
t (t ∈ (0, τ ]),

where Φ∗
t has been introduced in (2.5). Moreover, we have

(5.11) ∥η∥Zt
= ∥Ψtη∥L1([0,∞)×O) (t ∈ (0, τ ], η ∈ Zt),

(5.12)
(
1 + κτ−tK

−1
t

)
∥Ψtη∥L1([0,∞)×O) ⩾ ∥η∥Zτ (t ∈ (0, τ), η ∈ Zτ ),

where κτ−t and Kt are the constants introduced in (2.6) and (2.10), respectively.

Proof. We know from Proposition 5.1 that S t−σ
2
η ∈ X for every η ∈ Zt and σ ∈

(0, t). Thus, using the fact that S extends T∗ and the analyticity of the semigroup
T∗ it follows that

St−ση = T∗
t−σ
2

S t−σ
2
η ∈ D(A∗) (σ ∈ [0, t), η ∈ Zt),

so that (5.9) defines indeed a linear operator on Zt. Moreover, from the definition
of the norm in Zt it follows that Ψt defines an isometry of Zt. Since the norms in
Zt and Zτ are equivalent, it follows that Ψt satisfies the first condition in (5.10).
The fact that the second condition in (5.10) is also satisfied is a direct consequence
of the definitions of Ψt and Φt and of the fact, already used above, that S t−σ

2
η ∈ X

for every η ∈ Zt and σ ∈ (0, t).
Due to above facts, formula (5.11) clearly holds for η ∈ X and, by density, for

η ∈ Zτ . Finally (5.12) is a direct consequence of (5.11) and of the inequality (4.9)
in Proposition 4.2. □

Remark 5.1. With the assumptions and the notation in Theorem 5.1, we can
combine (5.9), (5.11) and and the fact that Sση ∈ D(A∗) for every σ > 0 and
η ∈ Zt, to obtain that

(5.13) ∥η∥Zt
=

∫ t

0

∫
O
|B∗Sση|dxdσ (t > 0, η ∈ Zt).

6. Minimization of an auxiliary functional

In this section we continue to use all the notation and the assumptions recalled
at the beginning of Section 5.

Given τ > 0 and ψ ∈ X we consider we consider the functional Jτψ : Zτ → R
defined by

(6.1) Jτψ(η) =
1

2
∥η∥2Zτ

+ ⟨ψ,Sτη⟩X (η ∈ Zτ ),
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where Zτ is the completion of X with respect to the norm defined in (4.1) and
the C0-semigroup (Sσ)σ⩾0 has been constructed in Proposition 5.1. This type of
functional has been introduced, in the context of approximate controllability of the
wave (respectively of the heat) equation, in Lions [14] (respectively Fabre, Puel
and Zuazua [7]). The approach in [7] has been adapted for norm and time optimal
control problems for heat equations (with point target) in [27] and [26]. Our aim in
this section is to prove that the results in [27] and [26] can be generalized to every
system satisfying assumptions (H1)-(H4) formulated at the beginning of Section 3.

We first note that we have the result below:

Lemma 6.1. Assume that the wellposed control LTI system Σ = (T,Φ) satisfies
assumptions (H1)-(H4) from Section 3. Let τ > 0, ψ ∈ X and let Jτψ be the

functional defined in (6.1). Then

(6.2) Jτψ(η) ⩾
1

2
∥η∥2Zτ

− ∥Tτψ∥R∞
τ
∥η∥Zτ (η ∈ Zτ , ψ ∈ X, τ > 0),

(6.3) inf
η∈Zτ

Jτψ(η) = −1

2
∥Tτψ∥2R∞

τ
(τ > 0, ψ ∈ X).

Proof. We first note that from Corollary 4.1 it follows that

|⟨Tτψ, η⟩X | ⩽ ∥Tτψ∥R∞
τ
∥η∥Zτ

(η ∈ X \ {0}).

The above inequality, the fact that for every η ∈ X we have

Jτψ(η) =
1

2
∥η∥2Zτ

+ ⟨ψ,T∗
τη⟩X ,

and the Cauchy-Schwarz inequality clearly imply (6.2) holds for η ∈ X and thus,
by density, for η ∈ Zτ .

Using next (6.2) and an elementary inequality we obtain that

(6.4) inf
η∈Zτ

Jτψ(η) ⩾ −1

2
∥Tτψ∥2R∞

τ
(τ > 0, ψ ∈ X).

On the other hand, it follows from (4.6) that

−∥Tτψ∥R∞
τ

= inf
η∈X\{0}

⟨Tτψ, η⟩X
∥η∥Zτ

(ψ ∈ X).

Consequently, for every ε ∈ (0, ∥Tτψ∥R∞
τ
) there exists ηε ∈ X \ {0} such that

⟨Tτψ, ηε⟩X
∥ηε∥Zτ

⩽ −∥Tτψ∥R∞
τ

+ ε.

From the above estimate it follows that for every λ > 0 we have

Jτψ(ληε) =
λ2

2
∥ηε∥2Zτ

+ λ ⟨ψ,Sτηε⟩X =
λ2

2
∥ηε∥2Zτ

+ λ ⟨Tτψ, ηε⟩

⩽
λ2

2
∥ηε∥2Zτ

− λ∥Tτψ∥R∞
τ
∥ηε∥Zτ + λε∥ηε∥Zτ

=
1

2

[
λ∥ηε∥Zτ −

(
∥Tτψ∥R∞

τ
− ε

)]2 − 1

2

(
∥Tτψ∥R∞

τ
− ε

)2
.

Taking the infimum with respect to λ > 0 in both sides of the above we obtain

inf
η∈Zτ

Jτψ(η) ⩽ −1

2

(
∥Tτψ∥R∞

τ
− ε

)2
.
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Since the above estimate holds for every ε > 0 it follows that

inf
η∈Zτ

Jτψ(η) ⩽ −
∥Tτψ∥2R∞

τ

2
.

The last inequality and (6.4) imply the conclusion (6.3). □

A second useful property of Jτψ is given in the result below.

Lemma 6.2. With the notation and under the assumptions of Lemma 6.1, if ψ ̸= 0
then 0 is not a minimizer of Jτψ.

Proof. We use a contradiction argument. Assume that ψ ̸= 0 and that 0 were the
minimizer of Jτψ. Then

Jτψ(λη)

λ
⩾ 0 (λ > 0, η ∈ X).

Passing to the limit for λ→ 0+ in the above inequality we obtain that ⟨Tτψ, η⟩ ⩾ 0
for all η ∈ X, so that Tτψ = 0. Using backwards uniqueness for analytic semigroups,
this implies that ψ = 0, which is a contradiction. □

The main result of this section is:

Theorem 6.1. Assume that the wellposed control LTI system Σ = (T,Φ) satisfies
assumptions (H1)-(H4) from Section 3. Let τ > 0, ψ ∈ X and let Jτψ be the

functional defined in (6.1). Then for every ψ ∈ X and τ > 0 the functional Jτψ
admits at least one minimizer η̂ ̸= 0 on Zτ . Moreover,

Jτψ(η̂) = −1

2
∥η̂∥2Zτ

.

Proof. We first recall that the fact that 0 is not a minimizer of Jτψ has been already
proved in Lemma 6.2.

We next remark that from (6.3) it follows that there exists a minimizing sequence
(ηk) in Zτ such that

lim
k→∞

Jτψ(ηk) = −1

2
∥Tτψ∥2R∞

τ
.

Since from (6.2) we know that Jτψ is coercive on Zτ , there is M > 0 with

∥ηk∥Zτ
⩽M (k ∈ N).

Using (5.13), the above estimate can be rephrased as∫ τ

0

∫
O
|(B∗Stηk)(x)|dx dt ⩽M (k ∈ N).

On the other hand, we know that for every σ > 0 we have Sσ = T∗
σ
2
Sσ

2
. This

fact, combined with the analyticity of the semigroup T∗ and the compactness of the
embedding of D(A) ⊂ X implies that for every σ > 0 the operator Sσ is compact
from Zτ to Xd

1 (Recall from Section 2 that Xd
1 is D(A∗) endowed with the norm

defined in (2.2).) We can thus apply Alaoglu’s theorem to obtain that there exists
η̂ ∈ Zτ such that, up to the extraction of a subsequence, we have,

(6.5) ηk → η̂ in Zτ weak ∗,

(6.6) Sσηk → Sσ η̂ in Xd
1 strongly (σ > 0).
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From (6.5), (6.6) and the fact that B∗ ∈ L(Xd
1 , L

1(O)) it follows that

(6.7)

∫ τ

δ

∫
O
|B∗Sσ η̂|dxdσ = lim

k→∞

∫ τ

δ

∫
O
|B∗Sσηk|dxdσ (δ > 0).

Moreover,

(6.8) lim
k→∞

∫ τ

δ

∫
O
|B∗Sσηk|dx dσ ⩽ lim inf

k→∞

∫ τ

0

∫
O
|B∗Sσηk|dx dσ.

Putting together (6.7) and (6.8) we obtain that∫ τ

0

∫
O
|B∗Sσ η̂|dxdσ ⩽ lim inf

k→∞

∫ τ

0

∫
O
|B∗Sσηk|dxdσ.

Using (5.13), the above estimate can be rewritten

∥η̂∥Zτ ⩽ lim inf
k→∞

∥ηk∥.

Combining the last estimate with the definition (6.1) of Jτψ and with (6.6) we obtain

Jτψ(η̂) ⩽ lim inf
k→∞

Jτψ(ηk) = inf
η∈Zτ

Jτψ,

so that η̂ is a global minimizer of Jτψ over Zτ . □

In order to derive the optimality condition satisfied by the mimimizer η̂ in The-
orem 6.1 we need the following result.

Lemma 6.3. With the notation and under the assumptions of Theorem 6.1, the
map jτ : Zτ → R defined by

jτ (η) = ∥η∥Zτ (η ∈ Zτ ).

Then for every η̃ ∈ Zτ \ {0} we have

(6.9) lim
ε→0+

jτ (η̃ + εη)− jτ (η̃)

ε

=

∫ τ

0

∫
O

B∗Sτ−σ η̃
|B∗Sτ−σ η̃|

B∗Sτ−ση dxdσ (η ∈ Zτ ).

Proof. We first remark that from our assumptions it follows that the set

N = {(t, x) ∈ [0, τ ]×O | (B∗Sτ−tη̃) (x) = 0} ,

is of zero measure in [0, τ ]×O, so that the right hand side of (6.9) is well defined.
We next note that

(6.10) lim
ε→0+

|(B∗Sτ−t(η̃ + εη)) (x)| − |(B∗Sτ−tη̃) (x)|
ε

=
(B∗Sτ−tη̃) (x)
|(B∗Sτ−tη̃) (x)|

(B∗Sτ−tη) (x) ((t, x) ̸∈ N , η ∈ Zτ ).

On the other hand, for every ε > 0, (t, x) ̸∈ N and η ∈ Zτ we have

(6.11)
|(B∗Sτ−t(η̃ + εη)) (x)| − |(B∗Sτ−tη̃) (x)|

ε
⩽ |(B∗Sτ−tη) (x)| .

Applying (6.11) to −η instead of η it follows that

|(B∗Sτ−t(η̃ − εη)) (x)| − |(B∗Sτ−tη̃) (x)|
ε

⩽ |(B∗Sτ−tη) (x)| .
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Moreover, for every ε > 0, (t, x) ̸∈ N and η ∈ Zτ we have

2 |(B∗Sτ−tη̃) (x)| ⩽ |(B∗Sτ−t(η̃ − εη)) (x)|+ |(B∗Sτ−t(η̃ + εη)) (x)| ,
or, equivalently

−|(B∗Sτ−t(η̃ − εη)) (x)| − |(B∗Sτ−tη̃) (x)|
ε

⩽
|(B∗Sτ−t(η̃ + εη)) (x)| − |(B∗Sτ−tη̃) (x)|

ε
.

Combining the above inequality and (6.11) we obtain that

(6.12) − |(B∗Sτ−tη) (x)| ⩽
|(B∗Sτ−t(η̃ + εη)) (x)| − |(B∗Sτ−tη̃) (x)|

ε
,

for every ε > 0, (t, x) ̸∈ N and η ∈ Zτ . Putting together (6.10), (6.11) and (6.12),
we can apply the Lebesgue dominated convergence theorem to obtain (6.9). □

By combining Theorem 6.1, Lemma 6.3 and the convexity of Jτψ we obtain:

Corollary 6.1. With the notation and under the assumptions of Theorem 6.1 any
minimizer η̂ of Jτψ satisfies

(6.13)

(∫ τ

0

∫
O
|B∗Sτ−σ η̂|dxdσ

)(∫ τ

0

∫
O

B∗Sτ−σ η̂
|B∗Sτ−σ η̂|

B∗Sτ−ση dx dσ
)

+ ⟨ψ,Sτη⟩X = 0 (η ∈ Zτ ).

Conversely, any η̂ ∈ Zτ satisfying (6.13) is a minimizer of Jτψ over Zτ .

7. Proof of the main results

This section is devoted to the proof of the main abstract results which have been
stated in Section 3. We begin by those concerning norm optimal control problems,
i.e., of Theorems 3.1, 3.2 and 3.3.

Proof of Theorem 3.1. Let η̂ be a minimizer of Jτψ, whose existence has been proved

in Theorem 6.1. Define γ ∈ L1([0, τ ]×O) by

(7.1) γ(t, x) = (B∗Sτ−tη̂) (x) (t ∈ [0, τ ], x ∈ O).

Using assumption (H4), it follows that

(7.2) γ(t, x) ̸= 0 ((t, x) ∈ (0, τ)×O a.e.).

Let û be the control function defined by

(7.3) û(t, x) =

(∫ τ

0

∫
O
|γ(σ, y)| dy dσ

)
γ(t, x)

|γ(t, x)|
((t, x) ∈ (0, τ)×O a.e.).

We show below that û is a norm optimal control solving (NP )τ . To this aim, we
first remark that from (7.2) it follows that (7.3), with γ defined in (7.1), defines
indeed a function in L∞((0, τ)×O). We next remark that (6.13) implies that,

Tτψ +Φτ û = 0,

i.e., the control û steers the initial data ψ to zero in time τ .
To prove the optimality of û, let u ∈ L∞([0, τ ]×O) be such that

Tτψ +Φτu = 0.

Then ∫ τ

0

⟨û(σ), B∗T∗
τ−σ η̂⟩U dσ =

∫ τ

0

⟨u(σ), B∗T∗
τ−σ η̂⟩U dσ = −⟨ψ,Sτ η̂⟩X .
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The above formula and (7.3) (with γ given by (7.1)) imply that(∫ τ

0

∫
O

∣∣(B∗S∗τ−σ η̂
)
(y)

∣∣ dy dσ)2

⩽ ∥u∥L∞([0,τ ]×O)

∫ τ

0

∫
O

∣∣(B∗S∗τ−σ η̂
)
(y)

∣∣ dy dσ,
which clearly implies the optimality of û. Moreover, (7.3) obviously implies that û
has the announced bang-bang property, which ends the proof. □

We prove next our second result on norm optimal control problems.

Proof of Theorem 3.2. Assume, by contradiction, that there exists a norm optimal
control u not satisfying (3.3). Then there would exist an

(7.4) ε ∈
(
0,
N∞(τ)

2

)
and a set of positive measure e ⊂ [0, τ ]×O , such that

|u(t, x)| ⩽ N∞(τ)− ε ((t, x) ∈ e).

Let

(7.5) δ =
ε

Kτ,e′∥ψ∥X + ε
∈ (0, 1),

where

e′ = {(τ − t, x) | (t, x) ∈ e},
and Kτ,e′ is a constant ensuring that (3.1), with e′ instead of e, holds. From [H5]
[16, Proposition 2.5] and (7.5), it follows that there is a vδ ∈ L∞([0, τ ]×O) with

(7.6) δTτψ +Φτvδ = 0, supp vδ ⊂ e,

(7.7) ∥vδ∥L∞(e) ⩽ δKτ,e′∥ψ∥X =
εKτ,e′

Kτ,e′∥ψ∥X + ε
∥ψ∥X ⩽ ε.

Denoting by χe the characteristic function of e we set

(7.8) uδ = (1− δ)u+ χevδ.

Then from (7.6) and the fact that Tτψ +Φτu = 0 it follows that

(7.9) Tτψ +Φτuδ = 0.

Moreover, (7.7), (7.8) and (7.4), imply that

|uδ(t, x)| =

{
(1− δ)|u(t, x)| ⩽ (1− δ)N∞(τ) (t, x) ̸∈ e,

(1− δ)|u(t, x)|+ |vδ(t, x)| ⩽
(
1− δ

2

)
N∞(τ) (t, x) ∈ e,

so that ∥uδ∥L∞([0,τ ]×O) ⩽
(
1− δ

2

)
N∞(τ). This fact and (7.9) contradict the defi-

nition of N∞(τ), so that every norm optimal control u satisfies

(7.10) |u(t, x)| = N∞(τ) ((t, x) ∈ (0, τ)×O a.e.),

To show the uniqueness, let u and v be two norm optimal controls. Setting
w = 1

2 (u + v) it follows that w is also a norm optimal control. Since any norm
optimal control satisfies (7.10), we have |u(t, x)| = |v(t, x)| = |w(t, x)| a.e. in
[0, τ ]×O. If u(t, x) ̸= v(t, x) in a set of positive measure ẽ ⊂ [0, τ ]×O then

0 = u(t, x) + v(t, x) = 2w(t, x) ((t, x) ∈ ẽ),

which contradicts the bang-bang property of w. We thus have that u(t, x) = v(t, x)
in [0, τ ]×O almost everywhere, which ends our proof. □
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Proof of Theorem 3.3. To prove thatN∞ is decreasing we assume, by contradiction,
that there exist τ1, τ2, with 0 < τ1 < τ2, such that

(7.11) N∞(τ2) ⩾ N∞(τ1) > 0.

Let u∗ be the extension of the norm optimal control û1, solution of (NP )τ1 , to
(0, τ2) by setting u∗(t, ·) = 0 for t ∈ (τ1, τ2). We thus have

(7.12) ∥u∗∥L∞((0,τ2)×O) = N∞(τ1) and Tτ2ψ +Φτ2u
∗ = 0.

On the other hand, due to a classical duality argument (see, for instance, [16,
Proposition 2.6]), (2.10) implies that there exists v ∈ L∞((0, τ2)×O), supported in
[τ1, τ2]×O, such that

Tτ2ψ +Φτ2v = 0 and ∥v∥L∞((0,τ2)×O) ⩽ Kτ2−τ1∥Tτ1ψ∥X ,

where Kt has been defined in (2.10).
We next choose λ0 ∈ (0, 1) such that

(7.13) λ0Kτ2−τ1∥Tτ1ψ∥X < N∞(τ1),

and define a new control ũ on (0, τ2)×O by

(7.14) ũ = χ[0,τ1)(1− λ0)u
∗
1 + χ[τ1,τ2]λ0v,

where χI stands for the characteristic function of the interval I. We clearly have
that

Φτ2 ũ+ Tτ2ψ = 0,

which implies that ∥ũ∥L∞((0,τ2)×O) ⩾ N∞(τ2). Meanwhile, it follows from (7.14),
(7.12) and (7.13) that ∥ũ∥L∞((0,τ2)×O) < N∞(τ1). The above two inequalities con-
tradict the assumption (7.11). Consequently τ 7→ N∞(τ) is decreasing on (0,∞).

We next show that τ 7→ N∞(τ) is right continuous. To this end, let (τn)n∈N be
an arbitrary decreasing sequence in (τ,∞) with lim

n→∞
τn = τ . For each n ∈ N we

denote by u∗n be the extension of the norm optimal control of (NP )τn to (0,∞),
obtained by setting u∗n = 0 on (τn,∞)×O. It is then clear that

Tτnψ +Φτnu
∗ = 0 and ∥u∗n∥L∞((0,∞)×O) = N∞(τn) ⩽ N∞(τ),

Since (u∗n)n∈N is bounded in L∞((0,∞) ×O), there exists a subsequence, denoted
in the same way, and a control g ∈ L∞((0,∞)×O) such that

u∗n → g weakly ∗ in L∞((0,∞)×O), Tτnψ+Φτnu
∗
n → Tτψ+Φτg weakly inX.

Thus, we have

N∞(τ) ⩽ ∥g∥L∞((0,τ)×O) ⩽ lim inf
n→∞

∥u∗n∥L∞((0,τ)×O) = lim
n→∞

N∞(τn) ⩽ N∞(τ).

Hence, τ 7→ N∞(τ) is right continuous.
We now prove that the map τ 7→ N∞(τ) is left continuous. To this aim, we

consider an increasing sequence (τn)n∈N in (0, τ) with lim
n→∞

τn = τ . Since we have

seen that N∞ is decreasing, we have that N∞(τ) ⩽ N(τn) ⩽ N(τ1) for every n ∈ N.
It follows that

(7.15) lim
n→∞

N∞(τn) = N∞(τ) + δ,

for some δ ⩾ 0. We show below that assuming that δ > 0 leads to a contradiction.
Indeed, let u∗ be a norm optimal control of (NP )τ . This means that

(7.16) Tτψ +Φτu
∗ = 0 and ∥u∗∥L∞((0,∞)×O) = N∞(τ).
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Using the continuity of the map t 7→ Ttψ+Φtu
∗ it follows that there exists a natural

number n1 such that

∥(Tτnψ +Φτnu
∗)∥X ⩽

δ

2Kτ1

(n > n1),

with Kτ1 introduced in (2.10). This, along with (2.10) and (7.16), yields that for
every n ∈ N, n > n1 there exists vn ∈ L∞([0, τn]×O) such that

Tτnψ +Φτn(u
∗ + vn) = 0, ∥vn∥L∞([0,τn]×O) ⩽

δ

2
.

Denoting un = u∗ + vn, the last formula and (7.16) imply that

Tτnψ +Φτnun = 0, ∥un∥L∞(O×[0,τn]) ⩽ N∞(τ) +
δ

2
(n > n1),

which clearly contradicts (7.15). Hence, τ 7→ N∞(τ) is indeed left continuous. We
have thus shown that N∞ is continuous on (0,∞).

From the just established monotonicity and continuity properties of N∞ it ob-
viously follows that there exists N̂ ⩾ 0 such that the first equality in (3.4) holds.

To prove the second equality in (3.4) we use a contradiction argument, by as-
suming that there exists a decreasing sequence of positive numbers (τn), with
τn → 0, such that the sequence (N∞(τn)) is bounded. Due to the monotonic-
ity of N∞, the sequence (N∞(τn)) is increasing, thus there exists N > 0 such that
lim
n→∞

N∞(τn) = N. According to Theorem 3.1 it follows that for every n ∈ N there

exists un ∈ L∞([0,∞)×O) such that

(7.17) Tτnψ +Φτnun = 0, ∥un∥L∞([0,∞)×O) = N∞(τn).

On the other hand,

∥Φτnun∥X ⩽ κτ1∥un∥L2([0,τn]×O) (n ∈ N),
where κτ1 is a constant satisfying (2.6) for t = τ1. The last inequality and the
second equality in (7.17) imply that

∥Φτnun∥X ⩽ κτ1
√
τnN

∞(τn) ⩽ κτ1
√
τnN → 0.

The above estimate allows us to passing to the limit in the first equality in (7.17)
to obtain that ψ = 0, which contradicts one of our leading assumptions. This ends
the proof of the second equality in (3.4) and thus of our theorem. □

We end this section by proving our results on time optimal control and on the
relation between time and norm optimal control problems. More precisely, we give
below the proof of Theorem 3.4.

Proof of Theorem 3.4. If M ⩽ N̂ then, according to Theorem 3.3 we have that

M < N∞(τ) (τ > 0).

The above estimate implies that there is no τ > 0 for which one can find u ∈ UM
steering the initial stat ψ ∈ X \ {0} to zero in time τ , so that the time optimal
control problem (TP )M has no solution.

If M > N̂ then, according to Theorem 3.3, there is a τ∗(M) ∈ (0,∞) such that

(7.18) N∞(τ∗(M)) =M.

Moreover, we can use Theorem 3.1 to deduce the existence of u∗M ∈ UM such that

Tτ∗(M)ψ +Φτ∗(M)u
∗
M = 0,
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|u∗M (t, x)| =M ((t, x) ∈ [0, τ∗(M)]×O).

We claim that (τ∗(M), u∗M ) is a solution of the time optimal control problem (TP )M .
Indeed, assume, by contradiction, that there is τ ∈ (0, τ∗(M)) and u ∈ UM with

Tτψ +Φτu = 0.

In this case we would have N∞(τ) ⩽ M . This, together with (7.18), contradicts
the fact that N∗ is decreasing, which has been established in Theorem 3.3. We can
thus conclude that if we set τ∞(M) = τ∗(M) and u∞M = u∗M then (τ∞(M);u∞M ) is
a solution of (TP )M , satisfying (3.5) and the bang-bang property (3.7). Moreover,
from (3.5) it follows that

N∞(τ∞(N∞(τ))) = N∞(τ) (τ ∈ (0,∞)).

The latter, along with the continuity and monotonicity of N∞, leads to (3.6). □

8. Applications to systems described by parabolic PDEs

In this section we prove Propositions 1.1 and 1.2 and we discuss some other PDE
applications of our main results stated in Section 3.

Proof of Proposition 1.1. It is well known (see, for instance, [22, Sections 10.6,
10.7]) that equations (1.1)-(1.3) determine a well-posed control LTI (in the sense of
Definition 2.1), with the following choice of spaces and operators:

• The state space is X = H−1(Ω) and the control space is U = L2(O).
• T = (Tt)t⩾0 is the C0 semigroup on X generated by the Dirichlet Laplacian
(with domain H1

0 (Ω)).
• Φ = (Φt)t⩾0 is the family of bounded linear operators from L2([0,∞);U)
to X defined by (2.1), where B is defined, by duality, by the formula

(8.1) B∗g =
∂(A−1g)

∂ν
|O (g ∈ H1

0 (Ω)),

and ∂
∂ν is the outward normal derivation operator on ∂Ω.

We check below that this well-posed control LTI satisfies assumptions (H1)-(H4).
Assumption (H1) is obviously satisfied. To check (H2) it suffices to remark that

A is self-adjoint in X, thus it generates an analytic semigroup and that, due to the
Rellich-Kondrachov theorem, the embedding D(A) ⊂ X is compact.

The prove that (H3) holds, we denote by (ek)k∈N an orthonormal (in L2(Ω))
basis formed of eigenvectors of the −A and by (λk)k∈N the corresponding sequence
of eigenvalues, which is positive, nondecreasing and with λk → ∞. Moreover, for
λ > 0 we define

Eλf =
∑
λj<λ

⟨f, ej⟩L2(Ω)ej (f ∈ L2(Ω)).

According to Remark 5 from [2] the domain Ω is locally star-shaped. We can thus
apply Theorem 3 from [2] to conclude that we have the spectral Lebeau-Robbiano
inequality, asserting that if Br, with r > 0, is a ball contained in Ω, then there exist
a positive constant N = N(Ω, r) such that

∥Eλf∥L2(Ω) ⩽ N exp(N
√
λ)∥Eλf∥L2(Br) (f ∈ L2(Ω)).

Combining the above inequality with Remark 13 in [2] we conclude that indeed our
system satisfies assumption (H3).
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In order to check that (H4) is also satisfied we follow a procedure inspired by
the proof of Corollary 2.3 in Weck and Schmidt [20]. More precisely, with the
sequences (λk) and (ek) defined above, we denote by (φk)k⩾1 the sequence defined
by φk =

√
λkek for every k ∈ N. Then (φk) is an orthonormal basis in X formed of

eigenvectors of A and Ttf =
∑
k∈N exp(−λkt)⟨f, φk⟩Xφk for every f ∈ X. Using

next (2.5) it follows that for every f ∈ D(A∗), t ∈ [0, τ ] and x ∈ O we have

(8.2) (Φ∗
τf)(t, x) =

∑
k∈N

exp(−λk(τ − t))⟨f, φk⟩X(B∗φk)(x).

On the other hand, using (2.6) with ψ = φk it follows that the sequence (∥B∗φk∥U )
is bounded. Using this fact it easily follows that (8.2) holds (with convergence in
L2([0, τ ];U)) for all f ∈ X. Moreover, denoting by (µl) the increasing sequence
formed by the distinct eigenvalues of −A, for f ∈ X, t ∈ [0, τ ] and x ∈ O we have

(8.3) (Φ∗
τf)(t, x) =

∑
l∈N

exp(−µl(τ − t))(B∗fl)(x),

where

(8.4) fl =
∑
λk=µl

⟨f, φk⟩Xφk.

Assume next that f ∈ X is such that (Φ∗
τf)(t, x) = 0 for (t, x) in a subset e of

positive Lebesgue measure in [0, τ ]×O. Let S be the subset of x ∈ O for which the
corresponding section

ex = {t ∈ [0, τ ] | (t, x) ∈ e}
has positive one dimensional Lebesgue measure. By Fubini’s theorem S is a subset
of positive Lebesgue measure of O. Moreover, from (8.3) it follows that the map

t 7→
∑
l∈N

exp(−µl(τ − σ))(B∗fl)(x) (x ∈ S, t ∈ [0, τ ]),

vanishes for t in a set of positive measure. Elementary facts about Dirichlet series
imply that (B∗fl)(x) = 0 for every l ∈ N and x ∈ S. Since fl is an eigenvector of
−A associated to the eigenvalue µl and formula (8.1) it follows that

∂fl
∂ν

(x) = 0 (l ∈ N, x ∈ S).

We have seen that S is of positive measure, so that we can apply standard strong
unique continuation for elliptic operators (see [20, Corollary 2.2] for details) to
obtain that fl = 0 for every l ∈ N. Going back to (8.4) we obtain that f = 0.

We have thus shown that the wellposed LTI control system described by (1.1)-
(1.3) satisfies (H1)-(H4). All the conclusions announced in our proposition follow
now by the application of Theorems 3.1-3.4 and the remark that, due the exponential
stability of T, the constant N̂ in (3.4) vanishes. □

We are now in a position to prove Proposition 1.2.

Proof of Proposition 1.2. Due to Theorem 2 in [2], the system described by (1.1)-
(1.3) satisfies (H5), so that the conclusions follow by applying Corollary 3.1. □

Our abstract results in Section 3 are applicable to other PDE systems with vari-
ous control operators. We think, for instance, to the Stokes system with distributed
control, for which they imply, in particular, the results in Chaves-Silva, Souza and
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Zhang [6]. To avoid excessive lengthening of this work, we do not detail this ap-
plication, choosing to end this paper with an example for a system described by
a variable coefficients parabolic equation. This example generalizes the results ob-
tained in [2] for the constant coefficients case.

Example 8.1. Let M be a C∞ bounded Riemannian manifold (with or without
boundary) and let O ⊂ M be an open non empty submanifold of M . We assume
that the metric tensor g of M is a globally Lipschitz function of x ∈M .

We denote X = L2(M) and by A the Beltrami Laplacian on L2(M), with Dirich-
let boundary conditions. More precisely, D(A) = H2(M) ∩H1

0 (M) and

Aφ =
1√
det g

div
(√

det g g−1∇φ
)

(φ ∈ D(A)).

We also consider the control space U = L2(O) and define the control operator
B ∈ L(U,X) by

Bu = uχ0 (u ∈ U),

where χO is the characteristic function of O. With the above choice of spaces and
operators, we consider the control LTI system described by

ż = Az +Bu.

This system is clearly well-posed since B ∈ L(U,X). Moreover, assumption (H1)
in Section 3 is obviously satisfied. The fact that (H2) holds for the considered
system follows from the fact that A is skew-adjoint and the compactness of the
embedding D(A) ⊂ X. Moreover, from Burq and Moyano [5, Theorem 2] it follows
that our system also satisfies assumption [H5] from Section 3. We can thus apply
Theorem 3.2 to conclude that for every τ > 0 the associated norm optimal control
problem admits a unique solution û, which satisfies |û(t, x)| = N∞(τ) for almost
every (t, x) ∈ (0, τ) × O. We can also apply Theorem 3.4 and Corollary 3.1 to
assert that for every M > 0 the associated time optimal control problem admits a
unique solution (τ∞(M), u∞M ), satisfying |u∞M (t, x)| = M for almost every (t, x) ∈
[0, τ∞(M)]×O. Finally, N∞ and τ∞ satisfy (3.5) and (3.6).
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