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Abstract

We present an equation-free multi-scale approach to the computational study of the collective
dynamics of the Kuramoto model [Chemical Oscillations, Waves, and Turbulence, Springer-Verlag
(1984)], a prototype model for coupled oscillator populations. Our study takes place in a reduced
phase space of coarse-grained “observables” of the system: the first few moments of the oscillator
phase angle distribution. We circumvent the derivation of explicit dynamical equations (approximately)
governing the evolution of these coarse-grained macroscopic variables; instead we use the equation-

free framework [Kevrekidis et al., Comm. Math. Sci. 1(4), 715 (2003)] to computationally solve
these equations without obtaining them in closed form. In this approach, the numerical tasks for the
conceptually existing but unavailable coarse-grained equations are implemented through short bursts
of appropriately initialized simulations of the “fine-scale”, detailed coupled oscillator model. Coarse
projective integration and coarse fixed point computations are illustrated.
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1 Introduction

Coupled nonlinear oscillators can exhibit spontaneous emergence of order, a fundamental

qualitative feature of many complex dynamical systems [Manrubia et al., 2004]. The col-

lective, coarse-grained dynamics of coupled oscillator populations can provide insights in

synchronization phenomena in many biological, chemical, and physical systems [Winfree,

1967; Walker, 1969; Buck, 1988; Gray et al., 1989; Ertl, 1991; Wiesenfeld et al., 1996;

Néda et al., 2000; Oliva & Strogatz, 2001; Kiss et al., 2002]. In certain prototype mod-

els some exact results for the collective dynamics, mainly for an order parameter at the

asymptotic states, can be obtained for either a few or an infinite number of oscillators

(the so-called continuum limit) [Kuramoto, 1975; Kuramoto, 1984; Ariaratnam & Stro-

gatz, 2001]; for instance, the continuum-limit Kuramoto model is well known to exhibit a

phase transition at a critical coupling strength. However, general coupled oscillator models

are seldom amenable to mathematical analysis, even for simple coupling topologies, and

the understanding of the coarse-grained (emergent or macroscopic) dynamics of a given os-

cillator population remains limited. Even fundamental questions, such as global stability,

spectral properties of the stationary solution, and finite-number fluctuations, often remain

unanswered [Strogatz, 2000].

Understanding the coarse-grained behavior of dynamical systems consisting of a large

number of mutually interacting entities is one of the main goals of statistical mechanics.

In some cases, a fine-scale (or microscopic) model with a large number of degrees of free-

dom can be systematically reduced to a low-dimensional, coarse-grained model describing

the dynamics by a small number of macroscopic variables (observables). However, such a

reduction is rarely available in contemporary science or engineering dealing with specific

complex systems. One often has to deal with a situation where a reliable model is available

only at a fine-scale level (atomistic, individual-based), yet he/she is practically interested in

the emergent, system level, coarse-grained dynamics. Even if a useful coarse-grained model

is believed to exist at a practical closure level, explicit formulas for this model are often

unavailable; the systematic derivation of closed formulas for such models is difficult with-

out introducing many simplifying assumptions. In some cases, it is also possible that the

description of a system simply does not close at a particular level of coarse-graining. In the

case that a coarse-grained description exists, yet it is unavailable in closed form, the recently

developed equation-free framework provides a systematic, computer-assisted approach to

exploring coarse-grained macroscopic behavior without explicit knowledge of the coarse-

grained equations themselves [Theodoropoulos et al., 2000; Gear et al., 2002; Kevrekidis
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et al., 2003; Kevrekidis et al., 2004]. This approach has been successfully combined with

several classes of microscopic models, such as lattice-Boltzmann, kinetic Monte Carlo, and

molecular dynamics simulators, to study the coarse-grained behavior of heterogeneous cat-

alytic reactions, liquid crystal rheology, peptide fragment folding, etc. [Theodoropoulos et

al., 2000; Gear et al., 2002; Makeev et al., 2002; Siettos et al., 2003, Hummer & Kevrekidis,

2003]. In this paper we illustrate the equation-free approach to the computational explo-

ration of the coarse-grained dynamics of the Kuramoto model at the strong coupling limit.

The rest of the paper is organized as follows: The model under consideration and the

regime in which we study it are described in Sec. 2. Some observations about the coarse-

grained behavior and the equation-free analysis of phase-locked oscillator dynamics is pre-

sented in Sec. 3. Conceptually, the generalization of this approach for different oscillator

models is straightforward; possible shortcomings and limitations will be addressed in Sec. 4,

along with future research directions.

2 Background; the Kuramoto model

The Kuramoto model [Kuramoto, 1975] consists of N equally weighted, all-to-all, phase-

coupled limit-cycle oscillators, where each oscillator has its own natural frequency ωi drawn

from a prescribed distribution function g(ω). We choose g(ω) to be a Gaussian distribution

of standard deviation 0.1; however, our analysis is not limited to this particular choice. The

microscopic individual level dynamics is easily visualized by imagining oscillators as points

running around on the unit circle. Due to rotational symmetry, the average frequency

Ω =
∑N
i=1 ωi/N can be set to 0 without loss of generality; this corresponds to observing

dynamics in the co-rotating frame at frequency Ω. The governing equation for the ith

oscillator phase angle θi is given by

dθi
dt

= ωi +
K

N

N
∑

j=1

sin(θj − θi), 1 ≤ i ≤ N, (1)

where K ≥ 0 is the coupling strength; in this paper we arbitrarily set N = 300 unless

stated otherwise.

It is known that as K is increased from 0 above some critical value Kc, more and

more oscillators start to get synchronized (or phase-locked) until all the oscillators get fully

synchronized at another critical value of Ktp (Fig. 1). In our choice of Ω = 0, the fully

synchronized state corresponds to an exact steady state of the “detailed”, fine-scale problem

in the co-rotating frame. Such synchronization dynamics can be conveniently summarized

by considering the fraction of the synchronized (phase-locked) oscillators as in Fig. 1, and
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conventionally described by a complex order parameter [Kuramoto, 1975]

reiψ =
1

N

N
∑

j=1

eiθj , (2)

where the radius r measures the phase coherence, and ψ is the average phase angle. Some

exact results on the synchronization dynamics in the continuum-limit, in terms of this order

parameter, are available [Kuramoto, 1984; Strogatz, 2000].

The transition from full to partial synchronization: We begin by restating cer-

tain facts about the nature of the second transition mentioned above, a transition between

the full and the partial synchronization regime at K = Ktp, in the direction of decreasing

K. A fully synchronized state (a “detailed” steady state) in the continuum limit corre-

sponds to the solution to the following equations, the mean field type alternate form of

Eq. (1) [Kuramoto, 1975]:

dθi
dt

= Ω = ωi + rK sin(ψ − θi), 1 ≤ i ≤ N, (3)

where Ω is the common angular velocity of the fully synchronized oscillators (which is set

to 0 in our case). It can be rewritten as

Ω− ωi
rK

= sin(ψ − θi), 1 ≤ i ≤ N, (4)

where the absolute value of the right hand side (RHS) is bounded by unity. AsK approaches

Ktp from above, the LHS for the “extreme” oscillator (the oscillator in a particular family

that has the maximum value of |Ω − ωi|) first exceeds unity, and a real-valued solution

to Eq. (4) ceases to exist. We obtain the detailed steady state solution to Eq. (1) as

a function of K for 300 oscillators by using AUTO2000 (see Ref. [37]), which is based

on fixed point computation and pseudo-arclength continuation. The bifurcation diagram

plotted in terms of the extreme oscillator phase angle reveals that the transition to the

partially synchronized state corresponds to a turning point bifurcation, of the so-called

saddle node infinite period, or “sniper” type (Fig. 2). Ermentrout and Kopell [Ermentrout

and Kopell, 1984] have studied the transitions in the partial synchronization regime of a

small number of oscillators, characterizing them as jumps in “frequency plateaus”.

Different random draws of ωi’s from g(ω) for a finite number of oscillators result in

slightly different values of Ktp. We observe that Ktp appears to follow a Gumbel type

extreme distribution function [Kotz & Nadarajah, 2000], just as the maximum values of

|Ω− ωi| do:

p(Ktp) = σ−1e−(Ktp−µ)/σ exp[−e−(Ktp−µ)/σ], (5)

where σ and µ are parameters.
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3 Coarse-grained dynamics of distribution moments

3.1 Observation

Our goal is to study the coarse-grained dynamics of an oscillator population, including

the transient dynamics, in terms of coarse-grained observables. Since we are dealing with

distributions, we naturally consider the first few moments as candidate coarse-grained vari-

ables (i.e. a kinetic theory-like description). The moments of a distribution are often easily

accessible in practice, and have a clear physical meaning. We consider the dynamics of the

moments of the phase angle distribution function f(θ),

Mn ≡ 〈(θ − 〈θ〉)n〉 =
1

N

N
∑

j=1

(

θj −
1

N

N
∑

i=1

θi

)n

, (6)

where n is a positive integer, and 〈 〉 means an ensemble average. Since we choose to

work with symmetric distributions, all the odd order moments are negligibly small. To

obtain insights on the dynamics in this phase space, initial configurations of phase angles

consistent with four sets of different values of the first two nonvanishing moments (M2 and

M4) are generated. These initial phase angle configurations do not have any statistical

correlations with the natural frequencies of the oscillators to which they are assigned; this

is an important issue to which we will return below. Evolution of such configurations,

obtained by direct numerical integration of Eq. (1) reveals that the approach to a steady

state consists of two stages. During the initial, relatively fast stage both moments decrease,

and during a later slow stage the trajectory gradually approaches to an ultimate steady state

along a common path, essentially a “slow manifold” of this dynamical system (Fig. 3). The

phase angle distributions after the initial stage, when the one-dimensional slow manifold

finally has been approached, are very close to Gaussian distributions (marked by the dotted

line in Fig. 3). Once the trajectory approaches this slow manifold, the dynamics can be

effectively described by (or observed on) any one even order moment.

In the following (Sec. 3.3), we will investigate the dynamics in the moment phase space

following the equation-free approach [Theodoropoulos et al., 2000; Kevrekidis et al., 2003;

Kevrekidis et al., 2004]; this should be contrasted with the conventional approach of first

attempting to derive closed governing equations for the leading moments, and subsequently

analyzing these equations.

3.2 Equation-free, coarse-grained multi-scale approach

The basic idea of the equation-free approach is to utilize fine-scale simulation as an ex-

periment, in the form of a time-stepper: short bursts of appropriately initialized fine-scale
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simulations are used to estimate quantities relevant for scientific computation with the

coarse-grained model. Function evaluations or derivative evaluations for the coarse vari-

ables involved in numerical tasks are thus substituted with estimation of these quantities,

based on appropriately designed computational experiments with the detailed model. As

a result, traditional continuum numerical techniques are directly “wrapped” around the

fine-scale simulator. The essential steps can be summarized as follows:

1. Identify a set of coarse-grained variables (observables) that sufficiently describe the

system dynamics. We expect that a practically useful model exists and closes at the

level of these coarse observables. In our analysis, we choose them to be the first

two nonvanishing moments of the phase angle distributions, M2 and M4. We will

denote the microscopic description by u (ω’s and θ’s in our case) and the macroscopic

description by U (Mi’s).

2. Choose an appropriate lifting operator, µ, which maps the macroscopic description

U to one or more consistent microscopic descriptions u; note that this mapping is not

uniquely defined. This operator constructs one or more fine-scale realizations of the

problem consistent with the prescribed values of the coarse observables U (u = µU).

3. Using a lifted, fine-scale realization as a new initial condition u(t0), run the micro-

scopic simulator to obtain the values u(t0 + ∆T ) at a later time (∆T > 0). This

procedure may be repeated for many different realizations ui(t0) consistent with the

same macroscopic initial condition U(t0), for purposes of ensemble averaging and vari-

ance reduction.

4. Use an appropriate restriction operator M which maps the microscopic description to

the macroscopic description U(t) =M (u (t)). In our problem the restriction operator

consists of simple evaluation of (ensemble averages of) the first two nonvanishing

moments of the phase angle distribution, following their definitions in Eq. (6).

The above procedure results in the coarse timestepper Φ∆T :

U(t0 +∆T ) ≡ Φ∆T (U(t0)) =M(u(t0 +∆T )), (7)

a map from coarse variables at time t = t0 to coarse variables at a later time t = t0 +∆T ,

constructed through the microscopic simulation. Given such information, obtained for

a number of appropriately chosen coarse initial conditions, it is possible to implement

many scientific computing algorithms to solve the unavailable coarse-grained equations;

see Sec. 3.3 for details of such computations using two different methods. An important
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element of these algorithms is the fact that they function as protocols for the design of

experiments with the fine-scale simulator: in the process of their execution they suggest

new computational experiments with the coarse timestepper, and “bootstrap” their output

toward the ultimate desired result. The success of this approach relies (as most of tradi-

tional continuum numerical analysis) on smoothness of the dynamics with respect to the

coarse variables of interest (in time, in space and in phase space) and on the identification

of proper lifting and restriction operators. An extensive discussion of this method can be

found in [Kevrekidis et al., 2003].

During the lifting step, we create phase angle distributions conditioned on a finite number

of prescribed moments. This is accomplished as follows: Given g(ω), phase angles consistent

with different values of the moments are generated by drawing random values from the

inverse cumulative distribution of the following distribution function

fI(θ) = fg(θ
2)



1 +
n(>2)
∑

p=2

apSp(θ
2)



 , (8)

of which residual deviation from the Gaussian is expanded using Sonine polynomials (as-

sociated Laguerre polynomials) [Chapman, 1970] as basis functions; fg(θ
2) is a Gaussian

distribution function with a prescribed value of M2, and ap is the coefficient of the pth or-

der Sonine polynomial Sp. The value of M2p is determined only by ap, because the Sonine

polynomials are otrhogonal with the Gaussian as the weighting function:
∫

∞

0
e−θ

2

Sp(θ
2)Sq(θ

2)dθ = δpqNp, (9)

where θ is generally a d-dimensional vector, δpq is the Kronecker delta, and Np is a

normalization constant. The first three Sonine polynomials are given by S0(θ
2) = 1,

S1(θ
2) = 1

2
d − θ2, and S2(θ

2) = 1
8
d(d + 2) − 1

2
(d + 2)θ2 + 1

2
θ4, where d is the dimen-

sion, which in our case is unity. Our lifting operator takes us from the values of a few

lower order moments to the values of an equal number of Sonine polynomial coefficients,

and then to a consistent phase angle distribution through fI(θ). We consider only even

functions for fI(θ), due to the symmetry of f(θ) with our choice of g(ω).

One can clearly see in Fig. 3 that observation of the full system in the M2 −M4 phase

space gives trajectories crossing one another; this suggests that a deterministic description

closing with only these two variables is not possible. However, once the initial fast evolution

stage has run its course, trajectories evolve on an apparently one-dimensional slow manifold,

which suggests that the long-time coarse-grained dynamics could be described in terms of

a single observable, say M2 (or equivalently any other nonvanishing order moment). In

other words, after sufficient time has elapsed, all the higher moments become slaved to
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M2. Considering this observation, a more successful lifting operator may be constructed

from the following two steps, when M2 is chosen to be a coarse variable of interest: (1)

Drawing phase angles from an fI(θ) satisfying a desired valueM2 = C1, and (2) numerically

integrating Eq. (1) together with an algebraic constraint M2 −C1 = 0 until the trajectory

approaches the slow manifold. After this preparatory computation, the lifting step is

complete; the constraint is then removed, and the system is allowed to evolve in order to

evaluate its coarse timestepper. This lifting operation results in an augmented problem

(ODEs with an algebraic constraint) that is described by a system of differential algebraic

equations (DAEs) of index 1. For our illustrative example, it is straightforward to solve

this set of DAEs by using the Lagrange multiplier method and the package DASSL (see

Ref. [38]). Direct integration of DAEs showing the relatively fast direct approach to the

“mature” phase angle distributions on the slow manifold can be seen in Fig. 4. Once the

constrained trajectory approaches the slow manifold, the constraint is relaxed, and we can

observe its subsequent approach to the steady state along the manifold.

3.3 Equation-free computational results

We now compute the steady state values of the moments in the fully synchronized regime

(K > Ktp) using two different continuum numerical methods in the equation-free frame-

work: coarse projective integration and coarse fixed point computation.

We first evolve the system toward the stable steady state value of M2 using coarse

projective integration [Gear & Kevrekidis, 2003a; 2003b]. The main assumption is that a

macroscopic equation exists and closes in terms of M2; our observations of the long-term

dynamics are consistent with such an assumption. Starting from a relatively short time

(∆t = 0.8) of direct integration, restriction of the results [shown as first group of five

dots in Fig. 5 (a)] is used to estimate the coarse variable time derivative. Smoothness of

the trajectory in time (Taylor series, as they appear in the simplest numerical integration

schemes, such as forward Euler) is then used to “project” the value of the observable M2 in

forward time. We then lift with this estimated value [shown as the fist dot in the next group

in Fig. 5 (a)], and the whole procedure is repeated until the steady state is approached.

During the evolution step, we do solve the full system of ODEs; but we do not solve it

for all time: short bursts of detailed simulation are used to “jump” (and thus save) time,

compared to a full integration [a solid line in Fig. 5 (a)].

As we discussed above, it is only after a relatively long time that the dynamics appear

to “close” with only one observable M2; this is because a certain evolution time is required

before all higher moments of the distribution become slaved to M2. If we are interested in
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iteration M2 |M2 −Mss
2
|/Mss

2

0 1.0000×10−2 5.6768×10−1

1 3.0362×10−2 3.1261×10−1

2 2.3179×10−2 2.0751×10−3

3 2.3096×10−2 1.5131×10−3

Table 1: Coarse fixed point computation at K = 0.7, using the Newton-Raphson method for M2 only.
The steady state value Mss

2
, the variance of detailed steady state distribution, is 2.3131× 10−2. The full

system, Eq. (1), was integrated for ∆t = 2.0 at each iteration step, and nearby conditions separated by
ǫ = 1.0× 10−5 were used for linearization.

dynamics occurring over shorter time scales, we need to work with a larger set of observ-

ables. For example, if we are interested in dynamics over shorter times than those required

for M4 to get slaved to M2, we need to work with a coarse-grained model in terms of both

M2 and M4 as coarse variables. The underlying premise is that the sequence of moments

constitutes a singularly perturbed hierarchy; as longer times elapse, higher moments get

progressively slaved to lower ones. Slow manifolds in moment space (graphs of functions,

expressing higher moments as functions of lower ones) embody the closures that allow us

to reduce the dimensionality of long-term dynamics. In equation-free computation, short

simulation of the system itself is used to bring the system close to these slow manifolds (i.e.,

establish the closure numerically). At this level of coarse description, projective integration

can again be done by lifting consistently with prescribed values of both M2 and M4 (two

constraints in the lifting DAE step) [Fig. 5 (b)].

Depending on the computational cost of projection, lifting, and restriction, these meth-

ods have the potential for considerable computational savings in problems characterized by

a large separation of time scales (gaps in their eigenvalue spectrum). In our case, we used

a simple least squares fit algorithm for the estimation and subsequent projection in time,

which required negligible computational effort. Restriction also required negligible compu-

tation. However, each lifting step (integrating DAEs for times long enough to approach the

slow manifold) could be relatively expensive. Working over shorter time scales (more coarse

observables, higher dimensional slow manifolds) alleviates the duration of this preparatory

lifting step. Finally, it is interesting to note that, in certain cases, forward integration

can be used to evolve the coarse-grained system backward in time, possibly converging to

certain types of saddle unstable states [Gear & Kevrekidis, 2004a].

In addition to coarse projective integration as a means of approaching the steady state

in time, we also approximate it using a coarse contraction mapping, based on the Newton-

Raphson method [Kevrekidis et al., 2003]; we compute the solutions Mss(CG)
i to the fol-
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iteration M2 M4 |M2 −Mss
2
|+ |M4 −Mss

4
|

0 1.8000×10−2 9.0000×10−4 5.8386×10−3

1 2.3314×10−2 1.8803×10−3 4.5518×10−4

2 2.2902×10−2 1.6057×10−3 2.3052×10−4

Table 2: Coarse fixed point computation at K = 0.7, using the Newton-Raphson method both for M2 and
M4. The steady state value Mss

4 , obtained from the detailed steady state distribution, is 1.6076× 10−3.
The full system was integrated for ∆t = 2.0 at each iteration step, and nearby conditions separated by
ǫ = 1.0× 10−5 for M2 (1.0× 10−6 for M4) were used for linearization.

lowing equations (of which explicit forms are unavailable):

Φ∆T (M
ss(CG)
2 )−Mss(CG)

2 = 0 (10)

or

Φ∆T

(

Mss(CG)
2

Mss(CG)
4

)

−

(

Mss(CG)
2

Mss(CG)
4

)

= 0, (11)

depending on the level of closure being considered, where the superscript stands for coarse-

grained steady state. In this computation, residual and derivative evaluations required for

each Newton-Raphson iteration are obtained by short bursts of direct integration of the

microscopic model for ∆T = 2.0, starting at nearby initial conditions. Within only few

Newton-Raphson iterations, an accurate solution to the unavailable equation can be found

(Tables 1 and 2). As a byproduct of this computation, upon convergence, the eigenvalues of

the coarse linearization at steady state can be computed. In this case, when a steady state

of the coarse problem corresponds to a true steady state of the fine-scale one, the eigen-

values of the two are related (one expects to find, from the coarse procedure, the leading

slow eigenvalues of the detailed problem linearization, discounting the neutral eigenvalue

at 0 that corresponds to rotational symmetry). As the number of coarse-grained variables

increases, estimating each element of the coarse Jacobian becomes increasingly cumber-

some; matrix-free methods of iterative linear algebra, like Newton-GMRES, are then used

to solve the equations arising in the equation-free fixed point computation. These methods

(such as Newton-GMRES; see the monograph [Kelley, 1995]) are based on the estimation of

matrix-vector products, using short bursts of simulation with appropriately chosen pertur-

bations of a given coarse initial condition (see also the Recursive Projection Method [Shroff

& Keller, 1993]).

4 Conclusions

The long-term collective dynamic behavior of the Kuramoto model at the continuum (or

thermodynamic) limit is often described in terms of an order parameter r [Strogatz, 2000].
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In this work we chose to observe the (long-time) collective dynamics for finite assemblies of

coupled oscillators using a different set of coarse-grained variables: low order moments of

the phase angle distribution. We found that, after sufficient evolution time has elapsed, the

dynamics lie on a slow manifold parametrized by a few of these moments. The longer the

dynamics have evolved, the lower the dimension of this manifold becomes, as higher order

moments get progressively slaved to lower order ones. As a result, if we are interested

in relatively long-term dynamics, we can work with less macroscopic observables in our

lifting and restriction schemes. Two levels of closure were explored (parametrized by only

one moment, and by two moments of the phase angle distribution respectively); shorter

lifting computations were required for the two-moment description. We circumvented the

derivation of closed governing equations for these coarse-grained variables, following the

equation-free, coarse-grained multi-scale approach. Using this approach, we demonstrated

coarse projective integration as well as coarse fixed point computation (followed by coarse

stability analysis) in the fully synchronized regime.

Our approach can, in principle, be extended in a straightforward manner to explore

the dynamics of other coarse-grained variables of this model, or more complicated cou-

pled oscillator models, as long as the long-term coarse-grained dynamics exhibit smooth

low-dimensional behavior (i.e. are characterized by a slow, attracting manifold in the cor-

responding phase space). A very important step is the identification of appropriate lifting

and restriction operators, that allow us to (approximately) initialize the fine-scale system

close to the slow manifold, and to compute the evolution of its macroscopic observables.

As we saw in Fig. 3, simply prescribing two moments of the distribution and using

Eq. (8) does not provide a good enough lifting; temporal trajectories of the coarse variables

cross one another. We obtained a better lifting by introducing an additional preparatory

step: evolution of the system constrained on the observables, until it approached the low-

dimensional, slow manifold. This required the integration of a system of DAEs (in the

spirit of algorithms like SHAKE [Ryckaert et al., 1977] and umbrella sampling [Torrie &

Valleau, 1974]). For this problem it was easy to augment the fine-scale model to introduce

such a constraint; algorithms guiding to a point on the manifold without the imposition of

an explicit constraint have also been devised, which was used for the detailed simulator as

an unmodified “legacy code” [Gear & Kevrekidis, 2004b; Gear et al., 2004c].

Suppose that the steady state phase angle distribution is known (e.g. from a long

simulation), and we lift consistently with all of its moments, not just the first two. When,

in a simple lifting step, angles drawn from this known distribution are arbitrarily assigned

to oscillators with different natural frequencies, the fine-scale evolution will move away
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from the steady state before eventually returning to it. Even though moments are good

variables for parameterizing the slow manifold, lifting with them is difficult; one needs to

evolve constrained on the prescribed moments to obtain “mature” distributions, that both

have these moments and are close to the slow manifold. Observing the evolution of the

state during the constrained integration sheds light on the nature of difficulty in this lifting

problem: we observed that during the initial evolution stages correlations between the phase

angle and the oscillator natural frequency develop. These correlations are destroyed when

we randomly assign angles from a given distribution to oscillators with different natural

frequencies. This strongly suggests that different coarse-grained observables that take these

correlations into account must be sought, so that lifting can be implemented in a simpler

and less computationally complicated/expensive fashion. We propose that this can be done

through the framework of the Wiener’s polynomial chaos, where both the phase angles and

the natural frequencies are treated as random variables, and the former is expanded in

terms of Hermite polynomials of the latter; the expansion coefficients are chosen to be the

coarse variables [Moon et al., 2005].

In our current work we clearly saw that the selection of good coarse-grained observables

that parametrize the slow manifold, and the construction of a good lifting operator are

vital for the success and competitiveness of this approach compared to direct simulation.

For the examples studied in this paper, only a small number of macroscopic observables

were enough to answer the coarse-grained questions of interest. Equation-free methods

like the gap-tooth scheme [Gear & Kevrekidis, 2003c] and patch dynamics [Samaey et al.,

2004] can be useful for problems whose dynamics are described in terms of smooth fields

of coarse-grained observables. The review papers [Kevrekidis et al., 2003; 2004] contain

detailed descriptions of equation-free methods, as well as references to an extensive set of

applications where the algorithms have been applied and experience with their properties

and limitations that has been gained.
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Figure 1: Qualitative schematic of the fraction of phase-locked oscillators in the Kuramoto model; there
exist two critical values in K, the coupling strength. NPL is the number of phase-locked oscillators.
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Figure 2: Bifurcation diagram of the oscillator that desynchronizes first with decreasing K (this is the
one with the maximum value of |ωi − 〈ωi〉 |, the “ extreme” oscillator). The transition from the full to the
partial synchronization regime at K = Ktp corresponds to a turning point of this oscillator phase angle at
steady state (θfxp), where θtp is the phase angle at the turning point. For the extreme oscillator, a saddle
state and a stable node state collide in a saddle-node infinite period (sniper) bifurcation at K = Ktp.
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Figure 3: Trajectories of 300 oscillators (K = 0.7) in the phase space of M2 and M4, started from four
different sets of values, but with the same natural frequency distribution. Each dot is separated by 0.1
in time (arrows indicate the direction of increasing time). Initially, g(ω) and f(θ) have no correlations.
In all cases, both moments decrease first (during t < 1), and then gradually increase toward a steady
state [(Mss

2
,Mss

4
) = (2.3131×10−2, 1.6076×10−3) marked by a circle]. The latter slow evolution occurs

along a “slow manifold”, which nearly coincides with the curve for Gaussian distributions (dotted line,
M4 − 3M2

2 = 0).
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Figure 4: (Color) Two different random initializations of oscillators (marked by squares) are directly
guided (shown by dot-dashed black lines) to the slow manifold by solving Eq. (1) along with a constraint
on M2 for K = 0.7. Each dot is separated in time by 0.1. Poor lifting results from relaxing the constraint
before the slow manifold is approached (colored lines, constraint lifted at various times t = 0.5, 1, 1.5, and
6 for red, blue, green, and black line, respectively). Arrows indicate the direction of increasing time.
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Figure 5: Transient approach to the steady state (K = 0.7) computed through coarse projective integration
(shown as dots), taking (a) only M2, and (b) both M2 and M4 as coarse variable(s). Full, fine scale
integration is shown for comparison (solid line). In the projective integration computation, Eq. (1) is
integrated only for the time intervals marked by dots, and the system is restricted to M2 (and M4) at
uniformly distributed times (five dots in each group). The last three points are used to estimate the future
value(s); lifting is then performed again, and the procedure repeated. For each lifting step, the same g(ω)
was used. The inset in (b) shows the blow up near the steady state, where larger projection time steps are
used for faster convergence.
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