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THE CONGRUENCE SUBGROUP PROBLEM FOR A FAMILY OF

BRANCH GROUPS

RACHEL SKIPPER

Abstract. We construct a family of groups which generalize the Hanoi towers group
and study the congruence subgroup problem for the groups in this family. We show that
unlike the Hanoi towers group, the groups in this generalization are just infinite and have
a trivial rigid kernel. We also put strict bounds on the branch kernel. Additionally, we
show that these groups have subgroups of finite index with non-trivial rigid kernel. The
only previously known group where this kernel is non-trivial is the Hanoi towers group
and so this adds infinitely many new examples. Finally, we show that the topological
closures of these groups have Hausdorff dimension arbitrarily close to 1.

Introduction

Branch groups, and more generally groups acting on rooted trees, have been well-studied
in recent years as a result of the exotic properties groups in this class can possess. A pri-
mary example of this is the Grigorchuk group which was the first group shown to be
amenable but not elementary amenable and also the first group shown to have intermedi-
ate growth, answering longstanding open questions. Additionally, the Grigorchuk group,
followed shortly thereafter by the Gupta-Sidki p-groups, provided explicit and tractable
examples of Burnside groups, i.e. finitely generated infinite torsion groups. Branch groups
also arise in the classification of just infinite groups which serve as the analogue of simple
groups for the class of residually finite groups.

A groupG acting on a rooted tree has the congruence subgroup property if each subgroup
of finite index contains the pointwise stabilizer of the vertices on some level of the tree,
a subgroup naturally arising from the tree structure. This property parallels the classical
property of the same name for subgroups of SL(n,Z) for n > 2. Since the full automorphism
group of the tree, Aut(T ), is itself a profinite group, determining whether or not G has the

congruence subgroup property amounts to comparing the profinite completion Ĝ to the
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topological closure G as a subgroup of Aut(T ) and determining if the congruence kernel,

the kernel of the natural surjection Ĝ ։ G, is trivial. This kernel serves as the measure
of the error in studying the group by looking only at the quotients coming from the level
stabilizers as opposed to considering all finite quotients.

For branch groups, there exists another naturally occurring family of finite index sub-
groups, namely the rigid stabilizers defined in Section 1. This additional family of sub-
groups reduces the congruence subgroup problem to separately determining the branch
kernel, the kernel of the map Ĝ ։ G̃, and the rigid kernel, the kernel of the map G̃ ։ G,

where G̃ is the topological completion of the G with respect to the rigid stabilizers.

Many of the most studied branch groups have been shown to have a trivial congruence ker-
nel including the Fabrykowski-Gupta group and the Gupta-Sidki groups [BGŠ03], [Gar16a],
the Grigorchuk group and an infinite family of generalizations of the Fabrykowski-Gupta
group [Gri00], and Multi-GGS groups with non-constant accompanying vector [Per07],
[FAGUA17], [GUA19].

Pervova [Per07] constructed the first branch groups without the congruence subgroup
property. Nevertheless, the groups in her infinite family, periodic EGS groups with non-
symmetric accompanying vector, have a non-trivial branch kernel but a trivial rigid kernel.
Likewise, the twisted twin of the Grigorchuk group was found to have a non-trivial branch
kernel but a trivial rigid kernel [BS10].

Even with the existence of infinite families of groups having either a trivial branch and a
trivial rigid kernel or a non-trivial branch kernel but a trivial rigid kernel, only one group
appearing in the literature has been shown to have a non-trivial rigid kernel. It is the Hanoi
towers group on three pegs [BSZ12], [Ski19], which we refer to as G3. In this paper, we
study a family of generalizations of the Hanoi towers group, {Gn | n ≥ 3}, and show that
unlike the Hanoi towers group, the group Gn has a trivial rigid kernel whenever n ≥ 4. We
compute the rigid and level stabilizers and fully compute the congruence kernel for many n,
placing strict bounds on the kernel for the remaining n. Some of the results are proved in
three parts since the structure of Gn partially depends on n. Although the higher groups
do have trivial rigid kernels, we nevertheless find new examples of branch groups having
non-trivial rigid kernels coming from certain finite index subgroups of the Gn. This adds
infinitely many new examples to the only previously known example of the Hanoi towers
group.

We remark that the group G4 was studied briefly in [Sie09], but a subtle overgeneraliza-
tion in the hypotheses of earlier theorems led to some incorrect conclusions.

We show the following main theorems.

Theorem (3.12, 3.15, 3.17). The rigid kernel for Gn is trivial if and only if n 6= 3.

Theorem (3.19). For n 6= 3, the branch kernel, and thus the congruence kernel, for Gn is

the inverse limit

lim←−
m≥1

Mm
n
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where Mn is a finite abelian group. When n ≥ 5 is even, Mn is cyclic of order (n− 1) and
when n = 4 or n ≥ 5 is odd, Mn has exponent bounded between (n− 1) and 2(n− 1).

A main tool in proving these theorems is understanding the abelianization of the rigid
stabilizers. This knowledge also allows us to prove:

Theorem (3.22). Gn is just infinite if and only if n 6= 3.

We show that the triviality of the rigid kernel is not necessarily inherited by finite index
subgroups, even if they are maximal. In Section 2, we put a function ǫ on Gn which is used
in the next theorem.

Theorem (4.1). For n ≥ 4, let d > 2 be such that d | (n − 1) and let Hn,d be the set of

elements g of Gn with ǫ(g) ≡ 0 mod d. Then Hn,d is a subgroup of index d in Gn and is a

regular branch group with a non-trivial rigid kernel.

The work leading up to the theorems in Section 3 makes the Hausdorff dimension for
the topological closure of Gn straightforward to compute so we include it for completeness.

Theorem (5.1). For n ≥ 3, the Hausdorff dimension for Gn is

dimH(Gn) =





1− log(48)
log(331776)

if n = 4

1− log(2)
log(n!)

if n ≥ 5 is even

1− log(2)
n log(n!)

if n is odd

The paper is organized as follows. In Section 1, we make precise the congruence subgroup
problem for branch groups, describe the generalization of the Hanoi towers group to the
n-ary tree, and prove basic properties of the groups. In Section 2, we outline a solution
to the word problem that aids in computing the abelianization. In Section 3, we compute
the level and rigid stabilizers for Gn and use this to prove the first three main results. In
Section 4, we study some subgroups of finite index in Gn. And finally in Section 5, we
compute the Hausdorff dimension for Gn.

0.1. Notation. For two group elements g and h we will write gh to indicate h−1gh and
[g, h] for g−1h−1gh. Additionally, for any group G and any subset S ⊆ G, 〈〈S〉〉 will denote
the normal closure of S in G.

1. The groups

For notational purposes, we focus here on groups acting on regular rooted trees. A fuller
discussion in the more general case of rooted spherically homogeneous trees can be found
in [BSZ12], [Gar16b], or [Ski19].

Let n ≥ 2 and let X be a set of size n called an alphabet, Xm the set of words of length
m in X , and X∗ the set of all finite words over X including the empty word denoted by
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∅. Then a regular rooted n-ary tree, T , is the Cayley graph of the free monoid on the set
X , see Figure 1. For a vertex u ∈ X∗, define the length of u, denoted |u|, to be the length
of the word in X∗ corresponding to u.

∅

0 1

00 01 10 11

Figure 1. X = {0, 1}, binary tree

An automorphism of T is a bijection from X∗ to X∗ which fixes the root and preserves
edge incidences. The symmetric group on n letters, denoted Sn, acts in the standard way
on X and as such any automorphism g of T can be described by a labeling of the elements
of X∗ by permutations

{g(u) | u ∈ X∗},

where for a vertex u = x1x2 . . . xm ∈ X∗, the action of g on u is described by

ug = x
g(∅)
1 x

g(x1)
2 x

g(x1x2)
3 · · ·xg(x1···xm−1)

m .

This gives the isomorphisms

Aut(T ) ∼= lim←−
m≥1

m copies

(Sn · · · (· · · ≀ Sn) ≀ Sn) ≀ Sn
∼= (· · · (· · · ≀ Sn) ≀ Sn) ≀ Sn,

where on the right-hand side we have the infinitely iterated wreath product of symmetric
groups. In particular, this induces the identification

Aut(T ) ∼= Aut(T ) ≀ Sn =
(
Aut(T )× · · · × Aut(T )

)
⋊ Sn

where the action of Sn is to permute the coordinates in the product. An element g ∈ Aut(T )
can be decomposed under this isomorphism as

g = (g1, . . . , gn)σ

where σ ∈ Sn and gi is the restriction of the permutation labeling of g to the i-th subtree
rooted at the first level (canonically identified with the original tree T ) and is referred to
as the state of g at the i-th vertex. Iterating this decomposition, for each u ∈ X∗ we obtain
gu, the state of g at the vertex u.

Definition 1.1. A group G ≤ Aut(T ) is called self-similar if gu is in G for every g ∈ G
and every u ∈ X .
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For any subgroup G of Aut(T ), four families of subgroups arise naturally from the
structure of T .

Definition 1.2. For a vertex u ∈ X∗, the vertex stabilizer, denoted StabG(u), is the set
of elements in G which fix the vertex u.

In terms of the labeling of the vertices by elements in a symmetric group, this consists of
the elements that necessarily have trivial labeling on all vertices on the geodesic connecting
u and ∅, except possibly at u.

Definition 1.3. For a non-negative integer m, the m-th level stabilizer, denoted StabG(m),
is the normal subgroup ∩|u|=m StabG(u).

In terms of the labeling, this consists of the elements of G with trivial labeling on all
vertices v where |v| ≤ m−1. Thus an element g ∈ StabG(m) will be defined by |X|m tuple
(g1, · · · , gnm)m where each gi is the state of g at the corresponding vertex on the m-th level.
Note that StabG(m) has finite index in G for all m.

Definition 1.4. For a vertex u ∈ X∗, the rigid stabilizer of the vertex, denoted RistG(u),
consists of the elements of G which act trivially outside of the subtree rooted at u.

In terms of the labeling, this consists of elements that have trivial labeling on all vertices
outside of Tu, the subtree rooted at u. If G acts transitively on all the levels of T , then for
any two vertices u and v on the same level of the tree, RistG(u) is isomorphic to RistG(v)
(and in fact they are conjugate in G). Notationally, for an element g in RistG(u), we will
write g = u ∗ g̃ where g̃ = gu, the state of g at u. Similarly, for a subgroup K of Aut(T ),
we write v ∗K = {v ∗ k | k ∈ K} and Xm ∗K =

∏
|v|=m v ∗K.

Definition 1.5. For a non-negative integer m, the m-th level rigid stabilizer is the normal

subgroup RistG(m) = 〈RistG(u) | |u| = m〉 =
∏

|u|=m

RistG(u), the internal direct product

of the rigid stabilizers of the vertices of level m.

For any group G acting on T , the m-th level rigid stabilizer is a subgroup of the m-
th level stabilizer. Moreover, StabG(m) can be canonically identified with a subgroup of
the direct product of nm copies of Aut(T ) as described above. With this identification,
RistG(m) is the largest subgroup of StabG(m) which decomposes as a direct product in the
same coordinates.

Definition 1.6. A group G ≤ Aut(T ) is said to be level transitive if it acts transitively
on every level of T .

Our primary interest here will be in subgroups of Aut(T ) which are branch groups.

Definition 1.7. A group G ≤ Aut(T ) is said to be a branch group if it is level transitive
and RistG(m) has finite index in G for all m ≥ 1. It is said to be regular branch if it is
level transitive and there is a subgroup K with finite index in G such that v ∗K ≤ K for
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all v ∈ X∗ and such that Xm ∗K has finite index in G for all m. In this case, K is called
a branching subgroup.

If a group is a regular branch group then it is also a branch group as Xm∗K ≤ RistG(m).
Note that if K1 and K2 are two branching subgroups for a group G then 〈K1, K2〉 is also
a branching subgroup. Thus we define the maximal branching subgroup to be the largest
subgroup of G that is branching. Note that the maximal branching subgroup need not be
proper. As an example, the Hanoi towers group is a regular branch group with maximal
branching subgroup G′

3, the derived subgroup of G3 [Ski19].

The main focus of this paper is on a particular family of groups. For a fixed n ≥ 3, let
σi = (1, 2, . . . , i− 1, i+ 1, . . . , n− 1, n), a permutation in Sn. Let ai be the automorphism
of the n-ary tree defined recursively as follows:

ai = (1, . . . , 1, ai, 1, . . . , 1)σi

where on the right side of the equation ai appears in the i-th coordinate.

Definition 1.8. The group Gn is the group generated by {a1, . . . , an}.

As mentioned previously, the group G3 is the well-studied Hanoi towers group [Gv06],
[GŠ07], [BGŠ03], [Ski19] whose generators appear in Figure 2. Our primary focus herein
will be on Gn, n ≥ 4. We will recall facts about the Hanoi towers group as they are
necessary.

σ1

σ1 1 1

σ1 1 1

σ1 1 1

σ2

1 σ2 1

1 σ2 1

1 σ2 1

σ3

1 1 σ3

1 1 σ3

1 1 σ3

Figure 2. The generators a1, a2, and a3 of the Hanoi towers group G3

Lemma 1.9. For n ≥ 3, 〈σi | 1 ≤ i ≤ n〉 is the alternating group on n letters, An, when

n is even and the symmetric group on n letters, Sn, when n is odd.

Proof. For all i, when n is even σi ∈ An and when n is odd σi /∈ An. Further, σ−1
i+1σi =

(i, i+ 1, i+ 2) for 1 ≤ i ≤ n− 2. Since {(i, i+ 1, i+ 2) | 1 ≤ i ≤ n− 2} is a generating set
of An, the result follows. �

For g ∈ Aut(T ) and u ∈ X∗, let πu be the projection g 7→ gu. When the domain of πu
is restricted to a subgroup stabilizing the vertex u the map πu is a homomorphism.
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Definition 1.10. A self-similar group G is called self-replicating if πu(StabG(u)) = G for
all u.

If G is both self-replicating and acts transitively on the first level of the tree, then G is
level transitive.

Lemma 1.11. For all n, Gn is self-replicating.

Proof. If a vertex v is a descendant of u (i.e. v = uw for some w ∈ X∗), then

πv(StabG(v)) = πw(πu(StabG(v))).

Thus a self-similar group G is self-replicating if and only if πu(StabG(u)) = G for every
vertex u of level 1. Suppose u is in the i-th coordinate. Then for each aj and ak where

k 6= i, there exists a number m such that jσ
m
k = i. Moreover, σ

σm
k

j fixes i. Therefore, a
am
k

j

is in StabGn
(u) and πu(a

am
k

j ) = aj . �

Corollary 1.12. For all n, Gn is level transitive.

2. Word problem and abelianization

We remark that Gn is an example of an automaton group and as such there exists an
algorithm in exponential time that solves the word problem [Zuk12]. Here we outline an
alternative algorithm for Gn which also allows for the computation of the abelianization.
It is a particular case of the algorithm described in Section 3 of [Bar03].

Let Fn be a free group with basis {s1, . . . , sn}. For a freely reduced word w(s1, . . . , sn) =
sr1i1 s

r2
i2
· · · srkik , define the length of w to be |w| = k. Let γ : Fn →֒ Fn ≀ Sn be the map

defined by γ(si) = (1, . . . , 1, si, 1, . . . 1)σi where si is in the i-th coordinate and σi =
(1, . . . i− 1, i+ 1, . . . , n) as before. In other words, γ mimics the recursive definition of ai.

Proposition 2.1. Let w(s1, . . . , sn) be an element of Fn and suppose γ(w) = (w1, . . . , wn)θ.

Then for all i, |wi| ≤
|w|+1

2
.

Proof. If w is of length 1, then w is of the form sri so γ(w) = (1, . . . , 1, sri , 1, . . . , 1)σ
r
i and

the claim is true.

Note that σr1
i1

is a permutation of {1, . . . , n}\{i1}. In particular, if w = sr1i1 s
r2
i2

where
i1 6= i2 then γ(w) is of the form

(1, . . . , sr1i1 , 1, . . . , 1, s
r2
i2
, 1, . . . , 1)σr1

i1
σr2
i2

where sr2i2 is in the i
σ
r1
i1

2 coordinate and i
σ
r1
i1

2 6= i1. Again the claim holds.

Now suppose w = sr1i1 s
r2
i2
· · · srkik has length k for some k ≥ 3 and γ(w) = (w1, . . . , wn)θ.

Then for m = ⌈k
2
⌉, w can be written as u1 · · ·um where |ui| ≤ 2 for each i. In this case,

γ(ui) = (ui1, ui2, . . . , uin)θi
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for some θi ∈ Sn and where for all i between 1 andm and all j between 1 and n, |uij | is either

0 or 1. Therefore each wi is a product ofm words of length 0 or 1 and |wi| ≤ ⌈
k
2
⌉ ≤ k+1

2
. �

Now let 1 → Rn → Fn
φ0→ Gn → 1 be a presentation for Gn where φ0(si) = ai. Since γ

mimics the recursive definition of the generators of Gn, the following diagram commutes:

Fn Im(γ)

Gn

γ

φ0
φ1

where φ1((1, . . . , 1, si, 1, . . . 1)σi) = ai.

This fact along with Proposition 2.1 provide tools for solving the word problem. In-
deed, let w(s1, . . . , sn) be in Fn. If |w| = 1, then w(a1, . . . , an) is trivial if and only

if w(s1, . . . , sn) = s
r(n−1)
i for some i and r. If |w| ≥ 2, then we can apply γ to w to

obtain γ(w) = (w1, . . . , wn)θ where |wj| < |w|. If θ is a non-trivial permutation then
w(a1, . . . , an) 6= 1 and we are done. Similarly, if θ is trivial and each wj has length 0 or

1, then w(a1, . . . , an) = 1 if and only if each wj(s1, . . . , sn) is of the form s
rj(n−1)
ij

. The
remaining possibility is that θ is the trivial permutation and for some wj, the length of
wj is at least 2. In this case repeat the above process to the each wj until either we find
a non-trivial permutation or each obtained word has length at most 1 and is of the form

s
r(n−1)
i .

As a result of the word problem algorithm, the abelianization of Gn is straightforward
to compute. First, observe that the generators of Gn have order (n − 1) and so Gn/G

′
n

is a quotient of (Z/(n − 1)Z)n. Now for a word w(s1, . . . , sn), let ǫsi be the sum of the
exponents on the si terms in w. Consider now γ(w) = (w1, . . . , wn)θ. By the way γ is
defined

ǫsi(w(s1, . . . , sn)) =
n∑

j=1

ǫsi(wj(s1, . . . , sn))

The algorithm states that if a word w(s1, . . . , sn) produces a trivial word in Gn, then
after some number of iterations, the sum of the exponents of the si’s over all the states
on a given level is equal to 0 modulo n − 1. But this is the same as ǫsi(w). In other
words, if w(a1, . . . , an) = 1 then ǫsi(w(s1, . . . , sn)) ≡ 0 mod (n − 1) for all i. Thus Rn ≤
〈F ′

n, s
n−1
1 , . . . , sn−1

n 〉 and Gn surjects onto (Z/(n− 1)Z)n.

Proposition 2.2. The abelianization of Gn is Gn/G
′
n
∼= (Z/(n− 1)Z)n.

A similar property to what is described in Proposition 2.1 is frequently studied in the
setting of self-similar groups.

Definition 2.3. A self-similar group G is called contracting if there exists a finite set
N ⊂ G such that for every g ∈ G, there exists k ∈ N such that gv ∈ N for all words v ∈ X∗
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of length greater than or equal to k. The minimal set N with this property is called the
nucleus of the self-similar action.

Since the generators of Gn have order (n− 1), the next result follows immediately from
Proposition 2.1.

Corollary 2.4. Gn is contracting with nucleus

N = {1, a1, . . . , a
n−2
1 , . . . , an, . . . , a

n−2
n }.

The abelianization also allows us to put some functions on Gn which will be of use to
us later.

Definition 2.5. Let g be an element of Gn. Let w(s1, . . . , sn) = sr1i1 s
r2
i2
· · · srkik be a word in

s1, s2, . . . , sn such that w(a1, . . . , an) = g. Define ǫ(g) to be

ǫ(g) = (

k∑

j=1

ri) mod (n− 1).

Lemma 2.6. ǫ : Gn → Z/(n− 1)Z is a well defined, surjective homomorphism.

Proof. Since Gn/G
′
n
∼= (Z/(n − 1)Z)n, ǫ is the composition of the abelianization map

[Ab] : Gn → (Z/(n − 1)Z)n with the map ψ : (Z/(n − 1)Z)n → Z/(n − 1)Z defined by
ψ : (s1, s2, . . . sn) 7→

∑n

i=1 si. Clearly, this map is well defined and as both [Ab] and ψ are
surjective, ǫ is surjective. �

Definition 2.7. Let g = (g1, . . . , gn)σ ∈ Gn where gi ∈ Gn for all i. Define

ǫ1(g) =

n∑

i=1

ǫ(gi) mod (n− 1).

Lemma 2.8. For an element g ∈ Gn, ǫ(g) = ǫ1(g).

Proof. This follows from the discussion preceding Proposition 2.2. �

3. The congruence subgroup problem

Definition 3.1. A group G acting on a regular rooted tree has the congruence subgroup
property if every subgroup of finite index contains a level stabilizer.

In the setting of branch groups, this is equivalent to every subgroup of finite index
containing a rigid stabilizer and every rigid stabilizer containing a level stabilizer. Since
StabG(m) has finite index in G for all m and since this collection forms a descending col-
lection of normal subgroups, taking {StabG(m) | m ∈ N} as a basis for the neighborhoods
of {1} produces a profinite topology on G (see section 3.1 [RZ10]), called the congruence

topology. Likewise RistG(m) has finite index for all m, and in the same way produces a
profinite topology called the branch topology. Further, G has a third natural topology, the
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full profinite topology where N = {N E G | |G : N | < ∞} is taken as a basis for the
neighborhoods of {1}. The congruence topology is weaker than the branch topology which
is weaker than the full profinite topology. We can complete G in terms of these topologies
and obtain three profinite groups:

G = lim←−
m≥1

G/ StabG(m) the congruence completion

G̃ = lim←−
m≥1

G/RistG(m) the branch completion

Ĝ = lim←−
N∈N

G/N the profinite completion

Since ∩m≥1 StabG(m) = {1}, G is residually finite and embeds into G, G̃, and Ĝ.

Thus G has the congruence subgroup property if and only if Ĝ and G coincide, that is

congruence kernel, the kernel of the natural surjection Ĝ ։ G, is trivial. The congruence

subgroup problem for branch groups consists not only of determining whether a branch
group has the congruence subgroup property but also of quantitatively describing the
congruence kernel. Since there is a third topology at play, namely the branch topology,
we can instead study two pieces of the congruence kernel, namely the branch kernel, the

kernel of the natural surjection Ĝ ։ G̃, and the rigid kernel, the kernel of the natural

surjection G̃ ։ G. Although a group may have many realizations as a branch group,
each of these kernels are invariants of the group and are not dependent on the choice of
realization [Gar16b].

The kernels for G3 are calculated in [BSZ12].

Theorem ([BSZ12], Theorem 3.11). The kernel of Ĝ3 → G̃3 is free profinite abelian. The

kernel of G̃3 → G3 is a Klein group of order 4. The kernel of Ĝ3 → G3 is metabelian and

torsion-free, but is not nilpotent.

A second, more constructive proof for the rigid kernel calculation in the last theorem
can be found in [Ski19].

The first step in computing the kernels for the groups Gn, n ≥ 4, is to understand their
rigid stabilizers and level stabilizers.

First we make the following observation.

Observation 3.2. For any vertex v, conjugating any element h ∈ RistAut(T )(v) by an

automorphism g of T works as follows:

Let |v| = m and suppose

h = (1, . . . , 1, hv, 1, . . . , 1)m
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where hv is in the v-th coordinate. Let g decompose as

(g1, . . . , gnm)σ

where σ is in the m-fold iterated wreath product of Sn. Suppose σ sends the vertex v to the

vertex u. Then

hg = (1, . . . , 1, hguv , 1, . . . , 1)m
where hguv is in the u-th coordinate.

For a level transitive, self-replicating group, this significantly reduces the calculations
for rigid stabilizers as illustrated by Proposition 3.3.

Proposition 3.3. Suppose G is a level transitive, self-replicating group. If v ∗ g ∈ G, then

u ∗ 〈〈g〉〉 ≤ RistG(u)

for all u with |u| = |v|.

Proof. Suppose v ∗ g ∈ G and that G is a level transitive, self-replicating group. Let gh be
a conjugate of g in G. Since G is level transitive, for any vertex u on the same level as v

there exists h̃1 ∈ G such that h̃1 takes v to u. Then by Observation 3.2, (v ∗ g)h̃1 = u ∗ gh1

for some h1 ∈ G. Since G is self-replicating there exists h̃ ∈ StabG(u) such that the state

of h̃ at u is h−1
1 h. Then (v ∗ g)h̃1h̃ = u ∗ gh. �

Additionally, for the groups Gn there is another simplification that comes from the
symmetry of the generators.

Observation 3.4. Let ω be the permutation (1, 2, · · · , n) and let λ be the automorphism

of n-ary tree defined recursively by

λ = (λ, λ, . . . , λ)ω.

Then conjugation by λ is an automorphism of the group Gn which takes an 7→ a1 and

ai 7→ ai+1 for 1 ≤ i ≤ n− 1. Further, if

g = (g1, g2, . . . , gn)σ,

then

gλ = (gλn, g
λ
1 , . . . , g

λ
n−1)σ

ω.

Theorem 3.5. For all n, Gn is a regular branch group with branching subgroup G′
n.

Proof. By Lemma 1.11 and Corollary 1.12, Gn is level transitive and self-replicating. There-
fore, by Proposition 3.3, it suffices to show that for each g in some normal generating set
of G′

n there is some v ∈ X such that v ∗ g ∈ Gn. And finally, by Observation 3.4, it suffices
to find a conjugate of v ∗ [a1, ai] for each i between 1 and 1 + ⌊n

2
⌋ and for some v ∈ X .

The case when n = 3 is dealt with in [Ski19].

When n = 4, we have the following elements:

[a−a1
3 , a−a2

3 ](a−1
2 a1)

3 = (1, 1, [a1, a2]
a2 , 1)1
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[a
a−1
1

2 , aa32 ](a1a3)
−3 = (1, [a1, a3]

−a−1
3 , 1, 1)1

When n = 5, we have the following elements:

[(a1a
−1
4 )2, (a2a

−1
4 )2] = ([a1, a2], 1, 1, 1, 1)1

[(a−1
3 a1)

2, (a3a
−1
1 )2] = (1, [a1, a3], 1, 1, 1)1

When n = 6, we have he following elements:

[(a1a
−1
4 )2, (a2a

−1
4 )2] = ([a1, a2], 1, 1, 1, 1, 1)1

[(a−1
3 a1)

2, (a3a
−1
1 )2] = (1, [a1, a3], 1, 1, 1, 1)1

[(a−1
6 a1a2a

−1
1 )a3 , (a4a

−1
5 a−1

4 a3)] = (1, 1, 1, [a1, a4], 1, 1)1

For the remaining n, fix i, 1 ≤ i ≤ 1 + ⌊n
2
⌋ and let j = i+ 2 ≥ 4. Then

[(a1a
−1
j )2, ((aia

−1
j )2)a

−(i−2)
j ] = ([a1, ai], 1, . . . , 1)1.

Since G′
n has finite index in Gn and we obtain the result. �

Remark 3.6. Note that G′
n is not the maximal branching subgroup for n ≥ 4. The

maximal branching subgroup for Gn, which depends on the size of n and whether n is even
or odd, will be computed in Theorems 3.12, 3.15, and 3.17.

Definition 3.7. Let In be the collection of elements of the form

(1, . . . , 1, g, 1, . . . , 1, . . . , 1, g−1, 1, . . . , 1)1

where g ranges over all elements of Gn and the coordinates in which g and g−1 appear
ranges over the set {1, . . . , n}.

Proposition 3.8. When n ≥ 4, In is contained in G′
n.

Proof. First, we observe that if g = (g1, . . . , gn)1 is an element in StabGn
(1) and h =

(h1, . . . , hn)σ is an element of Gn, then gh = (gh1σ

1σ , . . . , ghnσ

nσ )1 which is equivalent to
(g1σ , g2σ , . . . , gnσ)1 modulo G′

n by Theorem 3.5.

Consider the element

[aa21 , a3] = (1, a−1
2 , [a1, a3], a

2
2, a

−1
2 , 1, . . . , 1)1 ≡ (1, a−1

2 , 1, a22, a
−1
2 , 1, . . . , 1)1 mod G′

n

where the equivalence is again by Theorem 3.5. Letting δ = (1, a−1
2 , 1, a22, a

−1
2 , 1, . . . , 1)1,

we see that

δδ−a1a
−1
3 = (1, a−1

2 , a
a−1
3

2 , 1, . . . , 1)1 ≡ (1, a−1
2 , a2, 1, . . . , 1)1 mod G′

n.

Since Gn acts as either An or Sn on the first level, by our first observation all elements of
the form (1, . . . , 1, a2, 1, . . . , 1, a

−1
2 , 1, . . . , 1)1 with the a2 and a

−1
2 in any coordinate are con-

tained inG′
n. Similarly, by Observation 3.2 all elements of the form (1, . . . , 1, ai, 1, . . . , 1, a

−1
i , 1, . . . , 1)1

for 1 ≤ i ≤ n are likewise in G′
n.
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Finally suppose g = a
mi1
i1
· · · a

mik

ik
. Then,

(1, . . . , 1, ai1, 1, . . . , 1, a
−1
i1
, 1, . . . , 1)

mi1
1 · · · (1, . . . , 1, aik , 1, . . . , 1, a

−1
ik
, 1, . . . , 1)

mik

1

= (1, . . . , 1, g, 1, . . . , 1, a
−mi1
i1
· · ·a

−mik

ik
, 1, . . . , 1)1

and

(1, . . . , 1, g, 1, . . . , 1, a
−mi1
i1
· · ·a

−mik

ik
, 1, . . . , 1)1 ≡ (1, . . . , 1, g, 1, . . . , 1, g−1, 1, . . . , 1)1 mod G′

n.

�

Remark 3.9. Proposition 3.8 is not true when n = 3 which can be seen from the generators
for StabG3(1) obtained in [Ski19]. This significantly contributes to the change in the rigid
kernels for Gn starting at n = 4 described in Theorem 3.19.

Corollary 3.10. For n ≥ 4, (g1, . . . , gn)1 is in StabGn
(1) if and only if v ∗ (g1θ · · · gnθ) is

in RistGn
(1) for every vertex v on the first level and every permutation θ of {1, . . . , n}.

3.1. Rigid kernels. Since by Lemma 1.9,

〈a1(∅), a2(∅), . . . , an(∅)〉 =

{
Sn if n is odd

An if n is even

and since the normal subgroup structure of the alternating and symmetric groups changes
starting at n = 5, we will split the next computations into 3 settings, when n = 4, when
n ≥ 5 is odd, and when n ≥ 5 is even.

Proposition 3.11. StabG4(1) = 〈a1a3a
2
4, a2a1a3a

−1
1 , a1a

−1
3 a4a3, X ∗G′

4, I4〉.

Proof. This is done by using the Reidemeister-Schreier method for finding generators of
a subgroup or by using the GAP [GAP19] package AutomGrp [MS18] and eliminating
redundant generators. �

Put K4 = 〈a1a3a24, a2a1a3a
−1
1 , a1a

−1
3 a4a3, G

′
4〉 and note that it has index 3 in G4 by

Proposition 2.2.

Theorem 3.12. The subgroupK4 is normally generated in G4 by the set {a1a2, a2a3, a3a4, a4a1}
and is the maximal branching subgroup for G4. In particular, for all m, the rigid stabilizer

of the m-th level is precisely Xm∗K4 and the stabilizer of the m-th level is Xm−1∗StabG4(1).
Consequently, StabG4(m+ 1) ≤ RistG4(m) for all m and G4 has a trivial rigid kernel.

Proof. Since G′
4 ≤ K4, K4 is a normal subgroup. Moreover, a2a1a3a

−1
1 ≡ a2a3 mod G′

n and
similarly a1a

−1
3 a4a3 ≡ a4a1 mod G′

n. Further, a3a4 and a1a2 can be written as a product of

the generators of K4 and their conjugates. Let K̃4 = 〈〈a1a2, a2a3, a3a4, a4a1〉〉. Now clearly

K̃4 ≤ K4. Since G4/K4
∼= Z/3Z to check that K̃4 = K4 it suffices to show that G4/K̃4 has

order at most three. This is immediate from the fact that

a1 ≡ a−1
2 ≡ a3 ≡ a−1

4 mod K̃4
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and that each ai has order 3.

Now to show that K4 is a branching subgroup, by self-similarity it is only necessary to
show that K4 ≥ X ∗K4. Consider the elements

a1a3a
2
4 = (a1, a3, 1, a

2
4)1,

a2a1a3a
−1
1 = (a−1

1 , a2a3, 1, a1)1,

a1a
−1
3 a4a3 = (a1a4, a

−1
3 , a3, 1)1.

Applying Corollary 3.10, (a1a3a
2
4, 1, 1, 1)1, (a2a1a3a

−1
1 , 1, 1, 1)1, and (a1a

−1
3 a4a3, 1, 1, 1)1

are in K4 (since only elements in the commutator subgroup are required to shift the coor-
dinates).

To show that K4 is the maximal branching subgroup, observe that the generators ob-
tained in Proposition 3.11 for StabG4(1) generate a subgroup of index 3 in X ∗ G4 and
so in particular, for each vertex v on the first level RistG4(v) must be a proper subgroup
of v ∗ G4 and thus any branching subgroup must also be a proper subgroup of G4. Since
K4 has index 3 and K4 contains v ∗ K4 for every vertex v, K4 is the maximal branching
subgroup and X ∗K4 = RistG4(1).

By Theorem 3.5, Proposition 3.8, and Proposition 3.11, StabG4(1) ≤ K4 and the rest
follows from self-similarity. �

We note for the reader that the group G4 was studied first by Siegenthaler in Chapter
6 of [Sie09] providing theorems which seem to be in opposition to Theorem 3.12. Indeed,
Siegenthaler correctly notes that often in the calculations for regular branch groups one
can replace the maximal branching subgroup with any branching subgroup containing the
normal core of the maximal one. He then proceeds to incorrectly work with an arbitrary
normal branching subgroup which is most evident when his results from this chapter are
applied to the group G4. With the exception of Theorem 6.2.3., the proposition, theorems,
and corollaries in this chapter remain true if one replaces the hypothesis that K is an
arbitrary normal branching subgroup with the hypothesis that K is the normal core of the
maximal branching subgroup.

Now we move to odd n ≥ 5. Recall that for g ∈ Gn we define ǫ(g) = (
∑k

j=1 ri) mod (n−1)
where w(s1, . . . , sn) = sr1i1 s

r2
i2
· · · srkik is a word with w(a1, . . . , an) = g. Recall also that if

g = (g1, . . . , gn)σ, then ǫ1(g) =
∑n

i=1 ǫ(gi) mod (n− 1) and by Lemma 2.8, ǫ(g) = ǫ1(g).

Proposition 3.13. For odd n ≥ 5, if g ∈ Gn is in StabGn
(1), then ǫ(g) ≡ 0 mod 2.

Moreover, if g1, . . . , gn are arbitrary elements of Gn with
∑n

i=1 ǫ(gi) ≡ 0 mod 2, then there

exists g ∈ Gn with g = (g1, . . . , gn)1 in StabGn
(1).

Proof. First observe that since the ai(∅) is an element in Sn\An for all i, if a word in
a1, . . . , an produces an element g in StabGn

(1), then it necessarily has even exponent sum.
In particular, ǫ(g) ≡ 0 mod 2.
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Recall that In is the set of all elements of the form (1, . . . , 1, g, 1, . . . , 1, g−1, 1, . . . , 1)1
and that In ⊆ StabGn

(1). Define Hn = 〈In, X ∗ G′
n〉 E Gn. Observe that Gn/X ∗ G′

n is
isomorphic to a subgroup of

(Z/(n− 1)Z)n ≀ Sn =
(
(Z/(n− 1)Z)n × · · · × (Z/(n− 1)Z)n

)
⋊ Sn.

and hence Gn/Hn isomorphic to a subgroup of (Z/(n− 1)Z)n × Sn. We claim that in fact
Gn/Hn is a subdirect product of (Z/(n−1)Z)n×Sn. Indeed, Hn is contained in the kernel
of ǫ1, a surjective homomorphism onto (Z/(n− 1)Z)n, and Gn surjects onto Sn.

Let π1 : Gn/Hn ։ Sn and let π2 : Gn/Hn ։ (Z/(n − 1)Z)n. Identify the kernel of π1
with a subgroup of (Z/(n−1)Z)n and the kernel of π2 with a subgroup of Sn. By Goursat’s
Lemma, (Z/(n− 1)Z)n/ ker(π1) ∼= Sn/ ker(π2). Since the only non-trivial abelian quotient
of Sn has order 2, (Z/(n − 1)Z)n/ ker(π1) is either trivial or order 2. But since a word in
a1, . . . , an has a trivial permutation only if it has even exponent sum, ker(π1) is a proper
subgroup of (Z/(n− 1)Z)n. Therefore,

StabGn
(1) = {(g1, . . . , gn)1 |

n∑

i=1

ǫ(gi) ≡ 0 mod 2}.

�

Definition 3.14. For odd n, define Kn = {g ∈ Gn | ǫ(g) ≡ 0 mod 2} ≤ Gn.

Theorem 3.15. For odd n ≥ 5, Kn is the maximal branching subgroup for Gn. Moreover,

RistGn
(m) = Xm ∗Kn for all m. Consequently,

StabGn
(m+ 1) = Xm ∗ StabGn

(1) ≤ RistGn
(m)

for all m and Gn has a trivial rigid kernel.

Proof. Again, it suffices to show that Kn ≥ X ∗ Kn = RistGn
(1). By Proposition 3.13,

(1, . . . , 1, g, 1, . . . , 1)1 ∈ Gn if and only if ǫ(g) ≡ 0 mod 2 which is if and only if g ∈ Kn.
Moreover, by Lemma 2.8 such an (1, . . . , 1, g, 1, . . . , 1)1 is in Kn. By Lemma 2.8 and
Proposition 3.13, StabGn

(1) ≤ Kn and the rest follows from the above work. �

Now, we work with the remaining groups: Gn where n ≥ 5 is even.

Definition 3.16. A group G ≤ Aut(T ) is called layered if G contains the direct product
of |X| copies of G each acting on one of the subtrees of T rooted at the first level, i.e.

X ∗G ≤ G.

Theorem 3.17. For even n ≥ 5, StabGn
(m) = RistGn

(m) = Xm ∗ Gn. In particular, Gn

is layered and consequently Gn has a trivial rigid kernel.

Proof. It suffices to show for m = 1. Let Hn be as in the proof of Proposition 3.13. By
the same arguments presented there, for even n ≥ 5, Gn/Hn isomorphic to a subgroup of
(Z/(n− 1)Z)n × An (since the root permutations generate An by Lemma 1.9). This time,
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Gn/Hn is a subdirect product of (Z/(n−1)Z)n×An as Hn is again contained in the kernel
of ǫ1 and Gn surjects onto An.

Let π1 : Gn/Hn ։ An and let π2 : Gn/Hn ։ (Z/(n − 1)Z)n. By Goursat’s Lemma,
(Z/(n− 1)Z)n/ ker(π1) ∼= An/ ker(π2). Since the only abelian quotient of An is the trivial
group, (Z/(n − 1)Z)n/ ker(π1) is trivial and so StabGn

(1) = X ∗ Gn. Since X ∗ Gn is in
fact a direct product, it is also RistGn

(1). Moreover, as X ∗ Gn ≤ Gn, for any m we have
Xm ∗Gn ≤ Gn. Since the group is self-similar, the result follows. �

Note that Theorem 3.17 tells us that for even n ≥ 5, Gn = Gn ≀ An. In particular, this
implies the following corollary.

Corollary 3.18. For even n ≥ 5, Gn = (· · ·An ≀ An) ≀ An) ≀ · · ·An), the infinitely iterated

wreath product of An.

3.2. Branch kernels. The combination of Theorems 3.12, 3.15, and 3.17 show that unlike
when n = 3, when n ≥ 4 the congruence kernel for Gn is the same as the branch kernel.
The following is extracted from the proof of Theorem 2.7 in [BSZ12].

Theorem ([BSZ12]). Let G be a branch group. Then the branch kernel is

lim←−
e≥1
m≥1

RistG(m)/RistG(m)′ RistG(m)e

Theorem 3.19. For n 6= 3, the branch kernel, and thus the congruence kernel, for Gn is

the inverse limit

lim←−
m≥1

Mm
n

where Mn is a finite abelian group. When n ≥ 5 is even, Mn is cyclic of order n − 1 and

when n = 4 or n ≥ 5 is odd, Mn has exponent bounded between (n− 1) and 2(n− 1).

Proof. For n = 4, RistG4(m)/RistG4(m)′ ∼= (K4)
4m/(K ′

4)
4m = (K4/K

′
4)

4m . Now K4 is
a subgroup of index 3 containing G′

4 and hence surjects onto a subgroup of index 3 in
G4/G

′
4 = (Z/3Z)4. The image of K4 is then an abelian group of exponent 3 and so K4/K

′
4

has exponent at least 3. It is easy to check that the normal generators of K4 given by
Theorem 3.12 have order 6. Since conjugating does not change the order of an element,
K4 has a generating set consisting of elements of order 6 and so K4/K

′
4 has exponent at

most 6. Now since K4 has finite index in a finitely generated group, it is finitely generated.
Therefore K4/K

′
4 is a finite abelian group with exponent between 3 and 6.

For odd n ≥ 5, RistGn
(m)/RistGn

(m)′ ∼= (Kn)
nm

/(K ′
n)

nm

= (Kn/K
′
n)

nm

. Now Kn is
a subgroup of index 2 containing G′

n and as such surjects onto a subgroup of index 2 in
Gn/G

′
n = (Z/(n − 1)Z)n. Since n ≥ 5, the image of Kn is an abelian group of exponent

(n−1) and so Kn/K
′
n has exponent at least (n−1). Moreover, since n is odd, a generating

set for Kn is {an−1a1, ana2, aiai+2 | 1 ≤ i ≤ n − 2}. It is easy to check that each of these
elements has order 2(n− 1). Thus Kn/K

′
n has exponent at most 2(n− 1).
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For even n ≥ 5,

RistGn
(m)/RistGn

(m)′ ∼= (Gn)
nm

/(G′
n)

nm

= (Gn/G
′
n)

nm

=
(
(Z/(n− 1)Z)n

)nm

.

Now since for all n ≥ 4, RistGn
(m)/RistGn

(m)′ has finite exponent, the collection
{RistGn

(m)/RistGn
(m)′} is cofinal with {RistGn

(m)/RistGn
(m)′ RistGn

(m)e}. Further,
since

RistGn
(m)/RistGn

(m+ 1) =

{
(Gn/G

′
n)

nm

if n ≥ 5 is even

(Kn/K
′
n)

nm

if n = 4 or n ≥ 5 is odd

we see that similarly {(Gn/G
′
n)

m} and {(Kn/K
′
n)

m} respectively also form cofinal sets
with RistGn

(m)/RistGn
(m+ 1). In particular, the branch kernel is

lim←−
m≥1

Mm
n

where

Mn =

{
Gn/G

′
n if n ≥ 5 is even

Kn/K
′
n if n = 4 or n ≥ 5 is odd

�

Remark 3.20. Our techniques only put bounds on the exponent of Kn/K
′
n for n = 4 and

odd n ≥ 5. It would be desirable to precisely understand this group.

3.3. Just Infinite-ness.

Definition 3.21. A group is said to be just infinite if it is infinite but every proper quotient
is finite.

In [Gri00] Theorem 4, a criterion for determining when a branch group is just infinite is
posed.

Theorem ([Gri00]). A branch group G is just infinite if and only if for each m ≥ 1, the
index of RistG(m)′ in RistG(m) is finite.

In [BSZ12], it is shown the G3/G
′′
3 is an infinite group and so G3 is not just infinite. For

n ≥ 4, the proof of Theorem 3.19 shows RistGn
(m)/RistGn

(m)′ is finite. Thus we obtain
the following result.

Theorem 3.22. Gn is just infinite if and only if n 6= 3.
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4. Maximal subgroups

In this final section, we present examples to show that triviality of rigid kernel is not
necessarily preserved when moving to subgroups of finite index, even if they are maximal.
In doing so, we present new examples of branch groups with non-trivial rigid kernels, adding
to the only currently known example of the Hanoi towers group.

Theorem 4.1. For n ≥ 4, let d > 2 be such that d | (n − 1) and let Hn,d be the set of

elements g of Gn with ǫ(g) ≡ 0 mod d. The Hn,d is a subgroup of index d in Gn and is a

regular branch group with non-trivial rigid kernel.

Proof. First observe that Hn,d contains G
′
n and thus also contains Xm∗G′

n for any m. Since
G′

n acts as An on the top level, Hn,d is level transitive. Further, since Xm ∗ G′
n has finite

index in Gn it also has finite index in Hn,d and we conclude that Hn,d is a regular branch
group.

For any n and d as in the theorem, Hn,d has index d in Gn by Lemma 2.6. We will
construct explicit elements that are in StabHn,d

(m) but not in RistHn,d
(k) for all k ≤ m.

Let β = a1a2 · · · an.

If n ≥ 4 is odd, then

β = (a1a3 · · · an, 1, . . . , 1, a2a4 · · ·an−1)(1, n)

and

β2 = (a1a3 · · · ana2a4 · · · an−1, 1, . . . , 1, a2a4 · · · an−1a1a3 · · ·an)1.

Clearly, β2 has exponent sum 2n and is not an element of Hn,d. But Hn,d does contains
G′

n and therefore also X ∗ G′
n and all elements of the form (g, 1, . . . , 1, g−1)1 for g ∈

Gn. Combining these elements we get that β2 ≡ (β2, 1, . . . , 1)1 mod Hn,d and so likewise
(β2, 1, . . . , 1)1 is not contained in Hn,d. Inductively we get for any m,

β2 ≡ (β2, 1, . . . , 1)m mod Hn,d

and so (β2, 1, . . . , 1)m is not contained in Hn,d.

But again, since Hn,d contains all elements of the form (g, 1, . . . , 1, g−1)1, the element
(β2, 1, . . . , 1, β−2)1 ∈ StabHn,d

(1) and again inductively for all m, (β2, 1, . . . , 1, β−2)m ∈
StabHn,d

(m). But (β2, 1, . . . , 1, β−2)m /∈ RistHn,d
(k) for any k, otherwise (β2, 1, . . . , 1)m−k

would be in the group Hn,d, a contradiction.

Now if n ≥ 4 is even, then

β = (a1a3 · · · an−1, 1, . . . , 1, a2a4 · · · an)1

and so by the same discussion above β /∈ Hn,d and for all m

β ≡ (β, 1, . . . , 1)m mod Hn,d

so (β, 1, . . . , 1)m is not an element of Hn,d but (β, 1, . . . , 1, β−1)m is. The same arguments
show that (β, 1, . . . , 1, β−1)m is not in RistHn,d

(k) for any k. �
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5. Hausdorff Dimension

For a closed subgroup H of Aut(T ), the Hausdorff dimension of H can be calculated
[BS97] by

dimH(H) = lim inf
m→∞

log |H/ StabH(m)|

log |Aut(T )/ StabAut(T )(m)|
. (5.1)

Abért and Virág showed that with probability 1 the closure of the subgroup generated by
three random automorphisms of a binary tree has Hausdorff dimension 1 [AV05]. Siegen-
thaler then constructed the first explicit examples of topologically finitely generated groups
of Hausdorff dimension 1 [Sie08].

As a consequence of the work in previous sections, we show that Gn has Hausdorff
dimension arbitrarily close to 1.

Theorem 5.1. For n ≥ 3, the Hausdorff dimension for Gn is

dimH(Gn) =





1− log(48)
log(331776)

if n = 4

1− log(2)
log(n!)

if n ≥ 5 is even

1− log(2)
n log(n!)

if n is odd

Proof. For n = 4, |G4/ StabG4(1)| = |A4| =
4!
2
by Lemma 1.9. It can easily be checked from

the generators of Proposition 3.11 that StabG4(1)/ StabG4(2) is an index 3 subgroup of A4×

A4×A4×A4, so | StabG4(1)/ StabG4(2)| =
4!4

3·24 . For m ≥ 2, | StabG4(m−1)/ StabG4(m)| =

| StabG4(1)/ StabG4(2)|
4m−2

by Theorem 3.12. Hence equation 5.1 yields

dimH(G4) = lim inf
m→∞

log
(

4!1+4+···+4m−1

21+4+···4m−131+4+···4m−2

)

log(4!1+4+···4m−1)

= lim inf
m→∞

log(4!
4m−1

3 )− log(2
4m−1

3 )− log(3
4m−1

−1
3 )

log(4!
4m−1

3 )

= lim inf
m→∞

1−
log(2)

log(4!)
−

(4m−1 − 1) log(3)

(4m − 1) log(4!)

= 1−
log(2)

log(4!)
−

log(3)

4 log(4!)

= 1−
log(48)

log(331776)
.

For even n ≥ 5, Gn/ StabGn
(1) = An and StabGn

(m − 1)/ StabGn
(m) = (An)

nm−1
by

Lemma 1.9 and Theorem 3.17. Therefore
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dimH(Gn) =
log

(
n!1+n+···nm−1

21+n+···nm−1

)

log(n!1+n+···nm−1)

= lim inf
m→∞

log((n!)
nm

−1
n−1 )− log(2

nm
−1

n−1 )

log(n!
nm

−1
n−1 )

= 1−
log(2)

log(n!)
.

Finally, when n is odd |Gn/ StabGn
(1)| = |Sn| = n! by Lemma 1.9. Additionally,

| StabGn
(1)/ StabGn

(2)| = n!n

2
by Proposition 3.13 and Lemma 5.7 in [Ski19]. Moreover,

| StabGn
(m− 1)/ StabGn

(m)| = | StabGn
(1)/ StabGn

(2)|4
m−2

= n!n
m−1

2nm−2 by Theorem 3.17 and

Lemma 5.8 in [Ski19]. Thus

dimH(Gn) = lim inf
m→∞

log
(
n!1+n+···nm−1

21+n+···nm−2

)

log(n!1+n+···nm−1)

= lim inf
m→∞

log(n!
nm

−1
n−1 )− log(2

nm−1
−1

n−1 )

log(n!
nm

−1
n−1 )

= lim inf
m→∞

1−
(nm−1 − 1) log(2)

(nm − 1) log(n!)

= 1−
log(2)

n log(n)
.

�

Corollary 5.2. For all ǫ > 0, there exists n such that dimH(Gn) > 1− ǫ.
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