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Universal enveloping algebra
of a pair of compatible Lie brackets

Vsevolod Gubarev

Abstract

Applying the Poincaré—Birkhoff—Witt property and the Gröbner—Shirshov

bases technique, we find the linear basis of the associative universal enveloping

algebra in the sense of V. Ginzburg and M. Kapranov of a pair of compatible Lie

brackets. We state that the growth rate of this universal enveloping over n-dimen-

sional compatible Lie algebra equals n+ 1.

Keywords: universal enveloping algebra over an operad, compatible Lie brackets,

Gröbner—Shirshov basis, growth rate.

1 Introduction

Hamiltonian pairs (or bihamiltonian structures) play an important role [6, 7, 15] in the
theory of integrable systems from mathematical physics. Such structures correspond to
pairs of compatible Poisson brackets defined on the same manifold. Two Poisson brackets
{·, ·}1 and {·, ·}2 are said to be compatible if α{·, ·}1+β{·, ·}2 is a Poisson bracket for all
α, β ∈ k, where k denotes the ground field. In terms of operads, algebras with compatible
Poisson brackets form a so called bi-Hamiltonian operad [1, 3].

In the case of linear Poisson brackets, all such structures arise from a pair of com-
patible Lie brackets. An algebra 〈L, [·, ·]1, [·, ·]2,+〉 belongs to a variety Lie2 of pairs of
compatible Lie brackets if α[·, ·]1 + β[·, ·]2 is a Lie bracket for all α, β ∈ k.

A plenty of examples of compatible Lie brackets is presented in [9], the classification
results on them see in [16]. In [10], it was shown that every pair of compatible Lie brack-
ets endowed with a common non-degenerate invariant bilinear form produces a rational
solution to the classical Yang—Baxter equation. Free algebras with a pair of compati-
ble Lie brackets were studied in [1, 12, 13]. Koszulness of the operad corresponding to
a variety Lie2 was proved in [4].

In [11], the operadic (multiplicative) universal enveloping associative algebra ULie2(g)
of a given algebra g ∈ Lie2 in the sense of V. Ginzburg and M. Kapranov [8] was con-
sidered, and the Poincaré—Birkhoff—Witt (PBW) property for it was proved. By the
definition, the associative algebra ULie2(g) satisfies the following property: the category
of modules over g and the category of left modules over ULie2(g) are equivalent.

We find the Gröbner—Shirshov basis of the universal enveloping algebra ULie2(g0) of an
algebra g0, where g0 denotes the vector space g with both zero Lie brackets. It allows us,
applying the PBW property, to get the linear basis of the algebra ULie2(g). As a corollary,
we compute the (exponential) growth rate of ULie2(g) when g is finite-dimensional.
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2 Gröbner—Shirshov basis for ULie2(g0)

Due to [11, Corollary 2.11], the operadic universal enveloping associative algebra of
a given algebra g ∈ Lie2 in the sense of V. Ginzburg and M. Kapranov [8] equals

ULie2(g) = As〈X ∪X ′ | xy − yx+ [x, y]1, x
′y′ − y′x′ + ([x, y]2)

′,

xy′ − y′x+ x′y − yx′ + ([x, y]1)
′ + [x, y]2〉, (1)

where X is a linear basis of g, X ′ is a set such that X ∩X ′ = ∅ and the map ′ : X → X ′,
x → x′ is a bijection. It looks like there are misprints in [11, §6.1] while writing the
defining relations of ULie2(g).

Assuming that X and X ′ are primitive elements, ULie2(g) has a natural Hopf algebra
structure.

In [11], the PBW property of ULie2(g) was proved, it implies that there exists a filtra-
tion on ULie2(g) such that grULie2(g)

∼= ULie2(g0), where g0 is a vector space g with trivial
products [·, ·]1 and [·, ·]2.

Thus, let us study the algebra ULie2(g0). We may assume that X = {fi | i ∈ I},
where I is a well-ordered set. Denote X ′ = {Fi := f ′

i | i ∈ I}. We define an order on
X ∪X ′ as follows,
— fi < fj if i < j,
— Fj < Fi if i < j,
— fi < Fj for all i, j ∈ I.

Let us write down the relations

fjfi − fifj, i < j, (2)

FiFj − FjFi, i < j, (3)

Fiwfk − fkFiw − Fkwfi + fiFkw, w ≤ i < k, (4)

where w = 1 or w = fs1 . . . fst with s1 ≤ . . . ≤ st and by w ≤ i we mean that st ≤ i.
We recall the main definitions from the theory of Gröbner—Shirshov bases [2, §2.1].
Let (X,<) be a well-ordered set and let X∗ denote the set of all words in the alpha-

bet X. Suppose that X∗ is well-ordered, moreover, u < v implies w1uw2 < w1vw2 for
all w1, w2 ∈ X∗, such ordering is called monomial. We will use only deg-lex ordering,
in which two words first are compared by the degree and then lexicographically. Given
a nonzero element f from the free associative algebra As(X), by f̄ we mean its leading
word.

Given a monomial ordering < on X∗ and two monic polynomials f, g, we define two
kinds of compositions:

(i) If w is a word such that w = f̄ b = aḡ for some a, b ∈ X∗ with |f̄ |+ |ḡ| > |w|, then
the polynomial (f, g)w := fb− ag is called the intersection composition of f and g with
respect to w.

(ii) If w = f̄ = aḡb for some a, b ∈ X∗, then the polynomial (f, g)w := f − agb is
called the inclusion composition of f and g with respect to w.

Consider S ⊂ As(X) such that every s ∈ S is monic. Take h ∈ As(X) and w ∈ X∗.
Then h is called trivial modulo (S, w), denoted by h → 0 mod (S, w), if h =

∑
αiaisibi,

where αi ∈ k, ai, bi ∈ X∗, and si ∈ S satisfying aisibi < w.
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A monic set S ⊂ As(X) is called a Gröbner—Shirshov basis in As(X) with respect
to the monomial ordering < if every composition of polynomials in S is trivial modulo S
and the corresponding w.

The Composition Diamond lemma for associative algebras implies that if S is
a Gröbner—Shirshov basis in As(X), then Irr(S) = {u ∈ X∗ | u 6= as̄b, s ∈ S, a, b ∈ X∗}
is a linear basis of the algebra As〈X | S〉.

Lemma. The set of the relations (2)–(4) forms a Gröbner—Shirshov basis for
ULie2(g0).

Proof. Note that the first series of the defining relations (1) of ULie2(g0) coincides
with (2), the second one with (4), and the third series of them multiplied by w on the
right gives exactly (4).

The relations (2)–(4) may have only compositions of intersection but not inclusion.
Compositions between (2) and (2) as well as between (3) and (3) are trivial.
Let us compute the composition between (2) and (4). Let w ≤ i < k and l < k, then

Fiwfkfl →
(2)

L := Fiwflfk,

Fiwfkfl →
(4)

R := fkFiwfl + Fkwfifl − fiFkwfl.

If l ≤ i, then L− R →
(4), (2)

0 for w̃ = wfl.

Let i < l, then

L→
(4)

flFiwfk + Flwfifk − fiFlwfk →
(4)

flfkFiw + flFkwfi − flfiFkw

+ Flwfifk − fifkFlw − fiFkwfl + fiflFkw;

R→
(4)

fkflFiw + fkFlwfi − fkfiFlw + Fkwfifl − fiFkwfl.

Thus,

L− R = flFkwfi + Flwfifk − fkFlwfi − Fkwfifl

= (flFkw + Flwfk − fkFlw − Fkwfl)fi + Flw(fifk − fkfi)− Fkw(fifl − flfi) →
(4), (2)

0.

Here it is important that all involved terms are less than the initial word u = Fiwfkfl.
Now we compute the composition between (3) and (4). Let w ≤ i < k and a < i. On

the one hand, we have

FaFiwfk →
(3)

FiFawfk →
(2)

FiFafkw→
(4)

FifkFaw + FiFkfaw − FifaFkw

→
(4)

L := fkFiFaw + FkfiFaw − fiFkFaw + FiFkfaw − FifaFkw.

On the other hand,

FaFiwfk →
(4)

FafkFiw + FaFkwfi − FafiFkw

→
(4)

R := fkFaFiw + FkfaFiw − faFkFiw + FaFkwfi − fiFaFkw − FifaFkw + faFiFkw.
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Thus,

L− R = FkfiFaw + FiFkfaw − FkfaFiw − FaFkwfi

= Fk(fiFaw+Fifaw− faFiw−Fawfi)+ (FiFk−FkFi)faw− (FaFk−FkFa)wfi →
(4), (3)

0.

Finally, note that there are no compositions of intersection between (4) and (4). �

3 Basis of ULie2(g)

Denote by M(X) the set of all (ordered) monomials from k[X ] including 1. Given
w = fj1 . . . fjn ∈ M(X) \ {1}, we mean that j1 ≤ . . . ≤ jn, and for u = Fk1 . . . Fkm ∈
M(X ′) \ {1}, we mean that km ≤ . . . ≤ k1. Define

⌊w⌋ = max{jt | t = 1, . . . , n}, ⌈u⌉ = min{kt | t = 1, . . . , m},
i. e., ⌊w⌋ = jn and ⌈u⌉ = km.

Define L = M(X) ∪ L′, where L′ consists of all words

w0u1w1u2w2 . . . us−1ws−1usws, (5)

where
a) wi ∈ M(X) \ {1}, i = 1, . . . , s− 1, w0, ws ∈ M(X);
b) ui ∈ M(X ′) \ {1}, i = 1, . . . , s;
b) ⌊wi⌋ ≤ ⌈ui⌉, i = 1, . . . , s− 1, and ⌊ws⌋ ≤ ⌈us⌉ or ws = 1.
Theorem 1. The set L forms a linear basis of ULie2(g).
Proof. It follows from Lemma, the Composition Diamond lemma for associative

algebras [2, Theorem 1], and the PBW property of ULie2(g) [11]. �

Given a pair of compatible Lie brackets g, define Ln as the set of all elements from L
of length n. Put rn = |Ln|. The growth rate of ρ(ULie2(g)) is defined as lim

n→∞

n
√
rn.

Let us show that such limit always exists. The Fekete’s Lemma [14, Lemma 1.2.2]
says that given a sequence {an}, n ≥ 1, of real numbers such that as+t ≤ as + at for all
s, t ∈ N, there exists a limit lim

n→∞

an
n

. In our case, we have the inequality rs+t ≤ rsrt for

all s, t ∈ N, since every non-empty subword of the basic element from L lies in L. Hence,
it remains to apply the Fekete’s Lemma for the sequence {ln rn}.

We are able to compute the growth rate of ULie2(g) when g is finite-dimensional.
Firstly, we do it straightforwardly (Theorem 2). Secondly, we derive this result from
Lemma 6.1 [11] (Remark 1, suggested by the reviwer). Thirdly, we reprove Theorem 2
with the help of partially commutative algebras and dependence polynomial (Remark 2).

Theorem 2. Let g ∈ Lie2 and dim(g) = m. Then the growth rate of ULie2(g) equals
m+ 1.

Proof. Let X = {x1, . . . , xm} be a basis of g. Define On as a subset of Ln consisting
of words starting with Fi ∈ X ′. Put sn = |On|, assuming that s0 = 1.

Let us derive the following formula,

sk =
k−1∑

p=1

p

(
p+m

p+ 1

)
sk−1−p +

(
k +m− 1

k

)
. (6)
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A word v ∈ Ok for k ≥ 1 either consists of only letters from X ′ (
(
k+m−1

k

)
choices) or

v has the form v = u1Frw1v
′, where r = 1, . . . , m, u1 ∈ M(X ′), w1 ∈ M(X) \ {1}, and

v′ ∈ Oh for some h (if h = 0, then v′ = 1). For the latter case, we initially fix the value
of p = |u1|+ |w1| and then consider all cases of t = |w1| ≥ 1. Hence, we have

sk =

(
k +m− 1

k

)
+

k−1∑

p=1

(
m∑

r=1

p∑

t=1

(
t + r − 1

t

)(
p− t +m− r

p− t

))
sk−1−p, (7)

where
(
t+r−1

t

)
is responsible for the choice w1 ∈ M({x1, . . . , xr}) \ {1} and

(
p−t+m−r

p−t

)

corresponds to the choice of u1 ∈ M({xr, . . . , xm}′).
In [17, Theorem 1.4] the formula

m∑

i=0

(
m

i

)
(
n+m

p+i

) =
n +m+ 1

n+ 1
· 1(

n

p

)

for 0 ≤ m and 0 ≤ p ≤ n was stated. Applying it, we derive

p∑

t=0

(
t + a

a

)(
p− t + b

b

)
=

p∑

t=0

(t+ a)!

t!a!

(p− t + b)!

(p− t)!b!

=
1

a!b!

p∑

t=0

(t+ a)!(p− t+ b)!

t!(p− t)!

p!

p!

(p+ a+ b)!

(p+ a+ b)!
=

(
p+ a + b

p, a, b

) p∑

t=0

(
p

t

)
(
p+a+b

t+a

)

=
p+ a+ b+ 1

a + b+ 1

(
p+ a+ b

p, a, b

)
/

(
a + b

a

)
=

(
p+ a + b+ 1

p

)
.

Substituting this equality for a = r − 1 and b = m− r in (7), we get

m∑

r=1

p∑

t=1

(
p− t +m− r

p− t

)(
t + r − 1

t

)

=
m∑

r=1

(
p∑

t=0

(
p− t+m− r

p− t

)(
t+ r − 1

t

)
−
(
p+m− r

p

))

=
m∑

r=1

((
p+m

p

)
−
(
p+m− r

p

))
= m

(
p+m

p

)
−
(
p+m

p + 1

)
= p

(
p +m

p+ 1

)
,

and we have proved the formula (6).
Let us prove that sn = m(m+1)n−1 for any n ≥ 1 by induction on n. The case n = 1

is trivial, we have O1 = {F1, . . . , Fm} and s1 = m.
Suppose that we have proved that sn = m(m + 1)n−1 for all n < k, where 2 ≤ k.

By (6), we get

sk =

k−2∑

p=1

p

(
p +m

p+ 1

)
sk−1−p + (k − 1)

(
k +m− 1

k

)
+

(
k +m− 1

k

)

=
k−2∑

p=1

p
m(m+ 1) . . . (m+ p)

(p+ 1)!
m(m+ 1)k−2−p +

m(m+ 1) . . . (m+ k − 1)

(k − 1)!

5



= m

(
k−2∑

p=1

p
((m+ 1)− 1)(m+ 1)k−2−p

(p+ 1)!

p∑

l=0

[
p

l

]
(m+ 1)l +

k−1∑

l=0

[
k−1
l

]

(k − 1)!
(m+ 1)l

)
,

here
[
p

l

]
denotes the (unsigned) Stirling number of the first kind.

The coefficient Aq of sk/m by (m+ 1)q, q = 0, . . . , k − 1, equals

Aq =
k−2∑

p=k−q−1

p

(p+ 1)!

[
p

q + p+ 1− k

]
−

k−2∑

p=k−q−2

p

(p+ 1)!

[
p

q + p+ 2− k

]
+

[
k−1
q

]

(k − 1)!

=
k−2∑

p=k−q−1

(
p

(p+ 1)!

[
p

q + p + 1− k

]
− (p− 1)

p!

[
p− 1

q + p + 1− k

])

+

[
k−1
q

]

(k − 1)!
−

(k − 2)
[
k−2
q

]

(k − 1)!
. (8)

Applying the identity
[
n+1
l

]
= n

[
n

l

]
+
[

n

l−1

]
, we compute for p > 0

p

[
p

q + p+ 1− k

]
− (p− 1)(p+ 1)

[
p− 1

q + p+ 1− k

]

= p

[
p

q + p+ 1− k

]
− (p+ 1)

[
p

q + p+ 1− k

]
+ (p+ 1)

[
p− 1

q + p− k

]

= −
[

p

q + p+ 1− k

]
+ (p+ 1)

[
p− 1

q + p− k

]
.

When p = 0, we may apply the same formula only adding the summand equal to the
Kronecker delta δq,k−1, since

[
0
0

]
= 1.

Therefore, we have

Aq =

[
k−2
q−1

]

(k − 1)!
+ δq,k−1 +

k−2∑

p=k−q−1

1

(p+ 1)!

(
−
[

p

q + p+ 1− k

]
+ (p+ 1)

[
p− 1

q + p− k

])

=

[
k−2
q−1

]

(k − 1)!
+ δq,k−1 −

[
k−2
q−1

]

(k − 1)!
= δq,k−1.

Thus, sk = m
k−1∑
q=0

Aq(m+ 1)q = m(m+ 1)k−1, as required.

Now, we express

rn =

n∑

l=0

(
l +m− 1

l

)
sn−l, (9)

this formula counts the leftmost position (l + 1) such that the (l + 1)st letter of a given
element z ∈ Ln is from X ′. The value l = n means that z ∈ M(X).

By (9), we get

rn =
n∑

l=0

(
l +m− 1

l

)
sn−l =

(
n +m− 1

n

)
+m

n−1∑

l=0

(
l +m− 1

l

)
(m+ 1)n−l−1. (10)

6



On the one hand, rn ≥ sn = m(m+ 1)n−1 and so, ρ(ULie2(g)) ≥ m+ 1.
On the other hand,

rn ≤
(
n+m− 1

n

)
+

n−1∑

l=0

(
l +m− 1

l

)
(m+ 1)n−l =

n∑

l=0

(
l +m− 1

l

)
(m+ 1)n−l

=

n∑

l=0

m(m+ 1) . . . (m+ l − 1)

l!
(m+ 1)n−l ≤

n∑

l=0

(m+ 1)n = (n+ 1)(m+ 1)n,

which implies ρ(ULie2(g)) ≤ m+ 1. Hence, ρ(ULie2(g)) = m+ 1. �

Remark 1 (suggested by the reviwer). Let P = ∪n≥1P(n) be a symmetric op-
erad. One may assign to it the generating series χP(p1, p2, . . .) =

∑
n≥1 χSn

(P(n)), where
χSn

(V ) =
∑

ρ⊢n

pρ
zρ
trV (ρ) is a symmetric function associated with the corresponding Sn-

character of the symmetric group given in the basis of pk =
∑

i x
k
i .

In Lemma 6.1 of [11], it was stated that

χU0

Lie2

=

∑
k≥1 hk

1−∑k≥1 pk
. (11)

Calculating the generating series for dimensions of ULie2(g), when dim(g) = m, corre-
sponds to the calculation of the plethystic substitution of the polynomial f(t) = mt
into (11). Plethysm with the numerator creates the generating function for the dimen-
sions of the symmetric algebra S(g), since

∑
k≥1 hk is the character of the operad Com.

Plethysm with the denominator gives

1

1− ∑
k≥1

pk
◦ (mt) =

1

1− ∑
k≥1

mtk
=

1

1− mt
1−t

=
1− t

1− (m+ 1)t
, (12)

so, one gets precisely the generating function for the numbers sk = m(m + 1)k−1. Al-
together, rn counts all words of the form w0γ, where w0 ∈ M(X) and γ ∈ Ok for
appropriate k. Thus, we get the formula (9), and Theorem 2 follows.

Moreover, we have confirmed the conjecture of A. Khoroshkin [11, §6.1] of isomor-
phism

ULie0
2
(V ) ∼= S(V )⊗ FL(V )

of Schur functors while projecting on the subspace of words of length n. Due to Theo-
rem 1, we may present FL(V ) as the tensor algebra T (G(V )), where G(V ) is the quotient
of S(V ⊕V ) by the ideal Span(v′u−u′v | u, v ∈ V ). Here we identify (a, b) ∈ V ⊕V with
a′ + b.

Remark 2. Theorem 2 may be obtained with the help of partially commutative
algebras. Given a graph G(V,E), an associative algebra As(G) = As〈V | ab = ba, (a, b) ∈
E〉 is called a partially commutative algebra. Dependence polynomial [5] of a graph G

is defined as D(G, x) = 1 +
ω(G)∑
k=1

(−1)kck(G)xk, where ci(G) denotes a number of distinct

cliques in G of the size i and ω(G) equals the size of a maximum clique in G.

7



Consider a graph G(V,E) with V = {f1, . . . , fm} ∪ {F1, . . . , Fm} and

E = {(fi, fj) | i < j} ∪ {(Fi, Fj) | i < j} ∪ {(Fi, fj) | i < j}.

Note that the set of all basic words from L coincides with the set of all pairwise distinct
words in As(G). It is known [5] that the generating function of As(G) equals to 1/D(G, x).
Since

D(G, x) =
m∑

i=0

(
m

i

)
(−1)i(i+ 1)xi = (1− x)m−1(1− (m+ 1)x),

we conclude that the growth rate of ULie2(g) equals m + 1. The fact that
1

(1− x)m−1(1− (m+ 1)x)
is a generating function of ULie2(g) follows from (12). Indeed,

it is enough to recall that the generating function of the free commutative m-generated
algebra equals 1/(1− x)m.
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[15] F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys.
(5) 19 (1978), 1156–1162.

[16] A. Panasyuk, Compatible Lie Brackets: Towards a Classification, J. Lie Theory (2)
24 (2014), 561–623.

[17] T. Trif, Combinatorial sums and series involving inverses of binomial coefficients
Fibonacci Quart. 38 (2000), 79–84.

Vsevolod Gubarev
Sobolev Institute of Mathematics
Acad. Koptyug ave. 4, 630090 Novosibirsk, Russia
Novosibirsk State University
Pirogova str. 2, 630090 Novosibirsk, Russia
e-mail: wsewolod89@gmail.com

9


	Introduction
	Gröbner—Shirshov basis for ULie2(g0)
	Basis of ULie2(g)

