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Abstract

Dung’s argumentation frameworks are adopted in a variety of applica-
tions, from argument-mining, to intelligence analysis and legal reasoning.
Despite this broad spectrum of already existing applications, the mostly
adopted solver—in virtue of its simplicity—is far from being comparable
to the current state-of-the-art solvers. On the other hand, most of the
current state-of-the-art solvers are far too complicated to be deployed in
real-world settings. In this paper we provide and extensive description of
jArgSemSAT, a Java re-implementation of ArgSemSAT. ArgSemSAT rep-
resents the best single solver for argumentation semantics with the highest
level of computational complexity. We show that jArgSemSAT can be eas-
ily integrated in existing argumentation systems (1) as an off-the-shelf,
standalone, library; (2) as a Tweety compatible library; and (3) as a fast
and robust web service freely available on the Web. Our large experi-
mental analysis shows that—despite being written in Java—jArgSemSAT
would have scored in most of the cases among the three bests solvers for
the two semantics with highest computational complexity—Stable and
Preferred—in the last competition on computational models of argumen-
tation.

1 Introduction

Dung’s theory of abstract argumentation[18] is a unifying framework able to
encompass a large variety of specific formalisms in the areas of nonmonotonic
reasoning, logic programming and computational argumentation. It is based on
the notion of argumentation framework (AF ), that consists of a set of argu-
ments and an attack relation between them. Different argumentation semantics
introduce in a declarative way the criteria to determine which arguments emerge
as “justified” from the conflict, by identifying a number of extensions, i.e. sets
of arguments that can “survive the conflict together”. In Dung’s paper[18] three
“traditional” semantics are introduced, namely grounded, stable, and preferred
semantics, as well as the auxiliary notion of complete extension, to highlight the
linkage between grounded and preferred semantics. Other literature proposals
include semi-stable[10], ideal [17], and CF2 [5] semantics.
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The preferred semantics represents one of the main contributions in Dung’s
theory[18] and is widely adopted—among other areas—in decision support systems[31]
and in critical thinking support systems[35], as it allows multiple extensions (dif-
ferently from grounded semantics), the existence of extensions is always guar-
anteed (differently from stable semantics), and no extension is a proper subset
of another extension. The investigation on alternative argumentation semantics
is an active research area since two decades[2].

Many problems associated to preferred, but also to stable, semantics turn
to be at the high levels of the polynomial hierarchy[19]. In this paper we will
focus on four problems, namely credulous and skeptical acceptance of an argu-
ment with respect to a given argumentation framework and a given semantics
and enumeration of all or some semantics extensions given an argumentation
framework. Those are the problems considered in the first International Com-
petition on Computational Models of Argumentation (ICCMA2015) that deter-
mined the state-of-the-art of the current implementations for addressing the
above problems with respect to the three aforementioned semantics (plus the
complete extensions).

Surprisingly, the winner of ICCMA2015—CoQuiAAS1 [24]—never scored in
the first two positions with respect to the most computationally expensive se-
mantics, namely stable and preferred semantics. Indeed, CoQuiAAS performed
very well on grounded semantics—where each problem is polynomial—thanks
to a very efficient unit propagation mechanism, as well as on the tracks associ-
ated to complete extensions problems. The interested reader is referred to the
competition summary[34] and to the competition website2 for an overview of
the results.

Instead, ArgSemSAT is the best single solver when facing semantics with
an high level of computational complexity. It is constantly either first or sec-
ond placed in each track associated to stable and preferred semantics—except
one due to an implementation bug discovered after the competition3. Despite
this bug, ArgSemSAT scored second—at one single Borda count point from
CoQuiAAS—and the overhead in solving problems associated to grounded se-
mantics is—on average—of 3.88 seconds from CoQuiASS. Therefore, this differ-
ence is neglectable in most real-world situation, when ultimately a human user
will consume the result of argumentation-based reasoning procedures.

Building on top of the success of ArgSemSAT, we introduced jArgSemSAT
that is specifically designed for being easily integrated within existing argu-
mentation systems. Indeed, ArgSemSAT—as well as many other solvers that
participated in ICCMA2015—is written in C++ and requires an external SAT
solver as an np oracle. This can hardly be considered an off-the-shelf system, as
most of the current tools using argumentation technology are based on existing
Java approaches (such as Dung-O-Matic[30], adopted e.g. in CISpaces[35]), or
on the Tweety libraries for knowledge representation and reasoning[32], or use

1http://www.cril.univ-artois.fr/coquiaas/
2http://argumentationcompetition.org/2015/
3Details can be found in http://downloads.sourceforge.net/project/argsemsat/

ArgSemSAT-1.0rc3/ArgSemSAT_1.0rc3.zip

2



a web-service interface as ArgTech[8]. We developed jArgSemSAT in Java, with
a specific focus on being compatible with Dung-O-Matic, Tweety, and with a
web-service interface in turn compatible with ArgTech. A large experimental
analysis confirms that jArgSemSAT—despite being written in Java—would have
been one of the best solvers for most of the ICCMA2015 tracks associated to
the two semantics with highest computational complexity. Therefore, not only
ArgSemSAT is compatible with existing technology, but it is also among the best
solvers for stable and preferred semantics.

This paper is an extension of the short report from the field work pre-
sented at the 15th Conference on Principles of Knowledge Representation and
Reasoning[16] with substantial additional material, including: (i) a complete
description of jArgSemSAT which includes a thorough description of the im-
plemented algorithms and processes; (ii) a significantly extended experimental
analysis, that considers a comparison with the state of the art—including solvers
which took part in ICCMA2015—on several problems associated to stable and
preferred semantics; and (iii) an extensive discussion of the benefits of employing
jArgSemSAT within CISpaces[35].

The rest of the paper is organised as follows. Section 2 provides the re-
quired background on abstract argumentation; Section 3 gives an overview of
the jArgSemSAT system, while Section 4 focuses on system design; Section 5
reports our experimental results; finally, conclusions and discussions of the ben-
efits of jArgSemSAT are given in Section 6.

2 Background

2.1 Argumentation frameworks and semantics

An argumentation framework[18] consists of a set of arguments4 and a binary
attack relation between them.

Definition 1 An argumentation framework (AF ) is a pair Γ = 〈A,R〉 where
A is a set of arguments and R ⊆ A×A. We say that b attacks a iff 〈b,a〉 ∈ R,
also denoted as b → a. The set of attackers of an argument a will be denoted
as a− , {b : b → a}, the set of arguments attacked by a will be denoted as
a+ , {b : a → b}. We also extend these notations to sets of arguments, i.e.
given E ⊆ A, E− , {b | ∃a ∈ E, b→ a} and E+ , {b | ∃a ∈ E,a→ b}.

An argument a without attackers, i.e. such that a− = ∅, is said initial. More-
over, each argumentation framework has an associated directed graph where the
vertices represent the arguments, and the edges represent the attacks.

The basic properties of conflict–freeness, acceptability, and admissibility of a
set of arguments are fundamental for the definition of argumentation semantics.

Definition 2 Given an AF Γ = 〈A,R〉:
4In this paper we consider only finite sets of arguments: see [4] for a discussion on infinite

sets of arguments.
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• a set S ⊆ A is a conflict–free set of Γ if @ a, b ∈ S s.t. a→ b;

• an argument a ∈ A is acceptable with respect to a set S ⊆ A of Γ if
∀b ∈ A s.t. b→ a, ∃ c ∈ S s.t. c→ b;

• the function FΓ : 2A → 2A such that FΓ(S) = {a | a is acceptable w.r.t. S}
is called the characteristic function of Γ;

• a set S ⊆ A is an admissible set of Γ if S is a conflict–free set of Γ and
every element of S is acceptable with respect to S, i.e. S ⊆ FΓ(S);

• a set S ⊆ A is a complete extension of Γ if S is an admissible set of
Γ such that it contains each argument acceptable with respect to S, i.e.
S = FΓ(S).

An argumentation semantics σ prescribes for any AF Γ a set of extensions,
denoted as Eσ(Γ), namely a set of sets of arguments satisfying the conditions
dictated by σ. Here we need to recall the definitions of grounded (denoted as
GR), stable (denoted as ST), and preferred (denoted as PR) semantics only.

Definition 3 Given an AF Γ = 〈A,R〉:

• a set S ⊆ A is the grounded extension of Γ, i.e. S ∈ EGR(Γ), iff S is the
least fixed point of FΓ;

• a set S ⊆ A is a stable extension of Γ, i.e. S ∈ EST(Γ), iff S is a conflict-
free set of Γ and S ∪ S+ = A;

• a set S ⊆ A is a preferred extension of Γ, i.e. S ∈ EPR(Γ), iff S is a
maximal (w.r.t. set inclusion) admissible set of Γ.

The notion of complete extension has been introduced[18] as a linkage be-
tween preferred and grounded semantics. Given an AF Γ = 〈A,R〉, a set S ⊆ A
is a complete extension of Γ iff S is a conflict-free set of Γ and S = FΓ(S).
The auxiliary notion of complete extension provides a mean for re-defining the
grounded extension as the minimal (with respect to set inclusion) complete ex-
tension, and a preferred extension as a maximal (w.r.t. set inclusion) complete
extension.

Each extension S implicitly defines a three-valued labelling of arguments:
an argument a is labelled in iff a ∈ S; is labelled out iff ∃ b ∈ S s.t. b → a;
is labelled undec if neither of the above conditions holds. In the light of this
correspondence, argumentation semantics can be equivalently defined in terms
of labellings rather than of extensions[9, 2].

Definition 4 Given a set of arguments S, a labelling of S is a total function
Lab : S −→ {in, out, undec}. The set of all labellings of S is denoted as LS.
Given an AF Γ = 〈A,R〉, a labelling of Γ is a labelling of A. The set of all
labellings of Γ is denoted as L(Γ).

In particular, complete labellings can be defined as follows.
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Definition 5 Let Γ = 〈A,R〉 be an argumentation framework. A labelling
Lab ∈ L(Γ) is a complete labelling of Γ iff it satisfies the following conditions
for any a ∈ A:

• Lab(a) = in⇔ ∀b ∈ a−Lab(b) = out;

• Lab(a) = out⇔ ∃b ∈ a− : Lab(b) = in;

The grounded, stable, and preferred labelling can then be defined on the
basis of complete labellings.

Definition 6 Let Γ = 〈A,R〉 be an argumentation framework. A labelling
Lab ∈ L(Γ) is

• the grounded labelling of Γ if it is the complete labelling of Γ maximising
the set of arguments labelled undec;

• a stable labelling Γ if it is a complete labelling of Γ and there is no argu-
ment labelled undec;

• a preferred labelling of Γ if it is a complete labelling of Γ maximizing the
set of arguments labelled in.

In order to show the connection between extensions and labellings, let us
recall[2] the definition of the function Ext2Lab, returning the labelling corre-
sponding to a conflict–free set of arguments S.

Definition 7 Given an AF Γ = 〈A,R〉 and a conflict–free set S of Γ, the
corresponding labelling Ext2Lab(S) is the labelling of Γ Lab where

• Lab(a) = in⇔ a ∈ S

• Lab(a) = out⇔ ∃ b ∈ S s.t. b→ a

• Lab(a) = undec⇔ a /∈ S ∧ @ b ∈ S s.t. b→ a

There is a bijective correspondence between the complete, grounded, stable,
preferred extensions and the complete, grounded, stable, preferred labellings,
respectively.[9]

Proposition 1 Given an an AF Γ = 〈A,R〉, Lab is a complete (grounded,
stable, preferred) labelling of Γ if and only if there is a complete (grounded,
stable, preferred) extension S of Γ such that Lab = Ext2Lab(S).

2.2 Computational Problems in Abstract Argumentation

Credulous and skeptical acceptance of an argument are the two most studied
decision problems in argumentation theory (see [19]).

An argument a is credulously accepted with respect to a given semantics σ
and a given AF Γ iff a belongs to at least one extension of Γ under σ: ∃E ∈ Eσ(Γ)
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Table 1: Computational complexity of credulous and skeptical acceptance in
finite afs w.r.t. the three semantics introduced by Dung.

Semantics σ

GR ST PR

DC-σ in p np-compl. np-compl.

DS-σ in p conp-compl. Πp
2-compl.

s.t. a ∈ E. We denote such a problem as DC-σ. An argument a is skeptically
accepted with respect to a given semantics σ and a given AF Γ iff a belongs to
each extension of Γ under σ: ∀E ∈ Eσ(Γ) a ∈ E. We denote this problem as
DS-σ.

The complexity of DC-σ and DS-σ when σ is the stable or preferred semantics
lies at the first or second level of the polynomial hierarchy, as shown in Table 1
(see [19]).5

In addition to credulous and skeptical acceptance, the following two problems
are worth considering and have been included in ICCMA2015:

• given an AF , determine some extension (SE) of a given semantics;

• given an AF , determine all extensions (EE) of a given semantics.

As shown in Table 2, ArgSemSAT is always in the first two positions both in
the case of stable and preferred semantics, except for DS-ST due to an imple-
mentation bug discovered after the competition.

ArgSemSAT scored second considering the Borda count across all tracks of
ICCMA20156, at one point of distance from CoQuiAAS, which scored at most
third in the tracks associated to stable and preferred semantics, but was con-
stantly the best for grounded semantics. For this semantics, CoQuiAAS uses
an efficient unit propagation mechanism, while ArgSemSAT searches for it via
a maximisation process in the space of complete labellings. Despite this mas-
sive difference in the approaches, the difference of execution times between Co-
QuiAAS and ArgSemSAT over the competition benchmark and with respect
to the four tracks related to grounded semantics is of 3.88 seconds on average
(standard deviation 5.89).

5Computational complexity for credulous and skeptical acceptance w.r.t. admissible sets,
as well as w.r.t. complete extensions can easily been identified, cf. [19]. In particular,
credulous acceptance w.r.t. admissible and complete extensions is equivalent to credulous
acceptance w.r.t. preferred semantics, skeptical acceptance w.r.t. admissible sets is trivial, and
skeptical acceptance w.r.t. complete extensions is equivalent to acceptance w.r.t. grounded
semantics.

6http://argumentationcompetition.org/2015/results.html
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Table 2: First three places in ICCMA2015 with respect to stable and preferred
semantics.

Semantics σ

ST PR

DC-σ 1.ASPARTIX-D 1.ArgSemSAT

2.ArgSemSAT 2.LabSATSolver

3. LabSATSolver 3. CoQuiAAS

DS-σ 1. ASPARTIX-D 1. ArgSemSAT

2. LabSATSolver 2. Cegartix

3. CoQuiAAS 3. LabSATSolver

SE-σ 1. ASPARTIX-D 1. Cegartix

2. ArgSemSAT 2. ArgSemSAT

3. LabSATSolver 3. LabSATSolver

EE-σ 1. ASPARTIX-D 1. Cegartix

2. ArgSemSAT 2. ArgSemSAT

3. CoQuiAAS 3. CoQuiAAS
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3 Overview of jArgSemSAT

jArgSemSAT and ArgSemSAT enumerate preferred extensions by multiple calls
to a SAT solver[13]. A propositional formula over a set of Boolean variables
is satisfiable iff there exists a truth assignment of the variables such that the
formula evaluates to True. Checking whether such an assignment exists is the
satisfiability (SAT) problem. jArgSemSAT and ArgSemSAT exploit an encoding
of complete extensions as a propositional formula in Conjunctive Normal Form
(CNF) and apply a filtering procedure over the space of complete extensions to
select the maximal ones, i.e. the preferred extensions.

There are therefore three main components within jArgSemSAT and ArgSemSAT:
(1) a propositional formula for complete labelling—cf. Definition 5; (2) an np-
oracle in the form of a SAT solver; and (3) a filtering process.

3.1 Propositional formulae for complete labellings

Given an AF Γ = 〈A,R〉 we identify a propositional formula ΠΓ such that each
satisfying assignment of the formula corresponds to a complete labelling. Such
formula is based on Definition 5, which however admits several logically equiv-
alent propositional encodings that lead to severely different performance[13].

As a first step to explore alternative encodings, the conditions in Definition
5 can be redundantly expressed as a conjunction of 6 terms, i.e. C→in ∧ C←in ∧
C→out ∧ C←out ∧ C→undec ∧ C←undec, where

• C→in ≡ (Lab(a) = in⇒ ∀b ∈ a−Lab(b) = out);

• C←in ≡ (Lab(a) = in⇐ ∀b ∈ a−Lab(b) = out);

• C→out ≡ (Lab(a) = out⇒ ∃b ∈ a− : Lab(b) = in);

• C←out ≡ (Lab(a) = out⇐ ∃b ∈ a− : Lab(b) = in);

• C→undec ≡ (Lab(a) = undec ⇒ ∀b ∈ a−Lab(b) 6= in ∧ ∃c ∈ a− : Lab(c) =
undec);

• C←undec ≡ (Lab(a) = undec ⇐ ∀b ∈ a−Lab(b) 6= in ∧ ∃c ∈ a− : Lab(c) =
undec).

Moreover we define C↔in ≡ C→in ∧C←in , C↔out ≡ C→out∧C←out, C↔undec ≡ C→undec∧C←undec.
We identify[13, Proposition 2] 5 non redundant strict subsets of the above

six terms that equivalently characterize complete extensions7, namely: (i) C↔in ∧
C↔out, (ii) C↔out ∧ C↔undec, (iii) C↔in ∧ C↔undec, (iv) C→in ∧ C→out ∧ C→undec, (v) C←in ∧
C←out ∧ C←undec.

SAT solvers require such constraints in conjunctive normal form (CNF). Let-
ting k = |A| we define a bijection φ : {1, . . . , k} 7→ A (the inverse map is denoted
as φ−1). φ is an indexing ofA: for sake of brevity we might refer to the argument

7C↔
in ∧ C↔

out and C→
in ∧ C→

out ∧ C→
undec correspond to the alternative definitions of complete

labellings in [11], where a proof of their equivalence is provided.
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φ(i) as “argument i.” For each argument i we define three Boolean variables,
Ii, Oi, and Ui, with the intended meaning that Ii (resp Oi, Ui) is True when
argument i is labelled in (resp. out, undec), False otherwise. Given Γ = 〈A,R〉
we define the corresponding set of variables as V(Γ) , ∪1≤i≤|A|{Ii, Oi, Ui}.

The conjunction of the following formulae in CNF format is equivalent to
C↔in ∧ C↔out ∧ C↔undec:

∧
i∈{1,...,k}

(Ii ∨Oi ∨ Ui) ∧ (¬Ii ∨ ¬Oi)

∧(¬Ii ∨ ¬Ui) ∧ (¬Oi ∨ ¬Ui)
(1)

∧
{i|φ(i)−=∅}

Ii ∧ ¬Oi ∧ ¬Ui (2)

∧
{i|φ(i)− 6=∅}

∧
{j|φ(j)→φ(i)}

¬Ii ∨Oj (3)

∧
{i|φ(i)− 6=∅}

Ii ∨
∨

{j|φ(j)→φ(i)}

(¬Oj) (4)

∧
{i|φ(i)− 6=∅}

¬Oi ∨
∨

{j|φ(j)→φ(i)}

Ij (5)

∧
{i|φ(i)− 6=∅}

∧
{j|φ(j)→φ(i)}

¬Ij ∨Oi (6)

∧
{i|φ(i)− 6=∅}

∧
{j|φ(j)→φ(i)}

¬Ui ∨ ¬Ij

∧ ¬Ui ∨
∨

{j|φ(j)→φ(i)}

Uj
(7)

∧
{i|φ(i)− 6=∅}

∧
{k|φ(k)→φ(i)}

Ui ∨ ¬Uk ∨
∨

{j|φ(j)→φ(i)}

Ij (8)

where (1) ∧ (3) ≡ C→in ; (1) ∧ (2) ∧ (4) ≡ C←in ; (1) ∧ (5) ≡ C→out; (1) ∧ (6) ≡ C←out;
(1) ∧ (7) ≡ C→undec; (1) ∧ (8) ≡ C←undec.

Users can choose the desired encoding of complete labellings, i.e. the formula
ΠΓ, by specifying a sequence of 6 Boolean values—0 for ⊥ and 1 for >, corre-
sponding to the sequence 〈C→in , C←in , C→out, C←out, C→undec, C←undec〉. For instance, the
sequence 101010 identifies C→in ∧C→out ∧C→undec. Incorrect configurations that do
not correspond to encodings of complete labellings—e.g. 000000—are discarded
and the user receives an error message.
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3.2 SAT solvers

The second component of jArgSemSAT and ArgSemSAT is an np-oracle in the
form of a SAT solver, whose efficiency can be very sensible to the chosen
encoding[13]. Following the experience of ArgSemSAT, jArgSemSAT allows the
user to choose any desired SAT solver—whose full path must be provided—that
supports the DIMACS format, accepts a CNF from the STDIN, and returns a
model to the STDOUT. For instance, jArgSemSAT can—as ArgSemSAT does—
use GLUCOSE[1] as an external SAT solver.

In order to provide an off-the-shelf solver, jArgSemSAT also integrates as a li-
brary Sat4j[25]. Sat4j8 is an open source library which allows Java programmers
to access cross-platform SAT-based solvers. The Sat4j library project started
in 2004 as an implementation in Java of the MiniSAT specification[21]. It has
been developed with the spirit to keep the technology easily accessible to a
newcomer. For instance, it allows the Java programmer to express constraints
on objects and hides all the mapping to the various research community input
formats from the user.

By default, jArgSemSAT utilises Sat4j with the encoding 111100—equivalent
to C↔in ∧C↔out—that on average performs best on MiniSAT-based approaches[13].

3.3 Filtering process

Computing grounded, stable and preferred labellings is then a question of im-
plementing efficient filters of complete labellings (see Definition 6) that can be
computed as a SAT assignment of a propositional formula ΠΓ variables.

Stable labellings—i.e. complete labellings with no undec arguments—are
the solutions to the formula Π′Γ := ΠΓ ∧

∧
a∈A ¬Uφ−1(a). Each time the SAT

solver finds a solution sol , the formula Π′Γ is updated to Π′Γ∧¬sol and the SAT
solver is called on Π′Γ in order to find an additional stable labelling. The process
is iterated until the SAT solver returns no solution, thus enumerating all stable
labellings.

Preferred extensions are computed as per Algorithm 1, that is an—unpublished—
evolution of the algorithm presented in previous work[13].

Algorithm 1 consists of two nested loops. The external one—lines 5–22—
iterates over a (sub)set of complete labellings to identify preferred labellings,
while the internal one—lines 8–17—performs an optimisation procedure on a
complete labelling to maximise the set of in-labelled arguments. Algorithm 1
uses four auxiliary functions. SatS refers to a SAT solver able to prove unsatis-
fiability too: it accepts as input a CNF formula and returns a variable assign-
ment satisfying the formula if it exists, ε otherwise. I-ARGS (resp. O-ARGS,
U-ARGS) accepts as input a variable assignment concerning V(Γ) and returns
the corresponding set of arguments labelled as in (resp. out, undec).

There are two variables that play a pivotal role in Algorithm 1: cnf and
cnfdf . The former, cnf , keeps track of the complete labellings already visited,

8http://www.sat4j.org/
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Algorithm 1 Enumeration of Preferred Extensions

1: Input: Γ = 〈A,R〉
2: Output: Ep ⊆ 2A

3: Ep := ∅
4: cnf := ΠΓ ∧

∨
a∈A Iφ−1(a)

5: repeat
6: cnfdf := cnf
7: prefcand := ∅
8: repeat
9: aCompl := SatS (cnfdf )

10: if aCompl 6= ε then
11: prefcand := aCompl
12: if U-ARGS(aCompl) 6= ∅ then

13: cnfdf := cnfdf ∧
∧

a∈I-ARGS(aCompl)

Iφ−1(a) ∧
∧

a∈O-ARGS(aCompl)

Oφ−1(a) ∧
∨

a∈U-ARGS(aCompl)

Iφ−1(a)

14: end if
15: cnf := cnf ∧

∨
a∈A\I-ARGS(aCompl)

Iφ−1(a)

16: end if
17: until (aCompl 6= ε ∧U-ARGS(aCompl) 6= ∅)
18: if prefcand 6= ∅ then
19: Ep := Ep ∪ {I-ARGS(prefcand)}

20: cnf := cnf ∧ ¬

 ∧
a∈I-ARGS(prefcand)

Iφ−1(a) ∧
∧

a∈O-ARGS(prefcand)

Oφ−1(a) ∧
∧

a∈U-ARGS(prefcand)

Uφ−1(a)


21: end if
22: until (prefcand 6= ∅)
23: if Ep = ∅ then
24: Ep = {∅}
25: end if
26: return Ep
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and thus affects both loops. The latter, cnfdf , keeps track of the search within
the optimisation process, thus affecting the inner loop only.

At first, cnf is initialised (l. 4) to ΠΓ ∧
∨

a∈A Iφ−1(a): ∅ is excluded since it
is always admissible. At l. 6 cnfdf is initialised to the value of cnf and, after
entering the inner loop, the SAT solver is called over cnfdf returning a complete
labelling aCompl (l. 9). This is a candidate to become a preferred labelling until
either (i) a “bigger” complete labelling containing aCompl is found; or (ii) it
is proven that there are no further complete labellings containing aCompl . To
search for (i), at line 13 each in-labelled (out-labelled) argument in aCompl is
forced to be labelled in (out) until a preferred labelling is found, and to guide
future searches towards a strictly bigger labelling at least one more argument is
enforced to be labelled in.

The inner loop is exited when either (i) SatS returns no solution (ε); or
(ii) I-ARGS(aCompl) ∪O-ARGS(aCompl) = A. In the first case, the prefcand
preferred labelling candidate found at the previous iteration cannot be extended
to a complete labelling including a greater set of in-labelled arguments, thus it
is a preferred labelling9. In the second case, this is due to the fact that there
are no undecided arguments.

Once a preferred labelling is found, the set of preferred extensions is enriched
(l. 19) with I-ARGS(prefcand) and ¬prefcand is added as a further constraint
(line 20) within cnf before executing the external loop once again.

The implemented procedure for computing the grounded labelling is analo-
gous, with the difference that the set of undec-labelled arguments—instead of
the set of in-labelled arguments—is maximised in the inner loop.

As per checking the credulous acceptance of an argument x w.r.t. the:

• grounded semantics: jArgSemSAT checks whether x is in the set of in-
labelled arguments of the grounded labelling;

• stable semantics: jArgSemSAT checks whether there is a solution to the
formula Π′Γ ∧ Iφ−1(x);

• preferred semantics: jArgSemSAT checks whether there is a solution to
ΠΓ ∧ Iφ−1(x), which implies that there is a maximum labelling—i.e. a
preferred labelling—containing that argument.

As per checking the skeptical acceptance of an argument x w.r.t. the:

• grounded semantics: since the grounded extension is unique, it is equiva-
lent to check the credulous acceptance of x;

• stable semantics:

1. if there is a solution to the formula Π′Γ ∧ Oφ−1(x) (equivalent to
the question: does a stable labelling where x is out exist?) then
jArgSemSAT returns False;

9In the case this happens at the first execution, it means that ∅ is the only preferred
extension, cf. lines 23–24.
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2. at this point, if there is a solution to the formula Π′Γ (i.e. there exists
at least a stable extension), then x belongs to the in-labelled sets
for each stable labellings, and jArgSemSAT returns True (otherwise
it returns False);

• preferred semantics: jArgSemSAT checks within Algorithm 1 whether x is
not in the set of in-labelled arguments of a found preferred labelling and
returns False in this case. jArgSemSAT returns True otherwise.

4 System design

jArgSemSAT is a mature application that now exists in four different versions:

1. Stand-alone application: this guarantees compatibility with the Probo in-
terface for the International Competition on Computational Models of
Argumentation (ICCMA)[15];

2. Dung-O-Matic (DoM)[30] compatible library: this ensures compatibility
for works already using DoM such as CISpaces[35];

3. Tweety compatible library[32]: we proudly support the Tweety project
whose aim is to provide a general framework for implementing and testing
knowledge representation formalisms;

4. ArgTech [8] compatible web-service: we created a Tomcat web-service
exporting jArgSemSAT with ArgTech-compatible RESTful interfaces.

jArgSemSAT is freely (MIT licence) available on SourceForge10 and as Maven
projects directly accessible from the central repository11. It is composed by two
jar files and a war file.

jArgSemSAT-VERSION.jar provides both the stand-alone application com-
patible with the Probo interface and the DoM compatible library: we chose not
to distribute the library without the Probo interface to facilitate future experi-
ments also from different research groups and to improve the awareness in the
community of the ICCMA competition.

Figure 1 depicts the UML graph of the main classes included in the net.sf.jargsemsat.jarsemsat.alg,
namely those implementing the algorithms for computing complete, grounded,
preferred, stable, and semi–stable12 extensions. In particular, two methods
are particularly important in CompleteSemantics class: basicComplete and
satlab.

basicComplete computes—depending on the parameter Encoding passed to
it—the propositional formula for complete labellings among all those introduced
in Section 3.1. Instead, satlab is the method which deals with SAT solvers: it

10https://sourceforge.net/projects/jargsemsat/
11http://search.maven.org/
12semi–stable semantics implementation is still experimental and, as such, not described in

this document.
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CompleteSemantics
#basicComplete(af:DungAF,
               encoding:Encoding): SATFormulae
#satlab(cnf:SATFormulae,lab:Labelling,
        af:DungAF): boolean
+extensions(ret:Vector,af:DungAF,
            enc:Encoding,arg:String,
            firstonly:boolean): boolean
+credulousAcceptance(arg:String,
                     af:DungAF,
                     enc:Encoding,
                     ): boolean
+skepticalAcceptance(arg:String,
                     af:DungAF,
                     enc:Encoding,
                     ): boolean
+someExtension(ret:Labelling,
               af:DungAF,enc:Encoding,
               ): boolean

SemiStableSemantics
+extensions(ret:Vector,af:DungAF,
            enc:Encoding,arg:String,
            firstonly:boolean): boolean
+credulousAcceptance(arg:String,
                     af:DungAF,
                     enc:Encoding,
                     ): boolean
+skepticalAcceptance(arg:String,
                     af:DungAF,
                     enc:Encoding,
                     ): boolean
+someExtension(ret:Labelling,
               af:DungAF,enc:Encoding,
               ): boolean

GroundedSemantics
+extensions(ret:Vector,af:DungAF,
            enc:Encoding,arg:String,
            firstonly:boolean): boolean
+credulousAcceptance(arg:String,
                     af:DungAF,
                     enc:Encoding,
                     ): boolean
+skepticalAcceptance(arg:String,
                     af:DungAF,
                     enc:Encoding,
                     ): boolean
+someExtension(ret:Labelling,
               af:DungAF,enc:Encoding,
               ): boolean

PreferredSemantics
+extensions(ret:Vector,af:DungAF,
            enc:Encoding,arg:String,
            firstonly:boolean): boolean
+credulousAcceptance(arg:String,
                     af:DungAF,
                     enc:Encoding,
                     ): boolean
+skepticalAcceptance(arg:String,
                     af:DungAF,
                     enc:Encoding,
                     ): boolean
+someExtension(ret:Labelling,
               af:DungAF,enc:Encoding,
               ): boolean

StableSemantics
+extensions(ret:Vector,af:DungAF,
            enc:Encoding,arg:String,
            firstonly:boolean): boolean
+credulousAcceptance(arg:String,
                     af:DungAF,
                     enc:Encoding,
                     ): boolean
+skepticalAcceptance(arg:String,
                     af:DungAF,
                     enc:Encoding,
                     ): boolean
+someExtension(ret:Labelling,
               af:DungAF,enc:Encoding,
               ): boolean

Figure 1: UML diagram of the core components of jArgSemSAT
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requires as input an object of type SATFormulae, an empty Labelling to store
the result of the computation, and a DungAF.13 It returns true if a satisfiable
assignment is found, false otherwise.

jArgSemSATTweety-VERSION.jar is a self-contained, Tweety-compatible, li-
brary: it includes jArgSemSAT-VERSION.jar and provides a Tweety-compatible
interface.

jArgSemSATWeb-VERSION.war is a self-contained Tomcat14 web-service archive
compatible with ArgTech15 specifications. This web-service is also available free-
of-charge—with best effort SLA—at http://cicero.cs.cf.ac.uk/jArgSemSATWeb/
restapi/argtech/ . Its source code is also freely available.

4.1 Stand-alone application

jArgSemSAT exports the same command line interface of ArgSemSAT, which
is a superset of the Probo interface. In addition to the options discussed in
previous work[15], jArgSemSAT allows the user to choose (1) the SAT solver to
be used—Sat4j is the default; and (2) the encoding to use—111100, equivalent
to C↔in ∧ C↔out, is the default.

4.2 Dung-O-Matic (DoM) compatible library

jArgSemSAT exports methods whose signature are compatible with Dung-O-
Matic[30]: those methods encapsulate the code for calling jArgSemSAT with the
default configurations, and on data-structures that reside on memory instead
on a file.

Therefore, the following snippet code:

Vector<String> args

= new Vector<String>();

args.add("a");

args.add("b");

Vector<String []> atts

= new Vector<String []>();

atts.add(new String []{"a", "b"});

new DungAF(args, atts).getStableExts();

is valid if either DoM or jArgSemSAT library is imported.

4.3 Tweety compatible library

Tweety libraries[32] implement abstract argumentation reasoning procedures
in the package net.sf.tweety.arg.dung. For instance, Figure 2 depicts a
simple piece of code for creating a Dung’s argumentation framework with two

13SATFormulae, Labelling, and DungAF belong to the package
net.sf.jargsemsat.jargsemsat.datastructures.

14http://tomcat.apache.org/
15http://ws.arg.tech/
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DungTheory at = new DungTheory ();

at.add(new Argument("a"));

at.add(new Argument("b"));

at.add(new Attack(a,b));

PreferredReasoner r = new PreferredReasoner(at);

System.out.println(r.getExtensions ());

Figure 2: Creating a simple Dung’s Argumentation Framework using Tweety
libraries and enumerating its preferred extensions.

arguments, a, and b, where a attacks b, and for enumerating its preferred
extensions using the Tweety libraries.

In order to guarantee the full compatibility with the Tweety libraries[32], and
to reduce the burden on programmers already using them, jArgSemSATTweety
extends the net.sf.tweety.arg.dung.GroundReasoner, net.sf.tweety.arg.dung.PreferredReasoner,
and net.sf.tweety.arg.dung.StableReasoner, overriding only the method
computeExtensions in each of them. Therefore, by importing jArgSemSATTweety

and using net.sf.jargsemsat.jArgSemSATTweety.PreferredReasoner instead
of net.sf.tweety.arg.dung.PreferredReasoner, the software will automat-
ically use Algorithm 1 for enumerating preferred extensions. As for the DoM
compatible library, jArgSemSAT uses the default configurations only.

4.4 ArgTech compatible web-service

As presented in http://ws.arg.tech/, the ArgTech web-service solver[8] for
abstract argumentation problems requires a POST message with the following
fields:

• arguments, type String Array, e.g. ["A","B", "Arg_1"];

• attacks, type String Array, e.g. ["(A,B)", "(B,Arg_1)"];

• semantics, type String, one of grounded, preferred, stable, semistable16.

For instance, the following JSon structure

{"arguments":["a","b"],

"attacks":["(a,b)"],

"semantics":"stable"}

is a valid POST request for jArgSemSATWeb. jArgSemSAT is then invoked with
the default configurations only.

16To ensure full compatibility, jArgSemSAT contains an experimental implementation of an
algorithm for enumerating semi-stable extensions, see Section 6.
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5 Evaluation

In this section, we present the result of a large experimental analysis compar-
ing the performance of jArgSemSAT with respect to ArgSemSAT[14], Dung-o-
Matic[30] and top ICCMA2015 solvers of tracks related to preferred and sta-
ble semantics: namely, ASPARTIX-D[22], Cegartix[20], CoQuiAAS[24], and
LabSATSolver[7]. To complete the picture, we also include an analysis on com-
plete extensions in A.

The aim of this section is to provide a good overview of the performance gap
between the Java-based proposed system and the more efficient C++ implemen-
tations commonly exploited in competitions and academic studies. Moreover,
the comparison with Dung-o-Matic (hereinafter DoM), helps to compare the
performance of jArgSemSAT with a Java-based tool that is currently exploited
in research-grade prototypes such as those presented in [8, 35]. Among those,
CISpaces[35] is now under analysis for transitioning into commercial products.

5.1 Experimental Setup

The experiments were performed on a cluster with computing nodes equipped
with 2.4 Ghz Dual Core AMD OpteronTM processors, 4 GB of RAM and Linux
operating system. A cutoff of 600 seconds (10 minutes) —as in ICCMA2015—
was imposed for solving each problem on a single AF .

jArgSemSAT can exploit any SAT solver that supports the DIMACS format.
In the current version, it comes with the Java-based SAT solver Sat4j[25] inte-
grated. This guarantees the maximum portability of the proposed system, and
minimises the overhead due to external system calls. Therefore, Sat4j is the
SAT solver used by jArgSemSAT in this experimental analysis, unless differently
specified. For the solvers selected according to their ICCMA2015 performance,
the latest available version has been considered in this analysis17. DoM has
been provided with a Probo compatible command line interface by reusing part
of the code wrote for jArgSemSAT. For each solver we recorded the overall
result: success, crashed, timed-out or ran out of memory.

Experiments have been conducted on the ICCMA2015 benchmark, which is
a set of 192 randomly generated AF s. They have been generated considering
three different graph models, in order to provide different levels of complexity.
More details can be found on the ICCMA website. Here we considered credulous
acceptance DC-σ, skeptical acceptance DS-σ and extensions enumeration EE-σ
problems for σ ∈ {stable,preferred}, as they are the most computationally
difficult problems among those included in the competition.

Performance are measured in terms of IPC score and Penalised Average
Runtime. The IPC score, borrowed from the planning community18, is defined
as follows. For each AF , each system gets a score of 1/(1+ log10(T/T ∗)), where
T is its execution time and T ∗ the best execution time among the compared

17Solvers have been retrieved in September 2015 from the corresponding websites, provided
in [33].

18http://www.icaps-conference.org/index.php/Main/Competitions

17



systems, or a score of 0 if it fails in that case. Runtimes below 1.0 sec get by
default the maximal score of 1.

The Penalised Average Runtime (PAR score) is a real number which counts
(i) runs that fail to solve the considered problem as ten times the cutoff time
(PAR10) and (ii) runs that succeed as the actual runtime. PAR scores are
commonly used in automated algorithm configuration, algorithm selection, and
portfolio construction[23] because using them allows runtime to be considered
while still placing a strong emphasis on high instance set coverage.

5.2 Comparison with the State of the Art of Abstract Ar-
gumentation Solvers

Table 3: Performance achieved by jArgSemSAT, and the top three participants of
the corresponding ICCMA2015 tracks on preferred semantics. Results are shown
in terms of IPC score (maximum achievable is 192.0), PAR10 and percentages of
success, and ordered according to PAR10. ICCMA15 ranking is also reported.

DC-PR

Solver ICCMA15 Rank IPC score PAR10 % Success

ArgSemSAT 1 164.7 3.2 100.0

LabSATSolver 2 167.9 3.4 100.0

jArgSemSAT 135.4 30.7 100.0

CoQuiAAS 3 186.4 63.6 98.9

DS-PR

Solver ICCMA15 Rank IPC score PAR10 % Success

ArgSemSAT 1 171.2 5.9 100.0

Cegartix 2 161.2 7.9 100.0

LabSATSolver 3 171.0 12.6 100.0

jArgSemSAT 136.9 40.4 100.0

EE-PR

Solver ICCMA15 Rank IPC score PAR10 % Success

Cegartix 1 157.8 15.2 100.0

ArgSemSAT 2 147.7 66.1 99.5

jArgSemSAT 122.7 194.2 97.9

CoQuiAAS 3 172.9 218.2 96.9
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This set of experiments focuses on assessing the performance gap between the
proposed jArgSemSAT, ArgSemSAT and the top three solvers of the ICCMA2015
stable and preferred semantics tracks.

Table 3 shows the results, in terms of IPC score, PAR10 and percentage of
successfully analysed frameworks, of the performed comparison on the preferred
semantics tracks. Results of stable semantics tracks are reported in Table 4.

According to results shown in Table 3 and Table 4, we can safely state that
jArgSemSAT is an off-the-shelf and ready-to-use efficient solver for computation-
ally complex abstract argumentation problems. In terms of AF s successfully
analysed, jArgSemSAT shows performance that are very similar to ArgSemSAT
and to the winner of the considered tracks, though it is slower according to
PAR10 and IPC score. Tables 3 and 4 also allow one to identify the perfor-
mance gain given by the C++ implementation. Admittedly, ArgSemSAT is
faster than jArgSemSAT; however, the performance gap is not critical.

According to the results shown in Tables 3 and 4, jArgSemSAT is comparable
with the state of the art of solvers for abstract argumentation problems. Only
in the DC-ST and DS-PR tracks jArgSemSAT is not among the best three
considered solvers.

5.3 Comparison with the State of the Art of Off-the-Shelf
Solvers

This analysis aims at comparing jArgSemSAT with the only available Java-based,
off-the-shelf solver DoM.

Compared to the existing off-the-shelf implementation, DoM, jArgSemSAT
statistically significantly outperforms19 DoM in both considered EE-σ problems
in terms of runtime (WSRT, p < 0.05), cf. Table 5. It is also noticeable the fact
that DoM is able to successfully analyse a small number of benchmark AF s.
Interestingly, we observed that DoM is the only system—among considered—
that does not show a statistically significant difference (WSRT, p = 0.90) in the
CPU-time required for enumerating stable and preferred extensions of a given
AF . Moreover, it is worth noting that DoM demonstrated to be very sensitive to
the structure of the AF s to solve. Specifically, it did not solve—with respect to
the considered enumeration problems—any of the graphs generated by using the
“GroundedGenerator”. Such graphs are characterised by a very large grounded
extension and a large number of nodes.

5.4 Importance of the SAT Solver

This analysis investigates the impact of different SAT solvers on the perfor-
mance of jArgSemSAT. Specifically, we considered the Java-based SAT solver
Sat4j—which guarantees high portability and easy usage— and glucose3.0[1]

19In the following we rely on the Wilcoxon Signed-Rank Test (WSRT) as a paired difference
test to establish statistically significant difference[36].
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Table 4: Performance achieved by jArgSemSAT, ArgSemSAT, and the top three
participants of the corresponding ICCMA2015 tracks on stable semantics. Re-
sults are shown in terms of IPC score (maximum achievable is 192.0), PAR10
and percentages of success, and ordered according to PAR10. ICCMA15 rank-
ing is also reported. The provided ordering and the ICCMA15 ranking differ
for DC-ST, due to close performance and a slightly different hardware configu-
ration; and for DS-ST due to a bugfix.

DC-ST

Solver ICCMA15 Rank IPC score PAR10 % Success

ASPARTIX-D 1 183.2 1.7 100.0

LabSATSolver 3 186.7 1.7 100.0

ArgSemSAT 2 172.5 2.7 100.0

jArgSemSAT 138.1 30.3 100.0

DS-ST

Solver ICCMA15 Rank IPC score PAR10 % Success

ASPARTIX-D 1 173.3 2.6 100.0

ArgSemSAT 7 150.8 11.2 100.0

LabSATSolver 2 138.0 18.6 100.0

jArgSemSAT 125.1 42.0 100.0

CoQuiAAS 3 180.2 65.7 99.0

EE-ST

Solver ICCMA15 Rank IPC score PAR10 % Success

ASPARTIX-D 1 172.6 5.4 100.0

ArgSemSAT 2 144.7 51.3 99.5

jArgSemSAT 122.9 82.9 99.5

CoQuiAAS 3 184.1 135.0 97.9

20



Table 5: Performance achieved by jArgSemSAT and DoM on the correspond-
ing ICCMA2015 tracks. Results are shown in terms of IPC score (maximum
achievable is 192.0), PAR10 and percentages of success. “–” indicates that the
solver does not support the considered problem for the given semantic.

Track IPC score (192.0) PAR10 % Success

jArg DoM jArg DoM jArg DoM

DC-PR 192.0 – 30.7 – 100.0 –

DS-PR 192.0 – 40.4 – 100.0 –

EE-PR 187.7 31.5 194.2 4332.1 97.9 28.1

Track IPC score (192.0) PAR10 % Success

jArg DoM jArg DoM jArg DoM

DC-ST 192.0 – 30.3 – 100.0 –

DS-ST 192.0 – 41.9 – 100.0 –

EE-ST 190.0 31.6 82.9 4331.6 99.5 28.1

that is written in C++. It should be noted that Sat4j can keep the learned con-
straints between two satisfiability checks, in order to exploit the gained knowl-
edge in subsequent calls on very similar CNFs. For the sake of modularity, and
for providing a more objective comparison, this feature is not exploited in the
jArgSemSAT framework.

We are aware that the exploitation of a C++ software can pose some strong
portability issues, mainly due to compilers and libraries, but C++ solvers are
generally believed to be faster than corresponding Java-based systems. There-
fore, here we are interested in measuring such performance gap, in order to
make jArgSemSAT users aware of the importance of the solver. However, it
should be noted that Sat4j has been included in the overall jArgSemSAT frame-
work, while glucose3.0 has to be executed through PIPE communication system
among processes.

For stressing the importance of SAT solvers, thus obtaining a better under-
standing of their impact on jArgSemSAT performance, we considered the em-
pirically most computationally expensive tasks. According to the results shown
in Table 3 and Table 4, the problem of enumerating the preferred extensions
(EE-PR) of a given AF requires the largest amount of CPU-time. This can be
easily derived by the PAR10 scores and the percentage of successfully analysed
AF s by the considered solvers.

Table 6 shows the results of the comparison between jArgSemSAT exploiting
the Java-based Sat4j solver and jArgSemSAT using the C++ glucose3.0 SAT
solver. For the sake of comparison, also the performance of the ArgSemSAT
system are shown. Interestingly, results shown in Table 6 seem to indicate that
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Table 6: Performance achieved by jArgSemSAT exploiting either Sat4j or glu-
cose3.0 on the ICCMA2015 benchmark. For the sake of comparison, also the
performance of ArgSemSAT are provided. Results are shown in terms of IPC
score (maximum achievable is 192.0), percentages of success, percentages of AF s
in which the system has been the fastest and PAR10. Values in bold indicate
the best results.

jArgSemSAT ArgSemSAT

Sat4j glucose3.0

IPC score 151.2 146.0 184.4

% success 97.9 99.5 99.5

% best 13.5 9.9 65.6

PAR10 194.2 81.7 66.1

the use of glucose3.0 does not provide a remarkable performance improvement.
In particular, the exploitation of the external C++ solver has a detrimental
effect on the performance of jArgSemSAT in terms of IPC score and number of
times the approach has been the fastest. However, when a closer look to the
observed performance is taken, an interesting pattern emerges. Surprisingly, the
performance of considered SAT solvers are not directly related to the number
of preferred extensions, i.e. there is no direct relation between the number of
times the solver is called by jArgSemSAT and the runtime. Furthermore, Sat4j
improves the performance of jArgSemSAT on AF s that can be solved in less
than—approximately—50 CPU-time seconds; on more complex AF s, the use
of glucose3.0 is usually beneficial. Mainly because of that, the Wilcoxon test
indicates that the performance of the compared systems are significantly differ-
ent (WSRT, p = 0.01). The ability of glucose3.0 to handle empirically complex
AF s, is confirmed by the fact that the use of glucose3.0 allows jArgSemSAT to
solve, within the given time, a few more AF s from the considered ICCMA2015
benchmark.

6 Conclusion

In this paper we present jArgSemSAT, an efficient off-the-shelf solver for ab-
stract argumentation problems. In the previous sections we give evidence of
how jArgSemSAT not only is compatible with the current off-the-shelf solver,
namely Dung-O-Matic[30], and with the Tweety libraries[32]; not only exists in
a web-service version compatible with ArgTech technologies[8]—and we made
it freely available at http://cicero.cs.cf.ac.uk/jArgSemSATWeb/restapi/

argtech/—; but it is among the best solvers in particular for most of the tracks
of the ICCMA2015 competition associated to the two semantics with highest
computational complexity, namely stable and preferred semantics. As discussed
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in Section 5.4, the choice of the oracle can significantly impact the performance
of a solver. This is true not only for the proposed jArgSemSAT solver, but also
for competitors. Indeed, as noticed by one of the reviewers, it would be interest-
ing how other systems such as CoQuiAAS would perform with a more powerful
MSS enumerator, such as the one proposed in [29].

Currently, jArgSemSAT is used within CISpaces[35] that has been our main
use-case. CISpaces (Collaborative Intelligence Spaces) is a tool mostly written
in Java—only the GUI is written in Python—to help analysts in acquiring, eval-
uating and interpreting information. Indeed, the aim of intelligence analysis is
to make sense of information that is often conflicting or incomplete, and to weigh
competing hypotheses that may explain a situation. This imposes a high cog-
nitive load on analysts, and there are few automated tools to aid them in their
task. CISpaces assists analysts in reasoning with different types of evidence: an-
alysts are supported in structuring evidence using argumentation schemes, and
in identifying plausible hypotheses via the computation of preferred extensions.

By adopting jArgSemSAT, CISpaces now computes the preferred extensions
of average analysis almost instantaneously: before, using Dung-O-Matic, it re-
quired 60 seconds or more. This was becoming a serious impediment to the
adoption of CISpaces for training new analysts—its main goal—and it was listed
as one of the improvements needed to be addressed before moving the project
towards a commercial transition. After the excellent performance of ArgSemSAT
at ICCMA2015, we decided to re-code it in Java to ease the integration. This
also satisfied the other requirement to make it available as a replacement for
Dung-O-Matic and integrate it within the Tweety libraries—both written in
Java. Finally, it also greatly simplified the task of producing a web-service
interface.

Moreover, jArgSemSAT allows CISpaces to use its probabilistic argumenta-
tion engine in real analysis. Indeed, CIspaces includes a probabilistic argumen-
tation engine[27, 26] that heavily resides on preferred extensions computed on
probabilistic manipulation of AF s. Therefore, the preferred extension enumer-
ation solver needs to be invoked an exponential number of times.

As discussed in Section 3.3 of Li’s work[26], when an argumentation frame-
work is analysed from a probabilistic standpoint, it is necessary to know the se-
mantics extensions of all the possible combinations of sub-graphs. Therefore, for
a simple argumentation framework with two arguments a, and b, this requires to
enumerate the semantics extensions of the frameworks: 〈∅, ∅〉, 〈{a}, ∅〉, 〈{b}, ∅〉,
〈{a,b}, ∅〉, 〈{a,b}, {〈a,b〉}〉, 〈{a,b}, {〈b,a〉}〉, 〈{a,b}, {〈a,b〉, 〈b,a〉}〉, 〈{a}, {〈a,a〉}〉,
〈{a,b}, {〈a,a〉}〉, 〈{a,b}, {〈a,a〉, 〈a,b〉}〉, 〈{a,b}, {〈a,a〉, 〈b,a〉}〉, 〈{a,b}, {〈a,a〉, 〈a,b〉, 〈b,a〉}〉,
〈{b}, {〈b,b〉}〉, 〈{a,b}, {〈b,b〉}〉, 〈{a,b}, {〈b,b〉, 〈a,b〉}〉, 〈{a,b}, {〈b,b〉, 〈b,a〉}〉,
〈{a,b}, {〈b,b〉, 〈a,b〉, 〈b,a〉}〉, 〈{a,b}, {〈a,a〉, 〈b,b〉}〉, 〈{a,b}, {〈a,a〉, 〈b,b〉, 〈a,b〉}〉,
〈{a,b}, {〈a,a〉, 〈b,b〉, 〈b,a〉}〉, 〈{a,b}, {〈a,a〉, 〈b,b〉, 〈a,b〉, 〈b,a〉}〉.

In order to compute the results for those probabilistic approaches, semantics
extensions must be computed exhaustively for all the possible sub-graphs. While
there is some work in the dynamics in abstract argumentation (e.g. [12])
to produce efficient algorithms for reusing partially computed results, possibly
exploiting the concept of Input/Output multipoles[3], efficient algorithms for
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computing such results are surely needed.
In the case of CISpaces, while Dung-O-Matic limited the use of the proba-

bilistic argumentation engine to toy examples of less than ten arguments, and
still requiring between 30-90 seconds, jArgSemSAT makes it available for real
analysis involving up to 50/60 arguments with solutions within 10 seconds.

Therefore, jArgSemSAT has positively contributed to push the research grade
prototype CISpaces towards a plan for transitioning into a commercial product.
Indeed, jArgSemSAT helped CISpaces to receive positive qualitative feedback
from trained analysts chosen to evaluate it.

The future of jArgSemSAT, in our view, lays in supporting all the research
community to build and exploit argumentation-based tools. That is the reason
that motivated us in providing a free-of-charge, but clearly with best-effort only
SLA, web-service interface to jArgSemSAT. From a technical perspective, we
need to ultimate the technical documentation and we plan to include support
for the remaining semantics, notably semi-stable[10]—that is already supported
in an experimental, non-optimised version.

We will also create a web-based interface for goal-driven manipulation and
evaluation ofAF s. Currently, most of the web-based interfaces to argumentation
tools, e.g. OVA20, TOAST21, Aspartix22, Conarg23, allow a user first to prepare
an argumentation knowledge base, and then to run a solver on it. However, they
do not provide “versioning” support: a user needs to manually keep track of the
correspondence between its action on the knowledge base and the effects on the
computed extensions. Moreover, they do not provide “strategical” support: a
user aiming at having a specific argument accepted has no guidance on how to
achieve such a goal. The tool we plan to build will prove itself very useful for
researchers on dynamics and argumentation[28, 6, 3] and more broadly for the
entire argumentation community.
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Table 7: Performance achieved by jArgSemSAT, ArgSemSAT, and the top three
participants of the corresponding ICCMA2015 tracks on complete extensions.
Results are shown in terms of IPC score (maximum achievable is 192.0), PAR10
and percentages of success, and ordered according to PAR10. ICCMA15 ranking
is also reported.

DC-CO

Solver ICCMA15 Rank IPC score PAR10 % Success

ArgSemSAT 1 179.0 2.5 100.0

LabSATSolver 3 182.0 2.8 100.0

ASPARTIX-D 2 171.2 3.1 100.0

jArgSemSAT 145.6 15.5 100.0

DS-CO

Solver ICCMA15 Rank IPC score PAR10 % Success

LabSATSolver 2 179.8 1.1 100.0

ASGL 1 191.5 2.3 100.0

ConArg 3 169.1 3.9 100.0

ArgSemSAT 4 161.0 4.5 100.0

jArgSemSAT 148.6 14.5 100.0

EE-CO

Solver ICCMA15 Rank IPC score PAR10 % Success

ASPARTIX-D 1 175.8 8.0 100.0

CoQuiAAS 3 181.3 46.1 99.4

jArgSemSAT 114.6 215.7 97.4

ArgSemSAT 2 131.2 254.0 96.4
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Table 8: Performance achieved by jArgSemSAT and DoM on the correspond-
ing ICCMA2015 tracks. Results are shown in terms of IPC score (maximum
achievable is 192.0), PAR10 and percentages of success. “–” indicates that the
solver does not support the considered problem for the given semantic.

Track IPC score (192.0) PAR10 % Success

jArg DoM jArg DoM jArg DoM

DC-CO 192.0 – 15.5 – 100.0 –

DS-CO 192.0 – 14.5 – 100.0 –

EE-CO 180.1 39.3 215.7 4325.0 97.4 28.1
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