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Abstract

Outlier detection is one of the most important data analytics tasks and is used in numerous 

applications and domains. The goal of outlier detection is to find abnormal entities that are 

significantly different from the remaining data. Often the underlying data is distributed across 

different organizations. If outlier detection is done locally, the results obtained are not as accurate 

as when outlier detection is done collaboratively over the combined data. However, the data cannot 

be easily integrated into a single database due to privacy and legal concerns. In this paper, we 

address precisely this problem. We first define privacy in the context of collaborative outlier 

detection. We then develop a novel method to find outliers from both horizontally partitioned and 

vertically partitioned categorical data in a privacy-preserving manner. Our method is based on a 

scalable outlier detection technique that uses attribute value frequencies. We provide an end-to-end 

privacy guarantee by using the differential privacy model and secure multiparty computation 

techniques. Experiments on real data show that our proposed technique is both effective and 

efficient.
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1. Introduction

Today, data is continuously collected across all facets of our life. As such, data regarding a 

single entity may be collected by many different organizations. For example, in the health 

care domain, the relevant parts of the electronic health record of a patient can be found at 

multiple different sites, such as different healthcare facilities, lab sites, pharmacies, etc. 
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visited by the patient. Similarly, different sites may collect very similar data regarding 

different entities. As above, in the health care domain, different medical centers and 

hospitals will typically collect the same kinds of data, but only of the patients visiting them. 

In either case, the data is clearly distributed across multiple different sites. While this data 

can be locally analyzed, the results of local analysis may not provide complete insight. 

Indeed, the potential of big data can only be realized with appropriate analytics, carried out 

over global data. However, this data cannot be easily integrated into a single database due to 

privacy and security constraints. Privacy preserving data analysis34,2 studies the problem of 

how to carry out data analysis when the underlying data is distributed between multiple 

organizations. While solutions have been developed for several different analytics tasks, one 

of the most fundamental tasks, outlier analysis3, has not as yet received much attention.

Outlier detection is a key data analytics task, and has numerous applications such as fraud 

detection in finance, terrorist identification in homeland security, and even hotspot 

identification in climate science. As such, many different outlier detection techniques have 

been developed in the literature3. However, all of these techniques assume that all of the data 

is centrally available, and do not worry about data privacy. Therefore, they automatically 

assume that the underlying data being analyzed is the complete global dataset.

As noted above, analytics carried out over local data can often be inaccurate. A simple 

example (Figure 1) suffices to show this specifically in the case of outlier detection. Figure 

1(a) shows two dimensional data collected at two different sites, where each site collects 

data for the same set of entities, but only collects one dimension of the data. This is also 

known as vertical data partitioning and is quite commonly found in the real world (for 

example, in the first electronic healthcare record example discussed earlier). Note that in this 

case, the outliers cannot be identified from any one dimension, and therefore neither site 

locally can find the outliers. Figure 1(b) shows two dimensional data collected at three 

different sites. Each site collects the same two data features, but the entities regarding which 

the information is collected are different. This is also known as horizontal data partitioning 

and is quite commonly found in the real world (for example, in the second electronic 

healthcare record example discussed earlier). Note that in this case FO1 shows up as an 

outlier when seen only in the context of Site 2’s data, but turns out to not be an outlier when 

seen in the context of the whole data. Similarly, while the true outliers TO1 and TO2 can be 

locally found as outliers, if we would like to identify the top-k outliers globally, then their 

prioritization may differ since the degree of outlyingness needs to be computed in the 

context of the global data. This shows that while outliers can be locally mined, mining of the 

global data is necessary to ensure an accurate set of results.

While there has been some work that looks at privacy-preserving outlier detection31, it still 

does not provide end-to-end privacy in terms of both privacy of the computation as well 

privacy implicit in the results. Furthermore, these techniques are not very efficient and do 

not really scale to large scale datasets. In this article, we seek to fill precisely this void. 

Specifically, we aim to develop a methodology for outlier detection that provides a complete 

guarantee of privacy both in terms of the results as well as in terms of the computation. 

Furthermore, the proposed approach should be scalable with respect to the number of 

records as well as the number of attributes in the dataset, and effective in preserving utility. 
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To accomplish this, we make use of a base technique for outlier detection that uses attribute 

value frequencies to estimate the degree of outlyingness. As such, the technique really works 

only for categorical data, though it can be extended to work for numeric data as well, if 

proper discretization is used. The underlying assumption of this technique is that an outlier 

would have rare values for the majority of attributes. While this assumption limits the kinds 

of outliers that are detected, it does apply in many real life situations.

The key contributions made by this paper are as follows:

• We formalize the notion of differentially private outlier detection.

• We develop an effective solution for both horizontally and vertically partitioned 

data that is highly scalable that is, the communication and computational 

complexity is linear with respect to number of data points in the database or the 

number of attribute values.

• We develop several interesting primitives that may be useful in other privacy-

preserving data analytics tasks.

- MULTIPARTY_BP: An extension of Blind and Permute protocol 26 from 

two parties to multiple parties.

- MULTIPARTY_SELECT: A secure protocol that selects k smallest 

elements securely from the elements of three or more parties.

The rest of the paper is organized as follows: Section 2 presents some of the preliminaries 

underlying our definitions and approach. Section 3 formalizes the notion of differentially 

private outlier detection. Section 4 discusses how outliers can be privately mined if the data 

is centralized. Section 5 develops the privacy-preserving protocol for data that is horizontally 

partitioned, while Section 6 presents the protocol for vertically partitioned data. Section 7 

discusses the complexity of the approach, while Section 8 presents the security analysis. The 

experimental results on real data are discussed in Section 9. Section 10 overviews the related 

work while Section 11 concludes the paper and discusses future work.

2. Preliminaries

Before we present the details of our protocols, we give an overview of some primitives and 

definitions on which we rely for our construction.

Differential Privacy:

Our privacy definition requires output of each party to be differentially private. Differential 

privacy, which provides privacy through a randomized mechanism, is a de facto privacy 

measure since its inception. It provides a formal and quantifiable privacy guarantee to the 

individuals in a database irrespective of the adversary’s background knowledge and 

available computational power.

In differential privacy9, a randomized algorithm is considered to be differentially private if 

for any pair of neighboring databases, the probability of generating the same output, is 

within a small multiple of each other, for the entire output space9. Thus, for any two 
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databases which are close to one another, the output of a differentially private algorithm will 

approximately be the same. We use the following definition of differential privacy from9.

Definition 2.1. (Differential Privacy)—A randomized algorithm ℳ with domain ℕ 𝒳  is 

(ε,δ)-differentially private if ∀𝒮 ⊆ Range(ℳ) and ∀x, y ∈ ℕ|𝒳| such that ||x − y||1 ≤ 1:

Pr[ℳ(x) ∈ 𝒮] ≤ exp(ε)Pr[ℳ(y) ∈ 𝒮] + δ

Note that in the definition above, ε bounds the increase in privacy risk due to the output 

divergence for two neighboring databases, whereas δ relaxes the requirement that an 

observed output is (almost) equally likely to be observed on every neighboring database, 

simultaneously. Thus, lower values of ε and δ provide higher privacy. In specific, when δ = 

0, definition 2.1 implies that a randomized mechanism, ℳ that is (ε,0)-differentially private, 

the outcome of ℳ for neighboring databases x and y that differ by at most one record, can 

diverge by ε at the maximum. Divergence for two distribution A and B is defined as

D∞(A‖B) = maxT ⊂ 𝒴ln Pr[A ∈ T]
Pr[B ∈ T] = maxy ∈ 𝒴ln Pr[A = y]

Pr[B = y]

We use Laplace Mechanism9 as the randomized mechanism to achieve differential privacy, 

because it is well suited for count queries. Laplace Mechanism, ℒ, which provides (ε,0)-

differential privacy for a function f :ℕ|𝒳| ℝk, as defined in9 is

ℒ(x, f ( . ), ε) = f (x) + Y1, Y2, …, Yk

where Yi ∀i ∈ [k] is independently chosen from Laplace distribution of mean zero and 

variance 2 × Δ f
ε

2
, represented as Lap Δ f

ε . Since we deal with count queries, f (x) ∈ ℕk

instead of ℝk. Hence, to each coordinate i of f(x) we add Y i  instead of Yi. Δf here 

represents the sensitivity of function f; it measures the extent to which a single record can 

affect the output of f in worst case. The sensitivity for count queries is usually measured 

through ℓ1-distance; the definition of ℓ1-sensitivity follows:

Δ f = max
x, y ∈ ℕ χ

x − y 1 = 1

‖ f (x) − f (y)‖1 (2.1)

Secure Two/Multi Party Computation—We employ secure multi party computation 

(SMC) to preserve privacy of data at organizational level, which is also known as 

computational privacy. Basically, SMC base protocols are employed to ensures that no 

information other than the specified output and auxiliary information as per protocol 

specification is reveled to the parties during execution of the protocol computing a function.
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The security of an SMC protocol Π is evaluated through simulation based strategy, where we 

compare the information leakage of the protocol to that the leakage in ideal model, where a 

trusted party is available for computation. Generally speaking, if an adversary in the ideal 

paradigm can simulate the same view as of the adversary in the real execution of the 

protocol Π then Π is considered secure.

Ideal Paradigm:

All the parties P1,…,Pn send their inputs x1,…,xn to a fully trusted third party 𝒯, who 

computes function g, and sends back to each party Pl its output gl. If a party Pl has no output 

then 𝒯 sends gl = ⊥ to Pl. Let 𝒮l be a probabilistic polynomial time (PPT) adversary 

controlling a party Pl and having access to auxiliary its input γl and the output of Pl then we 

represent it view as IDEALg, 𝒮l
x1, …, xn, k .

Real Paradigm:

All parties P1,…,Pn execute the protocol Π to compute g with their respective inputs x1,

…,xn. At the end of the protocol each party Pl gets gl, its output. If 𝒜l is a PPT adversary 

controlling Pl, and has access to the auxiliary input γl and output of Pl then we represent its 

view in real execution as REALΠ, 𝒜l
x1, …xn, k .

Definition 2.2. (Security)—Let g and Π be as defined above. ∀l ∈ [n] for every xl ∈ ℕ|𝒳|, 
Π securely computes g in the presence of static semi-honest adversary only if for all l ∈ [n] 

every probabilistic polynomial (PPT) adversary 𝒜l in real paradigm there exists a PPT 

adversary 𝒮l in ideal paradigm such that

REALΠ, 𝒜l
x1, …, xn, k ≡c  IDEALg, 𝒮l

x1, …, xn, k

Garbled Circuit:

Garbled circuit, as proposed by Andrew Yao37, is used to compute any function f : {0,1}* 

→ {0,1}* securely in the presence of semi-honest adversary. In general, for large input sizes 

garbled circuit has a comparatively large overhead; therefore, we use customized protocols 

to solve such problems. However, garbled circuits are still used in our protocol as a sub-

routine for comparison purposes, since they are quite efficient for this task.

Additive Homomorphic Encryption:

Additive homomorphic encryption (AHE) such as Paillier25 is a very useful cryptographic 

primitive. It is a public key encryption scheme that allows for addition of two messages in 

encrypted form. pk and sk are public and private keys of AHE for security parameter s, 

while P(s) is the corresponding plain-text domain. Encryption and decryption procedure for 

m ∈ P(s) are represented as c = Epk[m] and Dsk[c] = m respectively. Because of the additive 

homomorphism Epk[m1] × Epk[m2] = Epk[m1 + m2] for m1,m2 ∈ P(s). It simply follows that 
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any a ∈ P(s) can be multiplied with Epk[m] since it is just repeated addition i.e., Epk[m]a = 

Epk[a × m].

Secure Sum:

This protocol computes the sum v = ∑l ∈ [n]vl, where party Pl – which is static and semi-

honest in its adversarial behavior – has the value vl, without revealing individual values of 

the parties8. The idea here is quite simple. First, all parties agree on a security parameter 

b ∈ ℕ such that v ∈ [0,2b] for all values of vl, ∀l ∈ [n]. Second, one party, let us say P1, 

picks r uniformly from [0,2b], we would represent this as r ← [0,2b], and set v = r. Third, 

each party Pl, starting from P1, sets v = (v+vl) mod (2b+1) and sends v to Pl+1 until v reaches 

Pn; in the same fashion as above, Pn also updates v based on its input and sends the updated 

v to P1. Lastly, P1 computes (v + (−r)) mod (2b + 1), where −r = 2b + 1 − r is the additive 

inverse of r; this gives the desired sum. To improve legibility, we omit the mod in the 

following text, however, the actual computation is always done by using modular arithmetic.

3. Defining Private Outlier Detection

In this paper we solve the problem of outlier detection in privacy preserving manner, where 

the data is horizontally or vertically partitioned among participating parties. Horizontal 

partitioning of data, as per description in work by Vaidya et al.34, implies that various parties 

collect same information on different entities. Thus, each record (or row) in the database 

which contains the complete information for a single individual belongs to only one party. In 

case of vertical partition, parties collect different information (features/attributes) on same 

set of individuals. Horizontal and vertical partitions are the two standard models for data 

partition. We focus on outlier detection for categorical data, where usually distance based 

outlier detection techniques fail to work. At a high level, we can informally define the 

problem at hand as follows:

Definition 3.1. (Problem Statement)

A database x is horizontally or vertically partitioned as x1,…,xn among multiple parties, 

P1,P2,…,Pn. The parties want to find the outliers in global database x, while preserving 

privacy of their data.

We now formalize the model assumptions and the notion of privacy.

Model Assumptions: We assume the existence of secure communication channels among 

the parties. Parties are modeled as semi-honest adversaries – such parties will honestly 

follow the protocol, but will try to obtain extra information (not allowed by the privacy 

definition) based on their intermediate messages. Parties involved in the protocols are also 

assumed to be non-colluding in nature, meaning they will not share any information which 

they are not explicitly instructed to share with other parties. Additionally, adversarial 

behavior of the parties is static, that is, the behavior of each party will be fixed before the 

protocol commences. These are standard assumptions in the literature and fit many real life 

situations.
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Considering the above assumptions, we can informally define privacy as follows:

Definition 3.2. (Privacy)

A protocol Π in presence of static semi-honest adversaries computes outliers in privacy 

preserving manner as long as:

1. no party obtains any information except for its output, as per the protocol 

specification, with probability greater than negligible function, which is smaller 

than any inverse polynomial in security parameter.

2. the output each party receives is differentially private.

There are many algorithms19,13,15,14,24 to perform outlier detection for categorical or mixed 

attributes in the data. However, we focus on an attribute value frequency (AVF) based 

approach19, since it has several advantageous features such as being highly efficient and 

scalable, while providing comparable accuracy to other state of the art algorithms. 

Furthermore, AVF based algorithm can be naturally implemented in a distributed fashion, a 

desirable trait in our problem setting; thus it gives good performance even when the data is 

distributed among different parties. These qualities make AVF based algorithm suitable for 

computing outliers in our distributed setting, where privacy of individuals and parties is to be 

preserved without significantly impacting efficiency.

The AVF based outlier detection is based on the premise that any point/record which is 

uncommon in terms of all of its attribute values should be considered an outlier. In other 

words, an entity is likely to be an outlier if it has infrequent attribute values for all of its 

attributes. This idea is central to many outlier detection technique such as density based 

outlier detection11, where areas of different relative density are considered outliers.

Koufako et al., in19, measure the rareness of a particular value of an attribute by computing 

the frequency of this attribute value i.e., the number of times this value occurs in the 

database. We refer to this value as the count frequency. Based on count frequency for each of 

the attribute value of a record, the attribute value frequency score (AVFS) is computed, 

which is employed by the algorithm in19 to find outliers in the data.

We now formalize the above mentioned notions for AVF based outlier detection. Let each 

record in the database belong to 𝒳 = ∏ j ∈ [M] A j, where Aj = {vj,1,vj,2,…,vj,Mj} is the set of 

possible values jth attribute can take and M j, M ∈ ℕ. The database x is represented as a 

histogram, that is x ∈ ℕ|𝒳| and ||x||1 = N, where each xi represents the number of records of 

type i ∈ 𝒳 in x. If we let fj,l(x) to be the count frequency for the attribute vj,l (for j ∈ [M] and 

l ∈ [Mj]) in database x then AVFS score of any record r in database x that has a type i ∈ 𝒳, 

can be defined as follows:

AVFS(i, f (x)) = ∑
j = 1

M
f j, i j

(x)

here (j,ij) corresponds to the value, v j, i j
, of jth attribute in type i (or record r) for ij ∈ [Mj].
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For a database, AVF score measures the rareness of a record in terms of its attribute values; 

thus, the smaller AVF score is for a record, the more likely it is for the record to be an 

outlier. Now, the AVF based algorithm, as outlined in19, is simple: the AVF score for every 

record is calculated and the k records with the smallest AVF scores are considered as 

potential outliers. Here k is a parameter that can be set by the user to retrieve the top-k 

outliers. We can now give the definition for AVF based outliers.

Definition 3.3. (AVF based Outliers)

For a database x ∈ ℕ|𝒳|, and k ∈ ℕ such that k ≤ ||x||1, a set S ⊆ x, such that |S| = k, is the set 

of outliers if and only if for each record in S, its attribute value frequency score is not greater 

than any record not in S.

We now look at how differential privacy can be applied in mining AVF based outliers. Let 

f :ℕ 𝒳 ℕm, where m = ∑j∈[M] |Aj|. For x ∈ ℕ|𝒳|,

f (x) = f 1, 1(x), …, f 1, M1
(x), …, f (x)M, 1, …, f (x)M, MM

(3.2)

where f(x)j,l is the count frequency of the value, vj,l, of jth attribute. Hence, f essentially 

returns an m-dimensional vector containing individual count frequencies for all the values of 

all the attributes in x.

If we make the output of f differentially private through ε-differentially private laplace 

mechanism, ℒ, then computing outliers can be considered as post-processing; hence the 

output would provide the same level of privacy. The first requirement in designing ℒ is to 

establish the sensitivity of f, given by equation-2.1. We claim that ℓ1 sensitivity for f (which 

is defined in Equation 3.2) is M i.e. Δf = M, proof for the claim follows.

Proof. For two neighboring databases x, y ∈ ℕ 𝒳 , where 𝒳 = ∏ j = 1
M A j, ‖x − y‖1 ≤ 1, and f, 

as defined in equation-3.2, ℓ1-distance between f(x) and f(y) can be given as

‖ f (x) − f (y)‖1 = ∑
j = 1

M
∑
l = 1

M j
| f j, l(x) − f j, l(y)| (3.3)

Since ||x − y||1 ≤ 1, there is at most one additional record of one particular type in either x or 

y compared to the other, that is, there exists some type i ∈ 𝒳 such that x
i

− y
i

= 1 (i.e., 

there is exactly one extra record of that type). If we let i = v1, i 1
, v2, i 2

, …, v
M, i M

, where 

v
j, i j

 is the value of jth attribute in type i . It should be clear that the counts of these attribute 

values increase by one due to this additional record. Specifically, ∀j ∈ [M] and i ∈ 𝒳 if 
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j, i j ∈ ℐ = 1, i 1 , 2, i 2 , …, M, i M , f j, i j
(x) − f j, i j

(y) = 1, while f j, i j
(x) − f j, i j

(y) = 0

otherwise.

Let I be the indicator function defined as follows:

I j, i j = 1 if  j, i j ∈ ℐ

0 otherwise 

Thus, we get I j, i j = f j, i j
(x) − f j, i j

(y) . Now, using I, ℓ1-distance of f for any two 

neighboring databases can be rewritten as

∀x, y ∈ ℕ 𝒳
x − y 1 = 1

, ‖ f (x) − f (y)‖1 = ∑
i ∈ 𝒳

∑
j = 1

M

I j, i j = ∑
j = 1

M

∑
i ∈ 𝒳

I j, i j = ∑
j, i j ∈ ℐ

1 max
x, y ∈ ℕ χ

x − y 1 = 1

‖ f x − f y ‖1 = max( ℐ )Δ f = M

Since the sensitivity of the frequency counts is M i.e., Δf = M, we can design ℒ which will 

preserve ε-differential privacy by adding noise from Lap M
ε  to the output of f(x). Once the 

differentially private frequencies f(x) are available, it is simple to calculate the AVF score for 

any record of type i ∈ 𝒳 in the database x; this computational step can be considered as 

post-processing for which differential privacy also provides provable guarantees in term of 

privacy. If post-processing is defined as F : R → R′ for a randomized mechanism 

ℳ:ℕ|𝒳| R, which is (ε,δ)-differentially private, then F ∘ ℳ is also (ε,δ)-differentially 

private9. This indicates that if one has differentially private counts frequencies then they can 

be used to compute differentially private attribute value frequency score that is,

Pr[AVFS(ℒ(x, f , ε))] ≤ exp(ε)Pr[AVFS(ℒ(y, f , ε))]

If we compute AVF based outlier using differentially private count frequencies, we would 

provide differential privacy for individuals in the database.

4. Privacy Preserving AVF based Outlier Detection in Ideal Paradigm

If the parties have access to a fully trusted third party 𝒯 then they can use Algorithm 4.1 to 

find outliers in a privacy preserving and secure fashion. This situation corresponds to the 

ideal paradigm.

In this setting all parties agree on f (function for computing count frequencies), AVF_OLs 

(function for computing AVF based outliers), k (total number of outliers to be found in 
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global database). Each party Pl has inputs xl, the databases fragment, and the auxiliary input 

γl, which provides the following information: n (total number of parties), Aj, ∀j ∈ [M] 

(possible values for each attribute), 𝒳 (space of all possible types or records), and whatever 

information it already has on the parties input.

Algorithm 4.1 gives one way to compute the k AVF based outliers in a differentially private 

manner. All parties send their database fragment to 𝒯 who computes differentially private 

count frequencies and k outliers with respect to the global database x = ∑l∈[n] xl, and sends 

to each party Pl its output AVF_OLsl (i.e., Pl’s outliers in k AVF based outliers) and 

differentially private f(x), that is, all the count frequencies.

The centralized algorithm enables us to solve the problem described in definition 3.1 which 

provides security/privacy as per privacy definition 3.2. This simple setting helps us analyze 

security/privacy and elaborate some of the design choices for the protocols that we make. 

Let us first define is privacy in an ideal paradigm, when performing outlier detection using 

AVF based methodology.

Definition 4.1. (Private Outlier Detection in Ideal Paradigm)

Let ε-f,xl, and AVF_OLsl be as defined above. We say the parties P1,…,Pn, which are static 

and semi-honest, find AVF based outliers securely (or in a privacy preserving manner) in 

ideal paradigm with help of a fully trusted third party only if no party Pl receives any 

information beyond its input – xl and γl -, output - ε-f and AVF_OLsl – and whatever can be 

inferred based on its input and output with probability that is negligible in input size.

A function μ in negligible in s ∈ ℕ if μ(s) < 1
poly(s) , where poly(s) is any polynomial in s.

Note that the above privacy definition does not imply that nothing is learned since if a party 

knew something other than what we explicitly specified then it can be made part of auxiliary 

input γ. Rather, it bounds the information learned through the process of computing outliers 

by employing a fully trusted third party. As such, it is the most appropriate and necessitates 

that no party gains any information on exactly what records other parties have or any notion 

of which (and how many) outliers are owned by any other party, etc. except for the 

information that can be inferred solely based on the party’s input, output and received 

differentially private count frequencies.

The reason we provide each party with differentially private count frequencies ε-f along 

with its output (outliers) that is calculated based on ε-f, is not by accident, but by choice; it 

serves two purposes here. Firstly, if we only release differentially private outliers then the 

amount of noise that we will have to add in order to achieve required privacy level will be 

huge for any reasonable privacy parameter ε. This is due to the fact that in the worst case, 

the sensitivity of such a function is k for two neighboring databases, where we will have 

totally different outliers for two neighbors; as opposed to this, if we release differentially 

private count frequencies then the effect of the added noise to count frequencies to achieve 

differential privacy in outlier detection is not as much. Secondly, compared to releasing only 

the outliers, when we release count frequencies along with outliers, we reveal more 

information, but this helps gain a better accuracy in term of outlier detection, while at the 
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same time it does not constitute a huge information leakage in many cases. Thirdly, this 

choice reduces the number of secure/cryptographic operations needed to find outliers in the 

privacy preserving SMC protocol.

We now give an overview of the Algorithm 4.1. 𝒯, firstly, constructs the global database x, 

which it uses to compute count frequencies – lines 1 and 2. In line, 4 𝒯 samples a vector Y 

of length m (the size of f) from laplace distribution of mean zero and scale M
ε such that for all 

t ∈ [m], Yt is iid, which is then added to the f in line 5 to obtain pf, ε-differentially private 

frequencies. Now, for each record r in x, 𝒯 computes AVFS for r and adds it to a vector. 𝒯
then picks k records corresponding to k smallest AVFS and sends outliers for each party 

along with pf.

5. Private Outlier Detection in Horizontal Fragmentation Case

When the database is partitioned between multiple parties, which collaborate using a 

protocol Π to find the outliers, the protocol can be considered to preserve privacy only if it 

fulfills the following privacy definition:

Algorithm 4.1

POLD_Central

Input: ∀l ∈ [n],  database xl from Pl
Input: ε, k and  f as per agreement of all the parites
Output: Each party Pl receives its outliers and ε − differentially private count frequencies

1: x = ∑l ∈ [n] xl

2: Set pf = f (x) computes count frequecies .
3: Set m to be the size of vector pf.

4: Sample Y from laplace  distribution: YiidLap M
ε

m

5: Set pf = pf + Y

6: Set N = x 1 i.e., the number of records in x .

7: Initialize AVFS, array of size N, to 0, and t = 0.
8: for each record r in x do
9: for each j ∈ [M] do

10: AVFSt AVFSt + pf j, r j
pf j, i j

is differentially private count frequency of v j, i j
.

11: end for
12: Set t = t + 1
13: end for
14: Insert k records in O that corresponds to the smallest values in AVFS; in case
we have more than k such records, we pick krecords randomly.

15: for each record r in O do
16: Send r to all the parties that have r along with pf .
17: end for

ASIF et al. Page 11

Int J Coop Inf Syst. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Definition 5.1. (Privacy for Horizontally Partitioned Data)

A protocol Π that computes AVF based outliers will preserve privacy if every party learns 

only the (ε,0)-differentially private count frequencies and for its records, which (if any) 

should be considered outliers along with any other information that can be derived only from 

this explicitly disclosed information.

In this section we propose POLD_HoF, a differentially private protocol for outlier detection 

for horizontally partitioned database. We suppose that the database x is fragmented 

horizontally into x1,x2,…, xn among parties P1,P2,…,Pn such that xi is owned by the party Pi 

and x = ∑i∈[n] xi. These parties are interested in determining k (global) AVF based outliers in 

x, while preserving privacy of their databases and the individuals in them. Here an 

underlying assumption, which is also quite reasonable, is that all parties know all the 

possible values for all attributes in database. This follows from the fact that all parties collect 

information on the same attributes on different individuals in their respective local databases. 

However, even in the case where this assumption does not hold, each party can add its local 

count frequencies, of the attribute values it has, to compute the final count frequencies. This 

will not affect the correctness of the proposed protocol and will not affect the privacy of the 

protocol as the privacy definition (Definition 5.2) takes this into account. Alternatively, we 

can say all parties are aware of the all types i ∈ 𝒳 = ∏ j = 1
n 𝒜 j, but no party Pi wants to 

reveal types T ⊆ 𝒳 in its database fragment xi to other parties. Thus, for each party Pi, the 

auxiliary information, γi is the same as in ideal paradigm. The parties are also concerned 

about the privacy of individuals in their respective databases; hence they need to employ 

differential privacy to achieve this goal. The privacy definition of the protocol Πh that 

securely computes outliers in horizontal fragmentation case is as follows:

Definition 5.2. (Protocol Privacy)

Let AVFS_OLs, f be as defined above. A protocol Πh securely computes AVF based outliers 

securely for horizontally distributed database among parties such that each party Pi has input 

xi and auxiliary input γi only if for every probabilistic polynomial adversary 𝒜i in real 

model controlling Pi there exits PPT adversary 𝒮i that controls Pi in ideal paradigm such that

REALΠh, 𝒜i
x1, …, xn, k ≡c IDEALAVFS_OLs,𝒮i

x1, …, xn, k

The approach taken in this case is the same as that of Algorithm 4.1; however, with the 

caveat that differentially private frequencies and outliers need to be computed in a 

collaborative fashion. Figure 2 gives an overview of the protocol Πh. First, the parties 

collaboratively find differentially private count frequencies for each attribute value. 

Secondly, each party uses differentially private count frequencies to find AVFS for each of 

its records. Thirdly, each of the party finds its k local outliers i.e., the k records with the 

smallest values of AVFS, which gives the set of candidates for the global outliers, because 

every global outlier must also be a local outlier for some party. However, since no 

information regarding non-outliers should be revealed to other parties, all parties together 

find the k global outliers from this candidate set in a secure and privacy preserving manner.
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In order to calculate AVFS for database x, parties need to know count frequencies f(x), 

which can be calculated by summing up count frequencies f(xi) from all the horizontal 

fragments of x i.e. f (x) = ∑i = 1
n f xi . Thus, once the local count frequencies have been 

computed, the parties can simply use the secure sum protocol to calculate the actual count 

frequency of each value. In the basic secure sum protocol, a random number is used to 

disguise the values before summing and then removed from the sum to give the correct 

result. Although use of secure sum will not reveal the individual count frequencies of the 

parties, it will not protect the privacy of individuals as per the privacy definition 5.1 since 

parties would know the actual count frequencies. Therefore, to make count frequencies ε-

differentially private one of the parties can be instructed to apply ℒ, discrete laplace 

mechanism, to its local count frequencies during the execution of secure sum (as shown in 

expression 5.4); for example, the party P1 can add the laplacian noise (from Lap M
ε ) to its 

local count frequencies, while computing secure sum for each of the local count frequency.

f (x) = ∑
i = 1

n
f xi + Lap M

ε
m

(5.4)

This procedure will make count frequencies ε-differentially private for all the parties except 

for the party who actually added the noise because it can subtract the noise to obtain actual 

count frequency, which will again lead to compromise of privacy. One simple way to avoid 

this attack is to make more than one party add appropriate laplacian noise. Thus to avoid this 

attack will need at least two parties each adding noise from Lap M
ε . If now either of the two 

parties removes their noise, the count frequencies will still be at least ε-differentially private. 

Note that in our case, addition of noise by two parties will be sufficient for providing privacy 

guarantee as per definition 5.1 because we assumed parties to be non-colluding, which is a 

standard assumption in literature, though this can be easily relaxed as well. However, the 

main problem with this approach is degradation in utility (accuracy) since the amount of 

added noise is essentially doubled. In order to solve this problem, without affecting the 

utility beyond what is necessary, we employ a semi-honest and non-colluding party T – e.g., 

it can be a server in the cloud- that will receive the secure sum without the random number, 

add noise from Laplace distribution to the secure sum, and send the noisy secure sum to the 

first party.

Once all the parties have calculated differentially private AVF scores, the next step is to 

identify k-smallest AVF scores and inform each party of their records that are outliers. In 

order to achieve this, the parties should identify their local outliers, that is, the records with 

k-smallest AVFS in each of their horizontal database fragment, xi. Next we need to find the 

global outliers, which will be the records with k-smallest AVFS in x. The global outliers, of 

course, will be among the local outliers of the parties.
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5.1. Two Party Protocols for Secure Retrieval of k-smallest Items

To achieve secure retrieval of of outliers, in case of two parties, we use the following 

protocols to find the items with k-smallest values, which are described in26.

Blind and Permute Protocol (BP from 26): Given a vector S = (s1,…,su), which is kept 

by a party P1, it creates additive random share S′ = s1′ , …, su′  kept by P1 and S′′ = s1′′, …, su′′

kept by P2 such that for each sl in S, sl = sl′ + sl′′ and P2 does not know the original value sl.

Secure Select Protocol (SELECT from26): Given S in additive split form (as described 

above) and k, select k smallest values in S, which are also in additive split form. We make a 

slight change in the original protocol described in26: instead of using garbled circuit to 

compute XOR, we use a comparator garbled circuit, where the secure comparison (a > b) for 

a = a1 + a2 and b = b1 + b2 is evaluated by comparing a1 − b1 > b2 − a2.

It is important to note that for SELECT (from26) to successfully terminate the values in S 
should be unique, but for us this assumption will not be satisfied in most of the cases. We 

solve this problem by selecting α > |S| and multiplying it with each of sl and adding l ∈ {1,

…,|S|} to the product i.e., for each sl, we compute αsl +l. This will achieve uniqueness 

without disturbing the original order of AVFS.

If there are only two parties involved then each party firstly uses BP to create random shares 

of AVFS of its local outliers and then uses SELECT to get global outliers. This will not 

reveal any privacy compromising information since each party gets knowledge of its 

outliers. Of course it will also enable each party to learn the number of outliers in the 

database fragment of the other party because both the parties know k. This information 

leakage cannot be avoided even in ideal paradigm.

5.2. Multi-Party Protocols for Secure Retrieval of k-smallest Items

We now consider the case where there are more than two parties that need to find k items 

with smallest values (or k AVF based outliers). In this case the above described scheme will 

not work because running SELECT iteratively between the parties would potentially leak the 

number of items/records of one or more parties included in the k-smallest items to other 

parties. For example, if there are three parties P1, P2, and P3, even though all parties know k, 

if the standard SELECT protocol is used, each party will not only learn how many of its 

outliers are in the global output, but also how many of each of the other parties’ local 

outliers are present in the global output. To circumvent this and many other problems that 

such a naive strategy presents, we propose a multiparty blind and permute protocol and a 

multiparty select protocol.

Multiparty Blind & Permute Protocol (MULTIPARTY BP): Similar to BP, the aim of 

this protocol is also to create random shares of vector S, where S = (S1,…,Sn) with 

Sl = s1
l , …, sk

l  that is kept by the party Pl ∀l ∈ {1,…,n} with n ≥ 3, and distribute them 

between two parties in such a fashion that no party knows either the actual value or the 
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ownership i.e., which value belongs to whom. Algorithm 5.1 presents the detail for this 

protocol.

Algorithm 5.1

MULTIPARTY_BP

Input: Vectors of values and their IDs, Sl = s1
l , …, sk

l  and Il = i1
l , …, ik

l

respectively, by each party Pi
Output: P1 and P2 each gets blinded and permuted random shares of S =

(S1, …, Sn) and I = (I1, …, In)

1: P1 generates public − private key pair (pk, sk) for AHE and sends it to all the parties

2: for each party Pl do
3: generate skl secret key for private key encryption

4: sendEpk Sl and Eskl
Il  to Pn

5: end for
6: Pn performs following steps:

7: Sets E[S] = Epk S1 , …, Epk Sn

8: Sets E[I] = Esk1
I1 , …, Eskn

In

9: Randomly and additively splits S into S′ and S″
10: Randomly and additively splits E[I] into E[I]′ and E[I]″
11: Picks a random permutation, π
12: Sends π E S′ and π E[I]′ to P1
13: Sends π S″ and π E[I]″ to P2

We wish to split all the values in S, coming from n parties, between the two parties (P1 and 

P2). In order to get all values in one place without compromising security we use additive 

homomorphic encryption (AHE). P1 generates public-private key pair (pk,sk) of AHE and 

sends the public key, pk, to all the parties – the reason we choose AHE is to allow any party 

with access to public key pk to randomly and additively split an encrypted value Epk s j
l . 

Each party Pl is assumed to have a vector Sl = s1
l , …, sk

l  that contains values to be blinded, 

permuted and distributed between P1 and P2. Pl also has a vector Il = i1
l , …, ik

l  of IDs for the 

values in Sl such that i j
l  is the ID of value s j

l  for j ∈ {1,…,k}. All the values and IDs by all 

the parties are to be sent to Pn so that it can create S and I, perform a random permutation on 

them and create random shares of both S and I. Random shares of S and I will be distributed 

between P1 (who will get encrypted random shares) and P2 (who will get random shares in 

plain-text). Once Pn receives all the encrypted values (i.e. Epk[Sl] ∀l ∈ {1,…,n}) and their 

IDs Il from all the parties, it puts them together as E[S] = Epk s1
1 , …, Epk sk

n  and I = (I1,

…,In). Since Pn has access to E[S] and pk it can create random additive splits E[S′] and S″ 
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of E[S], where E S′ = Epk s1
1 − r1 , …, Epk sk

n − rkn , S′′ = r1, …, rk × n  and rj∀j ∈ {1,…,kn} 

is a uniformly and independently picked random number. Pn creates random shares I′ and I
″ of I in a similar manner as well. Next, Pn picks a random permutation π and sends π(E[S
′]) and π(I′) to P1, and π(S″) and π(I″) to P2. The use of same random permutation π for 

both the vectors is essential to preserve the correspondence between values of S and their 

IDs in I. After receiving E[S′], P1 decrypts it to obtain S′.

Algorithm 5.2

MULTIPARTY_SELECT

Input: k; Random shares of elements (in S) and IDs (in I) with P1 and P2.

Output: Each party gets informed of its elements in S which are among the k
smallest elements.

1: P1 and P2 follow the protocol SELECT to find k smallest elements in S .

2: P2 sends its random share of encrypted IDs corresponding to k smallest elements to P1 .

3: P1 obtains IDs, Ik, of k smallest elements by adding corresponding random shares of IDs .

4: for each l ∈ [n] do
5: if Ik contains Pl′s IDs then
6: Identify the elements in S corresponding to Pl′s IDs .

7: Replace all Pl′s IDs in Ik with a randomly picked ID not in Ik .
8: end if
9: Send Ik to Pl + 1 Pn + 1 is null

10: end for

Secure Multiparty Select Protocol (MULTIPARTY_SELECT): We now describe the 

secure protocol for selecting k smallest elements from the set S, which has been blinded and 

permuted by MULTIPARTY_BP i.e., two static semi-honest parties have additive random 

shares of S and the IDs, I, of elements in S such that one party has S′ and I′, while the other 

party has S″ and I″, where S = S′ +S″ and I = I′ +I″. The elements in S belong to 

multiple parties (n ≥ 3), but each element in S only belongs to one of the participating 

parties. The protocol assumes that no two parties have the same value for their IDs and 

domain for IDs is “large” (we will elaborate the need for such a requirement in description 

of the protocol below); however, fulfilling these requirements is quite easy.

Here the main security requirement, which was not being fulfilled by the previous protocol, 

is to find k smallest elements from blinded and permuted S in such a manner that for each 

party Pl, the protocol reveals nothing but the IDs of elements that belong to Pl and are 

among the k smallest elements. Additionally, if a party does not have any elements in the set 

of k smallest elements then it should not get any information except that none of its elements 

in S are included in the k smallest elements.
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There are two main problems to be solved here (i) identify k smallest elements, (ii) inform 

each party only of its outliers, while making sure that no party gains any extra information. 

This is done as follows. P1 and P2 together can execute SELECT and identify random shares 

corresponding to the k smallest elements. After this P2 sends the random shares of IDs 

corresponding to k smallest elements to P1. P1 can easily obtain the actual IDs, Ik, of k 
smallest elements by adding corresponding random shares. Now for each ID in Ik that is 

same as that of the ID of P1’s element in S, P1 replaces this ID in Ik with a randomly picked 

element from ID’s domain. This is done in order to stop other parties from learning the 

number of IDs belonging to P1. P1 then sends this updated Ik to the next party (P2), where it 

also follows the same steps followed by its predecessor. Note that when picking random 

numbers to add to Ik, each party needs to make sure that the random number picked should 

not be equal to any of the IDs already existing in Ik. Eventually, the updated Ik reaches Pn, 

which can finds its IDs belong to the k smallest elements, and conclude the protocol.

Note that we need IDs to be unique so that no party mistakes someone else’s IDs as their 

own, whereas requirement for large domain for IDs is to make sure that chosen random 

number are not same as one of the IDs in I, but not in Ik.

5.3. Secure Protocol for AVF based Outlier Detection

Now that we have the sub-protocols needed for our construction, we can finally specify the 

complete protocol for private outlier detection in case of horizontal fragmentation (POLD 

HoF) to compute the k attribute frequency based outliers. First, parties collaboratively 

calculate differentially private count frequencies, using which each party Pl computes AVFS 

for all of its records in xl. Second, each party Pl finds k local outliers, the records with k 
smallest AVFS in xl and stores these AVFS in Sl. To generate ID for each value in Sl, Pl 

samples a random number uniformly from [u] for u ∈ ℕ and stores it in Il. We choose u to be 

large enough to make collision probability (the probability for two randomly picked IDs to 

be the same) is negligible in kn.

The next step is to make all locally smallest AVFS and their IDs unique because the 

protocol, MULTIPARTY_SELECT, which is used for selecting globally k smallest AVFS 

securely, works correctly only if the values are unique. To achieve uniqueness property each 

party Pl makes its AVFS (s j
l ) in Sl and IDs unique using similar procedure as described 

earlier except for one change that now Pl will add (j−1)×n+l to the scaled s j
l  or ID instead of 

j i.e., αs j
l + ( j − 1) × n + l with α > n, where n is total number of parties (we assume the 

values in Sl are in ascending order). The rationale behind using this specific perturbation and 

order is to make sure that if an outlier record is kept by more than one party, where at least 

one party has more than one such row, then all parties owning this outlier should get it as 

long as the number of such parties are less than targeted number of outliers that is k. For 

example, consider the following scenario, where k = n = 3 and a type i ∈ 𝒳 such
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Algorithm 5.3
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POLD_HoF

Input: Δ f
ε and k at Pl ∀l; n, total number of parties; m, size of f ; b1; b2 and b3,

security parameters.
Output: ∀l ∈ [n],  Pl receives ε‐differentially private count frequencies and IDs for

the records in xl that are outliers in the global database .

1: P1 picks ℛ uniformly from 0, 2
b1 m

and sets pf = ℛ .

2: for each party Pl do
3: if Pl ≠ Pn then

4: Send pf = pf + f xl  to P(l + 1) .

5: else
6: Send pf = pf + f xl to T , a third party .
7: end if
8: end for

9: T sends pf = pf + Y to P1, where Y Lap M
ε

m
.

10: P1 receives pf and sets pf = pf − ℛ .

11: P1 send pf to all the parties except for Pn + 1 .

12: for each party Pl do
13: Set t = 0.

14: for each i ∈ 𝒳 s.t. xi
l > 0 do

15: Set AVFSt
l = 0.

16: for each attribute j in [M] do

17: Set AVFSt
l = AVFSt

l + pf j, i j
j, i j corresponds to the value of attribute j in i .

18: end for
19: ∀ p ∈ xi

l − 1 , Set AVFSt + p
l = AVFSt

l .

20: Set t = t + xi
l .

21: end for
22: end for
23: for each party Pl do

24: Find k smallest AVFS in AVFSl, store them in Sl and their randomly generated

IDs in Il such that for all t, t′ ∈ ‖xl‖1 , st
l and st′

l in Sl, t > t′ st
l ≥ st′

l .

25: Make values in Sl and Il unique st
l = αst

l + n(t − 1) + l

26: end for
27: All parties execute MULTIPARTY_BP with their respective inputs and security
parameter b2 .

28: All parties together execute MULTIPARTY_SELECT with their respective inputs
and security parameter b3 .
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that it has the smallest AVFS globally, also assume that each of three parties has at least 

three record of type i. In this case, if one had achieved uniqueness without being cautious 

then it could have been possible that only one of the parties gets all the outliers. But our 

methodology of achieving uniqueness will make sure that each of the party identifies at least 

one outlier in such a case.

After making AVFS and IDs unique, all parties together execute MULTIPARTY_BP and 

then MULTIPARTY_SELECT. Hence at the end of POLD_HoF, every party will know 

outliers in its database along with ε-differentially private count frequencies. The details are 

specified in Algorithm 5.3.

We would like to stress that the release of differentially private count frequencies in 

horizontally fragmented database not only helps to enhance efficiency and accuracy, but also 

enables parties to update the model individually and find outliers locally based on the 

updated model. Especially, if a party had at least one record that was global outlier then after 

executing POLD_HoF, it has a threshold for AVFS to asses the outlying behavior of records. 

Hence, with new records coming in over time, it can not only update differentially private 

count frequencies, which consequently updates the model, but also determine the outlying 

behavior based on previously established threshold.

6. Private Outlier Detection in Vertical Fragmentation Case

In this section we present a protocol POLD_VeF for private outlier detection in vertically 

fragmented database. In such a setting each party collects different features or attributes on 

the same set of individuals. Thus, we say in vertical fragmentation case 𝒳 = ∏l ∈ [n]𝒳l, and 

only party Pl knows 𝒳l = ∏
j ∈ Ml

A j
l , where A j

l  is the set of all possible values of jth 

attribute in Pl’s database fragment xl ∈ ℕ
𝒳l, and Ml is the total number of attributes that Pl 

has. We represent i = i1, …, il, …, in ∈ 𝒳 for il ∈ 𝒳l, ∀l ∈ [n]. We assume that there exist 

global record identifiers, which give a unique id to each of the local records in each of the 

database fragment such that the ids for each records in all database fragments corresponding 

to one global record are the same (i.e., we assume that record linkage is not a problem). Let 

ℐ be the collection of such identities for all the records in the database. Thus we can have 

function φ that computes the global database from its vertical fragments and 

φ x1, …, xn, ℐ = x.

Let us now look at how we can compute AVF based outliers in ideal paradigm, when 

database is vertically distributed among multiple parties. Note the privacy here corresponds 
gaining knowledge of the exact value of an attribute for an individual rather than identifying 
the existence of an individual in the database. Consider the following example: if two parties 

want to find average of their salaries without revealing their actual salaries then the identity 

of the parties is already known; therefore, it is the exact amount that is to be protected.
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Ideal Paradigm:

We can use Algorithm 4.1, with couple of modifications to compute outliers, where the 

database is vertically distributed among parties P1,…,Pn such that Pl has vertical fragment xl. 

Each party Pl also has its auxiliary input γl. Following are the changes needed in Algorithm 

4.1:
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Algorithm 6.1

POLD_VeF

Input:Every party has: ε, ℐ, k, n, b1, b2, and b3;

Pl has 𝒳l and xl ∀l ∈ [n]

Output:Every party gets IDs of the k global outliers.
1: for each party Pl do

2: Set pfl = f xl + Lap
Ml
ε

ml
ml = ∑ j ∈ Ml

|A j
l | .

3: end for

4: P1 picks ℛ uniformly from 0, 2
b1 ℐ

i.e., ℛ 0, 2
b1 ℐ

.

5: P1 generates (pk, sk) for AHE (for security parameter b2) .

6:P1 sends Epk[ℛ] and pk to Pn .

7:P1 sets AVFS = − ℛ + (1, …, |ℐ|) .

8:All parties agree on the parameter α > ℐ .
9: for each party Pl for l ∈ [n] do

10: for each global record i1, …, in with id in ℐ do

11: for each j in [Ml] do

12: Set AVFSid = AVFSid + α × pf
j, i j

l
l

j, i j
l corresponds to the  jth attribute′s value in il for global record 

with ID = id .
13: end for
14: end for
15: if l ≠ n then
16: Send AVFS to Pl + 1 .

17: end if
18: end for

19: Pn picks ℛ′ 0, 2
b1 ℐ

and random permutation π .

20: Pn sends Epk π ℛ′ + ℛ to P1 and π AVFS−ℛ′  to P2 .

21: P1 and P2 execute protocol SELECT with their respective inputs π ℛ′ + ℛ and

π AVFS−ℛ′ and security parameter b3 to find indices of k smallest entries in

AVFS.
22: P1 through Pn informs all the parties of all IDs corresponding to k outliers in

global database x.

Input: Each party inputs its vertical fragment of the database along with ℐ, the global record 

identifiers. Line 1: Global database is computed using φ; that is,
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x = φ x1, …, xn, ℐ

Line 14: Send only outlier records to the party: there is no need to send count frequencies.

As for the security definition, the changes are of course in regards to input, output and 

auxiliary input of the parties since once the global database is constructed, the remaining 

procedure is the same: thus, static semi-honest parties securely compute AVF based outliers 

in ideal paradigm only if no party receives information beyond its outliers in global 

database, which are computed using ε-differentially private count frequencies by 𝒯, with 

negligible probability in the input size.

As opposed to horizontal fragmentation case, in this case we do not reveal the count 

frequencies. Revealing count frequencies would only compromise privacy unnecessarily: 

among other things it will reveal to each party the information on the attributes of all other 

parties – in case of horizontal fragmentation, parties already had this knowledge. 

Furthermore, even if the parties are provided with the count frequencies in vertical 

fragmentation case, such information will be useless on its own without the knowledge of 

correspondence of records across database fragments. Therefore, we opt for a strategy where 

count frequencies are kept hidden; this design choice results in a protocol which provides 

higher privacy than the POLD_HoF, but requires cryptographic operations linear in term of 

number of records.

Real Paradigm:

Let x ∈ ℕ𝒳 be vertically fragmented among parties P1,…,Pn with Pl in possession of vertical 

fragment xl and having the auxiliary input γl which is the same as in the ideal paradigm. The 

parties want to compute AVFS OLs, AVF based outliers, such that each party receives 

AVFS_OLsl, id’s of its outliers in global context. It should be noted that in case of vertical 

fragmentation, for all l,l′ ∈ [n], AVFS_OLsl = AVFS_OLsl′. We consider a protocol Πv, 

which computes AVF based outliers in the vertical fragmentation case, to be secure if it 

fulfills the following security/privacy definition.

Definition 6.1. (Privacy for Vertically Partitioned Data)—Let φ, ℐ and 𝒳l∀l ∈ [n] be 

as defined previously. For all x = (x1,…,xn), where xl ∈ 𝒳l, the corresponding ℐ, and 

k < ‖φ x1, …, xn, ℐ ‖1, we say a protocol Πv securely computes AVF based outliers in 

database x in the presence of static semi-honest parties, among whom the database x is 

vertically distributed, if for every PPT adversary 𝒜l(for l ∈ [n]) in real paradigm there exits a 

PPT adversary 𝒮l in ideal paradigm such that

REALΠv, 𝒜i
x1, …, xn, k, ℐ ≡c IDEALAVFS_OLs, 𝒮i

x1, …, xn, k, ℐ .
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We propose protocol POLD_VeF to realize Πv, the details of which are given in Algorithm 

6.1. The overall idea in Algorithm 6.1 is to compute ε-differentially private count 

frequencies (ε-f) without revealing ε-f to any of the party; further, parties compute AVFS 

using ε-f, making sure that AVFS are also kept secret. Finally, the parties identify the 

records with k smallest AVFS without revealing anything else.

First, notice that no collaboration is required to calculate the count frequencies for each 

party. Thus each party Pl can compute count frequencies for its database fragment xl i.e., 

f(xl). Pl can then add laplacian noise from Lap
Ml
ε  to each of the count frequency that is 

pfl = f xl +  Lap
Ml
ε

ml
, where ml = ∑

j ∈ Ml
A j . The scale for laplace noise for party Pl is 

Ml
ε  because Pl has Ml attributes and at the maximum for an individual all the values for Ml 

attributes may change.

Once all the parties have computed differentially private count frequencies for their 

respective attributes, they can employ global record identifiers ℐ to compute AVFS for each 

record, but as per privacy definition 6.1 we cannot release count frequencies to any of the 

parties. We employ secure sum to accomplish this, but the final value is kept split between 

the two parties, let us say P1 and P2.

Next, the parties need to identify the k smallest AVFS: this could have easily been done by 

P1 and P2 through collaboratively executing SELECT protocol on the split AVFS. But this is 

not possible because of the following two restrictions: (i) AVFS are not unique, (ii) SELECT 

would reveal ordering over AVFS to P1 and Pn; thus, some extra processing is needed before 

we can execute SELECT.

In order to make AVFS unique we can follow a procedure similar to the one we used earlier 

in POLD HoF; that is, scale each AVFS, vi, by multiplying with a positive integer α, which 

is greater than the total number of records, and adding a unique positive integer value to it 

i.e., (αvi + i). The details of the procedure can be found in Algorithm 6.1.

In order to stop leakage of the information related to the ordering of AVFS, we make P1 

generate public private key pair (pk,sk) for additive homomorphic encryption, and then send 

its encrypted shares along with pk to Pn. Pn randomizes the received P1’s encrypted shares 

by adding uniformly random numbers to each of the encrypted AVFS of P1; Pn then 

performs a random permutation on the newly generate shares of P1 and send these new 

encrypted shares to P1. Next it updates its shares in accordance with the randomization that 

Pn applied on P1’s encrypted share so that the splits when combined should give the correct 

value for AVFS. Pn then performs the permutation π on its updated random shares, and it 

send them to P2.

P1 and P2 now have random shares of the AVFS without knowing the correspondence 

between the global record IDs and the splits. Both parties together run SELECT protocol to 

identify the splits corresponding to the k smallest values. P1 sends Pn the indices 
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corresponding to the k smallest AVFS values. Since Pn knows the permutation π, it identifies 

the corresponding record IDs and sends them to all the parties; this informs each party of the 

records that are outliers.

This procedure computes AVF based outliers by employing ε-differentially private AVFS. 

As compared to POLD HoF, in this case the over all noise is less; this is due to the fact that 

attributes are divided among multiple parties, who in order to attain differential privacy need 

to add noise with magnitude proportional to the number of attributes each party locally has. 

Since for Ml < M ∀l ∈ [n], the utility should be higher.

7. Complexity Analysis

In this section we discuss the computational and communication complexities of the 

proposed protocols. We first, analyze POLD_HoF, the protocol for outlier detection when 

database is fragmented horizontally among the parties, then we carry out similar analysis for 

POLD_VeF, that detects outliers in vertically fragmented databases. The analysis is 

presented in term of dimensionality and size of the database.

POLD_HoF:

The computational complexity for this protocol grows linearly with respect to the number of 

records (N) in the distributed database x. Computational complexity for each party to 

compute count frequencies is O(MNl) because we just need to count all the values in 

database for each attribute, here M is the number of attributes in database x and Nl is the 

number of records in horizontal fragment xl of x, which is kept by party Pl. Computational 

overhead to make count frequencies differentially private is O(ML), where 

L = max j ∈ [n] 𝒜 j . In most of the real world situations L is not large compared to the size of 

database i.e., the number of records in each of the fragment; it is important to note that in 

high dimensional datasets conventional and basic outlier detection techniques do not work 

well; hence our assumption is quite reasonable. It costs O(MNl) operations to compute 

AVFS for each party Pl. Since at the very least, by our assumption, L < Nl, we can say that 

overall computational cost for computing differentially private AVFS is O(MNl) for party Pl, 

where as the over all computational cost for n parties is O(MN) with N = ∑l∈[n] Nl. In order 

to compute differentially private AVFS each party only transmits and receives O(ML) 

messages.

Once the parties have AVFS for each of their record, each party Pl finds k local outliers with 

computational complexity O(Nl log(k)). This computation requires no collaboration among 

the parties; thus no communication required.

So far we have not employed any (expensive) cryptographic operations; and the only data 

items for which we would require cryptographic operations are the local outliers, which are 

kn in totals. In the context of big data, the size of database x would be immense when 

compared to kn (i.e., kn << N). Therefore, POLD_HoF requires cryptographic operations, 

which are the main cause of slowing down secure/private computation protocols, on a very 

tiny fraction of the database.
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In Algorithm 5.3, to find global outliers from local outliers, firstly the IDs and AVFS are 

made unique that requires O(kn) operations. Parties then collaboratively execute 

MULTIPARTY_BP, which carries O(k) computation and communication overhead per each 

party except for P1,P2 and Pn for which the overhead reaches O(nk); this is the same as 

overall overhead incurred in total on all the parties. In Algorithm 5.2, P1 and P2 take 

O(knlog(k)) to find the k smallest cryptographic operation that is computing comparator 

garbled circuit, the details on communication and computation complexity for garbled 

circuit can be found in37. Next each party, bears a communication and computation overhead 

of O(k) to find its global outliers, which in total amount to O(nk).

The overall asymptomatic computational complexity fo the protocol per party and in total is 

O(ML + MNL + Nl log(k) + knlog(k)) = O((M + log(k))Nl) and O((M + log(k)N)) 

respectively. Whereas the communication complexity is O(ML) for all the parties except for 

P1,P2 and P3; for P1 and P2 it amounts to O(ML+knlog(k)), and for P3 it is O(ML+kn). It is 

apparent that communication and computation complexity is contingent on the number of 

participating parties and the targeted number of outlier; thus our proposed scheme is highly 

scalable.

POLD_Vef:

This protocol has a comparatively simpler analysis. First, all the parties calculate 

differentially private count frequencies for all the attribute values in their database fragment, 

which requires O(MlLl) operation, where Ml is the number of attributes in database fragment 

kept by party Pl and Ll is the maximum number of values Pl has for its attribute. To compute 

AVFS in split form every party Pl bears the computation and communication complexity 

O(MlN) and O(N) respectively. This in total amounts to O(MN) and O(nN) computation and 

communication complexity respectively to compute AVFS in split form.

P1 and P2 need O(k log(N)) communication and computation overhead in computing k-

smallest AVFS i.e., top-k AVF based outliers. Here again for most realistic settings k will be 

really small compared to N; thus the overhead for this computational step will be linear in 

term of total records in the database.

To compute the global outliers from the permuted and re-randomized splits of AVFS, it 

requires O(N log(k)) garbled circuit computation for P1 and P2 and O(k) messages to inform 

the parties of global outliers. Thus overall computational and communicational cost is O((M 
+ log(k)N)) and O((n + log(k))N).

8. Security Analysis

We now present the security analysis for the proposed protocols through modular sequential 

composition (MCS)7. We begin by analyzing POLD HoF for n ≥ 3. Most of the analysis for 

n = 2 is similar to the one presented in26 except for the noise addition for making count 

frequencies differentially private, which is straightforward and directly follows from the 

assumption of non-collusion and semi-trusted nature of the parties. For n ≥ 3, we analyze the 

security of sub-protocols first.
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MULTIPARTY_BP only reveals random shares of permuted vectors to two parties P1 and 

P2, who neither know random shares of the other party nor are they aware of randomly 

picked permutation by Pn. Pn only has access to encrypted AVFS and their randomly 

generated unique IDs. Although Pn does know the order of values in all Si, this does not 

reveal any information due to AHE being semantically secure; Pn will not be able to 

distinguish between an actual Si and a random input. The view of the adversary in real 

paradigm can be simulated by the adversary in ideal paradigm.

MULTIPARTY_SELECT uses garbled circuits for secure comparison. Garbled circuits are 

known to be secure and reveal no information except for the output of comparator circuit38. 

Again the order obtained on the random shares does not expose any extra information to P1 

or P2 as this view is simulatable by the adversary in real paradigm. For any party who gets 

the Ik will obtain no information beyond the IDs of its AVFS that are part of globally k 
smallest AVFS. If parties choose N′ ∈ ℕ for ℤN′, the field from which IDs are picked, such 

that log(N′) > kn then the collision probability that two randomly chosen IDs are the same 

will be approximately 1
2O(kn) , which is exponentially small.

From above and by following Modular Sequential Composition7 it follows that the protocol 

POLD_HoF is secure since all the sub-protocols it uses are secure and the view of each party 

is simulatable by the adversary in the ideal paradigm.

POLD_VeF, Algorithm 6.1, uses secure sum8 to create random shares of all the AVFS, 

wherein Pn receives the random shares of AVFS: one in encrypted form and one in plain-text 

form. Neither of these reveal any information since inferring information from the plain-text 

share is equivalent to breaking the security of the pseudorandom generator used to generate 

the random number added and inferring information from the encrypted share would imply 

breaking semantically secure encryption. Therefore, Pn’s view is simulatable by the 

adversary in ideal paradigm. The same is true for the view of the adversaries controlling P1 

and P2. Achieving uniqueness of AVFS values assures the correct results from SELECT (as 

it only works on unique values). Though SELECT reveals differentially private AVFS based 

ordering on tuples for each party, it does not disclose any extra information that parties 

would not have if differentially private AVFS were provided to them. Finally, the order 

information on the splits between P1 and P2 is just a partial order over random shares: this 

view can be simulated by the adversary in the ideal paradigm; thus the protocol is secure.

9. Experimental Evaluation

We first present the experimental setup and then discuss the results obtained.

9.1 Experimental Setup

We carried out extensive empirical analysis using five real datasets obtained from the UCI 

Machine Learning repository1. The algorithms were implemented in python using the panda 

and numpy framework and experiments conducted on a workstation with an i5 2.5 Ghz 

processor and 6 GB of RAM.
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9.2 Results and Discussion

Since quantifiable privacy is provided through the use of differential privacy, the proposed 

approach only needs to be evaluated in terms of its effectiveness in detecting outliers and its 

scalability. Since the suitability and effectiveness of the base AVF technique has been 

evaluated in the literature19, in this work we simply measure effectiveness of the privacy-

preserving approach by comparing how well it performs in terms of detecting outliers with 

respect to the original AVF approach. Specifically, we report the relative accuracy – the 

number of outliers found by the differentially private algorithm as compared to the number 

of outliers captured by the base algorithm. This allows us to determine the effect of privacy 

on the approach. In all of the following experiments, we limited the number of outliers to 

within 10% of the size of each dataset, which is quite a reasonable assumption. We then ran 

the differentially private algorithm and considered the records with the smallest k AVF 

scores to be outliers. k was varied to have the values 2%, 4%, 6%, 8% and 10% for each 

dataset. To get an understanding of how well the proposed technique works in real life, we 

used datasets having only categorical, only numeric or a mixed set of attributes. Numeric 

attributes were converted into categorical by discretization using bucketing with an 

appropriate range. Experiments were run 10 times and average results are reported.

Wisconsin Breast Cancer: This dataset has 699 records and 9 attributes. Each record is 

labeled as either benign or malignant. Following Harkins et al.12, we randomly picked a 

subset of records labeled as malignant such that they made up 8% of the dataset, and we 

considered them to be outliers. Figure 3 shows the results obtained for different levels of ε 
(corresponding to different privacy levels) and different values of k. In each case, the relative 

accuracy is computed. As is to be expected, as ε increases, the accuracy of the privacy 

preserving algorithm approaches that of the base algorithm. Indeed, for epsilon values 

greater than 0.1, the relative accuracy is more than 90%, while for epsilon values close to .38 

our relative accuracy is almost the same as that of the base algorithm for all values of k.

Tic-Tac-Toe Endgame: This dataset contains 958 records and 9 attributes. Each record 

encodes one possible configuration of the end game, where the class is positive if the first 

player wins and negative otherwise. Since the number of negative records was smaller, we 

considered them to be outliers. Furthermore, for evaluation we subsampled the negative 

records to ensure that number of outliers was no more than 8% of the dataset. From Figure 4 

one might infer that our scheme is doing poorly. The fact we seem to be under performing is 

because of the degraded performance of the base algorithm that only finds exactly 12 

outliers for all values of k i.e. 2%, 4%, 6%, 8% and 10%. In this dataset the assumption 

made of AVF based algorithm to work does not hold really well. AVF scores of outlier and 

non-outliers are quite close; hence addition of noise perturbed AVFS in such a way that it 

scatters these particular 12 outliers among the rows that have AVF scores among k smallest 

values for k = 10%. This is why when value of k increase our accuracy approaches that of 

the base algorithm.

Chess Endgame Database: This dataset contains 28056 records and 6 attributes. It has 

eighteen classes from 0 to 17. Each of the class labels from 0 to 16 represents the optimal 

depth-of-win (number of moves) for White King or Rook to win the game. Whereas class 
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label 18 depicts a draw against the Black King. We have taken class with label zero and one 

as outliers. It can be seen in Figure 5 that from ε = 0.04 we are getting very good results for 

all values of k. It should be noted that outliers detected by base algorithm at 2% are 11 but 

from 4% onwards the count of true outliers remained fixed at 17.

Breast Cancer: In this dataset we introduced 21 outliers to check how the base and the 

modified algorithm work. We created outliers by following the definition of an ideal 

outlier19, which states an ideal outlier point in a categorical dataset is one whose each and 

every attribute value is extremely irregular (or infrequent). From Figure 6 we can see the 

modified algorithm starts providing comparable results to the base algorithm as the ε 
increases.

Spam Base: Spambase contains samples of spam and ham emails, where ham is eight 

percent of the data. There are fifty-seven numeric attributes. We took a random sample from 

the spam to make it 10% of the dataset. Next, attributes were discretized and only attributes 

having difference in their count frequency for spam and ham were retained. This gave us 

sixteen attributes. We carried out outlier detection on this modified dataset. Figure 7 shows 

the results, which are really promising.

Looking into the two most diverse result obtained in our experiments, we thought of further 

exploring the results of Wisconsin Breast Cancer and Tic-Tac-Toe Endgame to better 

understand why the differentially private algorithm provides comparable results to the base 

algorithm in case of one dataset and why it fails to replicate the result of the base algorithm 

for the other dataset. To see this difference we designed an experiment where we first find 

out the maximum AVF value for Outliers and the minimum AVF value for Non-Outliers for 

all values of k i.e. 2%, 4%, 6%, 8% and 10% at different values. Then we took the average 

of the AVF scores corresponding to Outliers and Non-Outliers at each ϵand plotted them for 

each dataset (Fig8, Fig9), along with the corresponding values for the base algorithm (with 

no noise added).

Figure 8 shows this for the Wisconsin Breast Cancer dataset. We can see that there is a 

difference in the average AVF scores of the outliers with respect to the average AVF scores 

of non-outliers in the base case algorithm (where no noise is added). As can be seen, this 

difference still persists for different values of ϵ, which enables the differentiation of outliers 

and non-outliers even for the differentially private algorithm. Due to this, the differentially 

private algorithm provides comparable results to the base algorithm. Figure 9 shows the 

corresponding results for the Tic-Tac-Toe dataset. Here, it is clear that there is a big 

difference between the average AVF scores for outliers and non-outliers in case of the base 

algorithm(where no noise is added), but once we add noise to the data to make it 

differentially private (for all values of ϵ) we see that the average AVF score of max outlier 

and min nonoutlier are almost the same. This prevents the differentiation between outliers 

and non-outliers due to which the results of the differentially private algorithm deviate 

significantly from the base case.

Key Conclusions: The experiments carried out over various datasets with different 

number of attributes and sizes of outlier set as compared to the size of dataset tells us that 
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the number of outliers, which usually is small, or the number of attributes themselves are not 

among the main reasons for degradation of utility in achieving differential privacy for 

reasonable values of the privacy parameter ϵ. Rather, it is the gap between the maximum 

AVFS for outliers and minimum AVFS for non-outliers in a dataset that decides how good 

the utility will be: the larger the gap, the better the utility. This critically depends on the 

dataset itself. In our experiments, we generally found the gap to be sufficient to ensure good 

utility. However, in cases where the accuracy is critical, the use of differential privacy is still 

questionable as it cannot be achieved without some loss of utility which occurs due to the 

addition of noise, but if the AVFS gap is sufficient, we can reliably find outliers even without 

compromising privacy of individuals.

Performance: We have also included the simulation results that empirically analyze the 

computational overhead caused by the secure operation that is encryption, operation carried 

out on encrypted messages and secure comparison. Figure 10 shows the overhead introduced 

due to the secure operations in the POLD_HoF protocol with respect to varying the number 

of participating parties, while setting k to be one. On the other hand, Figure 11 presents the 

computational overhead for n = 10 parties while varying values of k. In both cases 

computational cost increases linearly, which shows our approach is quite efficient.

10. Related Work

The research in privacy-preserving data mining spans many areas: data perturbation 

techniques4,27,22, and cryptographic (secure multiparty computation based) techniques34. 

Data-perturbation-based privacy-preserving techniques, as the name suggests, perturb values 

of attributes by adding noise. Special techniques are used to reconstruct the original 

distribution (not the actual data values). They all rely on fundamental property that the 

randomized data set may not reveal private data, while still allowing data analysis to be 

performed on them. Kargupta et al.17 questioned the use of random additive noise and 

pointed out that additive noise can be easily filtered out using spectral filtering techniques 

causing a privacy breach of the data. Other problems have also been pointed23,16. 

Cryptographic techniques Fig. 10: Computational overhead for varying number of parties 

(n), while k = 1 have been developed for many data analysis tasks such as 

classification21,33,35, clustering30,20, and association analysis29,32, but outlier detection has 

not been studied to a large extent.

For outlier detection on categorical data, distance-based approaches do not make sense. 

Distance based approaches are geared towards numerical data and thus are more applicable 

to numerical datasets or ordinal data that can be easily transformed to suitable numerical 

values. Also Distance-based approaches do not make assumptions for the distribution of the 

data since they essentially compute distances among points. These approaches become 

impractical for large datasets. Knorr et al.18, had proposed an improved version of the 

original-distance based approach but the complexity of their approach is still quadratic in the 

number of nearest neighbors.

Density-based outlier detection algorithm used in28 is based on the concept of relative 

density-based, which is a simplified version of Local Outlier Factor (LOF) described in6. Of 
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course, it cannot obtain the same accuracy as the original LOF. Though28 suggested that 

extending simplified LOF to the original LOF is straightforward, it still requires some 

degree of effort. Furthermore, data is sparse in highdimensional spaces rendering density-

based methods problematic36.

In this paper we are using the differential privacy framework9 along with some multi-party 

computation methods to ensure the privacy of data, while finding outliers in data using 

attribute value frequency based approach19 in a setting where data is either vertically of 

horizontally distributed among multiple parties. Though5 provides a way to add noise for a 

Laplace distribution securely to an aggregation of data values from multiple parties, but their 

model is quite different; in our case parties, instead of some independent server, should be 

able to add noise.10 also proposed protocols for addition of laplacian noise by two parties for 

both malicious and rational adversary cases, but they have a huge overhead as compared to 

our proposal, where parties are assumed to be semi-honest.26 presented protocols for 

distributing shares of values kept by two parties and then selecting k smallest values 

securely. However these protocols only work for the two party case. Overall, our work is 

orthogonal to the existing work on outlier detection and improves on it by developing an 

efficient solution that provides end-to-end privacy.

11. Conclusion and Future Work

Outlier detection is a critical analytics task that can be computationally quite intensive, 

especially when the data is split between multiple parties and privacy needs to be protected. 

In this paper, we have developed a very scalable and efficient AVF based outlier detection 

algorithm that provides end-to-end privacy in terms of both the computation as well as the 

results. We then develop protocols that can find AVF based outliers in a private manner, 

when the data is centralized, and when the data is either horizontally or vertically 

distributed. The experimental results on real data are quite promising.

In this work, we compromised a bit on privacy by releasing differentially private count 

frequencies to improve utility. In the future we would like explore ways to reduce the 

information leakage, while not letting the utility, for example, false positive rate, suffer as 

compared to the reference non-private AVF based detection methodology. Our study is also 

limited to semi-honest adversaries. Though semi-honest models are a good point of entry 

and are representative of many of the real-world situations, there are cases where the parties 

would try to cheat or act maliciously. In the future, we would like to extend the protocols to 

make them resilient towards such covert or malicious adversaries, while still being efficient. 

Finally, while our focus was limited to the AVF based outlier detection model, which we 

believe is a very good starting point for outlier detection, in the future, we will work on 

extending this to other outlier models such as distance or density based outliers.
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Fig. 1: 
Illustrative example of why purely local computation is typically inaccurate
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Fig. 2: 
Protocol overview
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Fig. 3: 
Wisconsin Breast Cancer
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Fig. 4: 
Tictac-Tac-Toe
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Fig. 5: 
Chess Endgame
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Fig. 6: 
Breast Cancer

ASIF et al. Page 39

Int J Coop Inf Syst. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7: 
Spam Base
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Fig. 8: 
Outlier vs Non-Outlier for Wisconsin Breast Cancer
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Fig. 9: 
Outlier vs Non-Outlier for Tictac-Tac-Toe
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Fig. 10: 
Computational overhead for varying number of parties (n), while k = 1
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Fig. 11: 
Computational over head for varying k, while n = 10
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