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The 3-forced 2-structures

Abderrahim Boussäıri∗† Pierre Ille‡§¶

September 14, 2023

Abstract

Given sets S and S′, a labeled 2-structure is a function σ from (S ×
S) ∖ {(s, s) ∶ s ∈ S} to S′. The set S is called the vertex set of σ and
denoted by V (σ). The label set of σ is the set L(σ) of l ∈ S′ such that
l = σ(v,w) for some v,w ∈ V (σ). Given W ⊆ V (σ), the 2-substructure
σ(↾(W×W )∖{(s,s)∶s∈W}) of σ is denoted by σ[W ]. The dual σ⋆ of σ is defined
on V (σ⋆) = V (σ) as follows. For distinct v,w ∈ V (σ⋆), σ⋆(v,w) = σ(w, v).
A labeled 2-structure σ is reversible provided that for x,x′, y, y′ ∈ S such
that x ≠ y and x′ ≠ y′, if σ(x, y) = σ(x′, y′), then σ(y, x) = σ(y′, x′). We
only consider reversible labeled 2-structures whose vertex set is finite.

Let σ and τ be 2-structures such that V (σ) = V (τ). Given 2 ≤ k ≤

∣V (σ)∣, σ and τ are k-hemimorphic if for every W ⊆ V (σ) such that
∣W ∣ ≤ k, σ[W ] is isomorphic to τ[W ] or (τ[W ])

⋆. Furthermore, let σ
be a 2-structure. Given 2 ≤ k ≤ ∣V (σ)∣, σ is k-forced if σ and σ⋆ are
the only 2-structures k-hemimorphic to σ. We characterize the 3-forced
2-structures. Lastly, we provide a large class of 4-forced 2-structures.

Mathematics Subject Classifications (2010): 2-structure, k-hemimorphy,
k-forcing.

Key words: 05C20, 05C75, 05C76.

1 Introduction

Given a digraph D, the dual D⋆ of D is obtained from D be reversing all its arcs.
A digraph is self-dual if it is isomorphic to its dual. Consider two digraphs D
and ∆ such that V (D) = V (∆). Given 2 ≤ k ≤ ∣V (D)∣, we say that D and ∆ are
k-hemimorphic if for every W ⊆ V (D) such that ∣W ∣ ≤ k, D[W ] is isomorphic
to ∆[W ] or (∆[W ])⋆. Furthermore, let D be a digraph. Given 2 ≤ k ≤ ∣V (D)∣,
D is k-forced if D and D⋆ are the only digraphs k-hemimorphic to D.
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Given a digraph D, a subset M of V (D) is a module of D if for any x, y ∈M
and v ∈ V (D) ∖M , we have

xv ∈ A(D) ⇐⇒ yv ∈ A(D)
and

vx ∈ A(D) ⇐⇒ vy ∈ A(D).

For instance, ∅, {v} (v ∈ V (D)), and V (D) are modules of D, called trivial
modules of D. A digraph D is said to be prime if ∣V (D)∣ ≥ 3 and all its modules
are trivial.

Gallai [8, 13] proved that prime partial orders are 3-forced. Afterward,
Boussäıri et al. [4, 5] established that prime tournaments are 3-forced as well.
In general, a prime digraph is not 3-forced. But, a prime digraph becomes 3-
forced if all its prime subdigraphs of size 3 are self-dual. We denote by F the
digraph ({0,1,2},{01,10,12}). The only prime digraphs of size 3 that are not
self-dual are F and F ⋆. They are called the flags (see Definition 31). Boussäıri
et al. [4, 5] proved that prime digraphs without flags are 3-forced. Boussäıri [2]
characterized the 3-forced prime digraphs. This result was published in [3].
Lastly, given a digraph D, the set of the unordered pairs {v,w} of vertices of D
such that ∣{vw,wv}∣∩A(D)∣ = 1 is denoted by O(D). Boussäıri [2] proved that
a prime digraph D such that the graph (V (D),O(D)) is connected is 4-forced.
Dammak obtained this result as an easy consequence of the main results proved
in [6].

Our purpose is to extend the characterization of 3-forced digraphs (see The-
orem 8) and the result on 4-forced digraphs above (see Theorem 10) to reversible
labeled 2-structures.

Given sets S and S′, a labeled 2-structure is a function σ from (S × S) ∖
{(s, s) ∶ s ∈ S} to S′. The set S is called the vertex set of σ and denoted by
V (σ). The label set of σ is the set L(σ) of l ∈ S′ such that l = σ(v,w) for
some v,w ∈ V (σ). A labeled 2-structure σ is reversible [7] provided that for
x,x′, y, y,′ ∈ S such that x ≠ y and x′ ≠ y′, we have

if σ(x, y) = σ(x′, y′), then σ(y, x) = σ(y′, x′). (1)

In what follows, we only consider reversible labeled 2-structures whose vertex
set is finite. Given such a 2-structure σ, set v(σ) = ∣V (σ)∣.

For instance, we associate with a digraph D the 2-structure σD defined on
V (σD) = V (D) with L(σD) ⊆ Z4 as follows. For any v,w ∈ V (σD) such that
v ≠ w,

σD(v,w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if vw,wv /∈ A(D),
2 if vw,wv ∈ A(D),
1 if vw ∈ A(D) and wv /∈ A(D),
3 if wv ∈ A(D) and vw /∈ A(D).

Hence, given distinct v,w ∈ V (σD), we have σD(v,w) = −σD(w, v) (mod 4).
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Let σ be a 2-structure. With each W ⊆ V (σ), we associate the 2-substructure
σ[W ] of σ induced by W defined by

σ[W ] = σ↾(W×W )∖{(w,w)∶w∈W}.

When W = V (σ) ∖W ′, σ[W ] is also denoted by σ −W ′, and by σ − w when
W ′ = {w}.

1.1 Definitions and notations

Definition 1. A 2-structure σ is constant if ∣L(σ)∣ = 1. A 2-structure σ is linear
if there exist distinct l, l′ ∈ L(σ) such that (V (σ), σ−1(l)) and (V (σ), σ−1(l′))
are linear orders (in this case, we obtain L(σ) = {l, l′} and (V (σ), σ−1(l′)) =
(V (σ), σ−1(l))⋆).

Let σ be a 2-structure. Set

L̃(σ) = {{σ(v,w), σ(w, v)} ∶ {v,w} ∈ (V (σ)
2

)}.

Let p, q ∈ L̃(σ). By (1), we have p = q or p ∩ q = ∅. We consider the function

σ̃ ∶ (V (σ)
2

) Ð→ L̃(σ)
{v,w} z→ {σ(v,w), σ(w, v)}.

For each i = 1 or 2, set

L̃i(σ) = {p ∈ L̃(σ) ∶ ∣p∣ = i}.

Furthermore, set

Ei(σ) = {{v,w} ∈ (V (σ)
2

) ∶ σ̃({v,w}) ∈ L̃i(σ)}.

We consider the graph Gσ defined on V (Gσ) = L̃2(σ) in the following manner.
For any p, q ∈ V (Gσ) such that p ≠ q, pq ∈ E(Gσ) if there exists W ⊆ V (σ)
satisfying ∣W ∣ = 3, σ[W ] is prime, and p, q ∈ L̃(σ[W ]). For a digraph D, the
edge set of GσD

is empty because ∣L̃2(σD)∣ ≤ 1.
We associate with a 2-structure σ the 2-structureÐ→σ defined on V (Ð→σ ) = V (σ)

as follows. If ∣L̃1(σ)∣ ≤ 1, then Ð→σ = σ. Now, suppose that ∣L̃1(σ)∣ ≥ 2. Choose
l ∈ L(σ) such that {l} ∈ L̃1(σ). For any v,w ∈ V (σ) such that v ≠ w,

Ð→σ (v,w) =
⎧⎪⎪⎨⎪⎪⎩

σ(v,w) if {v,w} ∈ E2(σ),
l if {v,w} ∈ E1(σ).

For instance, consider a digraph D such that there exist v, v′,w,w′ ∈ V (D)
satisfying v ≠ w, v′ ≠ w′, vw,wv ∈ A(D), and v′w′,w′v′ /∈ A(D). We obtain

L̃1(σD) = {{0},{2}}. Now, choose l = 0. Consider the oriented graph
Ð→
D defined
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on V (
Ð→
D) = V (D) by A(

Ð→
D) = A(D)∖A(D⋆), where D⋆ is the dual of D defined

on V (D⋆) = V (D) by A(D⋆) = {vw ∶ wv ∈ A(D)}. We obtain

ÐÐ→
(σD) = σÐ→

D
.

Later, in Convention 26, we set out the choice of the label “l” when we
consider several 2-structures sharing the same label set.

Definition 2. We associate with a 2-structure σ its dual σ⋆ defined on V (σ⋆) =
V (σ) as follows. For any v,w ∈ V (σ⋆) such that v ≠ w, σ⋆(v,w) = σ(w, v).

Consider 2-structures σ and τ such that V (σ) = V (τ). Given 2 ≤ k ≤ v(σ),
we say that σ and τ are k-hemimorphic if for every W ⊆ V (σ) such that ∣W ∣ ≤ k,
σ[W ] is isomorphic to τ[W ] or (τ[W ])⋆.

Given 2 ≤ k ≤ v(σ), a 2-structure σ is k-forced if σ and σ⋆ are the only
2-structures that are k-hemimorphic to σ.

Remark 3. For a digraph D, we obtain (σD)⋆ = σ(D⋆). Consider digraphs
D and ∆ such that V (D) = V (∆). Given 2 ≤ k ≤ ∣V (D)∣, it follows that
two digraphs D and ∆ are k-hemimorphic if and only if σD and σ∆ are k-
hemimorphic. Let D be a digraph. Given 2 ≤ k ≤ ∣V (D)∣, we obtain that D is
k-forced if and only σD is.

1.2 Modular decomposition

For this section, we refer to [8, 13] for graphs, [5] for digraphs, [10] for binary
structures, and [7, 11] for 2-structures.

Let σ be a 2-structure. A subset M of V (σ) is a module of σ if for any
x, y ∈M and v ∈ V (σ)∖M , we have σ(x, v) = σ(y, v). For instance, ∅, V (σ) and
{v} (v ∈ V (σ)) are modules of σ, called the trivial modules of σ. A 2-structure
σ is indecomposable if all its modules are trivial, otherwise it is decomposable.
A 2-structure σ is prime if it is indecomposable with v(σ) ≥ 3.

Let σ be a 2-structure. For disjoint modules M and N of σ, we have σ(x, y) =
σ(x′, y′) for any x,x′ ∈M and y, y′ ∈M . This property allows us to define the
quotient as follows. A modular partition of σ is a partition of V (σ) in modules of
σ. With a modular partition P of σ, we associate the quotient of σ by P defined
on V (σ/P ) = P as follows. For distinct X,Y ∈ P , (σ/P )(X,Y ) = σ(x, y), where
x ∈X and y ∈ Y .

Let σ be a 2-structure. A subset M of V (σ) is a strong module of σ if
M is a module of σ satisfying: for every module N of σ, if M ∩N ≠ ∅, then
M ⊆ N or N ⊆M . For instance, the trivial modules of σ are strong modules too.
We denote by G (σ) the family of the strong modules of σ which are maximal
under inclusion among the proper strong modules of σ. Gallai’s decomposition
theorem follows.

Theorem 4. Given a 2-structure σ such that v(σ) ≥ 2, G (σ) is a modular
partition of σ, and the quotient σ/G (σ) is constant, linear, or prime.
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1.3 The main results

Since it is not difficult to verify the next fact, we omit its proof.

Fact 5. Given a 2-structure σ such that (V (σ),E2(σ)) admits an isolated vertex
v, σ is 3-forced if and only if σ − v is as well.

In Section 3, we show the next preliminary result.

Lemma 6. Given a 2-structure σ, σ is 3-forced if and only if Ð→σ is 3-forced.

Remark 7. The next assumption follows from Fact 5 and Lemma 6. To char-
acterize the 2-structures σ that are 3-forced, we can assume that σ = Ð→σ and
(V (σ),E2(σ)) does not have isolated vertices.

The two main theorems follow.

Theorem 8. Let σ be a 2-structure. Suppose that σ = Ð→σ and (V (σ),E2(σ))
does not have isolated vertices. The 2-structure σ is 3-forced if and only if σ
satisfies the following three statements

(T1) Gσ is connected;

(T2) for each M ∈ G (σ), E2(σ[M]) = ∅;

(T3) if ∣G (σ)∣ ≥ 3, then σ/G (σ) is prime.

Remark 9. Theorem 8 is obtained by Boussäıri [2] for digraphs. Clearly, State-
ment (T1) is unnecessary for digraphs because it is trivially satisfied. Theorem 8
for digraphs is proved in [3].

Theorem 10. Let σ be a prime 2-structure. If (V (σ),E2(σ)) is connected,
then σ is 4-forced.

2 Preliminaries

2.1 Prime 2-structures

The next result is classical in the study of prime 2-structures (for instance, see
Ehrenfeucht et al. [7]).

Lemma 11. Given a prime 2-structure σ, there exists X ⊆ V (σ) such that
∣X ∣ = 3 or 4 and σ[X] is prime.

To obtain prime 2-substructure of larger sizes, we use the following subsets.

Notation 12. Let σ be a 2-structure. Given X ⊊ V (σ) such that σ[X] is
prime, consider the following subsets of V (σ) ∖X

• Extσ(X) denotes the set of v ∈ V (σ) ∖X such that σ[X ∪ {v}] is prime;

• ⟨X⟩σ denotes the set of v ∈ V (σ)∖X such that X is a module of σ[X∪{v}];
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• for each y ∈ X, Xσ(y) denotes the set of v ∈ V (σ) ∖X such that {y, v} is
a module of σ[X ∪ {v}].

The set {Extσ(X), ⟨X⟩σ} ∪ {Xσ(y) ∶ y ∈X} is denoted by p(σ,X).

Using the fact that the family of the modules of a 2-structure is weakly
partitive (for instance, see Ille and Woodrow [12]), it is not difficult to verify
the following claim.

Claim 13. Given a 2-structure σ, consider X ⊆ V (σ) such that σ[X] is prime.
The set p(σ,X) is a partition of V (σ) ∖X.

Using the subsets described in Notation 12, Ehrenfeucht et al. [7] obtained
the following result (see [7, Theorem 6.5]).

Proposition 14. Given a prime 2-structure σ, consider X ⊆ V (σ) such that
σ[X] is prime. If ∣V (σ) ∖X ∣ ≥ 2, then there exist v,w ∈ V (σ) ∖X such that
v ≠ w and σ[X ∪ {v,w}] is prime.

The next result is an immediate consequence of Lemma 11 and Proposi-
tion 14.

Corollary 15. Let σ be a prime 2-structure. If v(σ) ≥ 5, then there exists
X ⊊ V (σ) such that σ[X] is prime and ∣V (σ) ∖X ∣ ≤ 2.

The next result follows from Proposition 14.

Lemma 16. Given a 2-structure σ such that v(σ) ≥ 5, Suppose that there exists
X ⊊ V (σ) such that σ[X] is prime. If σ is prime, then there exist elements
y0, . . . , yv(σ)−∣X ∣−1 of V (σ) ∖X fulfilling the next three statements

(S1) X ∪ {y0, . . . , yv(σ)−∣X ∣−1} = V (σ);

(S2) if σ[X ∪{y0}] is decomposable, then there exists z ∈X such that {z, y0} is
a module of σ[X ∪ {y0}].

(S3) for each k ∈ {1, . . . , v(σ)− ∣X ∣− 2}, if σ[X ∪ {y0, . . . , yk}] is decomposable,
then the following assertions hold

• k is even,

• σ[X ∪ {y0, . . . , yk−1}] is prime,

• there exists z ∈ X ∪ {y0, . . . , yk−1} such that {z, yk} is a module of
σ[X ∪ {y0, . . . , yk}].

In particular, for every k ∈ {0, . . . , v(σ)− ∣X ∣− 1}, σ[X ∪ {y0, . . . , yk}]/G (σ[X ∪
{y0, . . . , yk}]) is prime.

Proof. It suffices to define y0 and y1, and then to pursue by proceeding by
induction. By Proposition 14, there exist v,w ∈ V (σ) ∖ X such that v ≠ w
and σ[X ∪ {v,w}] is prime. If v,w ∈ ⟨X⟩σ (see Notation 12), then X is a
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module of σ[X ∪{v,w}], which contradicts the fact that σ[X ∪{v,w}] is prime.
Consequently, we have {v,w} ∖ ⟨X⟩σ ≠ ∅. It follows from Claim 13 that

{v,w} ∩ (Extσ(X) ∪ (⋃
y∈X

Xσ(y))) ≠ ∅.

For instance, assume that v ∈ Extσ(X) ∪ (⋃y∈X Xσ(y)). Clearly, for t ∈ Xσ(y),
where y ∈X, we have

G (σ[X ∪ {t}]) = {{y,t}} ∪ {{z} ∶ z ∈X ∖ {y}}
and

σ[X ∪ {t}]/G (σ[X ∪ {t}]) is prime.

Hence, we can choose y0 = v and y1 = w.

Lemma 17. Given a 2-structure σ such that v(σ) ≥ 5, if σ/G (σ) is prime, then
there exists v ∈ V (σ) such that (σ − v)/G (σ − v) is prime as well.

Proof. The result is obvious when σ is decomposable. Hence, suppose that σ
is prime. By Corollary 15, there exists X ⊊ V (σ) such that σ[X] is prime and
∣V (σ) ∖X ∣ ≤ 2. To conclude, it suffices to apply Lemma 16.

2.2 Critical 2-structures

A prime 2-structure σ is critical if for every v ∈ V (σ), σ − v is decomposable.
Critical digraphs were characterized by Schmerl and Trotter [14] (see also Boud-
abbous and Ille [1]) .

Notation 18. Given n ≥ 2, we denote by Σ2n the sets of the 2-structures σ
defined on V (σ) = {0, . . . ,2n − 1} such that ∣L̃2(σ)∣ = 2, σ̃({0,1}) ≠ σ̃({0,2}),
and for p, q ∈ {0, . . . ,2n − 1} such that p < q, we have

σ(p, q) =
⎧⎪⎪⎨⎪⎪⎩

σ(0,1) if p is even and q is odd,

σ(0,2) otherwise.
(2)

Claim 19. Given n ≥ 2, the elements of Σ2n are critical 2-structures.

Proof. To begin, we prove that the elements of Σ2n are prime. We proceed by
induction on n ≥ 2. When n = 2, we verify directly the result. Now, suppose
that the elements of Σ2n are prime, where n ≥ 2. Consider σ ∈ Σ2(n+1). Clearly,
σ − {2n,2n + 1} ∈ Σ2n. By induction hypothesis, σ − {2n,2n + 1} is prime. Set

X = {0, . . . ,2n − 1}.

We have 2n + 1 ∈ Xσ(2n − 1) and 2n ∈ ⟨X⟩σ (see Notation 12). Consider a
module M of σ such that ∣M ∣ ≥ 2. We must show that M = V (σ). Since M ∩X
is a module of σ[X], we have ∣M ∩ X ∣ ≤ 1 or X ⊆ M . For a contradiction,
suppose that ∣M ∩X ∣ ≤ 1. Since 2n and 2n + 1 do not belong to the same block
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of p(σ,X), M ≠ {2n,2n + 1}. Thus, there exists y ∈ X such that M ∩X = {y}.
Since ∣M ∣ ≥ 2, M ∖X ≠ ∅. Clearly, (M ∖X) ⊆ Xσ(y). By Claim 13, p(σ,X)
is a partition of V (σ) ∖ X. It follows that M = {2n − 1,2n + 1}, which is
impossible because σ̃({2n − 1,2n}) ≠ σ̃({2n,2n + 1}). Consequently, X ⊆ M .
Clearly, (V (σ)∖M) ⊆ ⟨X⟩σ. Since p(σ,X) is a partition of V (σ)∖X, we obtain
2n + 1 ∈M . Furthermore, since σ̃({2n − 1,2n}) ≠ σ̃({2n,2n + 1}), X ∪ {2n + 1}
is not a module of σ. It follows that M = V (σ).

Lastly, we verify that elements of Σ2n are critical. Given n ≥ 2, consider
σ ∈ Σ2n. We have

• {2, . . . ,2n − 1} is a module of σ − 0;

• {0, . . . ,2n − 3} is a module of σ − (2n − 1);

• for each p ∈ {1, . . . ,2n − 2}, {p − 1, p + 1} is a module of σ − p.

Therefore, σ is critical.

Example 20. Let n ≥ 2. We consider the graph G2n defined on V (G2n) =
{0, . . . ,2n − 1} by

E(G2n) = {2i(2j + 1) ∶ i ≤ j ∈ {0, . . . , n − 1}}.

The graph G2n is critical. Furthermore, G2n is a comparability graph. We
consider the unique transitive orientation Q2n of G2n such that 0 <Q2n 1. The
complement of G2n is a comparability graph too. We consider also the unique
transitive orientation R2n of the complement of G2n such that 0 <R2n 2. The
partial orders Q2n and R2n are critical. We consider the 2-structure γ2n defined
on V (γ2n) = {0, . . . ,2n − 1} with L(γ2n) = Z5 ∖ {0} as follows. For distinct
v,w ∈ V (γ2n),

γ2n(v,w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if v <Q2n w,

4 if w <Q2n v,

2 if v <R2n w,

3 if w <R2n v.

Clearly, γ2n satisfies (2). Furthermore, γ̃2n({0,1}) = {1,4} and γ̃2n({0,2}) =
{2,3}. Hence, we have γ̃2n({0,1}) ≠ γ̃2n({0,2}) and ∣L̃2(γ2n)∣ = 2. Therefore,
γ2n ∈ Σ2n. It follows from Claim 19 that γ2n is critical.

Lastly, suppose for a contradiction that there existsX ⊊ V (γ2n) such that ∣X ∣
is odd and γ2n[X] is prime. Since V (γ2n) is even, it follows from Proposition 14
applied several times that there exists v ∈ V (γ2n) such that γ2n − v is prime,
which contradicts the fact that γ2n is critical. Consequently, for every X ⊊
V (γ2n) such that γ2n[X] is prime, we have ∣X ∣ is even. Thus, for every X ⊊
V (γ2n) such that ∣X ∣ = 3, γ2n[X] is decomposable. It follows that E(Gγ2n) = ∅,
and hence Gγ2n is disconnected. Therefore, γ2n does not satisfy Statement (T1)
of Theorem 8.
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3 The 3-hemimorphy

The next result is obvious.

Fact 21. A 2-structure σ is 2-forced if and only if ∣E2(σ)∣ ≤ 1.

Consider 2-hemimorphic 2-structures σ and τ . We associate to σ and τ
the graph E(σ, τ) defined on V (σ) as follows. For distinct v,w ∈ V (σ), vw ∈
E(E(σ, τ)) if σ(v,w) = τ(v,w) and {v,w} ∈ E2(σ). We associate also to σ
and τ the graph D(σ, τ) defined on V (σ) as follows. For distinct v,w ∈ V (σ),
vw ∈ E(D(σ, τ)) if σ(v,w) ≠ τ(v,w) (and hence {v,w} ∈ E2(σ)). Note that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D(σ, τ) = E(σ, τ⋆),
and

E(D(σ, τ)) ∪E(E(σ, τ)) = E2(σ).
(3)

Thus,
if E1(σ) = ∅, then E(σ, τ) is the complement of D(σ, τ). (4)

Definition 22. Let σ be a 2-structure. Given W ⊆ V (σ), the 2-structure
Inv(σ,W ) is defined on V (Inv(σ,W )) = V (σ) as follows. Given distinct v,w ∈
V (Inv(σ,W )),

Inv(σ,W )(v,w) =
⎧⎪⎪⎨⎪⎪⎩

σ(w, v) if v,w ∈W
σ(v,w) otherwise.

It is easy to show the next fact.

Fact 23. Let σ be a 2-structure. For a module M of σ, σ and Inv(σ,M) are
3-hemimorphic.

Fact 24. Given 3-hemimorphic 2-structures σ and τ such that v(σ) = 3. If
E(D(σ, τ)) and E(E(σ, τ)) are nonempty, then there exist distinct v,w ∈ V (σ)
such that

• {v,w} is a module of σ and τ ;

• E(D(σ, τ)) = {vw} or E(E(σ, τ)) = {vw};

• E1(σ) = ∅ (so E(σ, τ) is the complement of D(σ, τ) by (4)).

Proof. We can assume that V (σ) = {0,1,2}, 01 ∈ E(D(σ, τ)), and 02 ∈ E(E(σ,
τ)). If ∣L̃(σ)∣ = 3, then the only isomorphism from σ onto τ or τ⋆ is Id{0,1,2},
which is impossible because E(D(σ, τ)) and E(E(σ, τ)) are nonempty. It follows
that ∣L̃(σ)∣ ≤ 2.

To begin, suppose that σ̃({0,1}) = σ̃({0,2}). If σ̃({0,1}) ≠ σ̃({1,2}), then
one among σ or τ is prime whereas the other one is decomposable. It follows
that σ̃({0,1}) = σ̃({1,2}). Hence, σ and τ are linear. Moreover, we obtain that
{1,2} is a module of σ or τ . For instance, assume that {1,2} is a module of σ.
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By exchanging τ and τ⋆ if necessary, we can assume that 12 ∈ E(D(σ, τ)). We
obtain that {0,2} is a module of σ and τ . Furthermore, E(E(σ, τ)) = {02}.

Now, suppose that σ̃({0,1}) ≠ σ̃({0,2}). Since ∣L̃(σ)∣ ≤ 2, we can assume
that σ̃({0,1}) = σ̃({1,2}). For a contradiction, suppose that {0,2} is not a
module of σ. Since σ and τ are both prime or not, we obtain 12 ∈ E(D(σ, τ)). It
is not difficult to verify that σ is isomorphic neither to τ nor to τ⋆. Consequently,
{0,2} is a module of σ. Hence, τ is decomposable. It follows that E(E(σ, τ)) =
{02}, and hence {0,2} is a module of τ .

The next fact is an immediate consequence of Fact 24.

Fact 25. Given a 2-structure σ such that v(σ) = 3, if σ is prime, then σ is
3-forced.

It is not difficult to show the next result. Nevertheless, we have to adopt
the following convention.

Convention 26. Let σ and τ be 2-hemimorphic 2-structures. We have L̃(σ) =
L̃(τ), and hence L̃1(σ) = L̃1(τ). Suppose that ∣L̃1(σ)∣ ≥ 2. We choose the same
l ∈ L(σ) ∩ L(τ) such that {l} ∈ L̃1(σ) ∩ L̃1(τ) to define Ð→σ and Ð→τ . Otherwise,
Ð→σ and Ð→τ would not be 2-hemimorphic.

Lemma 27. Given 2-hemimorphic 2-structures σ and τ , σ and τ are 3-hemi-
morphic if and only if Ð→σ and Ð→τ are 3-hemimorphic too.

Now, we are ready to prove Lemma 6 (with Convention 26).

Proof of Lemma 6. To begin, suppose that σ is 3-forced. Consider a 2-structure
τ which is 3-hemimorphic to Ð→σ . There exists a unique 2-structure ρ such that σ
and ρ are 2-hemimorphic and Ð→ρ = τ . By Lemma 27, σ and ρ are 3-hemimorphic.
Since σ is 3-forced, we obtain σ = τ or τ⋆. It follows that Ð→σ =Ð→ρ or (Ð→ρ )⋆.

Conversely, suppose that Ð→σ is 3-forced. Consider a 2-structure τ which is
3-hemimorphic to σ. By Lemma 27, Ð→σ and Ð→τ are 3-hemimorphic. Since Ð→σ is
3-forced, we obtain Ð→σ =Ð→τ or (Ð→τ )⋆. Since σ and τ are 2-hemimorphic, we have
σ = τ or τ⋆.

Example 28. Consider a set S admitting a partition P = {X0, . . . ,Xn−1}, where
n ≥ 4. We consider the partial order O defined on S satisfying

• P is a modular partition of O;

• O/P is the linear order X0 <X1 < ⋯ <Xn−1;

• for each i ∈ {0, . . . , n − 1}, the arc set of O[Xi] is empty.

Moreover, we consider the partiel order Q defined on S satisfying

• P is a modular partition of Q;

• O/P is the linear order X2 <X0 <X3 < ⋯ ≤Xn−1 <X1;
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• for each i ∈ {0, . . . , n − 1}, the arc set of Q[Xi] is empty.

Clearly, σO and σQ are 3-hemimorphic. It is not difficult to verify that P is also
a modular partition of D(σO, σQ) and E(σO, σQ) such that

• E(D(σO, σQ)/P ) = {X0X2} ∪ {X1Xi ∶ i ∈ {2, . . . , n − 1}};

• E(σO, σQ)/P is the complement of D(σO, σQ)/P .

It follows that D(σO, σQ) and E(σO, σQ) are both connected. Hence, σO is
not 3-forced. It is not difficult to verify that P = G (σO) and σO/G (σO) is
linear; whence the necessity of Statement (T3) in Theorem 8. Furthermore,
X0 ∪X1 is a module of σO such that E2(σ[X0 ∪X1]) ≠ ∅; whence the necessity
of Statement (T4) in Theorem 42.

Example 29. Given n ≥ 2, consider the critical 2-structures γ2n introduced
in Example 20. We consider also the 2-structure ρ2n defined on V (ρ2n) =
{0, . . . ,2n − 1} in the following manner. For any p, q ∈ {0, . . . ,2n − 1} such
that p < q,

ρ2n(p, q) =
⎧⎪⎪⎨⎪⎪⎩

γ2n(q, p) if p is even and q is odd,

γ2n(p, q) otherwise.
(5)

By Claim 19, ρ2n is critical. It is not difficult to verify that γ2n and ρ2n are
3-hemimorphic. Nevertheless, by considering {0,1,2,3}, we see that γ2n and
ρ2n are not 4-hemimorphic. Clearly, we have

E(D(γ2n, ρ2n)) = E(G2n) (see Example 20).

By (3), E(γ2n, ρ2n) is the complement of D(γ2n, ρ2n). It follows that D(γ2n, ρ2n)
and E(γ2n, ρ2n) are both connected. Hence, γ2n is not 3-forced (see Problem 41).
As seen in Example 20, γ2n does not satisfy Statement (T1) of Theorem 8;
whence the necessity of Statement (T1) in Theorem 8.

Fact 30. Let σ and τ be two 3-hemimorphic 2-structures. Suppose that v(σ) = 4.
If D(σ, τ) and E(σ, τ) are both connected, and if σ/G (σ) is prime, then there
exists an isomorphism ϕ from σ onto an element of Σ4 (see Notation 18), which
is also an isomorphism from D(σ, τ) onto G4 (see Example 20).

Proof. Since D(σ, τ) and E(σ, τ) are connected, K1,3 and K3 do not embed
into D(σ, τ) and E(σ, τ). It follows that D(σ, τ) and E(σ, τ) are isomorphic to
P4. Hence, D(σ, τ) is the complement of E(σ, τ). Up to isomorphism, we can
assume that V (σ) = {0,1,2,3} and D(σ, τ) = G4. Since 01,03 ∈ E(D(σ, τ)) and
13 ∈ E(E(σ, τ)), it follows from Fact 24 that {1,3} is a module of σ[{0,1,3}].
Hence, we have σ(0,1) = σ(0,3). Similarly, we have σ(0,3) = σ(2,3) and
σ(0,2) = σ(1,2) = σ(1,3). Therefore, σ satisfies (2). If σ̃({0,1}) = σ̃({0,2}),
then σ is linear, which contradicts the fact that σ/G (σ) is prime. It follows that
σ̃({0,1}) ≠ σ̃({0,2}). Thus, σ ∈ Σ4.
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Definition 31. Recall that a digraph is a flag [9] if it is isomorphic to the
digraph ({0,1,2},{01,10,12}). A simple generalization to 2-structures follows.
A 2-structure σ defined on V (σ) = {0,1,2} is a flag if ∣L̃1(σ)∣ = 2 and ∣L̃2(σ)∣ = 1.

Hagendorf and Lopez [9] showed the next result for digraphs. The general-
ization to 2-structures is not difficult. Its proof uses mainly Fact 24.

Fact 32. Let σ and τ be two 3-hemimorphic 2-structures. Suppose that σ does
not contain flags. Each component of D(σ, τ) (or of E(σ, τ)) is a module of σ
and τ .

Lemma 33. Let σ and τ be two 3-hemimorphic 2-structures. Suppose that
v(σ) ≥ 5. If D(σ, τ) and E(σ, τ) are both connected and if σ/G (σ) is prime,
then the following two statements hold

1. there exits v ∈ V (σ) such that (σ − v)/G (σ − v) is prime;

2. for each v ∈ V (σ) such that (σ − v)/G (σ − v) is prime, D(σ − v, τ − v) and
E(σ − v, τ − v) are both connected.

Proof. We begin with the following observation. Consider 3-hemimorphic 2-
structures γ and ρ. By Lemma 27, Ð→γ and Ð→τ are 3-hemimorphic. We have
D(γ, ρ) = D(Ð→γ ,Ð→ρ ) and E(γ, ρ) = E(Ð→γ ,Ð→ρ ). Moreover, suppose that the graph
(V (γ),E2(γ)) is connected. It follows from Theorem 4 that γ/G (γ) is linear or
prime. Similarly, it follows from Theorem 4 that Ð→γ /G (Ð→γ ) is linear or prime.
Clearly, γ/G (γ) is linear if and only if Ð→γ /G (Ð→γ ) is as well. Therefore, γ/G (γ)
is prime if and only if Ð→γ /G (Ð→γ ) is as well.

Consequently, we can assume that σ =Ð→σ and τ =Ð→τ . In particular, σ and τ
do not contain flags.

The first statement follows from Lemma 17. For the second statement,
consider v ∈ V (σ) such that (σ − v)/G (σ − v) is prime. For a contradiction,
suppose that D(σ − v, τ − v) and E(σ − v, τ − v) are not both connected. By
exchanging σ − v and (σ − v)⋆ if necessary, we can assume that D(σ − v, τ − v)
is disconnected. By Fact 32, the components of D(σ − v, τ − v) are modules of
σ−v and τ −v. Since E(σ, τ) is connected, there exists x ∈ V (σ)∖{v} such that

xv ∈ E(E(σ, τ)).

Denote by C the component of D(σ − v, τ − v) containing x. Furthermore, since
(σ − v)/G (σ − v) is not linear, there exists a component D of D(σ − v, τ − v)
such that D ≠ C and σ(z, x) ≠ σ(v, x) for z ∈ D. Lastly, recall that D(σ, τ) is
connected. By considering a shortest path in D(σ, τ) from v to an element of
D, we obtain z ∈D such that

zv ∈ E(D(σ, τ)).

It follows from Fact 24 that σ[{x, z, v}] and τ[{x, z, v}] are not 3-hemimorphic,
which contradicts the fact that σ and τ are 3-hemimorphic. Consequently,
D(σ − v, τ − v) and E(σ − v, τ − v) are both connected.
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The next result is an immediate consequence of Fact 30 and Lemma 33.

Corollary 34. Let σ and τ be two 3-hemimorphic 2-structures. Suppose that
v(σ) ≥ 4. If D(σ, τ) and E(σ, τ) are both connected and if σ/G (σ) is prime, then
there exits W ⊆ V (σ) such that σ[W ] and τ[W ] are isomorphic to an element
of Σ4 (see Notation 18).

Remark 35. Consider 3-hemimorphic digraphs D and ∆. The definitions of
the modular partition G (D) and of the graphs D(D,∆) and E(D,∆) in [5] are
similar to those given for 2-structures here. It is easy to see that G (D) = G (σD),
D(D,∆) = D(σD, σ∆), and E(D,∆) = E(σD, σ∆). Boussäıri et al. [4, 5] proved
the following. If D/G (D) is prime, then D(D,∆) and E(D,∆) are not both
connected.

The next result follows from Corollary 34 and Fact 32.

Corollary 36. Let σ be a 2-structure such that v(σ) ≥ 4. Suppose that σ
contains neither flags nor elements of Σ4. If σ is prime, then σ is 3-forced.

Proof. Let τ be a 2-structure, which is 3-hemimorphic to σ. Clearly, σ/G (σ) is
prime because σ is prime. Since σ does not contain elements of Σ4, it follows
from Corollary 34 that D(σ, τ) and E(σ, τ) are not both connected. By exchang-
ing σ and σ⋆ if necessary, we can assume that D(σ, τ) is disconnected. Let C
be any component of D(σ, τ). Since σ does not contain flags, it follows from
Fact 32 that V (C) is a module of σ. Lastly, since σ is prime, V (C) is a singleton.
Consequently, the edge set of D(σ, τ) is empty, which means σ = τ .

Remark 37. For digraphs, Boussäıri et al.. [4, 5] obtained the analogous result
without forbidding the elements of Σ4. Indeed, they proved that a prime digraph
without flags is 3-forced. As seen in Example 29, it is also necessary to forbid
the elements of Σ4 for 2-structures.

4 Proofs of Theorems 8 and 10

Proposition 38. Let σ be a 2-structure. Suppose that σ =Ð→σ and (V (σ),E2(σ))
does not have isolated vertices. If σ is 3-forced, then σ satisfies Statements (T1),
(T2), and (T3) (see Theorem 8).

Proof. To begin, suppose that Gσ is disconnected. Let C be a component of
Gσ. We consider the 2-structure τ defined on V (τ) = V (σ) as follows. Given
distinct v,w ∈ V (τ),

τ(v,w) =
⎧⎪⎪⎨⎪⎪⎩

σ(w, v) if σ̃({v,w}) ∈ V (C)
σ(v,w) otherwise.

We verify that σ and τ are 3-hemimorphic. Clearly, σ and τ are 2-hemimorphic.
Let W ⊆ V (σ) satisfying ∣W ∣ = 3. If L̃2(σ[W ]) ⊆ V (C), then τ[W ] = (σ[W ])⋆.
Furthermore, if L̃2(σ[W ])∩V (C) = ∅, then τ[W ] = (σ[W ]). Therefore, suppose
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that there exist p ∈ L̃2(σ[W ])∩V (C) and q ∈ (L̃2(σ[W ])∖V (C)). By definition
of Gσ, σ[W ] is decomposable. It follows that L̃2(σ[W ]) = {p, q}. Consider
distinct v,w ∈W such that {v,w} is a nontrivial module of σ[W ]. If σ̃({v,w}) =
p, then τ[W ] is isomorphic to σ[W ]. Moreover, if σ̃({v,w}) = q, then τ[W ] is
isomorphic to (σ[W ])⋆. Consequently, σ and τ are 3-hemimorphic. It follows
that σ is not 3-forced. In what follows, we suppose that Statement (T1) holds.

To continue, suppose that there exists M ∈ G (σ) such that E2(σ[M]) ≠
∅. By Fact 23, σ and Inv(σ,M) are 3-hemimorphic. Since E2(σ[M]) ≠ ∅,
Inv(σ,M) ≠ σ. Let v ∈ V (σ) ∖M . Since (V (σ),E2(σ)) does not have isolated
vertices, there exists w ∈ V (σ)∖{v} such that {v,w} ∈ E2(σ). Since {v,w}∖M ≠
∅, Inv(σ,M) ≠ σ⋆. It follows that σ is not 3-forced. In what follows, we suppose
that Statement (T2) holds.

Lastly, suppose that ∣G (σ)∣ ≥ 3 but σ/G (σ) is not prime. By Theorem 4,
σ/G (σ) is constant or linear. Let M ∈ σ/G (σ). Consider v ∈ M . Since
(V (σ),E2(σ)) does not have isolated vertices, there exists w ∈ V (σ) ∖ {v}
such that {v,w} ∈ E2(σ). Furthermore, since Statement (T2) holds, w /∈ M .
It follows that σ/G (σ) is not constant, so σ/G (σ) is linear. Let M0 and M1

be the first two elements of σ/G (σ). Clearly, M0 ∪M1 is a module of σ. By
Fact 23, σ and Inv(σ,M0∪M1) are 3-hemimorphic. For v0 ∈M0 and v1 ∈M1, we
have {v0, v1} ∈ E2(σ), and hence Inv(σ,M) ≠ σ. Since ∣G (σ)∣ ≥ 3, there exists
v ∈ V (σ)∖ (M0 ∪M1). We obtain {v0, v} ∈ E2(σ), and hence Inv(σ,M) ≠ σ⋆. It
follows that σ is not 3-forced. Consequently, Statement (T3) holds.

Proposition 39. Let σ be a prime 2-structure. Suppose that σ = Ð→σ . If σ
satisfies Statement (T1), then σ is 3-forced.

Proof. Consider a 2-structure τ which is 3-hemimorphic to σ. To begin, suppose
that ∣L̃2(σ)∣ = 1. Since σ = Ð→σ , σ does not contain flags. Furthermore, since
∣L̃2(σ)∣ = 1, σ does not contain elements of Σ4. It follows from Corollary 36 that
τ = σ or σ⋆.

Now, suppose that ∣L̃2(σ)∣ ≥ 2. Since Gσ is connected by Statement (T1),
there exists X ⊆ V (σ) such that ∣X ∣ = 3 and σ[X] is prime. By Lemma 16,
there exist elements y0, . . . , yv(σ)−4 of V (σ) ∖ X such that Statements (S1),
(S2), and (S3) hold. For a contradiction, suppose that D(σ, τ) and E(σ, τ)
are both connected. By applying several times Lemma 33, we obtain that
D(σ[X∪{y0}], τ[X∪{y0}]) and E(σ[X∪{y0}], τ[X∪{y0}]) are both connected.
By Fact 30, σ[X ∪ {y0}] is isomorphic to an element of Σ4 (see Notation 18).
By Claim 19, σ[X ∪{y0}] is critical, which is impossible because σ[X] is prime.
Consequently, D(σ, τ) and E(σ, τ) are not both connected. By exchanging τ
and τ⋆ if necessary, we can assume that D(σ, τ) is disconnected. As shown at
the end of the proof of Corollary 36, we obtain σ = τ .

The next result is an immediate consequence of Propositions 38 and 39.

Corollary 40. Let σ be a prime 2-structure. Suppose that σ = Ð→σ . The 2-
structure σ is 3-forced if and only if σ satisfies Statement (T1).
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Problem 41. A 2-structure σ is said to be asymmetric if L̃1(σ) = ∅. Describe
the structural form of a prime asymmetric 2-structure σ such that there exists
a 2-structure τ satisfying

• σ and τ are 3-hemimorphic;

• D(σ, τ) and E(σ, τ) are both connected.

As seen in Example 29, γ2n is such a 2-structure.

Proof of Theorem 8. To begin, suppose that σ is 3-forced. By Proposition 38, σ
satisfies Statements (T1), (T2), and (T3). Conversely, suppose that σ satisfies
Statements (T1), (T2), and (T3). If σ is prime, then it follows from Proposi-
tion 39 that σ is 3-forced. Hence, suppose that σ is decomposable. Consider a
2-structure τ which is 3-hemimorphic to σ. Since σ satisfies Statement (T2), it
follows from Fact 24 that G (σ) is a modular partition of τ as well.

To continue, we show that for each M ∈ G (σ), there exists N ∈ G (σ) ∖ {M}
such that

{x, y} ∈ E2(σ) (6)

for any x ∈M and y ∈ N . Let M ∈ G (σ). Consider v ∈M . Since (V (σ),E2(σ))
does not have isolated vertices, there exists w ∈ V (σ) ∖ {v} such that {v,w} ∈
E2(σ). Furthermore, since Statement (T2) holds, w /∈ M . By denoting by N
the element of G (σ) containing w, we obtain that (6) holds.

We conclude as follows. First, suppose that ∣G (σ)∣ = 2. It follows from (6)
that σ/G (σ) is linear. Since σ and τ are 3-hemimorphic, we have E2(τ[M]) = ∅
for each M ∈ G (σ). Lastly, since G (σ) is a modular partition of τ , we obtain
τ = σ or σ⋆.

Second, suppose that ∣G (σ)∣ ≥ 3. Since σ satisfies Statement (T3), σ/G (σ) is
prime. Consider the set T of X ⊆ V (σ) such that ∣X∩M ∣ = 1 for each M ∈ G (σ).
For every X ∈ T , we verify that

τ[X] = σ[X] or (σ[X])⋆. (7)

Let X ∈ T . Since σ/G (σ) is prime, σ[X] is prime. Since σ satisfies Statements
(T1), (T2), and (T3), σ[X] satisfies Statement (T1). Since σ[X] and τ[X] are
3-hemimorphic too, it follows from Proposition 39 that τ[X] = σ[X] or (σ[X])⋆.
Consequently, (7) holds. Finally, by (6), there exist distinct M,N ∈ G (σ) such
that {x, y} ∈ E2(σ) for any x ∈M and y ∈ N . Since G (σ) is a modular partition
of τ , we obtain

for any x ∈M and y ∈ N , xy ∈ E(D(σ, τ))
or

for any x ∈M and y ∈ N , xy ∈ E(E(σ, τ)).

By exchanging τ and τ⋆ if necessary, we can assume that xy ∈ E(E(σ, τ)) for
any x ∈M and y ∈ N . For every X ∈ T , it follows from (7) that τ[X] = σ[X].
We obtain σ = τ .
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An equivalent statement of Theorem 8 follows.

Theorem 42. Let σ be a 2-structure. Suppose that σ = Ð→σ and (V (σ),E2(σ))
does not have isolated vertices. The 2-structure σ is 3-forced if and only if the
following two statements hold

(T1) Gσ is connected;

(T4) for each nontrivial module M of σ, E2(σ[M]) = ∅.

We conclude with the proof of Theorem 10.

Proof of Theorem 10. Suppose that σ is prime and (V (σ),E2(σ)) is connected.
If v(σ) = 3, then it suffices to apply Fact 25. Hence, suppose that v(σ) ≥ 4.
Consider a 2-structure τ which is 4-hemimorphic to σ. We have to show that
τ = σ or σ⋆.

For a contradiction, suppose that D(σ, τ) and E(σ, τ) are both connected.
By applying several times Lemma 33, we obtain X ⊆ V (σ) satisfying

• ∣X ∣ = 4;

• σ[X]/G (σ[X]) is prime;

• D(σ[X], τ[X]) and E(σ[X], τ[X]) are both connected.

By Fact 30, there exists an isomorphism ϕ from σ[X] onto an element of Σ4

(see Notation 18), which is also an isomorphism from D(σ[X], τ[X]) onto G4

(see Example 20). As already noted in Example 29, σ[X] is never isomorphic
to either τ[X] or (τ[X])⋆, which contradicts the fact that σ and τ are 4-
hemimorhic. Consequently, D(σ, τ) and E(σ, τ) are not both connected.

By exchanging σ and σ⋆ if necessary, we can assume that D(σ, τ) is discon-
nected. Consider a component C of D(σ, τ). We verify that V (C) is a module
of σ. Let v ∈ V (σ) ∖ V (C). We distinguish the following two cases.

1. There exists x ∈ V (C) such that {x, v} ∈ E2(σ). Since v /∈ V (C), we have
xv ∈ E(E(σ, τ)). Let y ∈ V (C) such that xy ∈ E(D(σ, τ)). We prove that

σ(x, v) = σ(y, v).

It follows from Fact 24 that either {x, y} is a module of σ[{x, y, v}] and
τ[{x, y, v}] or {x, v} is a module of σ[{x, y, v}] and τ[{x, y, v}]. If {x, v}
is a module of σ[{x, y, v}] and τ[{x, y, v}], then yv ∈ E(D(σ, τ)), which
contradicts the fact that C is a component of D(σ, τ). Hence, {x, y} is a
module of σ[{x, y, v}] and τ[{x, y, v}]. Thus, we have σ(x, v) = σ(y, v).
Now, by considering z ∈ V (C) such that yz ∈ E(D(σ, τ)), we obtain in the
same manner that σ(y, v) = σ(z, v), and hence σ(x, v) = σ(z, v). Since C
is a component of D(σ, τ), we obtain σ(x, v) = σ(t, v) for every t ∈ V (C).
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2. For every x ∈ V (C), {x, v} ∈ E1(σ). Since (V (σ),E2(σ)) is connected,
there exists y ∈ V (C) and w ∈ V (σ) ∖ V (C) such that {y,w} ∈ E2(σ).
By the first case above, we have σ(y,w) = σ(t,w) for every t ∈ V (C).
Let z ∈ V (C) such that yz ∈ E(D(σ, τ)). We have σ(y,w) = σ(z,w)
and zw ∈ E(E(σ, τ)). Since σ and τ are 4-hemimorphic, there exists an
isomorphism f from σ[{y, z, v,w}] onto τ[{y, z, v,w}] or (τ[{y, z, v,w}])⋆.
Since v is the unique element of {y, z, v,w} such that

∣{t ∈ {y, z, v,w} ∶ {t, v} ∈ E1(σ)}∣ ≥ 2,

we have f(v) = v. We obtain f = (yz) or (ywz). In both cases, we have
σ(y, v) = σ(z, v). We conclude as in the first case above by using the fact
that C is a component of D(σ, τ).

It follows that V (C) is a module of σ. Since σ is prime, V (C) is a singleton.
Consequently, the edge set of D(σ, τ) is empty, which means σ = τ .
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naires de cardinal < 12, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993)
7–12.
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