An FPGA Design of AES Encryption Circuit
with 128-bit Keys

Hui QIN
ginh_jp@yahoo.co.jp

Tsutomu SASAO
sasao@cse.kyutech.ac.jp

Yukihiro IGUCHI
iguchi@cs.meiji.ac.jp

+ Dept. of Computer Science and Electronics, Kyushu Institute of Technology, lizuka, 820-8502, Japan
1 Dept. of Computer Science, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan

ABSTRACT

This paper addresses a pipelined partial rolling (PPR) ar-
chitecture for the AES encryption. The key technique is the
PPR architecture, which is suitable for FPGA implementa-
tion. Using the proposed architecture on the Altera Stratix
EP1S20F780C5 FPGA, the AES-4SM achieves a throughput
of 5.61 Gbps by using 20 M4Ks, and the AES-8SM achieves
a throughput of 10.49 Gbps by using 40 M4Ks. Compared
with the unrolling implementation that achieves a through-
put of 20.48 Gbps by using 80 M4Ks on the same FPGA, im-
plementations with the PPR architecture reduce the amount
of memory up to 75% while increasing the memory efficiency
(i.e., throughput divided by the size of memory for core) up
to 9.6%. The PPR architecture fills the gap between un-
rolling and rolling architectures, and fits on less expensive
FPGAs.

Categories and Subject Descriptors:
B.7.1 INTEGRATED CIRCUITS]: Types and Design Styles
— Algorithms implemented in hardware

General Terms: Design, Experimentation

Keywords: AES encryption, pipeline, FPGA

1. INTRODUCTION

The Advanced Encryption Standard (AES) [1] is based on
arithmetic in a finite Galois field, GF(2®), and it is a sym-
metric block cipher that encrypts 128-bit plain text data
with a 128-bit, 192-bit, or 256-bit cipher key [1]. In this pa-
per, we focus on the AES encryption using a 128-bit key as
shown in Fig. 1. It requires 11 rounds (i.e., logic operations),
in which the first round performs only the AddRoundKey
transformation, the middle 9 rounds perform all the four
transformations: SubBytes, ShiftRows, MixColumns and
AddRoundKey, and the final round performs three transfor-
mations: SubBytes, ShiftRows, and AddRoundKey, omit-
ting the MixColumns transformation. The round keys for
each round are generated from the original 128-bit input key

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

GLSVLS’05, April 17-19, 2005, Chicago, Illinois, USA.

Copyright 2005 ACM 1-59593-057-4/05/0004 ...$5.00.

128-bit PLAIN TEXT 128-bit

KEY
Round Key0
| Round0 [EX522
Round Key1
| Round | [

KEY EXPANSION

Inner Transformations
Input Data

ShiftRows

MixColumns

AddRoundKey

Output Data

Round Key9

Round
Key

Round Key10

128-bit CIPHER TEXT

Figure 1: AES encryption with 128-bit key.

through the key expansion block. In general, two methods
exist to generate the round keys. In the first method, the
round keys are stored in a register or memory, and then used
for all incoming plain text data. However, this method re-
quires a large register or memory for the round keys, and it
needs a preprocessing phase every time the key is changed.
The second method is an online key generation algorithm,
where the round keys are generated concurrently with the
encryption process. Since the online key generation method
allows the block cipher to work at full speed even if the key
is changed, we adopted this method in this work.

Since Nov. 2001, various AES implementations using
ASICs or FPGAs have been reported. Some focus on the
small chip area by using the rolling architecture in Fig-
ure 2(a) [2], [3], [4], and others focus on high throughput
by using the unrolling architecture in Fig. 2(b). To achieve
a high throughput, partition of each round by inserting
pipeline registers is necessary. However, this will increase
the cycles (or stages) in the AES round blocks. For exam-
ple, Saggese et al. [5] achieved 20.3 Gbps with 50 cycles,
while Zambreno et al. [6] achieved 23.50 Gbps with 30 cy-
cles.

In this paper, we have developed a pipelined partial rolling
(PPR) architecture to achieve a high throughput with small
area. It performs partial-rolling in the round while adopting
the pipeline technique. The rest of the paper is organized
as follows: Section 2 presents the conventional AES archi-
tectures. Section 3 introduces the pipelined partial rolling
(PPR) architecture. Section 4 presents the AES implemen-
tation using an FPGA. Section 5 shows the experimental
results. And finally, Section 6 concludes the paper.

Round functions

; P

g w| 2 :

: THHHEE

2 AEIFIEINEE

% S| 21 &2 » CipherText
PlainText B sl#|=| < : Out

In e A L

128
Key Expansion Block
Key In

(a) Rolling architecture of AES Encryption with 128-bit key.

]
®

128-bit Reg]

5 |CipherText
Out

’ Key Expansion Block ‘

]24 Key In

(b) Unrolling architecture of AES Encryption with 128-bit key.

Figure 2: Existing AES architectures.

2. EXISTING AESARCHITECTURE

Various architectures exist to realize the AES encryption.
Among them, the rolling architecture and the unrolling ar-
chitecture shown in Fig. 2(a) and (b) are the two basic ar-
chitectures.

The rolling architecture shown in Fig. 2(a) uses a feed-
back structure where the data are iteratively transformed
by the round functions. This approach occupies small area,
but achieves low throughput. Existing rolling implementa-
tions [2], [3], [6], have the throughput of approximately 1 to
1.4 G-bit/s, and the size of the memory for the core is just
32 K bits.

In the unrolling architecture shown in Fig. 2(b), the
round blocks are pipelined and the inserted pipeline regis-
ters allows simultaneous operation of all 11 round blocks.
Due to the pipeline, this approach achieves a high through-
put, but requires large area. Existing unrolling implementa-
tions [5], [6], [7], [8], have the throughput of approximately
10 to 23 G-bit/s, and the size of the memory for the core is
up to 320 K bits.

3. PIPELINED PARTIAL ROLLING (PPR)
ARCHITECTURE

This section describes the AES design with a new type of
memory-based architecture called pipelined partial rolling
(PPR).

In the AES round, among the four inner transformations,
the SubBytes requires the largest area and latency. It con-
sists of 16 S-Boxes that is the most complicated function
block in the entire circuit. For the SubBytes, both of the
rolling implementation and the unrolling implementation
use 16 S-Boxes. In the PPR, we use a special mechanism
for the ShiftRows and the SubBytes to reduce the number of
S-Boxes and areas for shifters and multiplexers. To realize
the S-Box, we use a ROM that is one of the fastest methods.

Since the multiplication over GF(2®) in MixColumns uses
a constant as one operand, and this constant multiplication
can be simply converted into a bit-wise XOR operation, the
matrix multiplication can be replaced by several XOR oper-
ations. Hence, the MixColumns can be realized as XOR op-

128
> Key Expansion Block

Key In 1
128
PlainText
In
h ‘”féf”"? &b E
’ ! @ by o
[os| (28 |is|E)| | [B
ol E & BRI S e g
e~ = o = 0
D72 2 g ®
[\ & = =
Figure 3: Architecture of PPR.
5 S-Modulel |—22—
; 5] clk out1[31:0]
fat
= § S-Module2 ﬁ%
Q
E % " out2[31:0]
Hoe § S-Module3 2
‘D o
R A af OB
|1 S-Module4
shif3:0] |
* [RoM2K_04 L Reg 02
In[127:0 — in[31:24] out[31:24]
[127:0] K3:0]|: Aédsffg]") in[23:16] out[23:16]
1k ol i 7: in[15:8] out[15:8]
ot ul30] | pata[7.0)—in(7:0] _ ou[7:0]
en | Control Part| i clk

Figure 4: Rolling part: 4SM.

erations. Also, the AddRoundKey operation uses an XOR
operation to add the round key. Thus, we can easily im-
plement the MixColumns and the AddRoundKey by using
bit-wise XOR operations.

Figure 3 shows the architecture of the PPR. We used
pipeline to increase the throughput. The key expansion
block consists of 10 round key circuits that used to gen-
erate the round key for each round. A round unit consists
of the following components:

Rolling Part: Performs the ShiftRows and the SubBytes
transformations.

128-bit Pipeline Reg.: Stores the states of each round.
MixColumns: Performs the MixColumns using several bit-
wise XOR operations.

128-bit XOR: Performs the AddRoundKey using 128-bit
bit-wise XOR operations.

The rolling part is the most important part in the round
unit. In this paper, we show two designs for the rolling part:
The 4SM and the 8SM.

The 4SM shown in Fig. 4 consists of a 16-byte cyclic
shifter and four copies of S-Module (SM). The 16-byte
cyclic shifter have 16-byte (128-bit) inputs and 4-byte out-
puts. Let F be the input-to-output mapping function of the

Table 1: Relationship between the inputs and the outputs of the permutation network in 8SM

Inputs Xo| Xi | Xo| X3 | Xu| X5 | Xs

X7

Xs | Xo | Xwo | X1 | Xi2 | Xz | Xua | Xus

Xy | X1a | Xs | Xo | X12

Outputs | Xo | X0

Xe

Xs | Xis | Xo| X3 | X3 | Xo| X1 | Xna

8 % 32
- S-Module2 |——
3

® T

8 32
S-Modulel |——
00;

b e

8 32
S-Module2 |——

i ¢ 32
—“ S-Modulel |——
i

oL

8 32
~— S-Module3 |——

02 —

16-byte cyclic shifter
16-byte cyclic shifter
16-byte cyclic shifter

clk=1st!
en=1

{a) Step 1

8 32
S-Module2 |——

2

8 32
~— S-Module3 |——

b

20

on

8

197
iR
‘

16-byte cyclic shifter

3

S-Modulel

32
S-Module4

n[127:0] [

1 8 32
— S-Modulel |——
3 ' : ;i
8 32
S-Module2 [——

16-byte cyclic shifter

8 32
S-Module4 |——

LE A W 2y

Figure 6: Operations of rolling part: 4SM.

)
—>
f) 8 16
e out S-Modulel |——
- . '
e ; kX outl[15:0]
' S| 8 : :
. S || .
RN . ' 16
' g ' oout7 S-Module7
S
o ikt out7[15:0]
7 e Y
[— —> ; S-Module8
[— {| ROM2K_04
| — — i (S_Box) Reg.08
) H Addr{7:0] in[15:8] out[15:8]
In[127:0] | Data[7:0]—in[7:0] out[7:0]
clk | ctrl_out[0]] ! clk ;
n ™| Control Part| * ok out8[15:0] ./

Figure 5: Rolling part: 8SM.

cyclic shifter, then

F(,X'o7 Xl, ceny X157 K)
(XK(mod16)7 XK+4(mod16)) XK+8(mod16)7 XK+12(mod16)):

where K is 0, 5, 10 or 15. K is represented by the 4-bit
output signals from the control part, and X; denotes byte
data. For example,

F(XO,Xh ,..,X15, 5) = (X57X97X137X1)'

Each S-Module consists of a 2K-bit ROM and a 32-bit feed-
back register, where the ROM stores the table for the S-Box,
and the feed-back register stores the outputs of the S-Box.

The 8SM shown in Fig. 5 consists of a 16-byte to 8-byte
selector and eight copies of S-Module. In front of the selec-
tor, the permutation network is used to arrange the input
data in the required order. Table 1 shows the permutation,
where both inputs and outputs are 16-byte data. When
the output Sel is 0, the upper 8 bytes are selected. On the
other hand, when the output Sel is 1, the lower 8 bytes are
selected. Each S-Module consists of a 2K-bit ROM and a
16-bit feed-back register, where the ROM stores the table

for the S-Box, and the feed-back register stores the outputs
of the S-Box. In the round operation, the S-Modules of the
4SM are used four times, while the S-Modules of the 8SM
are used twice.

For the 4SM, we can also adopt the architecture of the
8SM. That is, to use permutation network and selector in-
stead of the 16-byte cyclic shifter. In our FPGA implemen-
tation, Quartus I 4.1 simulator shows that a 16-byte cyclic
shifter produces higher memory efficiency than the permu-
tation and a selector, while the areas for the two implemen-
tations are the same.

EXAMPLE 1. This part illustrates the operations for the
4SM. Let the hexadecimal representation of the 128-bit orig-
inal data be 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23
33. After SubBytes and ShiftRows, the output data become
63 82 93 ¢8 Tc ¢9 26 04 77 7d b7 ¢7 7b ca fd 23. Figures 6
(a) - (b) show the operations of the 4SM.

In Step 1, the outputs of the control part are 0000, and
then the outputs of the 16-byte cyclic shifter become 00, 01,
02, 03. By using the S-Bozes, the outputs of the ROMs
become 63, 7c, 77, Tb, respectively.

In Step 2, when a positive clock is applied, the outputs of
the control part become 0101. At the same time, the previous
outputs of ROMs (63, Tc, 77, Tb) are stored in the registers,
and also sent to the output terminals. And then the outputs
of the 16-byte cyclic shifter become 11, 12, 13, 10. By using
the S-Boxes, the outputs of the ROMs become 82,c9,7d,ca,
respectively.

In Step 3, when a positive clock is applied, the outputs of
the control part become 1010. At the same time, the previous
outputs of ROMs (82, 9, 7d, ca) are stored in the registers,
and also sent to the output terminals. And then the outputs
of the 16-byte cyclic shifter become 22, 23, 20, 21. By using
the S-Bozxes, the outputs of the ROMs become 93, 26, b7, fd,
respectively.

In Step 4, when a positive clock is applied, the outputs of
the control part become 1111. At the same time, the previous
outputs of ROMs (93, 26, b7, fd) are stored in the registers,
and also they are sent to the output terminals. And then the
outputs of the 16-byte cyclic shifter become 33, 30, 31, 32.

Table 2: Comparison of AES-4SM, AES-8SM, UNROLLING and the published works

Design Device LEs / Memory Memory | Cycles feir Th. Eff Design
Slices for key for core (MHz) | (Gbps) | (%) Rule
AES-4SM 1S20C5 | 13368 0 80 K-bit 20 | 43.86 5.61 70.13 0.13 pm
LEs (20 M4Ks)
AES-8SM 1S20C5 | 12827 0 160 K-bit 20 | 82.00 10.49 65.56 0.13 pm
LEs (40 M4Ks)
UNROLLING 1S20C5 | 12560 0 320 K-bit 20 | 160.05 20.48 64.00 0.13 pm
LEs (80 M4Ks)
AES-4SM 1S10C5 5142 80 K-bit 80 K-bit 20 | 39.68 5.08 63.50 0.13 pm
LEs (20 M4Ks) (20 M4Ks)
UNROLLING 1S10C5 3886 oversize oversize
LEs
Standaert et al. | XCV 2784 80 K-bit 320 K-bit 21 11.77 36.78 0.18 pm
[7](unrolling) 3200E-8 | Slices | (20 BRAMs) | (80 BRAMs)
Saggese et al. XVE 5810 80 K-bit 320 K-bit 50 20.30 63.44 0.18 pm
[5%gmrolling) 2000-8 Slices | (20 BRAMSs) | (80 BRAMS)
UF10-PP3B [6] | XC2V 5142 80 K-bit 320 K-bit 30 23.50 73.44 | 0.12 pm /
(unrolling) 4000 Slices | (20 BRAMs) | (80 BRAMs) 0.15 pm
UF1-PPOB [6] XC2V 387 8 K-bit 32 K-bit 10 1.41 44.06 | 0.12 pm /
(rolling) 4000 Slices | (2 BRAMs) | (8 BRAMs) 0.15 um
Helion [2] Stratix 1023 8 K-bit 32 K-bit 10 1.40 43.75 0.13 pm
(rolling -C5 LEs (2 M4Ks) (8 M4Ks)

1S20C5: Altera Stratix EP1S20F780C5; 1S10C5: Altera Stratix EP1S10F780C5
Slice: Contains two 4-input look-up tables; BRAM: Block Selected RAM (4 K-bit)

By using the S-Bozes, the outputs of the ROMs become c3,
04, c7, 23, respectively.

In Step 5, when a positive clock is applied, the outputs of
the control part become 0000. At the same time, the previous
outputs of ROMs (c3, 04, c7, 23) are stored in the registers,
and also sent to the output terminals. And then the outputs
of the 16-byte cyclic shifter become 00, 01, 02, 03. In this
way, the rolling part implements the SubBytes and ShiftRows
transformations. (End of Example)

4. FPGA IMPLEMENTATION

We use the Altera Stratix FPGA to implement the AES
encryption circuit. The Altera Stratix FPGAs offer special
RAM blocks called M4K that can store 4096 bits. The M4K
can be configured at ratios between 4096x 1 to 256 x 16, and
may have dual-port functionality. The M4Ks are also suit-
able for implementing synchronous ROMs.

As mentioned in Section 3, in the round, the MixColumns
and the AddRoundKey are realized as a network of XOR
gates where each gate requires one Logic Element (LE). In
the rolling part, the 16-byte cyclic shifter for the 4SM and
selector for the 8SM are implemented by LEs. To implement
S-Boxes, we used the M4K. Each M4K is configured as a
dual-port synchronous 256 x 8-bit words ROM to implement
two separate S-Boxes. The values in the look-up tables for
S-Boxes are loaded into the M4Ks at the configuration time.
Since an M4K implements two separate S-Boxes, 8 copies of
the M4K are sufficient for each SubBytes that contains 16
S-Boxes. As for the key expansion block, each round key
circuit consists of 4 S-Boxes and 6 XOR gates where the S-
box is realized by 208 LEs since this realization has a slightly
higher throughput than using M4Ks for the S-Box of the key,
as can be seen from the experimental results in later section.

We also implemented the unrolling architecture with the
same FPGA for comparison. In this case, the SubBytes
was implemented by M4Ks, the MixColumns and the Ad-

dRoundKey were implemented by XOR gates, while the
ShiftRows was simply realized by hardwiring. For the part
of the rolling implementation, we compared with the work
of Helion [2], which achieves 1.4 Gbps throughput on the
Altera Stratix-c5 FPGA.

5. PERFORMANCE AND COMPARISONS

We evaluated the performance of the AES-4SM and the
AES-8SM, and compared with the unrolling implementation
called UNROLLING (designed by us) and other published
works.

The AES-4SM is implemented with rolling part 4SM, while
the AES-8SM is implemented with rolling part 8SM. To
compare the performance of different architectures, we im-
plemented the AES-4SM, the AES-8SM and the
UNROLLING on the same FPGA. For each implementa-
tion, first we designed the circuit by Verilog HDL, and then
used Quartus IT 4.1 for synthesis, place & route and timing
analysis. Finally, we used Quartus II 4.1 simulator to test
the logical operation and to do the worst-case timing analy-
sis for the design in the target FPGA. The maximum clock
rate (fer) was obtained by Quartus II 4.1 simulator.

In Table 2, the upper five rows show our implementations
AES-4SM, AES-8SM and UNROLLING, and the lower five
rows show the published works. The column “Device” de-
notes the FPGA used. The column “Memory for key” de-
notes the amount of memory utilized for the key expansion,
and “Memory for core” denotes the amount of memory uti-
lized for the core, where one M4K is equivalent to 4096 bits.
The column “Cycles” denotes the number of clock cycles for
the process of the whole AES rounds. The column “Th.”
denotes the maximum throughput calculated by:

Th. = 128 - fur .

The column “Eff” shows the memory efficiency calcu-

lated by:

Throughput (Mbps)
Memory for core (K bits) °

Eff = (1)
In the Altera Stratix Device family [9], EP1S10F780C5 has
the minimum devices, containing 10570 LEs and 60 M4Ks.
The EP1S20F780C5 is larger than the EP1S10F780C5 and
contains 18460 LEs and 82 M4Ks. For the EP1S20F780C5
as shown in Table 2, the AES-4SM achieved 5.61 G-bit/s
throughput by using 20 memory blocks (M4Ks), and the
AES-8SM achieved 10.49 G-bit/s throughput by using 40
M4Ks. Compared with the UNROLLING that achieved
20.48 G-bit/s throughput on the same FPGA, the amounts
of memory utilized for the AES-4SM and the AES-8SM are
reduced by 75% and 50%, respectively, and the memory ef-
ficiencies for the AES-4SM and the AES-8SM are improved
by 9.6% and 2.4%, respectively.

The AES-4SM can also be implemented on the
EP1S10F780C5 by utilizing the M4Ks for the key expan-
sion, but the throughput is slightly lower than that on the
EP1S20F780C5. Note that the EP1S10F780C5 is too small
for the UNROLLING. This is because in order to utilize
both of the memory for key and the memory for core, it re-
quires 100 copies of the M4K, which exceeds the maximum
number of the M4Ks of the EP1S10F780C5. However, the
AES-8SM can also be implemented on the EP1S10F780C5
(not shown in Table 2), since it only requires 60 M4Ks. We
also implemented the AES-4SM and the AES-8SM on Cy-
clone 1T EP2C35 FPGA. The throughputs are 4.57 Gbps
and 8.00 Gbps, respectively (not shown in Table 2). Hence,
the AES-4SM and the AES-8SM are suitable for the smaller
FPGAs. In this regard, the AES-4SM and the AES-8SM
fill the gap between the rolling implementation and the un-
rolling implementation.

Direct comparison among various FPGA implementations
of the AES algorithms is difficult, since FPGA target devices
are usually different. However, many AES implementations
have provided the maximum throughputs and the amount
of the memory utilized for the core. Thus, we can compare
the memory efficiency defined in (1).

Compared with the published unrolling implementations
signified with “(unrolling)” in the column “Design”, the
memory efficiency of the AES-4SM is very close to the fastest
implementation (UF10-PP3B). Note that the number of cy-
cles for UF10-PP3B is 30. Besides, the amounts of the mem-
ory utilized for the core of the AES-4SM and the AES-8SM
are reduced by 75% and 50%, respectively.

Compared with the published rolling implementations sig-
nified with “(rolling)” in the column “Design”, both the
throughputs and the memory efficiencies of the proposed
implementations are much higher than the fastest rolling
implementation (UF1-PP0B).

Both of the AES-4SM and the AES-8SM have much higher

Table 3: Comparison of the different architectures

Architecture | Memory Throughput Memory
area efficiency
Unrolling Large High 0.84~1.68
PPR Medium | Medium / High | 1.50~1.60
Rolling Small Low 1

throughput than the software implementations. An AES
rolling implementation achieves 1.538 Gbps on a 3.2 GHz
Pentium4 processor [10] and a 640Mbps on a 1 GHz embed-
ded processor [11].

Table 3 summarizes the features of the three different ar-
chitectures: unrolling, PPR, and rolling. In the column
“Memory efficiency”, let the value of Helion [2] be 1, since
it is approximately the same as the value of UF1-PPOB [6].
We can see that the PPR architecture offers a high memory
efficiency and a medium to high throughput using medium
memory area.

6. CONCLUSIONS

In this paper, we presented the pipelined partial rolling
(PPR) architecture for an AES encryption processor. We
implemented two different designs: AES-4SM and AES-
8SM on Altera Stratix EP1S20F780C5 FPGA using the
PPR architecture. The AES-4SM achieves a throughput
of 5.61 Gbps by using 20 M4Ks, and the AES-8SM achieves
a throughput of 10.49 Gbps by using 40 M4Ks. Compared
with the unrolling implementation that achieves a through-
put of 20.48 Gbps by using 80 M4Ks on the same FPGA, the
AES-4SM and the AES-8SM improve the memory efficiency
by 9.6% and 2.4%, respectively, and reduce the amount of
the memory by 75% and 50%, respectively. The PPR, archi-
tecture fills the gap between unrolling and rolling architec-
tures, and fits on less expensive FPGAs.

Acknowledgments

This research is partly supported by JSPS, the Grant in Aid
for Scientific Research, and MEXT, the Kitakyushu area
innovative cluster project.

7. REFERENCES

[1] National Institute of Standards and Technology (NIST),
Advanced Encryption Standard (AES), Federal Information
Processing Standards Publications 197 (FIPS197), Nov. 2001.

[2] HELION Technology Limited, “High performance AES
(Rijndael) cores for Altera FPGA,” available at
http://www.heliontech.com/core2.htm.

[3] Amphion Semiconductor, “CS5210-40: High performance AES
encryption cores,” 2003, available at
http://www.amphion.com/cs5210.htm.

[4] N. Pramstaller and J. Wolkerstorfer, “A universal and efficient
AES co-processor for field programmable logic arrays,” FPL
2004, LNCS3203, pp. 565-574, 2004.

[5] G. P. Saggese, A. Mazzeo, N. Mazzocca and A. G. M. Strollo,
“An FPGA-based performance analysis of the unrolling, tiling,
and pipelining of the AES algorithm,” FPL 2003, LNCS 2778,
pp. 292-302, 2003.

[6] J. Zambreno, D. Nguyen and A. N. Choudhary, “Exploring
area/delay tradeoffs in an AES FPGA implementation,” FPL
2004, LNCS3203, pp. 575-585, 2004.

[7] F.-X. Standaert, G. Rouvroy, J.-J. Quisquater and J.-D. Legat,
“Efficient implementation of Rijndael encryption in
reconfigurable hardware: Improvements and design tradeoffs,”
in the proceedings of CHES 2003, Lecture Notes in Computer
Science, vol. 2523, pp. 334-350, Cologne, Germany, September
2003, Springer-Verlag.

[8] F. Charot, and E. Yahya, and C. Wagner, “Efficient
modular-pipelined AES implementation in counter mode on
ALTERA FPGA,” FPL 2003, pp. 282-291, Lisbon, Portugal,
2003.

[9] http://www.altera.com

[10] H. Lipmaa, “AES implementation speed comparison,”
available at http://www.tsc.hut.fi./“aes/rijndael.html1,2003.

[11] K. Nadehara, M. Ikekawa, and I. Kuroda, “Extended
instructions for the AES cryptography and their efficient
implementation,” IEEE Workshop on Signal Processing
System (SIPS’04), Oct. 13-15, 2004, FA-1.3.

