
Flexible Implementation of Genetic Algorithms on FPGAs

Tatsuhiro Tachibana, Yoshihiro Murata, Naoki Shibata†, Keiichi Yasumoto and Minoru Ito
Grad. Sch. of Info. Sci., Nara Inst. Sci. and Tech.

Ikoma, Nara 630-0192, Japan

{tatsu-ta,yosihi-m,yasumoto,ito}@is.naist.jp

† Dept. of Info. Proc. and Man., Shiga Univ.
Hikone, Shiga 522-8522, Japan

shibata@biwako.shiga-u.ac.jp

ABSTRACT
In this paper, we propose a technique to flexibly implement ge-
netic algorithms for various problems on FPGAs. For the purpose,
we propose a basic architecture for GA which consists of several
modules for GA operations to compose a GA pipeline, and a par-
allel architecture consisting of multiple concurrent pipelines. The
proposed architectures are simple enough to be implemented on
FPGAs, applicable to various problems such as Knapsack Problem
and Traveling Salesman Problem (TSP), and easy to estimate the
size of the resulting circuit. We also propose a model for predicting
the size of resulting circuit from given parameters consisting of the
problem size, the number of concurrent pipelines, and the number
of candidate solutions for GA. Based on the proposed method, we
have implemented a tool to facilitate GA circuit design and devel-
opment. This tool allows designers to find appropriate parameter
values so that the resulting circuit can be accommodated in the tar-
get FPGA device, and to automatically obtain RT-level VHDL de-
scription. Through experiments using Knapsack Problem and TSP,
we show that the FPGA circuits synthesized based on the proposed
method run much faster and consume much lower power than soft-
ware implementation on a PC, that the achievable performance can
be improved as the size of the target FPGA device increases, and
that our model can predict the size of the resulting circuit accurately
enough.

Categories and Subject Descriptors
B6.3 [Logic Design]: Design Aids - Automatic synthesis

General Terms
Design, Experimentation

Keywords
genetic algorithm, FPGA, hardware design automation, Knapsack
Problem, Traveling Salesman Problem

1. INTRODUCTION
Genetic Algorithm (GA) is a technique for efficiently finding

near optimal solutions for combinatorial optimization problems.
Since GAs are easy to implement and work efficiently enough, they
have been used for various practical problems such as scheduling,
design and allocation. On the other hand, it is known that GAs
require larger computation power than algorithms designed exclu-
sively for particular problems. Applications of GA can be catego-

.

rized into several types : the first type includes the optimal route
decision problem such as TSP and analogous problems for obtain-
ing optimal routes satisfying time restrictions which can be used in
personal navigation system for sightseeing tours [1] or parcel de-
livery. Examples of the second type applications include calculat-
ing multicast delivery tree in large-scale network which optimizes
more than one QoS metrics (e.g., delay and cost) [2]. The third
type includes high quality video compression algorithm [3] which
has been standardized as ISO JBIG2. The first type of applications
may be used through portable computing devices such as cellu-
lar phones and PDAs. The second and third types of applications
are typically executed on routers and information appliances (e.g.,
HDTV, facsimile, etc), respectively. These devices usually have
relatively low-cost micro processor and implementing GA applica-
tions as software and executing on these devices is not realistic in
terms of cost and power consumption. Hardware implementation
of GA on FPGA could be more realistic in these cases.

There are several research efforts for hardware implementation
of GAs [4, 5, 6, 7]. However, these existing techniques use specific
architectures for the target problems, e.g., for TSP [4] or for rather
simple problems such as Set Coverage Problem [5]. In order to
make GAs on information appliances and small electronic devices
for various purposes, we need a general architecture for hardware
implementation of GAs. We also need a method to optimize the
resulting circuit for a given problem and a target device, satisfying
various constraints such as required performance, cost and power
consumption.

In this paper, we propose a flexible implementation technique of
GA on FPGAs with cost-performance tradeoffs. In the proposed
method, we first propose a general basic architecture for GA con-
sisting of several modules which cooperatively execute GA opera-
tions in a pipeline. We call this sequential composition of the mod-
ules a GA pipeline. In our basic architecture, simplified GA oper-
ations and generation model are used so that various GA problems
can be developed with this architecture. The speed and size (includ-
ing memory) of the resulting circuit can be also optimized by this
architecture. Then we propose a parallel architecture which con-
currently executes GA pipelines, exchanging candidate solutions
among GA pipelines.

In our synthesis method, the problem size (number of bits in
each candidate solution), the number of candidate solutions, and
the number of parallel pipelines can be specified as parameters. In
order to optimize the performance of the resulting circuit for the
target FPGA device, we propose a model for predicting the size of
the resulting circuit from the given parameter values. As we show
through experiments, the prediction result is accurate enough for
practical use. This accuracy of prediction is achieved by construct-
ing whole circuit as a simple combination of multiple GA pipelines,

and each pipeline as a simple combination of several modules and
control circuits.

We have implemented a tool to facilitate GA circuit design and
development. This tool consists of two parts: circuit size check part
and circuit derivation part. The circuit size check part utilizes a pre-
diction model and calculates parameter values with which the hard-
ware circuits can be synthesized on a specified FPGA device. It can
also check whether the size of the circuit with the given parameter
values is within the target FPGA device. The circuit derivation part
generates the RT level VHDL description when the parameter val-
ues are given. This tool would be helpful for designers especially in
early phase of design since various combinations of parameter val-
ues can be tested to check if those values can generate the circuits
which fully utilize the target FPGA devices.

In order to show applicability of the proposed method, we give
detailed design of two example GAs for Knapsack Problem and
TSP. Through experiments, we show that the FPGA circuits syn-
thesized based on the proposed method run much faster and con-
sume much lower power than software implementation executed on
Pentium 4, that the achievable performance can be improved as the
size of the target FPGA device increases, and that our model can
predict the size of the resulting circuit accurately for practical use.

In the following Sect. 2, studies on hardware GA is briefly pre-
sented. In Sect. 3, we address the outline of the proposed method.
Sect. 4, describes the proposed architectures for hardware imple-
mentation of GA. In Sect. 5, we design two example GAs, Knap-
sack Problem and TSP with our architecture. Sect. 6 presents a
model for predicting the size of the resulting circuit from given pa-
rameters. Sect. 7 and Sect. 8 describe our design support tool
and the experimental results, respectively. Finally, we conclude the
paper in Sect. 9.

2. RELATED WORKS
Several hardware implementation techniques for GAs have been

proposed so far. In [5], Barry et al. produced hardware circuits
for Set Coverage Problem using a technique called the steady-state
GA. In their report, the circuits run 2200 times faster than a soft-
ware implementation on a workstation with 100MHz CPU. Aporn-
tewan et al. proposed a hardware implementation technique for
Compact Genetic Algorithm on FPGAs[6]. This algorithm gen-
erates new candidate solutions from the probability distribution of
former candidate solutions. This approach reduces required mem-
ory, but it can only be applied to simple problems such as one-max
problem. Wakabayashi et al. synthesized a hardware circuit called
GAA-II [7] which works very well for a benchmark problem called
Dejong’s test function. In [4], Graham et al. implemented a GA for
TSP on a board consisting of four Xilinx 4010 FPGAs and external
memory. They reported that their circuit works 11 times faster than
software implementation on a workstation with 125MHz PA-RISC.

These existing methods aim at achieving higher performance
than software implementation, and most of them use architectures
exclusive for the target problems. Thus, implementing hardware
GAs for other problems based on these methods is difficult.

In order to implement hardware GAs for various problems on
FPGAs so that it can be used in information appliances, small elec-
tronic devices, and so on, a general architecture suitable for hard-
ware implementation of GAs is necessary. Also, the synthesized
circuit have to satisfy conditions regarding to performance, cost,
and power consumption for the target device. For flexible imple-
mentation of hardware circuits mentioned above, Kitani et al. pro-
posed an efficient design method for real-time embedded systems
[8]. This method allows designers to select an appropriate set of
hardware components which satisfies conditions regarding to per-

formance and the total cost of the system. However, it is difficult to
apply this method for hardware GA since it does not treat the case
where the component size changes depending on the problem size.

3. BASIC IDEAS FOR HARDWARE IMPLE-
MENTATION OF GA

In this section, we give a brief explanation about GA and then
show our basic ideas for implementing GA as a hardware circuit.

3.1 Genetic Algorithms
GA uses multipleindividuals (i.e., candidate solutions) where

each individual includes a chromosome representing a point in a
search space of the given problem. GA works as follows: (1) In-
dividuals are generated with randomly decided chromosomes. The
set of individuals is calledpopulation; (2) Thefitness valueis cal-
culated for each individual. The fitness value represents how close
to the optimal solution the individual is; (3) Theselectionopera-
tion is applied to the population and a certain number of individuals
with better fitness values are selected; (4) Thecrossoveroperation
is applied to pairs of the selected individuals to generate new indi-
viduals where the chromosome of a new individual is generated by
mixing parents’ chromosomes; (5) Themutationoperation is ap-
plied to the new individuals. These new individuals are replaced
with the individuals which are not selected in (3). The above oper-
ations from (2) to (5) are repeatedly applied specified times or until
a good approximation close to the optimal solution is obtained.

An individual which does not represent any point in a search
space is called alethal individual. Here, we give an example of
lethal individual in Knapsack Problem. In Knapsack Problem, mul-
tiple items and one knapsack are given as inputs. Different val-
ues and volumes are assigned to items, and the knapsack has fixed
capacity. The objective is to find the most valuable set of items
that can be accommodated in the knapsack. If the sum of volumes
of items in a candidate solution expressed by a chromosome ex-
ceeds the capacity of the knapsack, the individual which contains
the chromosome is a lethal individual.

3.2 Basic Ideas to Synthesize Hardware Cir-
cuits for GAs

The goal of the proposed method is to synthesize an efficient
hardware circuit of a GA for a given problem and problem size
(size of each solution) which fully utilize the target FPGA device.
The numbers of logic elements and memory blocks are taken into
account when deciding if the circuit is accommodated in the FPGA
device. To achieve this goal, we need (1) an efficient and general
architecture for hardware implementation of GAs, (2) a technique
for improving performance of the resulting circuit by parallel ex-
ecution of GA, and (3) a technique to predict the size of the re-
sulting circuit. For the above (1), efficient memory utilization is
essential. So, we adopt a special generation model based on the
MGG model [9]. The outline of this generation model is explained
in Sect. 3.3. For the above (2), the synchronization among multiple
parallel pipelines should not be too frequent. We adopt the island
GA model [10] as the parallel execution architecture. The brief out-
line of the island GA model is explained in Sect. 3.4. The details
of our basic architecture and parallel architecture are explained in
Sect. 4. For the above (3), we compose the architecture as simple
as possible and develop a model to predict the size of the resulting
circuit from the problem type, the problem size, the number of can-
didate solutions, and the number of parallel pipelines. The detail is
explained in Sect. 6.

3.3 Generation Model Used in Our Method

Crossovermodule Mutationmodule
Managementmodule

fitnessaddresschromosome(parent2) chromosome(offspring2)
fitnessaddress(parentworse)

address (parentworse)fitness(parentworse)fitness(offspring2)chromosome (offspring2)

chromosome(offspring)
fitnessaddress(parentworse)

Evaluationmodule
parent1

Figure 1: Basic Architecture

If the population management mechanism is implemented as a
hardware circuit in a straight-forward way, extra memory to store
newly generated individuals is required in addition to the memory
for storing current population. In [5] and [6], survival-based steady-
state GA and Compact Genetic Algorithm are used to reduce sizes
of a hardware circuit and memory, respectively.

Survival-based steady-state GA replaces the individual with the
worst fitness value in the current population by a newly generated
individual with a better fitness value. Steady-state GA always keeps
track of the worst individual. This requires extra clocks and makes
pipelining difficult.

Compact Genetic Algorithm does not retain a population. In-
stead, it retains a probability distribution to approximate the set of
chromosomes in the current population. Compact GA assumes that
all chromosomes are represented only by 0 and 1, and there is no
straight-forward way to apply this algorithm to TSP or other prac-
tical problems.

In our method, we use Minimal Generation Gap (MGG) gener-
ation model [9]. In MGG model, two individuals are picked up
from the current population. Crossover and mutation operations
are applied to these individuals to generate new individuals. These
new individuals are then evaluated, and individuals with good fit-
ness values are selected using roulette selection[11] from the family
(new individuals and the parent individuals). These selected indi-
viduals replace original individuals for the next generation popu-
lation. Roulette selection is a technique to select individuals with
probabilities decided based on their fitness values. In our method,
however, instead of using roulette selection, we adopt a simpler
selection mechanism which always selects the individual with the
highest fitness value and replaces the worst individual in the family
with it. This simplification makes it easy to construct pipelined and
parallel circuit for processing individuals as well as greatly reduces
the required memory for storing individuals.

It is possible that utilization of MGG model results in decreased
performance. In Sect. 8, we investigate the performance of the
circuit based on our method and software implementation of the
ordinary generation model.

3.4 Outline of Island GA
There are various techniques for parallel execution of GA. In this

paper, we use the technique of island GA (IGA, hereafter). IGA
divides the population into several sets. Each set is regarded as an
island, and population in each island evolves independently. Tiny

fraction of the population periodically migrates to another island
so that all islands cooperatively search for a good solution. Since
IGA tends to retain better diversity of individuals than simple GA
(SGA, hereafter), it hardly fall into a local optimum, and thus it has
better search efficiency than SGA.

For parallel processing in a hardware circuit, maximum oper-
ating frequency may be decreased due to synchronization among
parallel processing units. By using the IGA model for parallel ex-
ecution of GA in a hardware circuit, what each island (processing
unit) should do for parallel execution is only exchanging individu-
als with its neighboring island. So, the synchronization mechanism
becomes very simple and does not depend on the number of paral-
lel processing units. This greatly contributes the scalability of the
resulting circuits.

4. GENERAL ARCHITECTURES FOR HARD-
WARE GA

In this section, we describe thebasic architectureand theparal-
lel architectureas general architectures to implement hardware GA.
Our basic architecture contains a GA pipeline which processes one
generation of operations with several modules in a pipeline, based
on the special generation model explained in Sect. 3.3. In our
parallel architecture, multiple GA pipelines developed in the basic
architecture are executed in parallel based on island GA model in
Sect. 3.4.

4.1 Basic Architecture
In the basic architecture, processes of GA are divided into four

submodules named management module, crossover module, mu-
tation module and evaluation module, as shown in Fig. 1. Each
chromosome is coded as a string ofn bits. Buses between each
modules have width ofm bits. n andm are given as parameters.

Each module is designed so that it receivesm bits of data every
clock, and outputsm bits of data every clock (it may take some
clocks to output the firstm bit data after the firstm bit data is
input). Therefore,⌈ n

m
⌉ clocks are used to process each chromo-

some, wheren ≥ m. Each module receives and processes data in
pipelined manner. Hereafter, we describe details of each module.

Management module
The management module includes memory, and stores the popu-
lation in it. The module also reads individuals from memory and
sends them to the crossover module (step1), and receives individ-

uals from the evaluation module and write them to the memory
(step2). As shown in Fig. 1, in step1, following items are sent
to the crossover module : a randomly selected individual, its ad-
dress and fitness value. Also, following items are received from the
evaluation module : the address and the evaluation value of the par-
ent individual with lower evaluation value, the chromosome of the
newly generated individual and its evaluation value. In step2, the
fitness value of the received parent individual is compared to that of
the new individual. Chromosome and fitness value of the new in-
dividual is overwritten to the parent individual only if fitness value
of the new individual is higher than that of the parent individual.

Crossover module
The crossover module has a registerr which retains the chromo-
some, the address and the fitness value of the latest individual re-
ceived from the management module. It applies the crossover op-
erator to the chromosome received from the management module
(parent2) and the chromosome retained inr (parent1), and gen-
erates a new chromosomeoffspring. In the proposed method,
only one new chromosome is generated when the crossover opera-
tor is applied, in order to reduce memory space.

To follow the generation model described in Sect. 3.3,
offspring has to be overwritten to the parent with lower fitness
value (denoted byparentworse), if offspring has higher fitness
value thanparentworse. In order to do this operation efficiently,
the crossover module compares fitness values ofparent1 and
parent2, and sends the address and the fitness value ofparentworse

to the mutation module. The chromosome ofoffspring is also
sent to the mutation module (Fig. 1).

Mutation module
The mutation module applies the mutation operator to the chromo-
some ofoffspring which is received from the crossover operator,
and sends the chromosome of the resulting individual (denoted by
offspring2) to the evaluation module. Also, the module sends
the address and the chromosome ofparentworse received from the
crossover module to the evaluation module.

Evaluation module
The evaluation module calculates the fitness value of the new in-
dividual offspring2 received from the mutation module. Also,
this module sends following items to the management module: the
address and the fitness value ofparentworse received from the
mutation module, and the chromosome and the fitness value of
offspring2.

4.2 Parallel Architecture
In the parallel architecture, the GA pipeline developed based on

the basic architecture is regarded as an island of the IGA model,
and the individual exchange mechanism between neighboring GA
pipelines is implemented.

For this purpose, theimmigration moduleis inserted between
the management module and the crossover module, as shown in
Fig. 2. The immigration module is connected to the management
modules of its GA pipeline and the neighbor pipeline, and it peri-
odically receives individuals from the neighbor GA pipeline. Since
the immigration module is connected to two management modules
independently of the number of parallel GA pipelines, the number
of pipelines does not affect the length of the critical path.

4.3 Coping with varying processing latency of
a module

For some problems like TSP or Job Shop Scheduling Problem,
some modules (e.g., the crossover module) in a GA pipeline are
required to process complex data which may take variable number
of clocks. This reduces the performance of the GA pipeline due to
pipeline stall. This situation can be avoided by the following two
techniques.

The first technique is to duplicate a module with varying latency
and make the duplicated modules run concurrently so that data can
be sent to the idle module, avoiding busy modules. By preparing
enough number of extra modules for a variable latency module, the
duplicated modules can achieve the constant processing time as a
total.

The second technique is to insert a buffer between a variable
latency module and its next module in a GA pipeline. When the
variable latency module finishes data processing, the module writes
output data on the buffer and start processing for the next data. The
next module receives data from this buffer when it needs data. By
preparing enough size of a buffer, variable latency of a module can
be averaged.

5. PROBLEM-SPECIFIC DESIGN
In this section, we design modules used in our basic architecture

for Knapsack Problem and TSP.

5.1 Knapsack Problem
For Knapsack Problem withs items, each chromosome can be

represented by as bit binary string, wherei-th gene of the chromo-
some represents whetheri-th item is in the knapsack or not. For the
sake of simplicity, we suppose thats bits of each chromosome are
transferred between modules every clock. We can easily modify the
modules so thatm bits (m ≤ s) of a chromosome are transferred
every clock cycle. In that case, each module takes⌈ s

m
⌉ clock cy-

cles to transfer or receive a chromosome.

Management module
We let the management module retain multiples bit chromosomes
in the memory. A chromosome is selected at random and trans-
ferred to the immigration module (to the crossover module if the
number of pipelines is one).

Crossover module
We use the uniform crossover technique, that is, for eachi (1 ≤
i ≤ s), i-th gene of the child individual is copied from thei-th
gene of either of two parent individuals. The decision is made at
random.

Mutation module
For eachi (1 ≤ i ≤ s), the value of thei-th gene is reversed with
the probability given as a mutation rate.

Evaluation Module
The fitness value is calculated as follows.

• The fitness value is 0 if the total sum of volumes of all items
in the knapsack exceeds its capacity.

• Otherwise, the fitness value is the total sum of values of all
items in the knapsack.

The evaluation module retains the value and the volume ofi-
th item in registersreg value[i] andreg volume[i], respectively.
We assume that the values and volumes of all items are given and
stored in these registers in advance.

Crossovermodule Mutationmodule
Evaluation moduleManagement module Immigrationmodule Crossovermodule MutationmoduleManagement module Immigration module

Evaluation module

Crossovermodule MutationmoduleManagement module Immigrationmodule

Evaluation module

Figure 2: Parallel Architecture

In order to shorten the critical path, the total sums of values and
volumes of all items in the knapsack are calculated in a bottom-
up manner based on a binary tree where two values (volumes) are
added for each of⌊ s

2
⌋ pairs at the leaves of the tree, for each of

⌊ s
4
⌋ pairs of their sums at the next level of the tree, and so on.

Thus, the calculation requireslog2 s clock cycles. However, since
adders and registers inj-th depth (q ≤ j ≤ log s) in the tree
are not used simultaneously with those ink-th depth (k ̸= j), the
calculation can be pipelined so that one fitness value is output every
clock cycle.

After calculation of the sums of values and volumes, the fitness
value is calculated and transferred to the management module.

Parallel Execution of GA Pipelines
When we want to execute multiple GA pipelines in parallel, we
use the immigration module in each pipeline so that chromosomes
are exchanged between pipelines. The above modules designed for
Knapsack Problem output a chromosome every clock cycle. In or-
der to exchange chromosomes between pipelines, we let each man-
agement module output a chromosome to two immigration mod-
ules (one is in the same pipeline and another is in the next pipeline)
at the same time. We let each immigration module usually receive
a chromosome from the management module in the same pipeline,
but receive from the previous pipeline at a given period. For the
purpose, we use a counter which is decremented every clock cycle
and let the immigration module to receive from another pipeline
only when the counter becomes 0.

5.2 TSP: Traveling Salesman Problem
In TSP, each chromosome is coded as a binary sequence with

n×m bits, wheren is the number of cities andm is the number of
bits to represent each city. For example, when we treat TSP with 51
cities, we use 6 bits to represent each city and 306 bits to represent
the whole chromosome. The fitness value is represented by a fixed
number of bits, for example, by a 16 bit integer.

Management Module
In general, the size of a chromosome in TSP is likely to become
large. So, we let modules transfer and receive a chromosome in
multiple clock cycles. Hereafter, we suppose that each chromo-
some is transferred bym bits inn clock cycles.

Crossover Module
We implement a crossover module based on PMX [11] since it
never generates lethal individuals and it is simple enough for hard-
ware implementation.

First, PMX decides a sub-region in a chromosome between two
random loci (i.e., positions in a chromosome). A new chromosome
is generated by concatenating genes in a sub-region of one parent
and genes from the other parent. This is called two point crossover.
In a new (child) individual, the same city might appear more than
once in its chromosome. Such duplicated cities are replaced with
cities not included in the chromosome, so that each city appears in
the chromosome only once.

The crossover module includes three sets of registers namedPA1,
PA2 and RS whose sizes aren × ⌈log2(n)⌉ bits. Each regis-
ter set includesn registers with⌈log2 n⌉ bits. These registers are
denoted asPA1[i], PA2[i] and RS[i], respectively, wherei ∈
{0, ..., n − 1}. PA1 andPA2 retain chromosomes received from
the management module. Genes atk-th locus of parent individuals
are stored inPA1[k] andPA2[k].

The crossover operation starts after two chromosomes of par-
ent individuals are stored inPA1 andPA2 completely. First the
crossover module generates two random numbersN1 andN2 such
that N1 ≤ N2 ≤ n. Then, the following steps are executed re-
peatedly. IfN1 is equal toN2, the iteration is terminated imme-
diately. If N1 is not equal toN2, locusM such thatPA1[M] =
PA2[N1] is searched. Then, the value ofPA1[N1] is substituted
toPA1[M], and the value ofPA2[N1] is substituted toPA1[N1].
RS is used as the index to quickly search locusM by the value of
a gene. ThenN1 is incremented and the above process is repeated
until N1 becomes equal toN2.

After the above process, the chromosome stored inPA1 is used

as the new chromosome, and sent to the mutation module. The
chromosome inPA2 is used asparent1 for the next operation.
For the purpose, in the next operation, registersPA1 andPA2 are
used asPA2 andPA1, respectively.

This module takes5
2
n clock cycles to generate a new individ-

ual, wheren cycles are required to load a parent chromosome in
PA2, n

2
cycles in average for the crossover operation, andn cy-

cles for sending the new chromosome to the mutation module. The
required clock cycles can be reduced to3

2
n by receiving a parent

chromosome inPA2 from the management module and transmit-
ting the new chromosome fromPA1 to the mutation module, at
the same time.

As we explained in Sect. 4.3, it is impossible to execute the GA
pipeline using this crossover module without stall, since the mod-
ule takesn to 2n clock cycles depending on the random numbers
N1 andN2. However, by duplicating the crossover module, we
can let the module always taken clock cycles for each crossover
operation1.

Mutation Module
The mutation module receives a chromosome from the crossover
module, applies the mutation operation to it, and sends it to the
evaluation module. A general mutation operation for TSP is to
swap genes at two loci selected at random in the chromosome.
Here, we adopted the following approximation of this technique.

First, it generates two random valuesN1 andN2 between 0 and
n − 1. When this module receives the a gene whose value isN1
from the crossover module, it sendsN2 to the evaluation module
instead ofN1, and if it receivesN2, it sendsN1 instead. The
above operation is applied at the probability of the given mutation
rate.

It is easy to see that the mutation module approximately takesn
clock cycles to process one chromosome.

Evaluation Module
The fitness value of a chromosome is calculated as a total distance
to travel all cities in the specified order. We let the evaluation mod-
ule retain distances between any two cities in the memory, where
the distances are initialized from outside before the circuit runs.
Each distance is, for example, coded as a 8 bit integer value. A
distance between two citiesC1 andC2 is stored in the address ex-
pressed in the following equation in the memory.

F address(n) = n × C1 + C2, (1)

wheren is the number of cities. When the evaluation module re-
ceives a gene, it fetches the distance between the city of the re-
ceived gene and the previous one from the memory and adds the
distance to the fitness value. Although these operations require
three clock cycles, they can be pipelined with the receiving op-
eration of a chromosome. Then the calculated fitness value is sent
to the management module. It requires one clock cycle.

Consequently, the evaluation module approximately takesn clock
cycles to calculate a fitness value for one chromosome and to send
it to the management module.

6. PREDICTION MODEL FOR COST PER-
FORMANCE TRADEOFFS

As we explained in Sect. 4, our proposed architecture consists
of multiple GA pipelines where the communication mechanism

1Note that our experimental results in Sect. 8 does not use the
duplication of the module.

among those pipelines is quite simple. So, if the size of a sin-
gle GA pipeline is known, we can easily estimate the size of the
whole circuit for the given number of concurrent GA pipelines. A
GA pipeline consists of several modules for GA operations. The
circuit size for each module varies depending on the problem size
(the number of bits to represent each individual). So, we develop a
model for predicting the size of each module.

Here, we put a strong assumption that the circuit size for each
module increases in proportion to the logarithm of a given problem
size. The actual circuit size of each module can be obtained by
synthesizing the circuit. So, our approach is to synthesize modules
with different problem sizes, and to obtain linear functions using
multiple regression.

We use actually synthesized circuit sizes for each module in mul-
tiple regression. As a result, we can obtain a linear function of the
logarithm of a problem size to predict the circuit size of each mod-
ule. For the management module, we predict the circuit size with a
linear function of the logarithms of a problem size and a population
size (the number of individuals). In order to calculate coefficients
of linear functions with multiple regression, we used three different
values for each parameter (a problem size and a population size).

When the circuit sizes of all modules are known, the size of the
whole circuit can be calculated as the sum of the sizes of modules
used in the circuit.

We show the accuracy of the proposed prediction model through
experiments in Sect. 8.

7. TOOL TO SUPPORT DESIGN AND IM-
PLEMENTATION OF GA CIRCUITS

We have developed a tool to automatically generate an RT level
VHDL description of the GA circuit designed with our architecture,
allowing designers to obtain parameter values, that is, the prob-
lem size, the population size, and the number of concurrent GA
pipelines, suitable for a specified FPGA device. The tool also al-
lows designers to check whether the specified parameter values can
generate the circuit which can be implemented on the target FPGA
device in terms of the number of logic elements and the number of
memory blocks.

The tool consists of thecircuit size check partand thecircuit
derivation part. The circuit size check part calculates the maximum
number of concurrent pipelines in the circuit from the problem
type, the problem size, the population size, and the target FPGA
device. The circuit derivation part generates the RT-level VHDL
description based on our parallel architecture from the parameter
values calculated by the circuit size check part.

The circuit derivation part utilizes a library containing VHDL
descriptions of a variety of modules for GA operations, a set of tem-
plate files required to automatically generate the circuit description,
and component files. Each template file includes the library decla-
ration (Fig. 3 (a)), the entity declaration (Fig. 3 (b)) and part of the
architecture declaration (Fig. 3 (c)). Each component file includes
component instances of the GA circuit and interface modules.

The circuit derivation part generates a circuit description with
specified parameter values by substituting the values to variables in
the template file (e.g.,%population size%) and by rewriting
part of the component file.

By preparing VHDL descriptions of GA operations for various
problems as a library and the corresponding component files, the
proposed tool facilitates easy design and implementation of effi-
cient circuits for target problems and for specified FPGA devices.

For example, the tool can quickly find that Cyclone EP1C12
(12060 LE) [12] can accommodate a GA circuit with two concur-

library IEEE;use IEEE.std_logic_1164.all;use IEEE.std_logic_unsigned.all;use IEEE.std_logic_arith.all ;entity parallel_ga isgeneric (population_size : integer := %population_size% ;address_bit : integer := %address_bit%;fitness_bit : integer := %fitness_bit%;gene_bit : integer := %gene_bit%;num_loci : integer :=%num_loci%;num_counter : integer :=16;migration_rate : integer := %migration_rate%;eva_table_address_bit : integer := %eva_table_address_bit% num_evaluate_bit: integer :=16;num_rate_max_bit: integer :=10;num_signal_chromosome : integer := 3;NUM_INIT_VALUE1 : integer := 65000;NUM_INIT_VALUE2 : integer := 65000;NUM_INIT_VALUE3 : integer := 45000;NUM_INIT_VALUE4 : integer:= 65000);port (clk : in std_logic;reset : in std_logic;dout_best_fitness : out std_logic_vector(fitness_bit-1 downto 0);dout_evaluate : out std_logic_vector(num_evaluate_bit-1 downto 0);clken_rate : in std_logic;din_rate : in std_logic_vector(num_rate_max_bit-1 downto 0));end parallel_ga;

(a)

(b)

architecture rtl of parallel_ga iscomponent ga isgeneric (population_size : integer := 64 ;address_bit : integer := 6;fitness_bit : integer := 16;gene_bit : integer := 6;num_loci : integer := 51;migration_rate : integer := 10;eva_table_address_bit : integer := 12;num_counter : integer :=16;num_evaluate_bit: integer :=16;num_rate_max_bit: integer :=10;num_signal_chromosome : integer := 3;NUM_INIT_VALUE1 : integer := 65000;NUM_INIT_VALUE2 : integer := 65000;NUM_INIT_VALUE3 : integer := 45000;NUM_INIT_VALUE4 : integer:= 65000);port (clk : in std_logic;reset : in std_logic;din_other_first_gene : in std_logic;din_other_slobe : in std_logic;din_other_gene : in std_logic_vector(gene_bit-1 downto 0);dout_other_first_gene : out std_logic;dout_other_slobe: out std_logic;dout_other_gene : out std_logic_vector(gene_bit-1 downto 0);dout_best_fitness : out std_logic_vector(fitness_bit-1 downto 0);dout_evaluate : out std_logic_vector(num_evaluate_bit-1 downto 0);clken_rate : in std_logic;din_rate : in std_logic_vector(num_rate_max_bit-1 downto 0));end component;

(c)

Figure 3: Example for template file.

rent GA pipelines which solves 64 bit Knapsack Problem. It can
also generate the VHDL description of such a circuit. The total
execution time of our tool is less than 1 second for most cases in-
cluding the above problem.

8. EXPERIMENTAL RESULTS AND EVAL-
UATION

In this section, we show through experiments the performance
of the circuits implemented based on our proposed architecture in
Sect. 4 and the accuracy of our prediction model in Sect. 6.

For Knapsack Problem and TSP, we have described RT-level
VHDL descriptions of modules for GA operations (see Sect. 5)
and generated circuit descriptions with several numbers of concur-
rent pipelines using our tool in Sect. 7. Then we conducted logic
synthesis for the circuit descriptions using Altera Quartus II. We
used Altera Cyclone FPGA devices as target devices, and used its
internal memory to store individuals and data used by the final cir-
cuits.

8.1 Performance Evaluation
Here, we have conducted two kinds of experiments: one is to in-

vestigate superiority of our hardware implementation of GA to soft-
ware implementation; and the other is to investigate the scalability
of the proposed architecture in terms of the number of concurrent
pipelines.

In order to evaluate performance of the generated circuits, we
investigated the quality of solutions and the search speed. We used
64 bit Knapsack Problem and a TSP instance called eil51, which

calculates a semi-optimal route to travel 51 cities. We compared
the circuits implemented based on our method with software im-
plementation of GA executed on a PC with Linux OS, Pentium 4
2.4GHz and 256MB memory.

When we implement GA as software, there is less restrictions on
the algorithm of the crossover operation and generation model. So,
we used the general generation model of GA (see Sect. 3) in soft-
ware implementation for both Knapsack Problem and TSP. Here-
after, we refer to the software implementation asSGA, that is the
abbreviation of thesimple genetic algorithm. For TSP, we used the
complex but efficient crossover algorithm called EXX [13] in SGA.
We also implemented another SGA using PMX (see Sect. 5) to see
difference between those two crossover algorithms. We used gcc
version 2.95.4 to compile programs for SGA, and specified-03 as
the optimization option.

At first, we measured how good solutions can be obtained using
the same execution time, for our circuits and SGAs. Here, the exe-
cution time of our circuits on FPGA is calculated by simulation on
Quartus II.

The results are shown in Fig.4, and 5. Fig. 4 (b) is the magnifi-
cation of Fig. 4 (a). In Fig. 4 (a) and (b), the higher fitness value
means the better solution. In Fig. 5, the lower fitness value means
the better solution. The number in parentheses such asproposed
method (3) indicates the number of concurrent pipelines in the
circuit. In Fig. 5, proposed method (8) and proposed
method (16) could not be implemented on a single FPGA de-
vice. These are presented to show the scalability of the proposed
method. We suppose that these circuits work at the same clock

 2760

 2770

 2780

 2790

 2800

 2810

 2820

 2830

 2840

 0 50 100 150 200 250 300 350 400

fit
ne

ss

processing time (ms)

SGA
proposed method (1)
proposed method (2)
proposed method (3)

(a)

 2760

 2770

 2780

 2790

 2800

 2810

 2820

 2830

 2840

 0 500 1000 1500 2000

fit
ne

ss

processing time (us)

proposed method (1)

proposed method (2)

proposed method (3)

(b)

Figure 4: Search efficiency for Knapsack Problem

Table 1: Processing time per one individual.
Problem Problem Size Basic Architecture SGA

16 7.09 (ns) 0.508 (µs)
Knapsack 32 7.25 (ns) 0.765 (µs)
Problem 64 9.26 (ns) 1.36 (µs)

128 8.47 (ns) 2.24 (µs)
51 1.28 (µs) 2.07 (µs)

TSP 76 2.06 (µs) 2.25 (µs)
101 2.99 (µs) 3.32 (µs)

speed asproposed method (4) .
Fig. 4 shows that our circuits achieve much better performance

than SGAs, for Knapsack Problem. Fig. 4 (b) shows that our cir-
cuits calculate good solutions in short time and the larger number
of concurrent pipelines slightly contributes the improvement of the
performance. This is because Knapsack Problem is too simple for
parallel implementation. Fig. 5 shows that in our circuits candidate
solutions converge to semi-optimal ones much more quickly than
SGAs and that the quality of solutions in our circuits is comparable
to that of SGA (EXX) which uses the better crossover algorithm.
Also the figure suggests us that the performance of our circuits is
greatly improved by increasing the number of GA pipelines. When
giving enough execution time, the quality of solutions becomes bet-
ter in SGA with EXX than our circuits. However, if we implement
EXX in our circuits, the quality of solutions would greatly be im-
proved, although the circuit size would much increase as well. This
is a tradeoff.

Finally, we show the operation time per individual and approxi-
mate power consumption in Table 1 and Table 2, respectively. Ta-
ble 1 shows that the generated circuit has much shorter execution
time per individual than SGAs. Table 2 shows that the generated
circuit consumes at most 1/80 of TDP (Thermal Design Power) for
Pentium 4 2.4GHz.

8.2 Evaluation of Prediction Model
We measured the sizes of the synthesized circuits for different

parameter values such as the number of concurrent GA pipelines,
the problem size, and the number of individuals. We also predicted
the sizes using our prediction model and evaluated its accuracy by
comparing the predicted sizes and the actually synthesized circuit
sizes.

Comparison between predicted size and actual size of each cir-

 440

 460

 480

 500

 520

 540

 560

 580

 600

 0 100 200 300 400 500

fit
ne

ss

processing time (ms)

SGA (PMX)
SGA (EXX)

proposed method (1)
proposed method (2)
proposed method (4)
proposed method (8)

proposed method (16)

Figure 5: Search efficiency for TSP(eil51).

Table 2: Power Consumption of Basic Architecture.
Problem Device Total Power

- Pentium4(2.4GHz)[14] 57.8 (W)
FPGA(s = 16) 293 (mW)

Knapsack Problem FPGA(s = 32) 362 (mW)
FPGA(s = 64) 427 (mW)
FPGA(s = 128) 700 (mW)
FPGA(s = 51) 476 (mW)

TSP FPGA(s = 76) 511 (mW)
FPGA(s = 101) 611 (mW)

cuit is shown in Fig. 6. Here, each number in parenthesis in these
figures represents the number of concurrent pipelines in the corre-
sponding circuit. In the figures, sizes of the interface circuits are
also calculated using our prediction model. According to the re-
sults in Fig. 6, we see that prediction error is within 3% for the
maximum for both Knapsack Problem and TSP.

9. CONCLUSION
In this paper, we proposed a flexible hardware implementation

technique for GAs on FPGAs, aiming mainly at embedding FP-
GAs on portable computing devices and/or information appliances
to enhance computation power with low cost and low power con-
sumption. With the proposed method, we can easily prototype the

actual（2）actual（2）actual（2）actual（2） predict(2)predict(2)predict(2)predict(2) predict(3)predict(3)predict(3)predict(3)actual(3)actual(3)actual(3)actual(3)

024
6810

121416
1820

Logic Elemen
ts (unit : 1000
 LE)

interfaceparallelevaluationmutationcrossovermanagement

(a) Knapsack Problem, 64 items

actual（2）actual（2）actual（2）actual（2） predict（2）predict（2）predict（2）predict（2）
actual(4)actual(4)actual(4)actual(4) predict(4)predict(4)predict(4)predict(4)

01
23
45
67
89

Logic Elemen
ts (unit : 100
0 LE)

interfaceimmigrationevaluationmutationcrossovermanagement

(b) TSP, eil51

Figure 6: Accuracy of Prediction Model

suitable hardware architecture with multiple concurrent pipelines
depending on the problem size and the size of the target FPGA de-
vice. Through experiments, we confirmed that our circuit achieves
the performance much higher than Pentium4 2.4GHz with less than
1/80 power consumption, and that our prediction model can predict
the circuit size within 3 % error. We think these results are good
enough for practical use.

Throughout the paper, we used Knapsack Problem and TSP as
target problems solved by GAs. However, our proposed archi-
tecture is applicable to various GA-based problems, and our tool
would be much more useful if the RT level circuit descriptions for
GA operations of various problems are prepared as a library. As
part of future work, we would like to design a high-level language
to specify algorithms for GA operations so that we can generate
the corresponding RT-level hardware descriptions automatically. It
will also be our future work to extend our prediction model to be
able to predict power consumption in the synthesized circuits.

10. REFERENCES
[1] Atsushi Maruyama, Naoki Shibata, Yoshihiro Murata,

Keiichi Yasumoto and Minoru Ito, P-TOUR: A PERSONAL
NAVIGATION SYSTEM FOR TOURISM, Proc. of 11th
World Congress on Intelligent Transport Systems, 2004.

[2] Li Layuan, Li Chunlin, Genetic Algorithm-Based QoS
Multicast Routing for Uncertainty in Network Parameters ,
Web Technologies and Applications, 5th Asian-Pacific Web
Conference (APWeb 2003), pp. 430–441 , 2003.

[3] Hidenori Sakanashi, Masaya Iwata, and Tetsuya Higuchi,
Lossless Compression of Very High Resolution Bi-level
Images Using Genetic Algorithm, Journal of Information
Processing Society of Japan, vol. 45, No. 5, pp. 1460–1470,
2004 (in Japanese).

[4] Paul Graham and Brent Nelson, A Hardware Genetic
Algorithm for the Traveling Salesman Problem on SPLASH
2, Field-Programmable Logic and Applications, pp. 352 –
361, 1995.

[5] Barry Shackleford, Etsuko Okushi, Mitsuhiro Yasuda, Hisao
Koizumi, Katsuhiko Seo, Takahashi Iwamoto and Hiroto
Yasuura, High-performance hardware design and
implementation of genetic algorithms, Hardware
implementation of intelligent systems, pp. 53 – 87, 2001.

[6] Chatchawit Aporntewan and Prabhas Chongstitvatana, A
Hardware Implementation of the Compact Genetic
Algorithm, Proc. of the 2001 Congress on Evolutionary
Computation (CEC2001), pp. 624 – 629, 2001.

[7] Shin’ichi Wakabayashi, Tetsushi Koide, Naoyoshi Toshine,
Masataka Yamane, Hajime Ueno, Genetic algorithm
accelerator GAA-II, Proc. 2000 Asia-South Pacific Design
Automation Conference (ASP-DAC2000), University LSI
Design Contest, pp. 9 – 10, 2000.

[8] Tomoya Kitani, Yoshifumi Takamoto, Keiichi Yasumoto,
Akio Nakata and Teruo Higashino, A Flexible and
High-Reliable HW/SW Co-Design Method for Real-Time
Embedded Systems,Proc.RTSS2004, pp. 437-446, 2004.

[9] Hiroshi Satoh, Isao Ono and Shigenobu Kobayashi, Minimal
Generation Gap Model for GAs Considering Both
Exploration and Exploitation, Proc. IIZUKA’96, pp. 494
–497, 1996.

[10] Erick Cant́u-Paz, A Survey of Parallel Genetic Algorithms,
Technical Report 97003, Illinois Genetic Algorithms
Laboratory, 1997.

[11] Sadiq M. Sait and Habib Youssef, Iterative Computer
Algorithms with Applications in Engineering, pp. 109 – 181,
THE IEEE COMPUTER SOCIETY, 1999.

[12] Altera Corp, Cyclone Device Family Data Sheet,
http://www.altera.com/literature/hb/cyc/
cyc_c5v1_01.pdf .

[13] Keiji Maekawa, Hisashi Tamaki, Hajime Kita and Yoshikazu
Nishikawa, A Method for the Traveling Salesman Problem
Based on the Genetic Algorithm, Transactions of the Society
of Instrument and Control Engineers , vol. 31, No
5,pp.598–605,1995 (In Japanese).

[14] Processor Spec Finder,
http://processorfinder.intel.com/
scripts/default.asp .

