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Marina Meilă mmp@stat.washington.edu

University of Washington, Department of Statistics, Box 354322, Seattle, WA 98195-4322 USA

Abstract

If we have found a ”good” clustering C of
a data set, can we prove that C is not far
from the (unknown) best clustering Copt of
these data? Perhaps surprisingly, the an-
swer to this question is sometimes yes. When
“goodness” is measured by the distortion of
K-means clustering, this paper proves spec-
tral bounds on the distance d(C, Copt). The
bounds exist in the case when the data ad-
mits a low distortion clustering.

1. Motivation

Optimizing clustering criteria like the minimum
squared error of K-means clustering is theoretically
NP-hard. Abundant empirical evidence, however,
shows that if the data are well clustered, then it is
easy to find a near-optimal partition. This suggests
the existence of at least two regimes for this optimal-
ity problem: the “difficult” regime, characterized by
the worst-case situations, and the “easy” one, charac-
terized by the existence of a “good” clustering. There
is no reason to believe that the second regime is typ-
ical. But, even if such a case is rare, this is the case
of interest for the field of data clustering. If we de-
fine clustering as the task of finding a natural parti-
tion of the data – as opposed to data quantization,
which is finding the best partition in data, no matter
how “bad” this is – then it is in the easy regime that
the interesting cases lie. This paper shows that, when
a sufficiently “good” clustering C exists in a dataset,
then C is also stable, in the sense that any other “good”
clustering is “close” to it. Thus, our paper shows that,
in such a case, there is a unique and compact “cluster
of near-optimal clusterings”. To our knowledge, this is
the first stability result for the K-means optimization
problem.
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The terms “good” and “close” are defined in the next
section, 2, which also introduces the rest of the ter-
minology and notation. Section 3 is the core of the
paper, describing how to arrive from a lower bound on
the distortion to an upper bound on the distance to
the optimum. We present validating experiments in
section 4 and an extended discussion in section 5.

2. Definitions and Representations

A clustering C of a finite dataset, assumed w.l.o.g to
be {1, 2, . . . , n} = [n], is a partition of the dataset into
disjoint, nonempty subsets called clusters. If the par-
tition has K clusters, we write C = {C1, C2 . . . , CK}
and denote by nk = |Ck|,

∑
k nk = n. A cluster-

ing can be represented by a n × K matrix X̃, whose
columns represent the indicator vectors of the the K
clusters.

X̃ik =
{

1 if i ∈ Ck

0 otherwise (1)

The columns of X̃ are mutually orthogonal vectors.
If we normalize these to length 1, we obtained the
normalized representation X.

Xik =
{

n
−1/2
k if i ∈ Ck

0 otherwise
(2)

In the future, we will refer to a clustering by any of its
matrix representations. As we’ll typically work with
two clusterings, one will be denoted by X̃, (X) while
the other by X̃ ′ (respectively X ′). For example, the
distance between two clusterings can be denoted equiv-
alently by d(X,X ′) = d(X̃, X̃ ′).

2.1. The Misclassification Error (ME)
Distance between Clusterings

The confusion matrix of two clusterings C =
{C1, C2 . . . , CK} and C′ = {C ′

1, C2 . . . , C ′
K′} is de-

fined as the K × K ′ matrix M = [mkk′ ] with mkk′ =
|Ck ∩C ′

k′ |. It can be easily shown that M = X̃T X̃ ′. A
distance between two clusterings is typically a permu-
tation invariant function of the confusion matrix M .
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For the purpose of clustering stability, it is sufficient
to handle the case K = K ′. We will make this as-
sumption implicitly in all that follows, including the
definitions of the distances. The Misclassification Er-
ror (ME) distance is defined as

d(X̃, X̃ ′) = 1 − 1
n

max
π∈ΠK

∑
k

mk,π(k) (3)

This distance represents the well known cost of classi-
fication, minimized over all permutations of the labels
[K]. Although the maximization is over a set of size
K!, d can be computed in polynomial time by a max-
imum bipartite matching algorithm (Papadimitriou &
Steiglitz, 1998). This distance is widely used, having
very appealing properties as long as X,X ′ are close
(Meilă, 2005).

2.2. The K-Means Clustering Objective

In K-means clustering, the data points {z1, . . . , zn} are
vectors in R

d. Let Z be the n × d data matrix having
zi on row i, and S be the Gram matrix given by Sij =
zT
i zj or S = ZZT . We will assume w.l.o.g. that the

data are centered at the origin, i.e
∑

i zi = 0 or, in
matrix notation 1T Z = 0. Therefore, Z and S will
have rank at most d. The squared error distortion,
often called “K-means” cost function, is defined as

D(X) =
K∑

k=1

∑
i∈Ck

||zi − μk||2 (4)

In the above, μk, k = 1, . . . K are the clusters’ centers,
whose coordinates in R

d are given by

μk =
1
nk

∑
i∈Ck

zi, for k = 1, . . . K (5)

If one substitutes the expression of the centers (5) into
(4) and represents a clustering by the orthonormal col-
umn matrix X defined above, one can show that the
distortion is a quadratic function of X (Ding & He,
2004)

D(X) = tr S − tr XT SX (6)

Furthermore, because the columns of X̃ sum to 1, the
last column is determined by the other K − 1 and
therefore one can uniquely represent any clustering by
a matrix with K − 1 orthonormal columns Y as fol-
lows. Let c ∈ R

K be the vector

c =
[√

n1

n
. . .

√
nk

n
. . .

√
nK

n

]T

(7)

with ||c|| =
√

(
∑

k nk)/n = 1. Let V be a K × K
orthogonal matrix with c on its last column. It can be

verified easily that Xc = 1/
√

n. Then, XV is a matrix
with orthonormal columns, whose last column equals
1/

√
n, where 1 denotes the vector of all 1’s. Denote

XV =
[

Y 1
1√
n

]
. (8)

We can now rewrite the distortion in terms of the n×
(K − 1) matrix Y , obtaining

D(Y ) = constant − tr
[

Y 1
1√
n

]T

S

[
Y 1

1√
n

]

= constant − tr Y T SY − 1
n
1T S1

= constant − tr Y T SY (9)

The last equality holds because S1 = ZZT 1 = 0. It
has been noted (Ding & He, 2004) that relaxing the in-
tegrality constraints in the above equation results in a
trace maximization problem that is solved by an eigen-
decomposition. Hence, we have that for any clustering
X represented by Y as above,

D(Y ) ≥ D∗ = trS −
K−1∑
k=1

σk, attained for Y = U

(10)
where σ1, . . . σK−1 are the K − 1 principal eigenvalues
of S and U is the n × (K − 1) matrix containing the
principal eigenvectors.

3. The Main Result

We call good a K-clustering whose distortion D(X) is
not too large compared to the optimum D∗, that is
D(X) − D∗ ≤ ε, for an ε to be determined. Let Xopt

be the K-clustering of S with the smallest distortion
and note that D(X) ≥ D(Xopt) ≥ D∗. We will show
that under certain conditions which can be verified on
the data, if a clustering X is good, then it is not too
dissimilar from Xopt, as measured by the misclassifi-
cation error distance d(X,Xopt).

This result will be proved in three steps. First, we
will show that any good clustering represented by its
Y matrix is close to the principal subspace U of S.
Second, we show that any two good clusterings must
be close to each other under the distance d. Based on
this, in the third step we obtain the desired result.

3.1. A Bound on the “Error Subspace”
Projection

Now we will show that any clustering which has a dis-
tortion close enough to D∗ will be close to the (K−1)-
th principal subspace of S. Let Y be a clustering with
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a corresponding c defined as in (7); Y can be written
as

Y = [U Ue ]
[

R
E

]
(11)

Uall = [U Ue] ∈ R
n×n is the orthogonal ba-

sis represented by the eigenvectors of S and R ∈
R

(K−1)×(K−1), E ∈ R
(n−K+1)×(K−1) are matrices of

coefficients. Additionally, because Y,Uall are orthog-
onal, [RT ET ]T is also orthogonal. We now show that
if D(Y ) is small enough, then E is “almost 0”.

Theorem 1 For any clustering Y represented like in
(11) the following inequality holds

||E||2F ≤ δ =
D(Y ) −D∗

σK−1 − σK
(12)

The proof is given in the appendix.

3.2. Any Two Clusterings with Small
Distortion are Close

We have proved so far that the projection of the ma-
trix Y on the subspace Ue is bounded by the r.h.s of
(12). We will now show that two clusterings Y, Y ′ for
which this bound is small must be close to each other.
First we show that a certain function φ(X,X ′) taking
values in [0,K] is large when Y, Y ′ are both close to
the subspace spanned by U . Then, we show that when
φ(X,X ′) is large, the misclassification error d(X,X ′)
is small.

Denote by φ(X,X ′) the following function, defined for
any two n × K matrices with orthonormal columns.

φ(X,X ′) = ||XT X ′||2F (13)

Since the Frobenius norm || ||F of an orthogonal ma-
trix with K columns is

√
K we have

0 ≤ φ(X,X ′) = ||XT X ′||2F ≤ ||X||F ||X ′||F = K

Lemma 2 For any two clusterings X,X ′ denote by
δ, respectively δ′ the corresponding values of the r.h.s
term of (12). For δ, δ′ ≤ K/2

φ(X,X ′) ≥ K − ε(δ, δ′) (14)

with

ε(δ, δ′) = 2
√

δδ′(1 − δ/(K − 1))(1 − δ′/(K − 1))
(15)

This lemma is proved in the appendix.

Theorem 3 (Meilă, 2006) For two clusterings with
K clusters each, if φ(X,X ′) ≥ K − ε, ε ≤ pmin

then dME(Y, Y ′) ≤ εpmax, where pmax = maxk nk/n,
pmin = mink nk/n.

Note the asymmetry of this statement, which involves
only the pmax, pmin values of one clustering. This is
crucial in allowing us to prove the following corollary,
which is the result we have been striving for.

3.3. A Low Distortion Clustering is Close to
the Optimal Clustering

Corrollary 4 Let X be any clustering of a data set
represented by the Gram matrix S = [zT

i zj ]ni,j=1. Let
the pmax = maxk nk/n pmin = mink nk/n, δ be given
by (12) and ε by (15). Then, if δ ≤ (K − 1)/2 and
ε(δ, δ) ≤ pmin then

d(X,Xopt) ≤ ε(δ, δ)pmax (16)

where Xopt represents the clustering with K clusters
that minimizes the distortion D on the data S.

Proof: We know that D(Y opt) ≤ D(Y ) and hence
||Eopt||2F ≤ δ from theorem 1. By applying lemma 2
and theorem 3 we obtain the desired result. QED

A few remarks are in place. First, the bound in the-
orem 1 is necessary only for the unknown clustering
Xopt; for a known clustering, one can directly com-
pute ||E||2F and therefore obtain a tighter bound. We
have followed this route in the experiments below. Sec-
ond, from the corollary it follows that d(X,Xopt) ≤
pminpmax ≤ pmin. Hence, for pmax not too large, the
bound is a good bound, it tells us that all clusters in
Xopt have been identified.

It should be also noted that the condition ε ≤ pmin

in theorem 3 is only sufficient, not necessary. We
are working currently toward a general condition that
would extend the domain of theorem 3 to ε’s larger
than pmin (e.g. of the order 2pmin).

4. Experiments

Worst case bounds are notoriously lax; therefore we
conducted experiments in order to check that the
bounds in this paper are ever informative. In the ex-
periments illustrated by Figure 1 we generated data
from a mixture of spherical normal distributions, clus-
tered them with the K-means algorithm (with multi-
ple initializations), then evaluated the bound and the
other related quantities. The spread of the clusters,
controlled by the standard deviation σ, varied from
σ = 0.05 (very well separated) to σ = 0.4 (clusters
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Figure 1. The bound used as a certificate of correctness.
The data represents a mixture of 3 normal distributions in
d = 35 dimensions, with fixed centers and equal covariances
σ2Id; (a) shows the data for σ = 0.4, projected on its
second principal subspace. The true mixture labels are
shown in different colors. The clustering X represents the
K-means solution. In (b), the bound and the values of
pmin, ε, ||E||2F , δ for X are evaluated at different values of
σ; the data set has size n = 1000. (c) Same as (b) for
n = 100.
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Figure 2. The data represents a mixture of K normal dis-
tributions in d = 25 dimensions, with fixed centers and
equal covariances σ2Id; X represents the true mixture la-
bels clustering, which can be assumed to be the optimal
clustering for these data. We construct X ′ by perturbing
the labels of X randomly w.p. perr. The figure displays
the value of d(X, X ′) and the values for the bound, ε and
pmin for 20 randomly sampled X ′s; n = 800 in all cases.
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touching). The centroids are fixed inside the [0, 1]d

hypercube. In all cases we confirmed by visual in-
spection that K-means found a (nearly) optimal clus-
tering. Therefore, the true d(X,Xopt) is practically
identical 0. The bound worsens with the increase of
σ, as expected, from 0.004 to 0.22. Up to values of
σ = 0.3, however, the bound is lower than pmin/2.
This confirms qualitatively that we have found a “cor-
rect clustering, in the sense that the total number of
misclustered points is a fraction of the smallest cluster
size.

The values of ε are plotted to verify that corollary 4
applies. For the two largest values of σ, ε is outside
the admissible domain, so the bound is not provably
correct.

The lines with no markers display the quantity ||E||2F
for the found clustering (with E defined in section 3.1)
and its upper bound δ from (12). We see that the qual-
ity of this bound in absolute value also degrades with
increasing σ; however, the ratio δ/||E||2F is approxima-
tively constant around 1.4. This occurred uniformly
over all our experiments with mixtures of Gaussians.

A comparison between Figure 1,b and 1,c shows that
there is practically no variation due to the data set
size. This is consistent with the theory and with all
our other experiments so far.

Figure 2 shows a different experiment. Here the op-
timal clustering1 X is perturbed randomly into X ′.
We evaluate the true misclassification error d(X,X ′)
and its bound, together with other relevant quantities.
Here K = 3, 4, and for K = 4 we have a uniform and a
non-uniform clustering. Note that the bound becomes
looser with increasing K, and for the same K with the
decreasing size of the smallest cluster. For instance,
in Figure 2, c, less than half of the clusterings have
valid bounds2. The degradation with decreasing pmin

is completely expected, based for example on the con-
dition ε ≤ pmin in theorem 3. It also agrees with the
common wisdom that small clusters in the data make
clustering more difficult practically (higher chance of
missing a cluster) and harder to analyze theoretically.
In our framework, we can say that small clusters in the
data reduce the confidence we have that the clustering
we have found is optimal, even when it is.

1We assume X to be represented by the true labels,
which is extremely plausible as the clusters are well-
separated.

2In a, b, all the bounds have been checked individually
and are valid, even if ε is occasionally larger than pmin.

5. Discussion

Intuitively, we have proved that, if (1) the data is well
clustered, and (2) by some algorithm a good clustering
X is found, then we can bound the distance between
X and the unknown optimal clustering Xopt of this
data set. Hence, we will have a “certificate” that our
clustering X is almost optimal.

In the present context, “well clustered” means that the
affine subspace determined by the centroids μ1, . . . μK

is parallel to the K principal components of the data3

Z. In other words, the first K−1 principal components
of the variance are mainly due to the inter-cluster vari-
ability. This in turn implies that the bound will not
exist (or will not be useful) when the centroids span an
affine subspace of lower dimension than K−1. For ex-
ample, if μ1, . . . μK , K > 2 are along a line, no matter
how well separated the clusters, then the vectors U will
give only partial information on the optimal clustering.
Practically, this means that “well separated” refers not
only to the distances between the clusters, but to the
volume (of the polyhedron) spanned by them, which
should be as large as possible.

By the same geometric view, a “good clustering” is
one whose X representation lies close to the principal
subspace U . Our result says that all the clusterings
that are near U must be very similar.

From the perspective of the function D(X), we have
shown quantitatively, that if the data is well clustered,
D(X) has a unique “deep crater”. When points are
moved to other clusters w.r.t Xopt the distortion grows
fast because the clusters are far apart. Conversely, if
the distortion is small, it means that we cannot be
elsewhere than near Xopt. “Small” is measured as de-
viation from the lower bound D∗ in σK−1−σK units.

To our knowledge, this result is the first of this kind
for the K-means distortion. There is however a large
body of work, pioneered by (Dasgupta, 1999), dealing
with estimating mixtures of normal distributions with
high probability, by using projections on a subspace of
lower dimension, in particular the K − 1-th principal
subspace (Vempala & Wang, 2004). These papers offer
algorithms for fitting a mixture of (sufficiently round)
normals with known K to data, plus guarantees that
the estimates will be close to the truth with high prob-
ability. From their results, bounds on the “distortion”
(i.e log-likelihood) could be derived. Our paper does
not offer an algorithm4 except for the practical ob-

3The matrix S = ZZT and the (scaled) covariance ma-
trix ZT Z have the same non-zero eigenvalues; U is the
projection of the data on the principal subspace.

4The associated algorithm could be however the spec-
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servation that K-means works well when the clusters
are well separated. We have not conducted quantita-
tive comparisons, but we expect that the bounds of-
fered by the mixture papers hold for less well separated
data than ours. On the other hand, one should notice
the fundamental difference between this line of work
and ours: the former relies heavily on the gaussian-
ity of the clusters (or on slightly weaker knowledge);
our work is model free in the sense that it makes no
assumption about the data distribution. By analogy
with empirical risk minimization, it connects the ob-
served distortion to the best possible distortion. In
ERM, the bound is sometimes greater than 1, here the
bound doesn’t always exist (but is usually informative
when it does, as εpmax is usually small in comparison
to pmin). It is also a worst case bound.

Spectral methods for K-means and graph clustering
have been popular in recent years, and this work builds
on previous results, especially on (Ding & He, 2004)
and (Meilă et al., 2005). But, for the purpose of this
paper, beyond theorem 1 the mathematical tools had
to be developed anew. Unlike previous work in spec-
tral methods, e.g. (Meilă et al., 2005), our bounds de-
pend, besides the distortions and the eigengap, on in-
formation about the clustering itself: pmin, pmax, the
projection of Y on U .

Extensions. Our result relies on the quadratic form
of D(X) from (6). As such, it applies to any clus-
tering criterion that is quadratic in X. Such settings
include weighted K-means clustering, kernel K-means,
and their combinations.

An alternative distance between clusterings.
The function φ(X,X ′) used as an intermediary ve-
hicle for the proof of corollary 4 can in fact repre-
sent a distance in its own right. Denote d2

χ(X,X ′) =
1 − 1

min(K,K′)φ(X,X ′). This function is 0 when the
clusterings are identical and 1 when they are inde-
pendent as random variables. It has been introduced
by (Hubert & Arabie, 1985) and is closely related
to the χ2 distance between two distributions (Lan-
caster, 1969). Another possible advantage of this dis-
tance, at least for theoretical analysis, is that it is
a quadratic function in each of its arguments. From
lemma 2 we have that d2

χ(X,X ′) ≤ ε(δ, δ′)/K when-
ever δ, δ′ ≤ (K − 1)/2. This bound is tighter than the
one in the subsequent theorem by virtue of making
fewer approximations. Moreover, because the condi-
tion on ε is no longer necessary, it also holds for a
much broader set of conditions (e.g larger perturba-
tions away from the optimum) than the bound for d.
Remembering also that the misclassification error has

tral algorithm of (Ding & He, 2004).

been criticized for becoming coarser as the clusterings
become more dissimilar, we suggest that paying atten-
tion to the χ2 distance will prove fruitful in theoretical
and practical applications alike.

Let us return to the idea expressed in the introduction,
of the existence of two regimes, “hard” and “easy”
for the K-means optimization problem. Our theoreti-
cal results together with the experiments suggest that
the “easy” regime, the one where a good clustering
can be found, may in turn contain two zones: the
“high-confidence” one, where not only can we find a
good clustering (in polynomial time), but we can also
prove that we did so; outside this zone lies the “low-
confidence” zone, where algorithms are still likely to
find the optimal clustering with high probability, but
one is not able to also prove that the obtained cluster-
ing is good.

Finally, theorem 3 is a stability result. Recent work,
e.g (Lange et al., 2004; Ben-Hur et al., 2002), uses
the stability of a clustering as a criterion for model
selection. Therefore we are currently investigating the
use of our result in the selection of K.
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Proofs

Proof of Theorem 1

Using equation (9), the notation of (11) and Σ =
diag{σ1, . . . , σK−1}, Σe = diag{σK , . . . , σn} we have
that

D(Y ) −D∗ = tr Σ − tr [RT ΣR + ET ΣeE] (17)

We now construct the matrix S0

S0 = Uall

[
Σ

σIn−K+1

]
Uall with σ ∈ (σK−1, σK)

If we replace S with S0 in (10) the solution which
depends only on the first K − 1 eigenvalues/vectors of
S, remains unchanged. Hence, we have

US0U − Y T S0Y

= tr Σ − tr [RT ΣR + σET E] ≤ 0 (18)

Subtracting now (18) from (17) we obtain

D(Y ) −D∗

≥ tr [RT ΣR + σET E] − tr [RT ΣR + ET ΣeE]
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= trET (σI − Σe)E
≥ trET (σI − σKI)E
= (σ − σK)||E||2F (19)

The last inequality holds because σI − Σe � (σ −
σK)I � 0 for all σ in the chosen interval. Now, by
taking the limit σ → σK−1 in (19) we obtain

D(Y ) −D∗ ≥ (σK−1 − σK)||E||2F (20)

From the above, whenever σK − σK−1 is nonzero, we
obtain the desired result. QED.

Proof of Lemma 2 Note first that since S1 = 0
we have 1 ⊥ U and therefore its normalized version
n−1/21 = Ueq where q ∈ R

n−K+1 is a length 1 vector
of coefficients.

Let X be a clustering, and c, V, Y be the same as in
(7,8). Denote by V− the first K − 1 columns of V . We
can write X as

X = Y V T
− + n−1/21cT

= URV T
− + UeEV T

− + Ueqc
T

= URV T
− + Ue(EV T

− + qcT ) (21)

For a second clustering X ′ we define V ′, V ′
−, c′, R′, E′

similarly and have

X ′ = UR′V ′
−

T + Ue(E′V ′
−

T + q(c′)T ).

We now calculate directly XT X ′ and then
(XT X ′)(XT X ′), remembering that U,Ue and [V− c]
[V ′

− c′] represent pairs of orthogonal subspaces. After
all the cancellations, we obtain the following formula
for φ(X,X ′) = tr (XT X ′)(XT X ′) = ||XT X ′||2

tr (XT X ′)(XT X ′)
= K − 1 + 2tr V ′

−R′T RET (q(c′)T + E′V ′
−)

+tr (EET + qqT )(E′E′T + qqT ) (22)
= K − 1 + 2tr R′T RET E′ + tr (EET E′E′T )

+qT ET Eq + qT E′T E′q + qqT (23)
= K − 1 + 2tr (RET )(E′R′T ) + tr (EET E′E′T )

+0 + 0 + 1 (24)

To see that ET q = E′T q = 0 recall that [RT ET ]T

and [0 q] are respectively the coefficients of Y and 1
in the basis Uall. As 1 ⊥ Y it must hold that [0 q] ⊥
[RT ET ]T which implies ET q = 0.

We now try to lower bound (24). We lower bound
the last term tr (EET E′E′T ) by 0. The middle term
tr (RET )(E′R′T ) requires more work.

|tr (RET )(E′R′T )| = | < ERT , E′R′T >F |
≤ ||ERT ||F ||E′R′T ||F (25)

Furthermore,

||ERT ||2F = trRET ERT = tr ET ERT R

= trET E(I − ET E)
= trET E − trET EET E

≤ ||E||2F − 1
K − 1

||E||4F (26)

The last inequality follows from lemma 5 stated below.

Now, because the function x[1 − x/(K − 1)]
increases on [0, (K − 1)/2], we can com-
bine (26) with ||E||2F ≤ δ, ||E′||2F ≤ δ′

and with (24) to obtain that ||XT X ′||2 ≥
K − 2

√
δ(1 − δ/(K − 1))δ′(1 − δ′/(K − 1)). QED

Lemma 5 For any matrix A ∈ Rn×n, ||AT A||F ≥
||A||2/n.

The proof is left to the reader.
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