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ABSTRACT
This paper describes a sensor network approach to tracking a sin-
gle object in the presence of static and moving occluders using a
network of cameras. To conserve communication bandwidth and
energy, each camera first performs simple local processing to re-
duce each frame to a scan line. This information is then sent to
a cluster head to track a point object. We assume the locations of
the static occluders to be known, but only prior statistics on the
positions of the moving occluders are available. A noisy perspec-
tive camera measurement model is presented, where occlusions are
captured through an occlusion indicator function. An auxiliary par-
ticle filter that incorporates the occluder information is used to track
the object. Using simulations, we investigate (i) the dependency of
the tracker performance on the accuracy of the moving occluder
priors, (ii) the tradeoff between the number of cameras and the
occluder prior accuracy required to achieve a prescribed tracker
performance, and (iii) the importance of having occluder priors to
the tracker performance as the number of occluders increases. We
generally find that computing moving occluder priors may not be
worthwhile, unless it can be obtained cheaply and to a reasonable
accuracy. Preliminary experimental results are provided.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic Algorithms; I.4.9
[Image Processing and Computer Vision]: Applications.

General Terms
Algorithms.
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Tracking, occlusion, auxiliary particle filter, wireless sensor net-
work, camera network, noisy perspective camera model.
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1. INTRODUCTION
There is a growing need to develop low cost wireless networks of

cameras with automated detection capabilities [1]. The main chal-
lenge in building such networks is the high data rate of video cam-
eras. On the one hand sending all the data, even after performing
standard compression, is very costly in transmission energy, and on
the other, performing sophisticated vision processing at each node
to substantially reduce transmission rate requires high processing
energy. To address these challenges, a task-driven approach, in
which simple local processing is performed at each node to extract
the essential information needed for the network to collaboratively
perform the task, has been proposed and demonstrated [2, 3].

In this paper, we adopt such a task-driven approach for tracking
a single object (e.g., a suspect) in a structured environment (e.g.,
an airport or a mall) in the presence of static and moving occluders
using a wireless camera network. Most previous work on tracking
with multiple cameras has focused on tracking all the objects and
does not deal directly with static occluders, which are often present
in structured environments (see brief survey in Section 2). Track-
ing all the objects clearly provides a solution to our problem, but
may be infeasible to implement in a wireless camera network due
to its high computational cost. Instead, our approach is to track
only the target object treating all other objects as occluders. We as-
sume complete knowledge of static occluder (e.g., partitions, large
pieces of furniture) locations and some prior statistics on the po-
sitions of the moving occluders (e.g., people) which are updated
in time. Simple local processing whereby each image is reduced
to a horizontal scan line is performed at each camera node. If the
camera sees the object, it provides a measurement of its position in
the scan line to the cluster head, otherwise it reports that it cannot
see the object. A noisy perspective camera measurement model is
assumed, where occlusions are captured through an occlusion indi-
cator function. Given the camera measurements and the occluder
position priors, an auxiliary particle filter (PF) [4] is used at the
cluster head to track the object. The occluder information is in-
corporated into the measurement likelihood, which is used in the
weighting of the particles.

Even if one wishes to track only one object treating other mov-
ing objects as occluders, a certain amount of information about the
positions of the occluders may be needed to achieve high tracking
accuracy. Since obtaining more accurate occluder priors would re-
quire expending more processing and/or communication energy, it
is important to understand the tradeoff between the accuracy of the
occluder information and that of tracking. Do we need any prior
occluder information? If so, how much accuracy is sufficient? A
goal of this paper is to investigate this important tradeoff.

We develop a measure of the moving occluder prior accuracy



and use simulations to explore the dependency of the tracker per-
formance on this measure. We also explore the tradeoff between
the number of cameras used, the number of occluders present, and
the amount of occluder prior information needed to achieve a pre-
scribed tracker performance. We generally find that:

• Obtaining moving occluder prior information may not be
worthwhile in practice, unless it can be obtained cheaply and
to a reasonable accuracy.

• There is a tradeoff between the number of cameras used and
the amount of occluder prior information needed. As more
cameras are used, the accuracy of the prior information needed
decreases. Having more cameras, however, means incurring
higher communications and processing cost. So, in the de-
sign of a tracking system, one needs to compare the cost of
deploying more cameras to that of obtaining more accurate
occluder priors.

• The amount of prior occluder position information needed
depends on the number of occluders present. When there are
very few moving occluders, prior information does not help
(because the object is not occluded most of the time). When
there is a moderate number of occluders, prior information
becomes more useful. However, when there are too many oc-
cluders, prior information becomes less useful (because the
object becomes occluded most of the time).

It is important to note that these conclusions are based only on our
simulation setting, and that additional explorations by simulation
and experiments are needed to validate them.

The rest of the paper is organized as follows. A brief survey of
previous work on tracking using multiple cameras is presented in
the next section. In Section 3, we describe the setup of our track-
ing problem and introduce the camera measurement model used.
The tracker is described in Section 4. Simulation and experimental
results are presented in Sections 5 and 6, respectively.

2. PREVIOUS WORK
Tracking has been a popular topic in sensor network research

(e.g., [5–11]). Most of this work assumes low data rate range
sensors. By comparison, our work assumes cameras, which are
bearing sensors and have high data rate. The most related work
to ours is [10] and [11]. Pahawalatta et al. [10] use a camera net-
work to track and classify multiple objects on the ground plane.
This is done by detecting feature points on the objects and using
a Kalman Filter (KF) for tracking. By comparison, we use a PF,
which is more suitable for non-linear camera measurements and
track only a single object treating others as occluders. Funiak et
al. [11] use a Gaussian model obtained by reparametrizing the cam-
era coordinates together with KF. This method is fully distributed
and requires less computational power than PF. However, because
the main goal of the system is camera calibration and not tracking,
occlusions are not considered. Also, this work requires minimal
overlap of the camera FOVs, which is not a requirement for our
work.

Tracking has also been a very popular topic in computer vision
(e.g., [12–16]). Most of the work, however, has focused on tracking
objects in a single camera video sequence [12, 13]. Tracking using
multiple camera video streams has also been considered [14–16].
Individual tracking is performed for each video stream and the ob-
jects appearing in the different streams are associated. More re-
cently, there has been work on tracking multiple objects in world
coordinates using multiple cameras [17–19]. Utsumi et al. [17]

extract feature points on the objects and use a KF to track the ob-
jects. They perform camera selection to avoid occlusions. By com-
parison, in our work occlusions are treated as part of the tracker.
Otsuka et al. [18] describe a double loop filter to track multiple
objects, where objects can occlude each other. One of the loops
is a PF that updates the states of the objects in time using the ob-
ject dynamics, the likelihood of the measurements, and the occlu-
sion hypotheses. The other loop is responsible for generating these
hypotheses and testing them using the object states generated by
the first loop, the measurements, and a number of geometric con-
straints. Although this method also performs a single object track-
ing in the presence of moving occluders, the hypothesis generation
and testing is computationally prohibitive for a sensor network im-
plementation. The work also does not consider static occlusions
that could be present in structured environments. Dockstader et
al. [19] describe a method for tracking multiple people using mul-
tiple cameras. Feature points are extracted from images locally
and corrected using the 3-D estimates of the feature point positions
that are fed back from the central processor to the local processor.
These corrected features are sent to the central processor where a
Bayesian network (BN) is employed to deduce a first estimate of
the 3-D positions of these features. A KF follows the BN to main-
tain temporal continuity. This approach requires that each object is
seen by some cameras at all times. This is not required in our ap-
proach. Also, performing motion vector computation at each node
is computationally costly in a wireless sensor network.

We would like to emphasize that our work is focused on tracking
a single object in the presence of static and moving occluders in
a wireless sensor network setting. When there are no occluders,
one could adopt a less computationally intensive approach similar
to [11]. When all the objects need to be tracked simultaneously, the
above mentioned methods ( [18, 19]) or a filter with joint-state for
all the objects [20] can be used.

3. SETUP, MODELS, AND ASSUMPTIONS
We consider the setup illustrated in Fig. 1 in which N cameras

are aimed roughly horizontally around a room. Although an over-
head camera would have a less occluded view than a horizontally
placed one, it generally has a more limited view of the scene and
may be impractical to deploy. Additionally, targets may be easier to
identify in a horizontal view. The cameras are assumed to be fixed
and their locations and orientations are known to some accuracy to
the cluster head. The camera network’s task is to track an object
in the presence of static occlusions and other moving objects. We
assume that the object to track to be a point object. This is rea-
sonable because the object may be distinguished from occluders by
some specific point feature. We assume there are M other moving
objects, each modeled as a cylinder of diameter D. The position of
each object is assumed to be the center of its cylinder. From now
on, we shall refer to the object to track as the “object” and the other
moving objects as “moving occluders.”

We assume the positions and the shapes of the static occluders in
the room to be completely known in advance. This is not unreason-
able since this information can be easily provided to the network.
On the other hand, only some prior statistics of the moving oc-
cluder positions are known at each time step. In Subsection 4.4, we
discuss how these priors may be obtained.

As in [2], we assume that simple background subtraction is per-
formed locally at each camera node. We assume that the camera
nodes can distinguish between the object and the occluders. This
can be done, for example, through feature detection, e.g., [21].
Since the horizontal position of the object in each camera’s image
plane is the most relevant information to 2-D tracking, the back-
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Figure 1: Illustration of the setup.

ground subtracted images are vertically summed and thresholded
to obtain a “scan line” (see Fig. 2). Only the center of the object in
the scan line is sent to the cluster head.

3.1 Camera Measurement Model
If a camera “sees” the object, its measurement is described by a

noisy projective camera model. If the camera cannot see the object
because of occlusions or limited FOV, it reports a “NaN” (using
MATLAB syntax) to the cluster head. Mathematically, for camera
i = 1, . . . , N , we define the occlusion indicator function

ηi ,



1, if camera i sees the object
0, otherwise.

Note that the ηi random variables are not in general independent
from each other. The camera measurement model including occlu-
sions is then defined as

zi =



fi
hi(x)
di(x)

+ vi, if ηi = 1

NaN, otherwise,
(1)

where x is the position of the object, fi is the focal length of camera
i, and di(x) and hi(x) are defined through Figure 3. The random
variable vi models the read noise and the errors in the camera posi-
tion and angle θi. (see Figure 1). Assuming that these noise sources
are zero mean and uncorrelated, the variance of vi is given by

σ2
vi

= f2
i

„

1 +
h2

i (x)

d2
i (x)

«2

σ2
θ + f2

i

h2
i (x) + d2

i (x)

d4
i (x)

σ2
pos + σ2

read,

(2)
where σ2

pos is the variance of the camera position and σ2
read is the

variance of the read noise (See Appendix A for derivation of this
formula). We further assume that given x, the noise from the differ-
ent cameras v1, v2, . . . , vN are independent, identically distributed
Gaussian random variables. Note that the camera nodes report only
the observations {zi} to the cluster head, and the cluster head de-
rives the values of the ηis from the zis.

4. TRACKING
As the measurement model in (1) is nonlinear in the object po-

sition, using a linear filter, e.g., Kalman Filter (KF), for track-
ing would yield poor results. As discussed in [22], using an Ex-
tended Kalman Filter (EKF) with measurements from bearing sen-
sors, which are similar to cameras with the aforementioned local
processing, is not very successful. Although the use of an Un-
scented Kalman Filter (UKF) is more promising, its performance
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degrades quickly when the static occluders and limited FOV con-
straints are considered. Because of the discreteness of the occlu-
sions and FOV and the fact that UKF uses only a few points from
the prior of the object state, most of these points may get discarded.
We also experimented with a Maximum A-Posteriori (MAP) esti-
mator combined with a KF, which is similar to the approach in [8].
This approach, however, failed at the optimization stage of the
MAP estimator, as the feasible set is highly disconnected due to
the static occluders and limited camera FOV. Given these consider-
ations, we decided to use a particle filter (PF) tracker [4].

We denote by u(t) the state of the object at time t, which in-
cludes its position x(t) and other relevant information. The posi-
tions of the moving occluders m ∈ {1, . . . M}, xm(t) are assumed
to be Gaussian with mean µm(t) and covariance matrix Σm(t).
These priors are available to the tracker. The state of the object
and positions of moving occluders are assumed to be mutually in-
dependent. Note that if the objects move in groups, one can still ap-
ply the following tracker formulation by defining a “super-object”
for each group and assuming that the super-objects move indepen-
dently. The tracker maintains the probability density function (pdf)
of the object state u(t), and updates it at each time step using the
new measurements. Given the measurements up to time t − 1,
{Y (τ )}t−1

τ=1, the particle filter approximates the pdf of u(t − 1) by
a set of L weighted particles as

f(u(t−1)|{Y (τ )}t−1
τ=1) ≈

L
X

`=1

w`(t−1)δ (u(t − 1) − u`(t − 1)) ,

where δ(·) is the Dirac delta function. u` is the state of particle `,
(i.e., a sample of u(t)). At each time step, given these L weighted
particles, the camera measurements Z(t) = {z1(t), . . . , zN (t)}
and η(t) = {η1(t), . . . , ηN (t)}, the moving occluder priors
{µm(t), Σm(t)}, m ∈ {1, . . . , M}, information about the static
occluder positions and the camera FOV, the tracker incorporates



Algorithm: ASIR
Inputs: {u`(t − 1), w`(t − 1)}L

`=1; {µm(t), Σm(t)}M
m=1;

Z(t) = {z1(t), . . . , zN (t)}; η(t) = {η1(t), . . . , ηN (t)};
Shapes and positions of static occluders;
Camera positions and orientations (θi, i ∈ {1, . . . , N});
FOV of the cameras.
Output: {u`(t), w`(t)}, ` ∈ {1, . . . , L}.
01. for ` = 1, . . . , L
02. κ` := E[u(t)|u(t − 1)]
03. w̃`(t) ∝ f(Z(t), η(t)|κ`)w`(t − 1)
04. end for
05. {w`(t)}L

`=1 = Normalize ({w̃`(t)}L
`=1)

06. {·, ·, i`}L
`=1 = Resample ({κ`, w`(t)}L

`=1)
07. for ` = 1, . . . , L
08. Draw u`(t) ∼ f(u(t)|ui` (t − 1))

09. w̃`(t) = f(Z(t),η(t)|u`(t))
f(Z(t),η(t)|κ

i`)

10. end for
11. {w`(t)}L

`=1 = Normalize({w̃`(t)}L
`=1)

Figure 4: The auxiliary sampling importance resampling algo-
rithm.

the new information obtained from the measurements at time t to
update the particles (and their associated weights).

We use the auxiliary sampling importance resampling (ASIR)
filter described in [4]. The outline of one step of our implementa-
tion of this filter is given in Fig. 4. In this figure, E[·] represents
the expectation operator, and the procedure “{w`}L

`=1 = Normal-
ize ({w̃`}L

`=1)” normalizes the weights so that they sum to one.
The procedure “{u`, w`, i

`}L
`=1 = Resample ({u`, w`}L

`=1)” takes
L particle-weight pairs and produces L equally weighted particles
(w` = 1/L), preserving the original distribution. This amounts to
particles with small initial weights being killed and the ones with
high weights reproducing. The third output of the procedure (i`)
refers to the index of particle `’s parent. The ASIR algorithm ap-
proximates the optimal importance density function
f(u(t)|u`(t − 1), Z(t), η(t)), which is not feasible to compute in
general [4].

In the following, we explain the implementation of the impor-
tance density function f(u(t)|u`(t − 1)) and the likelihood
f(Z(t), η(t)|u`(t)).

4.1 Importance Density Function
The particles are advanced in time by drawing a new sample

u`(t) from the “importance density function” f(u(t)|u`(t − 1)):

u`(t) ∼ f(u(t)|u`(t − 1)), ` ∈ {1, . . . , L}.

This is similar to the “time update” step in a KF. After all L new
particles are drawn, the distribution of the state is forwarded one
time step. Therefore, the dynamics of the system should be re-
flected as accurately as possible in the importance density function.
In KF, a constant velocity assumption with a large variance on the
velocity is assumed to account for direction changes. Although
assuming that objects move at constant velocity is not a realistic
assumption, the linearity constraint of the KF forces this choice. In
the PF implementation, we do not have to choose linear dynamics.
We use the more realistic “random waypoints model,” where the
objects choose a target and try to move toward the target with con-
stant speed plus noise, until they reach the target. When they reach
it, they choose a new target.

We implemented a modified version of this model in which the
state of the particle consists of its current position x`(t), target
τ`(t), speed s`(t) and regime r`(t). Note that the time step here is
1 and thus s` represents the distance travelled in a unit time. The
model is given by

uT
` (t) = [xT

` (t) τT
` (t) s`(t) r`(t)].

The regime can be one of the following:

1. Move toward target (MTT): A particle in this regime tries to
move toward its target with constant speed plus noise:

x`(t) = x`(t−1)+s`(t−1)
τ`(t − 1) − x`(t − 1)

‖τ`(t − 1) − x`(t − 1)‖2
+ν(t),

where ν(t) is zero mean Gaussian white noise with Σν =
σ2

νI , I denotes the identity matrix and σν is assumed to be
known. The speed of the particle is also updated according
to

s`(t) = (1 − φ)s`(t − 1) + φ‖x`(t) − x`(t − 1)‖2.

Updating the speed this way smooths out the variations due
to added noise. We chose φ = 0.7 for our implementation.
The target is left unchanged.

2. Change Target (CT): A particle in this regime first chooses
a new target randomly (uniformly) in the room and performs
an MTT step.

3. Wait (W): A particle in this regime does nothing.

Drawing a new particle from the importance density function in-
volves the following. First, each particle chooses a regime accord-
ing to their current position and their target. If a particle reached its
target, it chooses the regime according to

r`(t) =

8

<

:

MTT, w.p. β1,
CT, w.p. λ1,
W, w.p. (1 − β1 − λ1).

The target is assumed “reached” when the distance to it is less than
the particle’s speed. If a particle does not reach its target, the prob-
abilities β1 and λ1 are replaced by β2 and λ2, respectively. We
chose β1 = 0.05, λ1 = 0.9, β2 = 0.9, λ2 = 0.05.

4.2 Likelihood
Updating the weights in the ASIR algorithm requires the compu-

tation of the likelihood of the measurements, f(Z(t), η(t)|u`(t)).
For brevity, we shall drop the time index from now on. We can
use the chain rule for probabilities to decompose the likelihood and
obtain

f(Z, η|u`) = p(η|u`)f(Z|η, u`). (3)

Now, given x`, which is part of u`, and η, z1, . . . , zN become in-
dependent Gaussian random variables and we have

f(Z|η, u`) =
Y

i;ηi=1

N


zi; fi
hi(x`)

di(x`)
, σ2

vi

ff

,

where N{r; ξ, ρ2} denotes a univariate Gaussian function of r with
mean ξ and variance ρ2, σ2

vi
is given in (2) and di(x) and hi(x) are

defined in Fig. 3.
The first term in (3), however, cannot be expressed as a product,

as the occlusions are not independent given u`. This can be ex-
plained via the following simple example: Suppose 2 cameras are
close to each other. Once we know that one of these cameras can-
not see the object, it is more likely that the other one also cannot
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see it. Hence, the 2 ηs are dependent given u`. Luckily, we can ap-
proximate the first term in 3 in a computationally feasible manner
using recursion.

First, we ignore the static occluders and the limited FOV, and
only consider the effect of the moving occluders. The effects of
static occluders and limited FOV will be added in Subsection 4.3.
Define the indicator functions ηs,m for s = 1, . . . , N and m =
1, . . . , M such that ηs,m = 1 if object m does not occlude camera
s, and 0, otherwise. Thus

{ηs = 1} =
M
\

m=1

{ηs,m = 1}.

The probability that object m occludes camera s given u is thus
given by

P {ηs,m = 0|u} =

Z

f(xm|u)P {ηs,m = 0|u, xm} dxm

(a)
=

Z

f(xm)P {ηs,m = 0|x, xm} dxm

, qm
s (x),

where x is the position part of the state vector u and step (a) uses
the facts that xm is independent of u and ηs,m is a deterministic
function of x and xm. To compute qm

s (x), refer to Figure 5. With-
out loss of generality, we assume that camera s is placed at the
origin. We assume that the moving occluder diameter D is small
compared to the occluder standard deviations. Object m occludes
point x at camera s if its center is inside the rectangle As(x). This
means P {ηs,m = 0|x, xm} = 1 if xm ∈ As(x) and it is zero
everywhere else:

qm
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where vT
1 = [cos(θms)
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α sin(θms)], v′
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2σmv1, vT
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[cos(θms) α sin(θms)], ϕ = µmy cos(θms) − µmx sin(θms), and
σ2

m and σ2
m/α, α ≥ 1, are the eigenvalues of the covariance matrix

Σm of the prior of occluder m. Step (b) follows by the assumption
of small moving occluders.

To compute p(η|u), first consider the probability of all ηs of the
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, pmv
S (x), (5)

where (c) follows by the assumption that the occluder positions are
independent, and (d) follows from the assumption of small D and
the reasonable assumption that the cameras in S are not too close
so that the overlap between As(x), s ∈ S, is negligible. Note
that cameras that satisfy this condition can still be close enough,
such that their FOVs overlap and ηs are dependent. The superscript
“mv” signifies that “only moving occluders are taken into account.”

Now we can compute pmv(η|u) using (5) and recursion as fol-
lows. Let S = {1, . . . , N} (i.e., the set of all cameras). For any
i ∈ S such that ηi = 0, define

ηa = {η1, . . . , ηi−1, ηi+1, . . . , ηN}.
ηb = {η1, . . . , ηi−1, 1, ηi+1, . . . , ηN}.

Then,

pmv(η|u) = pmv(ηa|u) − pmv(ηb|u). (6)

Both terms in the right-hand-side of (6) are one step closer to pmv
S (u)

(with different S), because one less element is zero in both ηa and
ηb This means that any pmv(η|u) can be reduced recursively to
terms consisting of pmv

S (u), using (6). The bad news is, the com-
putational load of this is exponential in the number of zeros in η.
However, this bottleneck is greatly alleviated by the limited FOV
of the cameras as will be explained in the following subsection.

4.3 Adding Static Occluders and Limited FOV
Adding the effects of the static occluders and limited camera

FOV to the procedure described above involves a geometric par-
titioning of the particles into bins. Each bin is assigned a set of
cameras. After this partitioning, only the ηs of the assigned cam-
eras are considered for the particles in that bin. This is explained
using the example in Fig. 6. In this example, we have 2 cameras
and a single static occluder. As denoted by the dashed line in the
figure, we have 2 partitions. Let η1 = 0 and η2 = γ2 ∈ {0, 1}.
Let us consider a particle belonging to the upper partition, namely
particle `. If the object is at x`, the static occluder makes η1 = 0,
independent of where the moving occluders are. On the other hand,
the static occluder and limited FOV do not occlude the second cam-
era’s view of particle `. So, only Cam2 is assigned to this partition,
and the first term in the likelihood is given by

P ({η1 = 0} ∩ {η2 = γ2}|u`) = pmv(η2|u`).
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Figure 6: Geometric partitioning to add static occluders and
limited FOV. If η1 = 1, the object cannot be at x`. If η1 = 0,
only Cam2 needs to be considered for computing p(η|u`). Both
cameras need to be considered for computing p(η|uk).

Similarly,

P ({η1 = 1} ∩ {η2 = γ2}|u`) = 0

P ({η1 = γ1} ∩ {η2 = γ2}|uk) = pmv(η1, η2|uk),

where the fist line follows because if the object is at x`, η1 = 0,
and the second line follows because the static occluder and limited
FOV do not occlude particle k.

Note that the number of cameras assigned to a partition is not
likely to be large, mainly due to the limited camera FOV. Since the
number of zeros in η is at most the number of cameras assigned
to a partition, the actual computational complexity of the recursion
described in Subsection 4.2 is much lower than exponential. Also,
because the camera placements, FOV and static occluder positions
are known in advance, the room can be divided into regions before-
hand, with each region assigned the cameras that can see it. The
number of such regions grows at most quadratically in the number
of cameras. During tracking, the particles can be easily divided
into partitions depending on which pre-computed region each par-
ticle is.

We mentioned in Section 3 that the camera nodes can distinguish
between the object and the occluders. This may be unrealistic in
some practical settings. To address this problem, one can introduce
another random variable that indicates the event of detecting and
recognizing the object and include its probability in the likelihood.
We have not implemented this modification in this paper, however.

4.4 Obtaining Occluder Priors
Our tracker assumes the availability of priors for the moving oc-

cluder positions. In this subsection we discuss how these priors
may be obtained. In Section 5, we investigate the tradeoff between
the accuracy of such priors and that of tracking.

Clearly, one could run a separate PF for each object, and then fit
Gaussians to the resulting particle distributions. This requires solv-
ing the data association problem, which would require substantial
local and centralized processing. Instead of solving the data asso-
ciation problem, trackers that represent the states of all objects in a
joint state have been proposed (e.g. [20]). This approach, however,
is computationally prohibitive as it requires employing an exponen-
tially increasing number of particles in the size of the state.

Another approach to obtaining the priors is to use a hybrid sen-
sor network combining, for example, acoustic sensors in addition
to cameras. As these sensors use less energy than cameras, they
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Figure 7: The visual hull is computed by back-projecting the
scan lines to the room and intersecting the resulting cones.

could be used to generate the priors for the moving occluders. An
example of this approach can be found in [23].

Yet another approach to obtaining the occluder priors involves
reasoning about occupancy using the “visual hull” (VH) as de-
scribed in [24] (see Fig. 7). To compute the VH, the entire scan
lines from the cameras are sent to the cluster head instead of only
the centers of the object blobs in the scan lines as discussed in Sec-
tion 3. This only marginally increases the communication cost. The
cluster head then computes the VH by back-projecting the blobs in
the scan lines to cones in the room. The cones from the multi-
ple cameras are intersected to compute the total VH. Since the re-
sulting polygons are larger than the occupied areas and “phantom”
polygons that do not contain any objects may be present, VH pro-
vides an upper bound on occupancy. The computation of the VH
is relatively light-weight, and does not require solving the data as-
sociation problem. The VH can then be used to compute occluder
priors by fitting ellipses to the polygons and using them as Gaus-
sian priors. Alternatively, the priors can be assumed to be uniform
distributions over these polygons. In this case the computation of
qm

s (x) in (4) would need to be modified.
Although the VH approach to computing occluder priors is quite

appealing for a WSN implementation, several problems remain to
be addressed. These include dealing with the object’s own blob and
phantom removal [24], which is necessary because their existence
can cause the killing of many good particles.

5. SIMULATION RESULTS
In a practical tracking setting one is given the room structure

(including information about the static occluders), the range of the
number of moving occluders and their motion model, and the re-
quired object tracking accuracy. Based on this information, one
needs to decide on the number of cameras to use in the room and
the amount of prior information about the moving occluder po-
sitions needed and how to best obtain this information. Making
these decisions involve several tradeoffs, for example, between the
occluder prior accuracy and the tracker performance, between the
number of cameras used and the required occluder prior accuracy,
and between the number of occluders present and the tracking per-
formance. In this section we explore these tradeoffs using simula-
tions.

In the simulations we assume a square room of size 100 × 100
units and a maximum of 8 cameras placed around its periphery (see
Fig. 8). The black rectangle in the figure depicts a static occluder.
Note, however, that in some of the simulations we assume no static
occluders. All cameras look toward the center of the room. The
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Figure 8: The setup used in simulations.

camera FOV is assumed to be 90◦. The standard deviation of the
camera position error is σpos = 1 unit, that of camera angle error is
σθ = 0.01 radians and read noise standard deviation is σread = 2
pixels. The diameter of each moving occluder is assumed to be
D = 3.33 units. We assume that the objects move according to
random waypoints model. This is similar to the way we draw new
particles from the importance density function as discussed in Sub-
section 4.1 with the following differences:

• The objects are only in regimes MTT or CT. There is no W
regime.

• The objects choose their regimes deterministically, not ran-
domly. If an object reaches its target or is heading toward the
inside of a static occluder or outside the room boundaries, it
transitions to the CT regime.

• Objects go around each other instead of colliding.

The average speed of the objects is set to 1 unit per time step. The
standard deviation of the noise added to the motion each time step
is 0.33 units. Fig. 8 also shows a snapshot of the objects for M=40
occluders. In the PF tracker we use 1000 particles. In each simu-
lation, the object and the occluders move according to the random
waypoints model for 4000 time steps.

To investigate tradeoffs involving moving occluder prior accu-
racy, we need a measure for the accuracy of the occluder prior. To
develop such a measure, we assume that the priors are obtained
using a KF run on virtual measurements of the moving occluder
positions of the form

ym(t) = xm(t) + υ(t), m = 1, 2, . . . , M,

where xm(t) is the true occluder position, υ(t) is white Gaussian
noise with covariance σ2

υI , and ym(t) is the measurement. We then
use the average RMSE of the KF (RMSEocc) as a measure of the
occluder prior accuracy. Lower RMSEocc means higher accuracy
sensors or more computation is used to obtain the priors, which re-
sult in more energy consumption in the network. At the extremes,
RMSEocc = 0 (when συ = 0) corresponds to complete knowl-
edge of the moving occluder positions and RMSEocc = RMSEmax

(when συ = ∞) corresponds to no knowledge of the moving oc-
cluder positions. Note that the worst case RMSEmax is finite be-
cause when there are no measurements about the occluder posi-
tions, one can simply assume that they are located at the center of
the room. This corresponds to RMSEmax = 25.0 units for the
setup in Fig. 8.
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Figure 9: Average tracker RMSE versus the number of cam-
eras for M = 40, and 1 static occluder. The dotted line is the
worst case RMSE when no tracking is performed and the ob-
ject is assumed to be at the center of the room.

To implement the tracker for these two extreme cases, we mod-
ify the p(η|u) computation as follows. We assign 0 or 1 to p(η|u)
depending on the consistency of η with our knowledge about the
occluders. For RMSEocc = 0, i.e., when we have complete infor-
mation about the moving occluder positions, the moving occluders
are treated as static occluders. On the other hand, for RMSEocc =
RMSEmax, i.e., when there is no information about the moving oc-
cluder positions, we check the consistency with only the static oc-
cluder and the limited FOV information to assign zero probabilities
to some particles. For the example in Fig. 6, we set P ({η1 = 1}
∩{η2 = γ2}|u`) = 0, because if camera i can see the object, the
object cannot be at x`. Any other probability that is non-zero is set
to 1. Note that for these 2 extreme cases, we no longer need the
recursion discussed in Subsection 4.2 to compute the likelihood.
Hence, the computational complexity is considerably lighter com-
pared to using Gaussian priors.

First in Fig. 9 we plot the average RMSE of the tracker (RMSEtr)
over 5 simulation runs for the two extreme cases of RMSEocc = 0
and RMSEocc = RMSEmax and for RMSEocc = 6.67 (obtained
by setting συ = 8) versus the number of cameras (the cameras con-
stitute a roughly evenly spaced subset of cameras in Fig. 8. For 2
cameras, orthogonal placement is used [2]). The dotted line repre-
sents the worst case RMSE, when there are no measurements and
the object is assumed to be in the center of the room.

We then investigate the dependency of the tracker accuracy on
the accuracy of the moving occluder priors. Fig. 10 plots the aver-
age RMSE for the tracker over 5 simulation runs versus RMSEocc

for N = 4 cameras. In order to include the effect of moving
occluder priors only, we used no static occluders in these simu-
lations. RMSEmax reduces to 21.3 units for this case. Note that
there is around a factor of 2.35× increase in RMSEtr from the
case of perfect occluder information (RMSEocc = 0) to the case
of no occluder information (RMSEocc = RMSEmax). Moreover,
it is not realistic to assume that the occluder prior accuracy would
be better than that of the tracker. With this consideration the im-
provement reduces to around 1.94× (this is obtained by noting that
RMSEtr =RMSEocc at around 3.72). These observations suggest
that obtaining prior information may not be worthwhile in practice,
unless it can be obtained cheaply and to a reasonable accuracy.

The tradeoff between RMSEocc and the number of cameras needed
to achieve average RMSEtr = 3 is plotted in Fig. 11. As expected
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Figure 10: Dependency of the tracker average RMSE on the
accuracy of the occluder prior for N = 4, M = 40 and no
static occluders. The dotted line is for RMSEtr =RMSEocc.
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Figure 11: Tradeoff between the number of cameras and
moving occluder prior accuracy for target tracker average
RMSE=3 units for M = 40 and no static occluders.

there is a tradeoff between the number of cameras and the accuracy
of the moving occluder priors as measured by RMSEocc. As more
cameras are used, the accuracy of the prior information needed de-
creases. The plot suggests that if a large enough number of cam-
eras is used, no prior information would be needed at all. Of course
having more cameras means more communications and processing
cost. So, in the design of a tracking system, one needs to com-
pare the cost of deploying more cameras to that of obtaining better
occluder priors.

Next we explore the question of how the needed moving occluder
prior accuracy depends on the number of occluders present. To do
so, in Fig. 12 we plot the RMSEtr versus the number of moving
occluders for the two extreme cases, RMSEocc=0 and RMSEocc

=RMSEmax. Note that the difference between the RMSEtr for the
two cases is the potential improvement in the tracking performance
achieved by having occluder prior information. When there are
very few moving occluders, prior information does not help (be-
cause the object is not occluded most of the time). As the number
of occluder increases prior information becomes more useful. But
the difference in RMSEtr between the two extreme cases decreases
when too many occluders are present (because the object becomes
occluded most of the time).
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Figure 12: Tracker average RMSE versus the number of
moving occluders for the two extreme cases RMSEocc=0 and
RMSEocc=RMSEmax. Here N = 4 and there are no static oc-
cluders.
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Figure 13: Average CPU time for computing the likelihoods
relative to that for the case of 2 cameras and no occluder prior,
i.e., RMSEocc=RMSEmax. Here M = 40 and there is 1 static
occluder.

In Subsections 4.3 and 4.4, we mentioned that the complexity of
computing the likelihood given u` is exponential in the number of
cameras that cannot see the object and are assigned to the region
x` belongs to. We proposed that the limited camera FOV signif-
icantly reduces this computational complexity. To verify this, in
Fig. 13 we plot the average CPU time (per time step) used to com-
pute the likelihood relative to that of RMSEocc=RMSEmax case
for 2 cameras, versus the total number of cameras in the room.
The simulations were performed on an 3GHz Intel Xeon Proces-
sor running MATLAB R14. Note that the rate of increase of the
CPU time using priors is significantly lower than 2N , where N is
the number of cameras used, and it is close to the rate of increase
of RMSEocc=RMSEmax case. In fact, the rate of increase for this
particular example is close to linear in N .

6. EXPERIMENTAL RESULTS
We tested our tracking algorithm in an experimental setup con-

sisting of 16 web cameras placed around a 22′ × 19′ room. The
horizontal FOV of the cameras used is 47◦. A picture of the lab
is shown in Fig. 14(a) and the relative positions and orientations



(a)

1

2

3

4

5 6 7
8

9

10

11

12

1314
1516

(b)

Figure 14: Experimental setup. (a) View of lab (cameras are
circled). (b) Relative locations of cameras and virtual static oc-
cluder. Solid line shows actual path of the object to track.

of the cameras in the room are provided in Fig. 14(b). Each pair
of cameras is connected to a PC via IEEE 1394 (FireWire) inter-
face and each can provide 8-bit 3-channel (RGB) raw video at 7.5
Frames/s. The data from each camera is processed independently
as described in Section 3. The scan line data is then sent to a central
PC (cluster head), where further processing is performed.

The object follows the pre-defined path (shown in Fig. 14) with
no occlusions present and 200 time-steps of data is collected. The
effect of static and moving occluders is simulated using 1 virtual
static occluder and M = 20 virtual moving occluders: we threw
away the measurements from the cameras that would have been
occluded, had there been real occluders. We chose to simulate the
occluders because it is otherwise impossible to obtain the perfect
occluder positions (RMSEocc = 0 case). The moving occluders
walk according to the model explained in Section 5. D is chosen 12
inches for the moving occluders, and the camera noise parameters
were assumed σpos = 6 inches, σread = 2 pixels and σθ = 0.005
radians.

Figure 15 plots the average RMSE of the tracker over 40 simula-
tion runs for the two extreme cases of RMSEocc = RMSEmax =
61.8 inches and RMSEocc = 0 and for RMSEocc = 14.2 inches
versus the number of cameras. There is a notable difference in the
performance between the three cases throughout the entire plot, but
the difference is more pronounced when the number of cameras is
small, agreeing with the tradeoffs discussed in Section 5.

7. CONCLUSION
We described a sensor network approach for tracking a single

object in a structured environment using multiple cameras. Instead
of tracking all objects in the environment, which is computationally
very costly, we track only the target object and treat others as oc-
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Figure 15: Experimental results. Average tracker RMSE ver-
sus the number of cameras for M = 20, and 1 static occluder.

cluders. The tracker is provided with complete information about
the static occluders and some prior information about the moving
occluders. One of the main contributions of this paper is develop-
ing a systematic way to incorporate this information into the tracker
formulation. Using simulations we explored tradeoffs involving the
occluder prior accuracy, the number of cameras used, the number
of occluders present, and the accuracy of tracking with some inter-
esting implications.

Several areas need to be explored further, including (i) running
simulations and experiments over real world environments to val-
idate our preliminary findings, (ii) developing a theoretical frame-
work for investigating the aforementioned tradeoffs, (iii) exploiting
the independence between the ηis for cameras that are far apart to
further reduce the computational complexity of computing the like-
lihoods, and (iv) developing a cheap method for obtaining reason-
able accuracy occluder priors (perhaps based on VH).
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APPENDIX
A. DERIVATION OF THE CAMERA MEA-

SUREMENT NOISE VARIANCE
Without loss of generality, assume that the camera is at the ori-

gin, and the object is at x = [x1 x2]
T . Then hi(x) and di(x) in

Fig. 3 are given by

hi(x) = sin(θi)x1 − cos(θi)x2

di(x) = − cos(θi)x1 − sin(θi)x2.

We take partial derivatives of zi given in (1) with respect to θi, x1

and x2 to obtain
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An error in the camera position translates into errors in x1 and x2.
Assuming the errors in the two directions to be independent, zero
mean and have the same standard deviation σpos, and the error in
the angle to be zero mean with standard deviation σθ and indepen-
dent of the position errors, we obtain
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