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Abstract
Similarity-based Logic Programming(briefly,SLP ) has been pro-
posed to enhance theLP paradigm with a kind of approximate rea-
soning which supports flexible information retrieval applications.
This approach uses a fuzzy similarity relationR between sym-
bols in the program’s signature, while keeping the syntax for pro-
gram clauses as in classicalLP . Another recent proposal is the
QLP (D) scheme forQualified Logic Programming, an extension
of the LP paradigm which supports approximate reasoning and
more. This approach uses annotated program clauses and a para-
metrically given domainD whose elements qualify logical asser-
tions by measuring their closeness to various users’ expectations.
In this paper we propose a more expressive schemeSQLP (R,D)
which subsumes bothSLP andQLP (D) as particular cases. We
also show thatSQLP (R,D) programs can be transformed into se-
mantically equivalentQLP (D) programs. As a consequence, ex-
istingQLP (D) implementations can be used to give efficient sup-
port for similarity-based reasoning.

Categories and Subject Descriptors D.1.6 [Programming Tech-
niques]: Logic Programming; D.3.2 [Programming Languages]:
Language Classifications—Constraint and logic languages;F.3.2
[Theory of Computation]: Logics and Meanings of Programs—
Algebraic approaches to semantics

General Terms Algorithms, Languages, Theory

Keywords Qualification Domains, Similarity Relations

1. Introduction
The historical evolution of the research on uncertainty inLogic Pro-
gramming(LP ) has been described in a recent recollection by V. S.
Subrahmanian [19]. Early approaches include the quantitative treat-
ment of uncertainty in the spirit of fuzzy logic, as in van Emden’s
classical paper [20] and two subsequent papers by Subrahmanian
[17, 18]. The main contribution of [20] was a rigorous declarative
semantics for aLP language with program clauses of the form
A ← d− B, where the headA is an atom, the bodyB is a con-
junction of atoms, and the so-calledattenuationfactord ∈ (0, 1]
attached to the clause’s implication is used to propagate tothe head

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’08, July 15–17, 2008, Valencia, Spain.
Copyright c© 2008 ACM 978-1-60558-117-0/08/07. . . $5.00

the certainty factord × b, whereb is the minimum of the certainty
factorsdi ∈ (0, 1] previously computed for the various atoms oc-
curring in the body. The papers [17, 18] proposed to use a special
lattice T in place of the lattice of the real numbers in the inter-
val [0, 1] under their natural ordering.T includes two isomorphic
copies of[0, 1] whose elements are incomparable underT ’s order-
ing and can be used separately to represent degrees oftruth and
falsity, respectively, thus enabling a simple treatment of negation.
Other main contributions of [17, 18] were the introduction of anno-
tated program clauses and goals (later generalized to a muchmore
expressive framework in [7]), as well as goal solving procedures
more convenient and powerful than those given in [20].

A more recent line of research isSimilarity-based Logic Pro-
gramming(briefly,SLP ) as presented in [16] and previous related
works such as [3, 6, 5, 15]. This approach also uses the lattice [0, 1]
to deal with uncertainty in the spirit of fuzzy logic. In contrast to
approaches based on annotated clauses, programs inSLP are just
sets of definite Horn clauses as in classicalLP . However, asimilar-
ity relationR (roughly, the fuzzy analog of an equivalence relation)
between predicate and function symbols is used to enable theunifi-
cation terms that would be not unifiable in the classical sense, mea-
sured by some degreeλ ∈ (0, 1]. There are different proposals for
the operational semantics ofSLP programs. One possibility is to
apply classicalSLD resolution w.r.t. a transformation of the origi-
nal program [6, 15, 16]. Alternatively, aR-basedSLD-resolution
procedure relying onR-unification can be applied w.r.t. to the orig-
inal program, as proposed in [16]. Propositions 7.1 and 7.2 in [16]
state a correspondence between the answers computed byR-based
SLD resolution w.r.t. a given logic programP and the answers
computed by classicalSLD resolution w.r.t. the two transformed
programsHλ(P) (built by adding toP new clausesR-similar to
those inP up to the degreeλ ∈ (0, 1]) andPλ (built by replacing
all the function and predicate symbols inP by new symbols that
represent equivalence classes moduloR-similarity up toλ). The
SiLog system [8] has been developed to implementSLP and to
support applications related to flexible information retrieval from
the web.

The aim of the present paper is to show that similarity-based
reasoning can be expressed inQLP (D), a programming scheme
for QualifiedLP over a parametrically givenQualification Domain
D recently presented in [14] as a generalization and improvement
of the classical approach by van Emden [20] toQuantitative
LP . Qualification domains are lattices satisfying certain natural
axioms. They include the lattice[0, 1] used both in [20] and in [16],
as well as other lattices whose elements can be used to qualify
logical assertions by measuring their closeness to different kinds
of users’ expectations. Programs inQLP (D) useD-attenuated
clauses of the formA ← d− B whereA is an atom,B a finite
conjunction of atoms andd ∈ D \ {⊥} is theattenuation value
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attached to the clause’s implication, used to propagate to the head
the qualification valued ◦ b, where b is the infimum inD of
the qualification valuesdi ∈ D \ {⊥} previously computed for
the various atoms occurring in the body, and◦ is an attenuation
operator coming withD. As reported in [14, 13], the classical
results inLP concerning the existence of least Herbrand models
of programs and the soundness and completeness of theSLD
resolution procedure (see e.g.[21, 2, 1]) have been extended to the
QLP (D) scheme, and potentially useful instances of the scheme
have been implemented on top of theConstraint Functional Logic
Programming(CFLP ) systemT OY [4].

The results presented in this paper can be summarized as fol-
lows: we consider generalized similarity relations over a set S as
mappingsR : S × S → D taking values in the carrier setD of an
arbitrarily given qualification domainD, and we extendQLP (D)
to a more expressive schemeSQLP (R,D) with two parame-
ters for programming moduloR-similarity withD-attenuated Horn
clauses. We present a declarative semantics forSQLP (R,D) and
a program transformation mapping eachSQLP (R,D) programP
into aQLP (D) programSR(P) whose least Herbrand model cor-
responds to that ofP . Roughly,SR(P) is built adding toP new
clauses obtained from the original clauses inP by computing var-
ious new headsR-similar to a linearized version of the original
head, adding alsoR-similarity conditionsXi ∼ Xj to the body
and suitable clauses for the new predicate∼ to emulateR-based
unification. Thanks to theSR(P) transformation, the sound and
complete procedure for solving goals inQLP (D) by D-qualified
SLD resolution and its implementation in theT OY system [14]
can be used to implementSQLP (R,D) computations, including
as a particular caseSLP computations in the sense of [16].

Another recent proposal for reducing theSLP approach in [16]
to a fuzzyLP paradigm can be found in [11], a paper which relies
on the multi-adjoint framework for Logic Programming (MALP
for short) previously proposed in [9, 10].MALP is a quite gen-
eral framework supportingLP with weighted program rulesover
different multi-adjoint lattices, each of which provides apartic-
ular choice of operators for implication, conjunction and aggre-
gation of atoms in rule bodies. In comparison to theQLP (D)
scheme, the multi-adjoint framework differs in motivationand
scope. Multi-adjoint lattices and qualification domains are two dif-
ferent classes of algebraic structures. Concerning declarative and
operational semantics, there are also some significant differences
betweenQLP (D) andMALP. In particular,MALP ’s goal solving
procedure relies on a costly computation ofreductant clauses, a
technique borrowed from [7] which can be avoided inQLP (D),
as discussed in the concluding section of [14].

In spite of these differences, the results in [11] concerning the
emulation of similarity-based can be compared to those in the
present paper. Theorem 24 in [11] shows that every classicallogic
programP can be transformed into aMALPprogramPE,R which
can be executed using only syntactical unification and emulates the
successful computations ofP using theSLD resolution withR-
based unification introduced in [16].PE,R works over a particular
multi-adjoint latticeG with carrier set[0, 1] and implication and
conjunction operators chosen according to the so-called G¨odel’s
semantics [22].PE,R also introduces clauses for a binary predi-
cate∼ which emulatesR-based unification, as in our transforma-
tion SR(P). Nevertheless,SR(P) is defined for a more general
class of programs and uses theR-similarity predicate∼ only if
the source programP has some clause whose head is non-linear.
More detailed comparisons between the program transformations
SR(P), Hλ(P), Pλ andPE,R will be given in Subsection 4.2.

The rest of the paper is structured as follows: In Section 2 we
recall the qualification domainsD first introduced in [14] and we
define similarity relationsR over an arbitrary qualification domain.

In Section 3 we recall the schemeQLP (D) and we introduce its
extensionSQLP (R,D) with its declarative semantics, given by
a logical calculus which characterizes the least Herbrand model
MP of eachSQLP (R,D) programP . In Section 4 we define the
transformationSR(P) of any givenSQLP (R,D) programP into
aQLP (D) programSR(P) such thatMSR(P) =MP , we give
some comparisons to previously known program transformations,
and we illustrate the application ofSR(P) to similarity-based
computation by means of a simple example. Finally, in Section 5
we summarize conclusions and comparisons to related work and
we point to planned lines of future work.

2. Qualification Domains and Similarity
Relations

2.1 Qualification Domains

Qualification Domainswere introduced in [14] with the aim of
using their elements to qualify logical assertions in different ways.
In this subsection we recall their axiomatic definition and some
significant examples.

Definition 1. A Qualification Domainis any structureD = 〈D,⊑,
⊥,⊤, ◦〉 verifying the following requirements:

1. 〈D,⊑,⊥,⊤〉 is a lattice with extreme points⊥ and⊤ w.r.t. the
partial ordering⊑. For given elementsd, e ∈ D, we writed ⊓ e
for thegreatest lower bound(glb) of d ande andd ⊔ e for the
least upper bound(lub) of d and e. We also writed ⊏ e as
abbreviation ford ⊑ e ∧ d 6= e.

2. ◦ : D × D → D, calledattenuation operation, verifies the
following axioms:
(a) ◦ is associative, commutative and monotonic w.r.t.⊑.
(b) ∀d ∈ D : d ◦ ⊤ = d.
(c) ∀d ∈ D : d ◦ ⊥ = ⊥.
(d) ∀d, e ∈ D \ {⊥,⊤} : d ◦ e ⊏ e.
(e) ∀d, e1, e2 ∈ D : d ◦ (e1 ⊓ e2) = d ◦ e1 ⊓ d ◦ e2.

In the rest of the paper,D will generally denote an arbitrary
qualification domain. For any finiteS = {e1, e2, . . . , en} ⊆
D, the glb of S (noted as

d
S) exists and can be computed as

e1 ⊓ e2 ⊓ · · · ⊓ en (which reduces to⊤ in the casen = 0). As
an easy consequence of the axioms, one gets the identityd◦

d
S =d

{d◦e | e ∈ S}. TheQLP (D) scheme presented in [14] supports
LP over a parametrically given qualification domainD.

Example 1. Some examples of qualification domains are presented
below. Their intended use for qualifying logical assertions will
become more clear in Subsection 3.1.

1. B = ({0, 1},≤, 0, 1,∧), where0 and 1 stand for the two
classical truth valuesfalseand true, ≤ is the usual numerical
ordering over{0, 1}, and∧ stands for the classical conjunction
operation over{0, 1}. Attaching1 to an atomic formulaA is
intended to qualifyA as ‘true’ in the sense of classicalLP .

2. U = (U,≤, 0, 1,×), where U = [0, 1] = {d ∈ R | 0 ≤
d ≤ 1}, ≤ is the usual numerical ordering, and× is the
multiplication operation. In this domain, the top element⊤ is
1 and the greatest lower bound

d
S of a finiteS ⊆ U is the

minimum value min(S), which is1 if S = ∅. Attaching an
elementc ∈ U \ {0} to an atomic formulaA is intended to
qualifyA as ‘true with certainty degreec’ in the spirit of fuzzy
logic, as done in the classical paper [20] by van Emden. The
computation of qualificationsc as certainty degrees inU is due
to the interpretation of⊓ asmin and◦ as×.

3. W = (P,≥,∞, 0,+), where P= [0,∞] = {d ∈ R ∪ {∞} |
d ≥ 0}, ≥ is the reverse of the usual numerical ordering (with
∞ ≥ d for anyd ∈ P), and+ is the addition operation (with



∞ + d = d +∞ = ∞ for any d ∈ P). In this domain, the
top element⊤ is 0 and the greatest lower bound

d
S of a finite

S ⊆ P is the maximum value max(S), which is0 if S = ∅.
Attaching an elementd ∈ P \ {∞} to an atomic formulaA is
intended to qualifyA as ‘true with weighted proof depthd’. The
computation of qualificationsd as weighted proof depths inW
is due to the interpretation of⊓ asmax and◦ as+.

4. Given 2 qualification domainsDi = 〈Di,⊑i,⊥i,⊤i, ◦i〉 (i ∈
{1, 2}), their cartesian productD1 × D2 is D =def 〈D,⊑
,⊥,⊤, ◦〉, whereD =def D1 × D2, the partial ordering⊑
is defined as(d1, d2) ⊑ (e1, e2) ⇐⇒def d1 ⊑1 e1 and
d2 ⊑2 e2, ⊥ =def (⊥1,⊥2), ⊤ =def (⊤1,⊤2), and the
attenuation operator◦ is defined as(d1, d2) ◦ (e1, e2) =def

(d1 ◦1 e1, d2 ◦2 e2). The product of two given qualification
domains is always another qualification domain, as proved
in [14]. Intuitively, each value(d1, d2) belonging toD1 ×
D2 imposes the qualificationd1 and alsothe qualificationd2.
For instance, values(c, d) belonging toU × W impose two
qualifications, namely: a certainty degree greater or equalthan
c and a weighted proof depth less or equal thand.

For technical reasons that will become apparent in Section 4,
we consider the two structuresU ′ resp.W ′ defined analogously
to U resp.W, except that◦ behaves asmin in U ′ and asmax
in W ′. Note that almost all the axioms for qualification domains
enumerated in Definition 1 hold inU ′ andW ′, except that axiom
2.(d) holds only in the relaxed form∀d, e ∈ D : d ◦ e ⊑
e. Therefore, we will refer toU ′ andW ′ as quasi qualification
domains.

2.2 Similarity relations

Similarity relationsover a given setS have been defined in [16]
and related literature as mappingsR : S × S → [0, 1] that satisfy
three axioms analogous to those required for classical equivalence
relations. Each valueR(x, y) computed by a similarity relationR
is called thesimilarity degreebetweenx andy. In this paper we
use a natural extension of the definition given in [16], allowing ele-
ments of an arbitrary qualification domainD to serve as similarity
degrees. As in [16], we are especially interested in similarity rela-
tions over setsS whose elements are variables and symbols of a
given signature.

Definition 2. Let a qualification domainD with carrier setD and
a setS be given.

1. A D-valued similarity relationover S is any mappingR :
S × S → D such that the three following axioms hold for
all x, y, z ∈ S:
(a) Reflexivity:R(x, x) = ⊤.
(b) Symmetry:R(x, y) = R(y, x).
(c) Transitivity:R(x, z) ⊒ R(x, y) ⊓ R(y, z).

2. The mappingR : S × S → D defined asR(x, x) = ⊤ for all
x ∈ D andR(x, y) = ⊥ for all x, y ∈ D, x 6= y is trivially a
D-valued similarity relation called theidentity.

3. A D-valued similarity relationR over S is calledadmissible
iff S = Var ∪ CS ∪ PS (where the three mutually disjoint
setsVar, CS andPS stand for a countably infinite collection
of variables, a set ofconstructor symbolsand a set ofpredicate
symbols, respectively) and the two following requirements are
satisfied:
(a) R restricted toVar behaves as the identity, i.e.R(X,X) =
⊤ for all X ∈ Var andR(X,Y ) = ⊥ for all X,Y ∈ Var,
X 6= Y .

(b) R(x, y) 6= ⊥ holds only if some of the following three
cases holdsx, y: either x, y ∈ Var are both the same
variable; or elsex, y ∈ CS are constructor symbols with

the same arity; or elsex, y ∈ PS are predicate symbols
with the same arity.

The similarity degrees computed by aD-valued similarity rela-
tion must be interpreted w.r.t. the intended role ofD-elements as
qualification values. For example, letR be an admissible similar-
ity relation, and letc, d ∈ CS be two nullary constructor symbols
(i.e., constants). IfR is U-valued, thenR(c, d) can be interpreted
as acertainty degreefor the assertion thatc andd are similar. On
the other hand, ifR isW-valued, thenR(c, d) can be interpreted
as acostto be paid forc to play the role ofd. These two views are
coherent with the different interpretations of the operators⊓ and◦
in U andW, respectively.

In the rest of the paper we assume that any admissible similarity
relationR can be extended to act over terms, atoms and clauses.
The extension, also calledR, can be recursively defined as in [16].
The following definition specifies the extension ofR acting over
terms. The case of atoms and clauses is analogous.

Definition 3. (R acting over terms).

1. ForX ∈ Var and for any termt different fromX:
R(X,X) = ⊤ andR(X, t) = R(t,X) = ⊥.

2. Forc, c′ ∈ CS with different aritiesn, m:
R(c(t1, . . . , tn), c

′(t′1, . . . , t
′
m)) = ⊥.

3. Forc, c′ ∈ CS with the same arityn:
R(c(t1, . . . , tn), c

′(t′1, . . . , t
′
n)) = R(c, c

′)⊓R(t1, t
′
1)⊓ . . .⊓

R(tn, t
′
n).

3. Similarity-based Qualified Logic Programming
In this section we extend our previous schemeQLP (D) to a
more expressive scheme calledSimilarity-based Qualified Logic
Programmingover(R,D) –abbreviated asSQLP (R,D)– which
supports both qualification overD in the sense of [14] andR-based
similarity in the sense of [16] and related research. Subsection 3.1
presents a quick review of the main results concerning syntax and
declarative semantics ofQLP (D) already presented in [14], while
the extensions needed to conform the newSQLP (R,D) scheme
are presented in subsection 3.2.

3.1 Qualified Logic Programming

QLP (D) was proposed in our previous work [14] as a generic
scheme for qualified logic programming over a given qualification
domainD. In that scheme, asignatureΣ providing constructor
and predicate symbols with given arities is assumed.Termsare
built from constructors andvariablesfrom a countably infinite set
Var (disjoint from Σ) and Atomsare of the formp(t1, . . . , tn)
(shortened asp(tn) or simply p(t)) wherep is an-ary predicate
symbol andti are terms. We writeAtΣ, called theopen Herbrand
base, for the set of all atoms. AQLP (D) programP is a finite set
of D-qualified definite Horn clausesof the formA←d−B where
A is an atom,B a finite conjunction of atoms andd ∈ D \ {⊥} is
theattenuation valueattached to the clause’s implication.

As explained in [14], in our aim to work with qualifications we
are not only interested in just proving an atom, but in proving it
along with a qualification value. For this reason,D-qualified atoms
(A♯ d whereA is an atom andd ∈ D \ {⊥}) are introduced to
represent the statement that the atomA holds forat leastthe qual-
ification valued. For use in goals to be solved,openD-annotated
atoms(A ♯W whereA is an atom andW a qualification variable
intended to take values overD) are also introduced, and a count-
ably infinite setWar of qualification variables (disjoint fromVar
andΣ) is postulated. Theannotated Herbrand baseoverD is de-
fined as the setAtΣ(D) of all D-qualified atoms. AD-entailment
relationoverAtΣ(D), defined asA ♯d<D A′ ♯ d′ iff there is some
substitutionθ such thatA′ = Aθ and d′ ⊑ d, is used to for-



mally define anopen Herbrand interpretationoverD –from now
on just aninterpretation– as any subsetI ⊆ AtΣ(D) which is
closed underD-entailment. We writeIntΣ(D) for the family of all
interpretations. The notion of model is such that given any clause
C ≡ A←d−B1, . . . , Bk in theQLP (D) programP , an interpre-
tationI is said to be amodelof C iff for any substitutionθ and any
qualification valuesd1, . . . , dk ∈ D \ {⊥} such thatBiθ ♯ di ∈ I
for all 1 ≤ i ≤ k, one hasAθ ♯ (d ◦

d
{d1, . . . , dk}) ∈ I. The

interpretationI is also said to be a model of theQLP (D) program
P (written asI |= P) iff it happen to be a model of every clause in
P .

As technique to infer formulas (or in our caseD-qualified
atoms) from a givenQLP (D) programP , and following tradi-
tional ideas, we consider two alternative ways of formalizing an
inference step which goes from the body of a clause to its head:
both an interpretation transformerTP : IntΣ(D) → IntΣ(D),
and a qualified variant of Horn Logic, noted asQHL(D), called
Qualified Horn LogicoverD. As both methods are equivalent and
correctly characterize the least Herbrand model of a given program
P , we will only be recalling the logicQHL(D), although we en-
courage the reader to see Section 3.2 in [14], where the fix-point
semantics is explained.

The logicQHL(D) is defined as a deductive system consisting
just of one inference rule: QMP(D), calledQualified Modus Po-
nensoverD. Such rule allows us to give the following inference
step given that there were some(A←d−B1, . . . , Bk) ∈ P , some
substitutionθ such thatA′ = Aθ andB′

i = Biθ for all 1 ≤ i ≤ k
and somed′ ∈ D \ {⊥} such thatd′ ⊑ d ◦

d
{d1, . . . , dk}:

B′
1 ♯ d1 · · · B′

k ♯ dk

A′ ♯ d′
QMP(D)

Roughly, each QMP(D) inference step using an instance of a pro-
gram clauseA←d−B has the effect of propagating to the head the
qualification valued ◦ b, whereb is the infimum inD of the quali-
fication valuesdi ∈ D \ {⊥} previously computed for the various
atoms occurring in the body. This helps to understand the claims
made in Example 1 above about the intended use of elements of
the domainsU andW for qualifying logical assertions. We use the
notationsP ⊢QHL(D) A♯ d (resp.P ⊢nQHL(D) A ♯d) to indicate
thatA♯ d can be inferred from the clauses in programP in finitely
many steps (resp.n steps). Theleast Herbrand model ofP happens
to beMP = {A ♯ d | P ⊢QHL(D) A ♯d}, as proved in [14].

3.2 Similarity-based Qualified Logic Programming

The schemeSQLP (R,D) presented in this subsection has two
parametersR andD, whereD can be any qualification domain
andR can be any admissibleD-valued similarity relation, in the
sense of Definition 2. The new scheme subsumes the approach in
[14] by behaving asQLP (D) in the case thatR is chosen as the
identity, and it also subsumes similarity-basedLP by behaving as
the approach in [16] and related papers in the case thatD is chosen
asU .

Syntactically,SQLP (R,D) presents almost no changes w.r.t.
QLP (D), but the declarative semantics must be extended to ac-
count for the behavior of the parametrically given similarity rela-
tionR. As in the previous subsection, we assume a signatureΣ pro-
viding again constructor and predicate symbols.TermsandAtoms
are built the same way they were inQLP (D), andAtΣ will stand
again for the set of all atoms, called theopen Herbrand base. An
atomA is calledlinear if there is no variable with multiple occur-
rences inA; otherwiseA is callednon-linear. A SQLP (R,D)
programP is a finite set ofD-qualified definite Horn clauseswith
the same syntax as inQLP (D), along with aD-valued admissible
similarity relationR in the sense of Definition 2, item 2. Figure
1 shows a simpleSQLP (R,U) program built from the similarity

1 wild(lynx) <-0.9-
2 wild(boar) <-0.9-
3 wild(snake) <-1.0-

4 farm(cow) <-1.0-
5 farm(pig) <-1.0-

6 domestic(cat) <-0.8-
7 domestic(snake) <-0.4-

8 intelligent(A) <-0.9- domestic(A)
9 intelligent(lynx) <-0.7-

10 pacific(A) <-0.9- domestic(A)
11 pacific(A) <-0.7- farm(A)

12 pet(A) <-1.0- pacific(A), intelligent(A)

R(farm,domestic) = 0.3
R(pig,boar) = 0.7
R(lynx,cat) = 0.8

Figure 1. SQLP (R,U) program.

relationR given in the same figure and the qualification domain
U for certainty values. This program will be used just for illus-
trative purposes in the rest of the paper. The reader is referred to
Section 2 for other examples of qualification domains, and tothe
references [8, 11] for suggestions concerning practical applications
of similarity-basedLP .
D-qualified atoms(A ♯d with A an atom andd ∈ D\{⊥}) and

openD-annotated atoms(A♯W with A and atom andW ∈ War
a qualification variable intended to take values inD\{⊥}) will still
be used here. Similarly, theannotated open Herbrand baseoverD
is again defined as the setAtΣ(D) of allD-qualified atoms. At this
point, and before extending the notions ofD-entailment relation
and interpretation to theSQLP (R,D) scheme, we need to define
what anR-instance of an atom is. Intuitively, when buildingR-
instances of an atomA, signature symbols occurring inA can be
replaced by similar ones, and different occurrences of the same
variable inA may be replaced by different terms, whose degree
of similarity must be taken into account. Technically,R-instances
of an atomA ∈ AtΣ are built from a linearized version ofA
which has the form lin(A) = (Aℓ,Sℓ) and is constructed as
follows: Aℓ is a linear atom built fromA by replacing eachn
additional occurrences of a variableX by new fresh variablesXi

(1 ≤ i ≤ n); andSℓ is a set ofsimilarity conditionsX ∼ Xi

(with 1 ≤ i ≤ n) asserting the similarity of all variables inAℓ that
correspond to the same variableX in A. As a concrete illustration,
let us show the linearization of two atoms. Note what happenswhen
the atomA is already linear as in the first case:Aℓ is just the same
asA andSℓ is empty.

• H1 = p(c(X), Y )
lin(H1) = (p(c(X), Y ), {})

• H2 = p(c(X), X, Y )
lin(H2) = (p(c(X), X1, Y ), {X ∼ X1})

Now we are set to formally define theR-instances of an atom.

Definition 4. (R-instance of an atom). Assume an atomA ∈ AtΣ
and its linearized version lin(A) = (Aℓ,Sℓ). Then, an atomA′ is



said to be anR-instance ofA with similarity degreeδ, noted as
(A′, δ) ∈ [A]R, iff there are some atomAS and some substitution
θ such thatA′ = ASθ andδ = R(Aℓ, A

S) ⊓
d
{R(Xiθ,Xjθ) |

(Xi ∼ Xj) ∈ Sℓ} 6= ⊥.

Next, the(R,D)-entailment relationover AtΣ(D) is defined
as follows:A ♯d <(R,D) A

′ ♯ d′ iff there is some similarity degree
δ such that(A′, δ) ∈ [A]R and d′ ⊑ d ◦ δ. Finally, anopen
Herbrand interpretation–just interpretation from now on– over
(R,D) is defined as any subsetI ∈ AtΣ(D) which is closed
under(R,D)-entailment. That is, an interpretationI including a
givenD-qualified atomA♯ d is required to include all the ‘similar
instances’A′ ♯ d′ such thatA♯ d<(R,D) A

′ ♯ d′, because we intend
to formalize a semantics in which all such similar instancesare
valid wheneverA ♯d is valid. This complements the intuition given
for theD-entailment relation inQLP (D) to include the similar
instances (obtainable due toR) of each atom, and not only those
which are true because we can prove them for a better (i.e. higher in
D) qualification. Note that(R,D)-entailment is a refinement ofD-
entailment, since:A ♯d<D A′ ♯ d′ =⇒ there is some substitutionθ
such thatA′ = Aθ andd′ ⊑ d=⇒ (A′,⊤) ∈ [A]R andd′ ⊑ d◦⊤
=⇒ A ♯d <(R,D) A

′ ♯ d′.
As an example of the closure of interpretations w.r.t.(R,D)-

entailment, consider theU-qualified atomdomestic(cat)#0.8.
As a trivial consequence of Proposition 2 below, this atom belongs
to the least Herbrand model of the program in Figure 1. On the
other hand, we also know thatlynx is similar tocat with a sim-
ilarity degree of0.8 w.r.t. the similarity relationR in Figure 1.
Therefore,domestic(lynx) is aR-instance ofdomestic(cat)
to the degree0.8. Then, by definition of(R,U)-entailment, it turns
out thatdomestic(cat)#0.8 <(R,U) domestic(lynx)#0.64,
and theU-qualified atomdomestic(lynx)#0.64 does also be-
long to the least model of the example program. Intuitively,0.64 =
0.8×0.8 is the bestU-qualification which can be inferred from the
U-qualification0.8 for domestic(cat) and theR-similarity 0.8
betweendomestic(cat) anddomestic(lynx).

We will write IntΣ(R,D) for the family of all interpretations
over (R,D), a family for which the following proposition can
be easily proved from the definition of an interpretation andthe
definitions of the union and intersection of a family of sets.

Proposition 1. The familyIntΣ(R,D) of all interpretations over
(R,D) is a complete lattice under the inclusion ordering⊆, whose
extreme points areIntΣ(R,D) as maximum and∅ as minimum.
Moreover, given any family of interpretationsI ⊆ IntΣ(R,D),
its lub and glb are

d
I =

⋃
{I ∈ IntΣ(R,D) | I ∈ I} and⊔

I =
⋂
{I ∈ IntΣ(R,D) | I ∈ I}, respectively.

Similarly as we did for theR-instances of an atom, we will de-
fine what theR-instances of a clause are. The following definition
tells us so.

Definition 5. (R-instance of a clause). Assume a clauseC ≡
A ← d − B1, . . . , Bk and the linearized version of its head
atom lin(A) = (Aℓ,Sℓ). Then, a clauseC′ is said to be anR-
instance ofC with similarity degreeδ, noted as(C′, δ) ∈ [C]R,
iff there are some atomAS and some substitutionθ such that
δ = R(Aℓ, A

S) ⊓
d
{R(Xiθ, Xjθ) | (Xi ∼ Xj) ∈ Sℓ} 6= ⊥

andC′ ≡ ASθ ←d−B1θ, . . . , Bkθ.

Note that as an immediate consequence from Definitions 4 and 5
it is true that given two clausesC andC′ such that(C′, δ) ∈ [C]R,
and assumingA to be head atom ofC andA′ to be the head atom
of C′, then we have that(A′, δ) ∈ [A]R.

LetC be any clauseA←d−B1, . . . , Bk in the programP , and
I ∈ IntΣ(R,D) any interpretation over(R,D). We say thatI is a
model ofC iff for any clauseC′ ≡ H ′ ←d−B′

1, . . . , B
′
k such that

(C′, δ) ∈ [C]R and any qualification valuesd1, . . . , dk ∈ D\{⊥}

such thatB′
i ♯ di ∈ I for all 1 ≤ i ≤ k, one hasH ′ ♯ d′ ∈ I where

d′ = d ◦
d
{e, d1, . . . , dk}. And we say thatI is a model of the

SQLP (R,D) programP (also writtenI |= P) iff I is a model of
each clause inP .

We will provide now a way to perform an inference step from
the body of a clause to its head. As in the case ofQLP (D),
this can be formalized in two alternative ways, namely an in-
terpretation transformer and a variant of Horn Logic. Both ap-
proaches lead to equivalent characterizations of least program mod-
els. Here we focus on the second approach, defining what we
will call Similarity-based Qualified Horn Logicover (R,D) –
abbreviated asSQHL(R,D)–, another variant of Horn Logic and
an extension of the previousQHL(D). The logicSQHL(R,D)
is also defined as a deductive system consisting just of one infer-
ence ruleSQMP (R,D), calledSimilarity-based Qualified Modus
Ponensover(R,D):

If ((A′ ← d− B′
1, . . . , B

′
k), δ) ∈ [C]R for some clauseC ∈

P with attenuation valued, then the following inference step is
allowed for anyd′ ∈ D\{⊥} such thatd′ ⊑ d◦

d
{δ, d1, . . . , dk}:

B′
1 ♯ d1 · · · B′

k ♯ dk

A′ ♯ d′
SQMP(R,D) .

We will use the notationsP ⊢SQHL(R,D) A♯ d (respectively
P ⊢nSQHL(R,D) A♯ d) to indicate thatA♯ d can be inferred from
the clauses in programP in finitely many steps (respectivelyn
steps). Note thatSQHL(R,D) proofs can be naturally repre-
sented as upwards growingproof treeswith D-qualified atoms at
their nodes, each node corresponding to one inference step having
the children nodes as premises.

The following proposition contains the main result concerning
the declarative semantics of theSQLP (R,D) scheme. A full
proof can be developed in analogy to theQLP (D) case presented
in [14, 13].

Proposition 2. Given anySQLP (R,D) programP . The least
Herbrand model(MP ) ofP is

{A ♯d | P ⊢SQHL(R,D) A ♯d} .

The following example serves as an illustration of how the logic
SQHL(R,D) works over (R,U) using the example program
displayed in Figure 1.

Example 2. The following proof tree proves that the atompet(ly-
nx) can be inferred for at least a qualification value of0.50 in the
SQLP (R,U) programP of Figure 1. Let’s see it:

domestic(lynx)#0.64
(4)

pacific(lynx)#0.57
(2)

intelligent(lynx)#0.70
(3)

pet(lynx)#0.50
(1)

where the clauses and qualification values used for each inference
step are:

(1) pet(lynx) <-1.0- pacific(lynx),intelligent(lynx)
is an instance of clause12 in P and0.50 ≤ 1.0 × min{1.0,
0.57, 0.70}. Note that the first1.0 in the minimum is the one
which comes from the similarity relation as for this step we are
just using a plain instance of clause12 in P .

(2) pacific(lynx) <-0.9- domestic(lynx) is a plain in-
stance of clause10 in P and0.57 ≤ 0.9×min{1.0, 0.64}.

(3) intelligent(lynx) <-0.7- is clause9 in P and 0.70 ≤
0.70×min{1.0}.

(4) The clausedomestic(lynx) <-0.8- is an R-instance of
clause6 with a similarity degree of0.8 and we have0.64 ≤
0.8×min{0.8}.



4. Reducing Similarities to Qualifications
4.1 A Program Transformation

In this section we prove that anySQLP (R,D) programP can
be transformed into an equivalentQLP (D) program which will
be denoted bySR(P). The program transformation is defined as
follows:

Definition 6. Let P be aSQLP (R,D) program. We define the
transformed programSR(P) as:

SR(P) = PS ∪ P∼ ∪ Ppay

where the auxiliary sets of clausesPS , P∼, Ppay are defined as:

• For each clause(H ← d− B) ∈ P and for eachH ′ such that
R(Hℓ,H

′) 6= ⊥

(H ′ ←d− payR(Hℓ,H
′), Sℓ, B) ∈ PS

where(Hℓ, Sℓ) = lin(H).
• P∼ = {X ∼ X ← ⊤−} ∪ {(c(Xn) ∼ c′(Y n) ← ⊤−
payR(c,c′), X1 ∼ Y1, . . . , Xn ∼ Yn) | c, c

′ ∈ CS of arity n,
R(c, c′) 6= ⊥}
• Ppay = {(payw ← w−) | for each atompayw occurring in
P∼ ∪ PS}

Note that the linearization of clause heads in this transformation
is motivated by the role of linearized atoms in theSQHL(R,D)
logic defined in Subsection 3.2 to specify the declarative semantics
of SQLP (R,D) programs. For instance, assume aSQLP (R,U)
programP including the clausep(X,X) ← 1.0− and two nullary
constructorsc, d such thatR(c, d) = 0.8. Then,SQHL(R,U)
supports the derivationP ⊢SQHL(R,U) p(c, d) ♯ 0.8, and the trans-
formed programSR(P) will include the clauses

p(X,X1) ←1.0− pay1.0, X ∼ X1,
X ∼ X ←1.0−,
c ∼ d ←1.0− pay0.8,
pay1.0 ←1.0−,
pay0.8 ←0.8−

thus enabling the corresponding derivationSR(P) ⊢QHL(U)

p(c, d) ♯ 0.8 in QHL(U).
In general,P andSR(P) are semantically equivalent in the

sense thatP ⊢SQHL(R,D) A♯ d ⇐⇒ SR(P) ⊢QHL(D) A♯ d
holds for anyD-qualified atomA♯ d, as stated in Theorem 1 below.
The next technical lemma will be useful for the proof of this
theorem.

Lemma 1. Let P be aSQLP (R,D) program andSR(P) its
transformed program according to Definition 6. Lett, s be two
terms inP ’s signature andd ∈ D \ {⊥}. Then:

1. SR(P) ⊢QHL(D) (t ∼ s) ♯ d =⇒ d ⊑ R(t, s)

2. R(t, s) = d =⇒ SR(P) ⊢QHL(D) (t ∼ s) ♯ d

Proof. We prove the two items separately.

1. LetT be aQHL(D) proof tree witnessing

SR(P) ⊢QHL(D) (t ∼ s) ♯ d

We prove by induction on number of nodes ofT that d ⊑
R(t, s). The basis case, withT consisting of just one node,
must correspond to some inference without premises, i.e., a
clause with empty body for∼. CheckingP∼ we observe that
X ∼ X ← ⊤− is the only possibility. In this caset and s
must be the same term and by the reflexivity ofR (Def. 2),
R(t, s) = ⊤, which meansd ⊑ R(t, s) for everyd. In the
inductive step, we considerT with more than one node. Then

the inference step at the root ofT uses some clause(c(Xn) ∼

c′(X
′

n) ←⊤− payR(c,c′), X1 ∼ X ′
1, . . . , Xn ∼ X ′

n) ∈ P∼,
and must be of the form:

payw ♯ v (t1 ∼ s1) ♯ e1 . . . (tn ∼ sn) ♯ en

c(tn) ∼ c′(sn) ♯ d

wherew = R(c, c′), v ∈ D, v ⊑ w, t = c(tn), s =
c′(sn), and e1, . . . , en s.t. d ⊑ ⊤ ◦

d
{v, e1, . . . , ek}, i.e.,

d ⊑
d
{v, e1, . . . , ek}. By induction hypothesisei ⊑ R(ti, si)

for i = 1 . . . n. Then d ⊑
d
{v, e1, . . . , en} implies d ⊑d

{w,R(t1, s1), . . . ,R(tn, sn)} and henced ⊑ R(t, s) (Def.
3, item 3).

2. If R(t, s) = d, d 6= ⊥, we prove thatSR(P) ⊢QHL(D)

(t ∼ s) ♯ d by induction on the syntactic structure oft. The
basis corresponds to the caset = c for some constantc, or
t = Y for some variableY . If t = c thens = c′ for some
other constantc′. By Definition 6 there is a clause inP∼ of the
form (c ∼ c′ ←⊤− payd). Using this clause and the identity
substitution we can write the root inference step of a proof for
SR(P) ⊢QHL(D) (c ∼ c′) ♯ d as follows:

payd ♯ d

c ∼ c′ ♯ d

The condition required by the inference rule QMP(D) is in this
particular cased ⊑ ⊤◦

d
{d}, and⊤◦

d
{d} = d. Proving the

only premisepayd ♯ d in QHL(D) is direct from its definition.
If t = Y , with Y a variable, thens = Y andd = ⊤ (otherwise
R(t, s) = ⊥). ThenSR(P) ⊢QHL(D) (Y ∼ Y ) ♯⊤ can
be proved by using the clause(X ∼ X ←⊤−) ∈ P∼ with
substitutionθ = {X 7→ Y }.
In the inductive step,t must be of the formc(tn), with n ≥ 1,
and thens must be of the formc′(sn) (otherwiseR(t, s) = ⊥).
From d = R(t, s) 6= ⊥ (hypotheses of the lemma) and
Definition 3 we have thatR(c, c′) 6= ⊥. Then, by Definition
6, there is a clause inP∼ of the form:

c(Xn) ∼ c′(Y n)←⊤− payR(c,c′),X1 ∼ Y1, . . . ,Xn ∼ Yn

By using the substitutionθ = {X1 7→ t1, . . . , Xn 7→
tn, Y1 7→ s1, . . . , Yn 7→ sn} we can write the root inference
step inQHL(D) as:

payR(c,c′) ♯R(c, c
′) (ti ∼ si ♯R(ti, si))i=1...n

c(tn) ∼ c′(sn) ♯ d

The inference can be applied because the condition

d ⊑ ⊤ ◦
l
{R(c, c′),R(t1, s1), . . . ,R(tn, sn)}

reduces to

d ⊑
l
{R(c, c′),R(t1, s1), . . . ,R(tn, sn)}

which holds by Definition 3, item 3. Moreover, the premises
ti ∼ si ♯R(ti, si), i = 1 . . . n, hold inQHL(D) due to the
inductive hypotheses, and proving

payR(c,c′) ♯R(c, c
′)

is straightforward from its definition.

Now we can prove the equivalence between semantic inferences
in QHL(D) w.r.t. P and semantic inferences inSQHL(R,D)
w.r.t.SR(P).

Theorem 1. LetP be aSQLP (R,D) program,A an atom inP ’s
signature andd ∈ D \ {⊥}. Then:

P ⊢SQHL(R,D) A ♯d ⇐⇒ SR(P) ⊢QHL(D) A ♯d .



Proof. Let T be aSQHL(R,D) proof tree for some annotated
atomA ♯d in P ’s signature witnessingP ⊢SQHL(R,D) A♯ d. We
prove thatSR(P) ⊢QHL(D) A♯ d by induction on the number of
nodes ofT .

The inference step at the root ofT must be of the form

B′
1 ♯ d1 · · · B′

k ♯ dk

A ♯d
(1)

with ((A ← e − B′
1, . . . , B

′
k), δ) ∈ [C]R for some clause

C ≡ (H ← e− B1, . . . , Bk) ∈ P (observe that the case
k = 0 corresponds to the induction basis). By Definition 5,
A = H ′θ, B′

i = Biθ for some substitutionθ and atomH ′

such thatδ = R(Hℓ, H
′) ⊓

d
{R(Xiθ, Xjθ) | (Xi ∼ Xj) ∈

Sℓ} 6= ⊥, with lin(H) = (Hℓ,Sℓ). This means in particu-
lar thatw = R(Hℓ,H

′) 6= ⊥, which by Definition 6 implies
that there is a clauseC′ in SR(P) of the formC′ ≡ (H ′ ←
e− payw, Sℓ, B1, . . . Bk). Then the root inference step of the
deduction provingP ⊢QHL(D) A♯ d will use the inference rule
QMP(D) with C′ and substitutionθ (such thatH ′θ = A) as fol-
lows:

paywθ ♯w ((ui ∼ vi)θ ♯ ei)1≤i≤m B′
1 ♯ d1 · · ·B

′
k ♯ dk

A♯ d
(2)

whereSℓ = {u1 ∼ v1, . . . , um ∼ vm}, andei = R(uiθ, viθ) for
i = 1 . . .m.

Next we check that the premises can be proved fromSR(P) in
QHL(D):

• paywθ = payw, sincepayw is a nullary predicate for everyw.
ThereforeSR(P) ⊢QHL(D) payw ♯w is immediate from the
definition ofpayw in Definition 6.
• For each1 ≤ i ≤ m, we observe thatR(uiθ, viθ) 6= ⊥

becauseδ 6= ⊥ has been computed above as the infimum
of a set includingR(uiθ, viθ) among its members. Then
SR(P) ⊢QHL(D) (ui ∼ vi)θ holds by Lemma 1, item 2.
• For each1 ≤ i ≤ k, (1) shows thatP ⊢SQHL(R,D) B

′
i ♯ di with

a proof tree having less nodes thatT . Therefore,SR(P) ⊢QHL(D)

B′
i ♯ di by induction hypothesis.

In order to perform the inference step (2), the QMP(D) infer-
ence rule also requires thatd ⊑ e ◦

d
{w, e1 . . . , em, d1, . . . , dk}.

This follows from the associativity of⊓ since:

• As defined above,δ = R(Hℓ,H
′) ⊓

d
{R(Xiθ,Xjθ) |

(Xi ∼ Xj) ∈ Sℓ}, i.e.δ = w ⊓
d
{e1 . . . em}.

• By the SQMP(R,D) inference (1) we know thatd ⊑ e ◦d
{δ, d1, . . . , dk}.

Let T be aQHL(D) proof tree witnessingSR(P) ⊢QHL(D)

A♯ d for some atomA in P ’s signature. We prove by induction on
the number of nodes ofT thatP ⊢SQHL(R,D) A♯ d.

SinceA is inP ’s signature, the clause employed at the inference
step at the root ofT must be in the setPS of Definition 6, and the
inference step at the root ofT have of the form of the inference (2)
above. Hence this clause must have been constructed from a clause
C ≡ (H ← e− B1, . . . , Bk) ∈ P and some atomH ′ such that
A = H ′θ andR(Hℓ,H

′) 6= ⊥, wherelin(H) = (Hℓ, Sℓ).
Then we can useC andθ to proveP ⊢SQHL(R,D) A♯ d by a

SQMP(R,D) inference like (1) using theR-instanceC′ ≡ A ←
e−B′

1, . . . , B
′
k ofC. The premises can be proved inSQHL(R,D)

by induction hypotheses, since all of them are also premisesin
(2). Finally, we must check that the conditions required by (1)
hold: (C′, δ) ∈ [C]R for someδ ∈ D, δ 6= ⊥ s.t. d ⊑ e ◦d
{δ, d1, . . . , dk}. This is true forδ =

d
{w, e′1, . . . , e

′
n}, with

e′i = R(uiθ, viθ) for i = 1 . . .m. Observe that in the premises of

(2) we haveQHL(D) proofs ofuiθ ∼ viθ ♯ ei for i = 1 . . .m.
Thereforeei ⊑ e′i, by Lemma 1, item 1. Then

d ⊑ e ◦
d
{w, e1 . . . , em, d1, . . . , dk} (by(2))

⊑ e ◦
d
{w, e′1 . . . , e

′
m, d1, . . . , dk} (ei ⊑ e′i)

= e ◦
d
{δ, d1, . . . , dk}

We must still prove thatδ 6= ⊥. Observe that by the distributiv-
ity of ◦ w.r.t.⊓ (Def. 1, axiom 2.(e)):

e ◦
l
{δ, d1, . . . , dk} = (e ◦ δ) ⊓ (e ◦

l
{d1, . . . , dk}) .

Therefore

d ⊑ (e ◦ δ) ⊓ (e ◦
l
{d1, . . . , dk})

and fromd 6= ⊥ we obtain(e ◦ δ) 6= ⊥ which impliesδ 6= ⊥ due
to axiom 2.(c) in Definition 1. This completes the proof.

4.2 Comparison to Related Approaches

Other program transformations have been proposed in the litera-
ture with the aim of supportingR-based reasoning while avoiding
explicitR-based unification. Here we draw some comparisons be-
tween the program transformationSR(P) presented in the previous
subsection, the program transformationsHλ(P) andPλ proposed
in [16], and the program transformationPE,R proposed in [11].
These three transformations are applied to a classical logic program
P w.r.t. a fuzzy similarity relationR over symbols in the program’s
signature. BothHλ(P) andPλ are classical logic programs to be
executed bySLD resolution, and their construction depends on a
fixed similarity degreeλ ∈ (0, 1]. On the other hand,PE,R is a
multi-adjoint logic program over a particular multi-adjoint lattice
G, providing the uncertain truth values in the interval[0, 1] and two
operators for conjunction and disjunction in the sense of G¨odel’s
fuzzy logic (see [22] for technical details). As in the case of our
own transformationSR(P), the construction ofPE,R does not de-
pend on any fixed similarity degree. The transformationSR(P)
proposed in this paper is more general in that it can be applied to
an arbitrarySQLP (R,D) programP , yielding aQLP (D) pro-
gramSR(P) whose least Herbrand model is the same as that of
P .

We will restrict our comparisons to the case thatP is chosen as
a similarity-based logic program in the sense of [16]. As an illus-
trative example, consider the simple logic programP consisting of
the following four clauses:

• Cr : r(X,Y )← p(X), q(Y ), s(X,Y )

• Cp : p(c(U))←

• Cq : q(d(V ))←

• Cs : s(Z,Z)←

Assume an admissible similarity relation defined byR(c, d) =
0.9 and consider the goalG : ← r(X,Y ) for P . Then,R-based
SLD-resolution as defined in [16] computes the answer substitu-
tion σ = {X 7→ c(U), Y 7→ d(U)} with similarity degree0.9.
This computation succeeds becauseR-based unification can com-
pute them.g.u. {Z 7→ c(U), V 7→ U} with similarity degree0.9
to unify the two atomss(c(U), d(V )) ands(Z,Z). Let us now ex-
amine the behavior of the the transformed programsH0.9(P),P0.9,
SR(P) andPE,R and when working to emulate this computation
without explicit use of aR-based unification procedure.

1. H0.9(P) is defined in [16] as the set of all clausesC′ such that
R(C,C′) ≥ 0.9 for some clauseC ∈ P . In this caseH0.9(P)
includes the four clauses ofP and the two additional clauses
p(d(U)) ← and q(c(V )) ←, derived by similarity fromCp

andCq, respectively. SolvingG w.r.t. H0.9(P) by means of



classicalSLD resolution produces two possible answer sub-
stitutions, namelyσ1 = {X 7→ c(U), Y 7→ c(U)} and
σ2 = {X 7→ d(U), Y 7→ d(U)}. They are both similar to
σ to a degree greater or equal than0.9, but none of them is
σ itself, contrary to the claim in Proposition 7.1 (i) from [16].
Therefore, this Proposition seems to hold only in a somewhat
weaker sense than the statement in [16]. This problem is due to
the possible non-linearity of a clause’s head, which is properly
taken into account by our transformationSR(P).

2. According to [16],P0.9 is computed fromP by replacing all
the constructor and predicate symbols by new symbols that
represent the equivalence classes of the original ones modulo
R-similarity to a degree greater or equal than0.9. In our ex-
ample these classes are{r}, {p}, {q}, {s} and {c, d}, that
can be represented by the symbolsr, p, q, s an e, respec-
tively. Then, P0.9 replaces the two clausesCp and Cq by
p(e(U)) ← and q(e(V )) ←, respectively, leaving the other
two clauses unchanged. SolvingG w.r.t. P0.9 by means of
classicalSLD resolution produces the answer substitution
σ′ = {X 7→ e(U), Y 7→ e(U)}, which corresponds toσ
modulo the replacement of the symbols in the original program
by their equivalence classes. This is consistent with the claims
in Proposition 7.2 from [16].

3. Note thatP can be trivially converted into a semantically equiv-
alent aSQLP (R,U) program, just by replacing each occur-
rence of the implication sign← inP ’s clauses by←1.0−. Then
SR(P) can be built as aQLP (U) program by the method ex-
plained in Subsection 4.1. It includes three clauses correspond-
ing toCr,Cp andCq ofP plus the following three new clauses:

• C′
p : p(d(U))←1.0− pay0.9

• C′
q : q(c(V ))←1.0− pay0.9

• C′
s : s(Z1, Z2)←1.0− Z1 ∼ Z2

whereC′
p resp.C′

q come from replacing the linear heads ofCp

resp.Cq by similar heads, andCs comes from linearizing the
head ofCs, which allows no replacements by similarity.SR(P)
includes also the proper clauses forP∼ andPpay, in particular
the following three ones:

• I : X ∼ X ←1.0−

• S : c(X1) ∼ d(Y1)←1.0− pay0.9, X1 ∼ Y1

• P : pay0.9 ←0.9−

Solving goalG w.r.t.SR(P) by means of theU-qualifiedSLD
resolution procedure described in [14] can compute the answer
substitutionσ with qualification degree0.9. More precisely, the
initial goal can be stated asr(X,Y )#W 8 W ≥ 0.9, and
the computed answer is(σ, {W 7→ 0.9}). The computation
emulatesR-based unification ofs(c(U), c(V )) and s(Z,Z)
to the similarity degree0.9 by solvings(c(U), c(V )) with the
clausesC′

s, I , S andP .

4. The semantics of theMALP framework depending on the cho-
sen multi-adjoint lattice is presented in [11]. A comparison with
the semantics of theQLP (D) scheme (see [14] and Subsec-
tion 3.1 above) shows thatMALP programs over the multi-
adjoint latticeG behave asQLP (U ′) programs, whereU ′ is
the quasi qualification domain analogous toU introduced at the
end of Subsection 2.1 above. For this reason, we can think of
the transformed programPE,R as presented with he syntax of a
QLP (U ′) program. The original programP can also be written
as aQLP (U ′) program just by replacing each the implication
sign← occurring inP by←1.0−. As explained in [11],PE,R

is built by extendingP with clauses for a new binary predicate
∼ intended to emulate the behaviour ofR-based unification be-

tween terms. In our example,PE,R will include (among others)
the following clause for∼:

• S′ : c(X1) ∼ d(Y1)←0.9−X1 ∼ Y1

In comparison to the clauseS inSR(P), clauseS′ needs no call
to apay0.9 predicate at its body, because the similarity degree
0.9 = R(c, d) can be attached directly to the clause’s implica-
tion. This difference corresponds to the different interpretations
of ◦, which behaves as× in U and asmin in U ′.

Moreover,PE,R is defined to include a clause of the following
form for each pair ofn-ary predicate symbolspd andpd′ such
thatR(pd, pd′) 6= 0:

• Cpd,pd′ : pd(Y1, . . . , Yn)←R(pd, pd
′)−

pd′(X1, . . . , Xn), X1 ∼ Y1, . . . , Xn ∼ Yn

In our simple example, all the clauses of this form correspond to
the trivial case wherepd andpd′ are the same predicate symbol
andR(pd, pd′) = 1.0. Solving goalG w.r.t.SR(P) by means
of the procedural semantics described in Section 4 of [11] can
compute the answer substitutionσ to the similarity degree0.9.
More generally, Theorem 24 in [11] claims that for any choice
ofP ,PE,R can emulate any successful computation performed
byP usingR-basedSLD resolution.

In conclusion, the main difference betweenSR(P) andPE,R

pertains to the techniques used by both program transformations
in order to emulate the effect of replacing the head of a clause in
the original program by a similar one.PE,R always relies on the
clauses of the formCpd,pd′ andthe clauses for∼, whileSR(P) can
avoid to use the clauses for∼ as long as all the clauses involved
in the computation have linear heads. In comparison to the two
transformationsHλ(P) andPλ, our transformationSR(P) does
not depend on a fixed similarity degreeλ and does not replace the
atoms in clause bodies by similar ones.

4.3 A Goal Solving Example

In order to illustrate the use of the transformed programSR(P)
for golving goals w.r.t. the original programP , we consider the
case whereP is theSQLP (R,U) program displayed in Figure 1.
The transformed programSR(P) obtained by applying Definition
6 is shown in Figure 2. The following observations are usefulto
understand how the transformation has worked in this simplecase:

• The value⊤ in the domainU corresponds to the real number
1 and hence by reflexivityR(A,A) = 1 for any atom in the
signature of the program. Therefore, and as a consequence of
Definition 6, every clause in the original program gives riseto a
clause in the transformed program with the same head and with
the same body except for a new, first atompay1.0. For instance,
clauses 1, 2 and 3 in Figure 2 correspond to the same clause
numbers in Figure 1.

• Apart of the clauses corresponding directly to the original
clauses, the program of Figure 2 contains new clauses ob-
tained by similarity with some clause heads in the origi-
nal program. For instance, lines 4 and 5 are obtained by
similarity with clauses at lines 1 and 2 in the original pro-
gram, respectively. The subindexes at literalpay correspond to
R(lynx, cat) = 0.8,R(boar, pig) = 0.7, respectively.

• Analogously, for instance the clause at line 10 (with head
farm(lynx)) is obtained by head-similarity with the clause of
line 6 in theSQLP (R,U) program (headdomestic(cat)),



1 wild(lynx) <-0.9- pay1.0
2 wild(boar) <-0.9- pay1.0
3 wild(snake) <-1.0- pay1.0
4 wild(cat) <-0.9- pay0.8
5 wild(pig) <-0.9- pay0.7

6 farm(cow) <-1.0- pay1.0
7 farm(pig) <-1.0- pay1.0
8 farm(boar) <-1.0- pay0.7
9 farm(cat) <-0.8- pay0.3

10 farm(lynx) <-0.8- pay0.3
11 farm(snake) <-0.4- pay0.3

12 domestic(cat) <-0.8- pay1.0
13 domestic(snake) <-0.4- pay1.0
14 domestic(lynx) <-0.8- pay0.8
15 domestic(cow) <-1.0- pay0.3
16 domestic(pig) <-1.0- pay0.3
17 domestic(boar) <-1.0- pay0.3

18 intelligent(A) <-0.9- pay1.0,domestic(A)
19 intelligent(lynx) <-0.7- pay1.0
20 intelligent(cat) <-0.7- pay0.8

21 pacific(A) <-0.9- pay1.0,domestic(A)
22 pacific(A) <-0.7- pay1.0,farm(A)

23 pet(A) <-1.0- pay1.0,pacific(A),intelligent(A)

24 pay1.0 <-1.0-
25 pay0.8 <-0.8-
26 pay0.7 <-0.7-
27 pay0.3 <-0.3-

Figure 2. Example of transformed program. (Note: no clauses for
∼ are needed because the original program was left-linear).

and the subindex atpay is obtained from

R(domestic(cat), farm(lynx)) =
R(domestic, farm) ⊓ R(cat, lynx) =
0.3 ⊓ 0.8 =
0.3

• There is no clause for predicate∼ since all the heads in the
original program were already linear and thereforeP∼ can be
left empty in practice.

• The clauses forpay correspond to the fragmentPpay in Defini-
tion 6.

In the rest of this subsection, we will show an execution for
the goalpet(A)#W | W >= 0.50 over the programSR(P) (see
Figure 2) with the aim of obtaining all those animals that could be
considered apet for at least a qualification value of0.50.

We are trying this execution in the prototype developed along
with [14] for the instancesQLP (U) andQLP (W). Although this
prototype hasn’t been released as an integrated part ofT OY, you
can download1 the prototype to try this execution. Please notice
that the prototype does not automatically do the translation process

1 Available at: http://gpd.sip.ucm.es/cromdia/qlpd. There you
will also find specific instructions on how to install and run it as well as
text files with the program examples tried in here.

from a givenSQLP (R,D) programP to its transformed program
SR(P), because it was developed mainly for [14]. Therefore, the
transformed program shown in Figure 2 has been computed manu-
ally.

We will start runningT OY and loading theQLP (U) instance
with the command/qlp(u):

Toy> /qlp(u)

this will have the effect of loading theReal Domain Constraints
library and theQLP (U) library into the system, the prompt
QLP(U)> will appear. Now we have to compile our example pro-
gram (assume we have it in a text file calledanimals.qlp in
C:/examples/) with the command/qlptotoy (this command
will behave differently based on the actual instance loaded).

QLP(U)> /qlptotoy(c:/examples/animals)

Note that we didn’t write the extension of the file because itmust
be.qlp. This will create the fileanimals.toy in the same direc-
tory as our former file. And this one will be an actualT OY pro-
gram. We run the program with/run(c:/examples/animals)
(again without the extension –although this time we are assuming
.toy as extension–) and we should get the following message:

PROCESS COMPLETE

And finally we are set to launch our goal with the command
/qlpgoal. The solutions found for this program and goal are:

QLP(U)> /qlpgoal(pet(A)#W | W>=0.50)
{ A -> cat,

W -> 0.5599999999999999 }

sol.1, more solutions (y/n/d/a) [y]?
{ A -> cat,

W -> 0.7200000000000001 }

sol.2, more solutions (y/n/d/a) [y]?
{ A -> lynx,

W -> 0.5760000000000002 }

sol.3, more solutions (y/n/d/a) [y]?
{ A -> lynx,

W -> 0.5760000000000002 }

sol.4, more solutions (y/n/d/a) [y]?
no

At this point and if you remember the inference we did in
Example 2 forpet(lynx)#0.50, we have found a better solu-
tion (as you can see there are two solutions forlynx, and this is
due to the two different ways of provingintelligent(lynx):
intelligent(lynx)#0.7 using clause 19, andintelligent
(lynx)#0.576 using clauses 18 and 14.

5. Conclusions
Similarity-basedLP has been proposed in [16] and related works
to enhance theLP paradigm with a kind of approximate reason-
ing which supports flexible information retrieval applications, as ar-
gued in [8, 11]. This approach keeps the syntax for program clauses
as in classicalLP , and supports uncertain reasoning by using a
fuzzy similarity relationR between symbols in the program’s sig-
nature. We have shown that similarity-basedLP as presented in
[16] can be reduced to QualifiedLP in theQLP (D) scheme in-
troduced in [14], which supports logic programming with attenu-
ated program clauses over a parametrically given domainD whose



elements qualify logical assertions by measuring their closeness
to various users’ expectations. Using generalized similarity rela-
tions taking values in the carrier set of an arbitrarily given qual-
ification domainD, we have extendedQLP (D) to a more ex-
pressive schemeSQLP (R,D) with two parameters, for program-
ming moduloR-similarity with D-attenuated Horn clauses. We
have presented a declarative semantics forSQLP (R,D) programs
and a semantics-preserving program transformation which embeds
SQLP (R,D) into QLP (D). As a consequence, the sound and
complete procedure for solving goals inQLP (D) by D-qualified
SLD resolution and its implementation in theT OY system [14]
can be used to implementSQLP (R,D) computations via the
transformation.

Our framework is quite general due to the availability of differ-
ent qualification domains, while the similarity relations proposed
in [16] take fuzzy values in the interval[0, 1]. In comparison to
the multi-adjoint framework proposed in [11], theQLP (D) and
SQLP (R,D) schemes have a different motivation and scope, due
to the differences between multi-adjoint algebras and qualification
domains as algebraic structures. In contrast to the goal solving pro-
cedure used in the multi-adjoint framework,D-qualifiedSLD res-
olution does not rely on costly computations of reductant clauses
and has been efficiently implemented.

As future work, we plan to investigate an extension of the
R-basedSLD resolution procedure proposed in [16] to be used
within theSQLP (R,D) scheme, and to develop an extension of
this scheme which supports lazy functional programming andcon-
straint programming facilities. The idea of similarity-based unifi-
cation has been already applied in [12] to obtain an extension of
needed narrowing, the main goal solving procedure of functional
logic languages. As in the case of [16], the similarity relations con-
sidered in [12] take fuzzy values in the real interval[0, 1].
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[22] P. Vojtáš. Fuzzy logic programming.Fuzzy Sets and Systems,
124:361:370, 2001.


	1 Introduction
	2 Qualification Domains and Similarity Relations
	2.1 Qualification Domains
	2.2 Similarity relations

	3 Similarity-based Qualified Logic Programming
	3.1 Qualified Logic Programming
	3.2 Similarity-based Qualified Logic Programming

	4 Reducing Similarities to Qualifications
	4.1 A Program Transformation
	4.2  Comparison to Related Approaches
	4.3 A Goal Solving Example 

	5 Conclusions

