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Abstract

Similarity-based Logic Programmin@riefly, SL P) has been pro-
posed to enhance tHeP paradigm with a kind of approximate rea-
soning which supports flexible information retrieval apptions.
This approach uses a fuzzy similarity relatidh between sym-
bols in the program’s signature, while keeping the syntappfo-
gram clauses as in classicAlP. Another recent proposal is the
QLP(D) scheme foQualified Logic Programmingan extension

of the LP paradigm which supports approximate reasoning and
more. This approach uses annotated program clauses and-a par
metrically given domairD whose elements qualify logical asser-
tions by measuring their closeness to various users’ eapens.

In this paper we propose a more expressive sch&@e& P (R, D)
which subsumes bot§LP and@QLP(D) as particular cases. We
also show thabQLP (R, D) programs can be transformed into se-
mantically equivalent)LP(D) programs. As a consequence, ex-
isting @ L P(D) implementations can be used to give efficient sup-
port for similarity-based reasoning.

Categories and Subject Descriptors D.1.6 [Programming Tech-
nique§: Logic Programming; D.3.2Rrogramming Languagés
Language Classifications—Constraint and logic languagdes;2
[Theory of Computatidn Logics and Meanings of Programs—
Algebraic approaches to semantics

General Terms Algorithms, Languages, Theory

Keywords Qualification Domains, Similarity Relations

1. Introduction

The historical evolution of the research on uncertaintyagic Pro-
gramming(L P) has been described in a recent recollection by V. S.
Subrahmaniarn [19]. Early approaches include the quarétaeat-
ment of uncertainty in the spirit of fuzzy logic, as in van Eent
classical papel [20] and two subsequent papers by Subradman
[17,[18]. The main contribution of [20] was a rigorous deatare
semantics for aLP language with program clauses of the form
A < d— B, where the headl! is an atom, the bodys is a con-
junction of atoms, and the so-callettenuationfactord € (0, 1]
attached to the clause’s implication is used to propagateetbead

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’08, July 15-17, 2008, Valencia, Spain.

Copyright(© 2008 ACM 978-1-60558-117-0/08/07. . . $5.00

cromdia@fdi.ucm.es

the certainty factot x b, whereb is the minimum of the certainty
factorsd; € (0, 1] previously computed for the various atoms oc-
curring in the body. The paperis [17.118] proposed to use dapec
lattice 7 in place of the lattice of the real numbers in the inter-
val [0, 1] under their natural ordering_ includes two isomorphic
copies of[0, 1] whose elements are incomparable urifier order-
ing and can be used separately to represent degretestiofand
falsity, respectively, thus enabling a simple treatment of negatio
Other main contributions of [17, 18] were the introductidraono-
tated program clauses and goals (later generalized to a magh
expressive framework in_[7]), as well as goal solving prared
more convenient and powerful than those giveri_in [20].

A more recent line of research &milarity-based Logic Pro-
gramming(briefly, SLP) as presented in [16] and previous related
works such as[3./6]5.15]. This approach also uses thed#itic|
to deal with uncertainty in the spirit of fuzzy logic. In coast to
approaches based on annotated clauses, prografis/ihare just
sets of definite Horn clauses as in classic&l. However, asimilar-
ity relation R (roughly, the fuzzy analog of an equivalence relation)
between predicate and function symbols is used to enablifie
cation terms that would be not unifiable in the classical semea-
sured by some degreee (0, 1]. There are different proposals for
the operational semantics 6L P programs. One possibility is to
apply classicab L D resolution w.r.t. a transformation of the origi-
nal program([6, 15, 16]. Alternatively, R-basedS L D-resolution
procedure relying ofR-unification can be applied w.r.t. to the orig-
inal program, as proposed in [16]. Propositions 7.1 andr7[24]
state a correspondence between the answers computeebbged
SLD resolution w.r.t. a given logic prograr® and the answers
computed by classicaf LD resolution w.r.t. the two transformed
programsH » (P) (built by adding toP new clausesk-similar to
those inP up to the degrea < (0, 1]) andP» (built by replacing
all the function and predicate symbols by new symbols that
represent equivalence classes mod&ksimilarity up to\). The
SiLog system|[[8] has been developed to implem8&iitP and to
support applications related to flexible information metal from
the web.

The aim of the present paper is to show that similarity-based
reasoning can be expressed@d P (D), a programming scheme
for Qualified L P over a parametrically giveQualification Domain
D recently presented in[14] as a generalization and impreviem
of the classical approach by van Emdén|[20]Qaantitative
LP. Qualification domains are lattices satisfying certainureit
axioms. They include the lattide, 1] used both in[[20] and in[16],
as well as other lattices whose elements can be used toyqualif
logical assertions by measuring their closeness to diffekands
of users’ expectations. Programs (WL P (D) use D-attenuated
clauses of the formd < d— B where A is an atom,B a finite
conjunction of atoms and € D \ {L} is theattenuation value
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attached to the clause’s implication, used to propagateedead
the qualification valued o b, whereb is the infimum inD of

the qualification valued; € D \ {L} previously computed for
the various atoms occurring in the body, ands an attenuation
operator coming with D. As reported in[[14] 13], the classical
results inL P concerning the existence of least Herbrand models
of programs and the soundness and completeness of ile
resolution procedure (see el.a21l 2, 1]) have been extetadine

In Sectior 8 we recall the schendgL P(D) and we introduce its
extensionSQLP(R, D) with its declarative semantics, given by
a logical calculus which characterizes the least Herbraondemn
Mp of eachSQLP(R, D) programP. In Sectiori # we define the
transformatiorS (P) of any givenSQLP(R, D) programP into
a@QLP(D) programSr (P) such thatM s (p) = Mp, we give
some comparisons to previously known program transfoonafi
and we illustrate the application &= (P) to similarity-based

QLP(D) scheme, and potentially useful instances of the scheme computation by means of a simple example. Finally, in Se¢fo

have been implemented on top of @enstraint Functional Logic
Programming(C' F'L P) system7 OY [4].

The results presented in this paper can be summarized as fol-

lows: we consider generalized similarity relations oveet$%as
mappingsk : S x S — D taking values in the carrier s& of an
arbitrarily given qualification domai®, and we extend) L P(D)

to a more expressive schent&)LP(R,D) with two parame-
ters for programming modul®-similarity with D-attenuated Horn
clauses. We present a declarative semantic§€E P (R, D) and

a program transformation mapping es®@ L P (R, D) programpP
into aQ LP(D) programSx (P) whose least Herbrand model cor-
responds to that oP. Roughly, Sz (P) is built adding toP new
clauses obtained from the original clause$ity computing var-
ious new headdk-similar to a linearized version of the original
head, adding als@&-similarity conditionsX; ~ X; to the body
and suitable clauses for the new predicatéo emulateR-based
unification. Thanks to th&x (P) transformation, the sound and
complete procedure for solving goals@.P(D) by D-qualified
SLD resolution and its implementation in tHe0O) system[[14]
can be used to implemestQ LP(R, D) computations, including
as a particular casgL P computations in the sense bf [16].

Another recent proposal for reducing tBé P approach in[16]
to a fuzzy L P paradigm can be found ih [11], a paper which relies
on the multi-adjoint framework for Logic ProgramminyIALP
for short) previously proposed inl[9, 1QYALP is a quite gen-
eral framework supporting P with weighted program rulesver
different multi-adjoint lattices, each of which providespartic-
ular choice of operators for implication, conjunction argbee-
gation of atoms in rule bodies. In comparison to Q& P (D)
scheme, the multi-adjoint framework differs in motivatiamd
scope. Multi-adjoint lattices and qualification domaine &vo dif-
ferent classes of algebraic structures. Concerning delarand
operational semantics, there are also some significargreiftes
between) L P(D) andMALP. In particular, MALP's goal solving
procedure relies on a costly computationrefluctant clausesa
technique borrowed froni_[7] which can be avoidedd P (D),
as discussed in the concluding section of [14].

In spite of these differences, the resultslin/[11] conceyriire
emulation of similarity-based can be compared to those @
present paper. Theorem 24 in[11] shows that every cladsigal
programP can be transformed intoMALP programPg = which
can be executed using only syntactical unification and etesithe
successful computations @f using theSLD resolution withRR-
based unification introduced in [18P£,= works over a particular
multi-adjoint latticeG with carrier set]0, 1] and implication and
conjunction operators chosen according to the so-callede’
semantics[[22] P, = also introduces clauses for a binary predi-
cate~ which emulatesk-based unification, as in our transforma-
tion Sr(P). NeverthelessSr (P) is defined for a more general
class of programs and uses tResimilarity predicate~ only if
the source prograr® has some clause whose head is non-linear.
More detailed comparisons between the program transfansat
Swr(P), HA(P), Pr andPg = will be given in Subsection 4].2.

The rest of the paper is structured as follows: In Sedtion 2 we
recall the qualification domair® first introduced in[[14] and we
define similarity relation® over an arbitrary qualification domain.

th

we summarize conclusions and comparisons to related watk an
we point to planned lines of future work.

2. Qualification Domains and Similarity
Relations

2.1 Qualification Domains

Qualification Domainswere introduced in[[14] with the aim of
using their elements to qualify logical assertions in défg ways.
In this subsection we recall their axiomatic definition amang
significant examples.

Definition 1. A Qualification Domairis any structuré® = (D, C,
1, T, o) verifying the following requirements:

1. (D,C, 1, T)is alattice with extreme points and T w.r.t. the
partial ordering=. For given elementd, e € D, we writed M e
for the greatest lower boungyib) of d ande andd U e for the
least upper boundlub) of d ande. We also writed C e as
abbreviation fod C e A d # e.

2.0 : D x D — D, calledattenuation operationverifies the
following axioms:

(a) o is associative, commutative and monotonic WI.t.
b)yVde D:doT =d.

©)Vde D:dol =1.

(d)Vd,ee D\ {L, T}: doe CC e.

(e)Vd,e1,e2 € D: do(e1Mez) =doer M does. |

In the rest of the papef? will generally denote an arbitrary
qualification domain. For any finit¢§ = {ei,es,...,en} C
D, the glb of S (noted ag[|S) exists and can be computed as
e1 Mea M---Mep (Which reduces tal in the casen = 0). As
an easy consequence of the axioms, one gets the idéwpf{jtyS =
[M{doe | e € S}. TheQLP (D) scheme presented in[14] supports
LP over a parametrically given qualification dom&dn

Example 1. Some examples of qualification domains are presented
below. Their intended use for qualifying logical assertiowill
become more clear in Subsectfon]3.1.

1.B = ({0,1},<,0,1,A), where0 and 1 stand for the two
classical truth valuegalseand true, < is the usual numerical
ordering over{0, 1}, andA stands for the classical conjunction
operation over{0, 1}. Attachingl to an atomic formula4 is
intended to qualifyd as ‘true’ in the sense of classicalP.

2.U = (U,<,0,1,x), where U= [0,1] = {d e R | 0 <
d < 1}, < is the usual numerical ordering, and is the
multiplication operation. In this domain, the top eleménis
1 and the greatest lower bourid S of a finite S C U is the
minimum value min(S), which is if S (. Attaching an
elementc € U\ {0} to an atomic formulaA is intended to
qualify A as ‘true with certainty degre€' in the spirit of fuzzy
logic, as done in the classical paper [20] by van Emden. The
computation of qualifications as certainty degrees i1 is due
to the interpretation of1 asmin ando as x.

3. W = (P,>,00,0,+), where P=[0,00] = {d € RU {00} |
d > 0}, > is the reverse of the usual numerical ordering (with
oo > d foranyd € P), and+ is the addition operation (with



00+ d=d+ oo = oo foranyd € P). In this domain, the
top elementl is 0 and the greatest lower bourid S of a finite
S C P is the maximum value max(S), whichoisf S = 0.
Attaching an element € P\ {co} to an atomic formula4 is
intended to qualifyi as ‘true with weighted proof deptli. The
computation of qualificationg as weighted proof depths iV
is due to the interpretation ofl asmax ando as+.

4. Given 2 qualification domair®; = (D;,C;, L;, Ti,0:) (¢ €
{1,2}), their cartesian producD; x D3 is D =g4er (D,C
,L,T,0), whereD =q4ef D1 X D3, the partial orderingC
is defined as(dl,dg) C (61762) <>ger d1 C1 e and
d2 Co ez, L =ger (L1,12), T =qger (T1,T2), and the
attenuation operatop is defined aqdi, d2) o (e1,€2) =det
(d1 o1 e1,d2 o2 e2). The product of two given qualification

domains is always another qualification domain, as proved

in [L4]. Intuitively, each value(di, d2) belonging toD; x
D- imposes the qualificatiod; and alsathe qualificationds.
For instance, valuegc, d) belonging tol/ x W impose two
qualifications, namely: a certainty degree greater or eghahn
c and a weighted proof depth less or equal than |

For technical reasons that will become apparent in Seflion 4

we consider the two structurég resp.)V’ defined analogously
to U resp. W, except that behaves asnin in U’ and asmaz

in W . Note that almost all the axioms for qualification domains
enumerated in Definitionl 1 hold i’ and V', except that axiom
2.(d) holds only in the relaxed fornvd,e € D : doe C

e. Therefore, we will refer td/’ and W' as quasi qualification
domains.

2.2 Similarity relations

Similarity relationsover a given sefS have been defined in_[16]
and related literature as mappings: S x S — [0, 1] that satisfy
three axioms analogous to those required for classical/algmce
relations. Each valu® (z, y) computed by a similarity relatioR
is called thesimilarity degreebetweenz andy. In this paper we
use a natural extension of the definition giver in [16], alfayele-
ments of an arbitrary qualification domainto serve as similarity
degrees. As in [16], we are especially interested in siitylaela-

tions over setsS whose elements are variables and symbols of a

given signature.

Definition 2. Let a qualification domairD with carrier setD and
a setS be given.

1. A D-valued similarity relationover S is any mappingR :
S x S — D such that the three following axioms hold for
allz,y,z € S:

(a) Reflexivity:R(z,xz) = T.

(b) SymmetryR(z,y) = R(y,z).

(c) Transitivity: R(z, z) 3 R(z,y) 1 R(y, 2).

2. The mappingR : S x S — D defined ask(z,z) = T for all
z € DandR(z,y) = Lforall z,y € D, z # yis trivially a
D-valued similarity relation called thidentity.

3. A D-valued similarity relatioriR over S is calledadmissible
iff S =Yar U CSU PS (where the three mutually disjoint
setslur, C'S and PS stand for a countably infinite collection
of variables a set ofconstructor symboland a set opredicate
symbols respectively) and the two following requirements are
satisfied:

(a) R restricted toVur behaves as the identity, iR.(X, X) =
Tforall X € Var andR(X,Y) = Lforall X,Y € Var,
X#£Y.

(b) R(z,y) # L holds only if some of the following three
cases holdse, y: either x,y € Yar are both the same
variable; or elser,y € CS are constructor symbols with

the same arity; or else,y € PS are predicate symbols
with the same arity. a

The similarity degrees computed byavalued similarity rela-
tion must be interpreted w.r.t. the intended roleIdelements as
qualification values. For example, & be an admissible similar-
ity relation, and let, d € C'S be two nullary constructor symbols
(i.e., constants). IR is U-valued, therR (¢, d) can be interpreted
as acertainty degredor the assertion that andd are similar. On
the other hand, iR is W-valued, theriR(c, d) can be interpreted
as acostto be paid forc to play the role ofi. These two views are
coherent with the different interpretations of the oparstoando
in U andW, respectively.

In the rest of the paper we assume that any admissible sityilar

relation R can be extended to act over terms, atoms and clauses.

The extension, also calle’, can be recursively defined asin[16].
The following definition specifies the extension &f acting over
terms. The case of atoms and clauses is analogous.

Definition 3. (R acting over terms).

1. ForX € Var and for any ternt different fromX:
R(X,X)=TandR(X,t) =R(t,X) = L.
2. Fore, ¢’ € CS with different aritiesn, m:

R(c(ti, .- tn),c (th, .. tm)) = L.

3. Fore, ¢’ € CS with the same arity::
Ric(tr, ... tn), (1, ... ) = R(c, )MR(t1, ¢1) M. ..
R(tn,tn)-

3. Similarity-based Qualified Logic Programming

In this section we extend our previous sche@é& P (D) to a
more expressive scheme call&milarity-based Qualified Logic
Programmingover (R, D) —abbreviated aSQLP (R, D)— which
supports both qualification ové? in the sense of [14] an®-based
similarity in the sense of [16] and related research. Suths€8.1
presents a quick review of the main results concerning gyaual
declarative semantics J L P(D) already presented in [114], while
the extensions needed to conform the @@L P (R, D) scheme
are presented in subsect{on]3.2.

3.1 Qualified Logic Programming

QLP(D) was proposed in our previous work [14] as a generic
scheme for qualified logic programming over a given qualifica
domainD. In that scheme, aignatureX. providing constructor
and predicate symbols with given arities is assumitmsare
built from constructors andariablesfrom a countably infinite set
Var (disjoint from ) and Atomsare of the formp(ti,...,tn)
(shortened ap(%,,) or simply p(t)) wherep is an-ary predicate
symbol andt; are terms. We writé\ts;, called theopen Herbrand
base for the set of all atoms. &) LP(D) programP is a finite set
of D-qualified definite Horn clausasf the formA « d— B where
Ais an atom,B a finite conjunction of atoms antie D\ {1} is
theattenuation valuattached to the clause’s implication.

As explained in[[14], in our aim to work with qualifications we
are not only interested in just proving an atom, but in prgviin
along with a qualification value. For this reas@htgualified atoms
(Afd whereA is an atom and! € D \ {_L}) are introduced to
represent the statement that the atdrholds forat leastthe qual-
ification valued. For use in goals to be solvedpenD-annotated
atoms(A § W whereA is an atom andV a qualification variable
intended to take values ovér) are also introduced, and a count-
ably infinite setWur of qualification variables (disjoint frorvar
andY) is postulated. Thannotated Herbrand basaever D is de-
fined as the selts (D) of all D-qualified atoms. AD-entailment
relation over Ats (D), defined asA i d =p A’ § d’ iff there is some
substitutiond such thatA’ = A6 andd’ C d, is used to for-



mally define arppen Herbrand interpretatioover D —from now
on just aninterpretation- as any subsef C Ats (D) which is
closed undeD-entailment. We writdnts. (D) for the family of all
interpretations. The notion of model is such that given dayse
C=A<d—B,...,ByintheQLP(D) programP, an interpre-
tationZ is said to be anodelof C' iff for any substitutiord and any
qualification valuesgly, ..., d, € D\ {1} suchthatB;04d; € 7
forall 1 < i < k, one hasdff(do[|{di,...,dx}) € Z. The
interpretatiori is also said to be a model of tiigL P (D) program
P (written asZ = P) iff it happen to be a model of every clause in
P.

As technique to infer formulas (or in our cage-qualified
atoms) from a giverQLP(D) program”P, and following tradi-
tional ideas, we consider two alternative ways of formatizan
inference step which goes from the body of a clause to its:head
both an interpretation transforméir : Ints(D) — Ints(D),
and a qualified variant of Horn Logic, noted @ L(D), called
Qualified Horn LogicoverD. As both methods are equivalent and
correctly characterize the least Herbrand model of a givegram
P, we will only be recalling the logi@ H L(D), although we en-
courage the reader to see Section 3.2 in [14], where the fix-po
semantics is explained.

The logicQH L(D) is defined as a deductive system consisting
just of one inference rule: QMMP), called Qualified Modus Po-
nensover D. Such rule allows us to give the following inference
step given that there were sorf¢ < d— Bi, ..., B) € P, some
substitution? such thatd” = A9 andB] = B;fforall1 <i <k
and somel’ € D\ {L} suchthatl C do[|{di,...,dx}:

Bitdi By fd
Ti7 QMP(D)
Roughly, each QMED) inference step using an instance of a pro-
gram claused < d— B has the effect of propagating to the head the
qualification valued o b, whereb is the infimum inD of the quali-
fication valuest; € D\ {_L} previously computed for the various
atoms occurring in the body. This helps to understand thiensla

1 wild(lynx) <-0.9-
2 wild(boar) <-0.9-
3 wild(snake) <-1.0-

4 farm(cow) <-1.0-
5 farm(pig) <-1.0-

6 domestic(cat) <-0.8-
7 domestic(snake) <-0.4-

8 intelligent(A) <-0.9- domestic(A)
9 intelligent(lynx) <-0.7-

10
11

pacific(A) <-0.9- domestic(A)
pacific(A) <-0.7- farm(A)

12 pet(A) <-1.0- pacific(A), intelligent(A)

R (farm,domestic) = 0.3
R (pig,boar) 0.7
R(lynx,cat) = 0.8

Figure 1. SQLP(R,U) program.

relationR given in the same figure and the qualification domain
U for certainty values. This program will be used just for sHu
trative purposes in the rest of the paper. The reader isregfeo
Sectior 2 for other examples of qualification domains, anthéo
referenced [8, 11] for suggestions concerning practigalieations
of similarity-basedL P.

D-qualified atomgA # d with A an atomand € D\ {L}) and
openD-annotated atomgA § W with A and atom andV € War

made in Exampl€]1 above about the intended use of elements ofa qualification variable intended to take valuesiky { L }) will still

the domaing/ andW for qualifying logical assertions. We use the
notationsP tqurpy Atd (resp.P Fourmp) Afd) to indicate
that A t d can be inferred from the clauses in prograhin finitely
many steps (resp. steps). Théeast Herbrand model 0P happens
tobeMp = {Atd | P Fqurmp) At d}, as proved in[14].

3.2 Similarity-based Qualified Logic Programming

The schemeSQLP(R, D) presented in this subsection has two
parametersk and D, whereD can be any qualification domain
and R can be any admissibi®-valued similarity relation, in the

be used here. Similarly, trennotated open Herbrand basgerD

is again defined as the s&ts. (D) of all D-qualified atoms. At this
point, and before extending the notions Dfentailment relation
and interpretation to th6 QLP(R, D) scheme, we need to define
what anR-instance of an atom is. Intuitively, when buildirig-
instances of an atom, signature symbols occurring id can be
replaced by similar ones, and different occurrences of Hmes
variable inA may be replaced by different terms, whose degree
of similarity must be taken into account. TechnicalRxinstances

of an atomA € Ats are built from a linearized version ol

sense of Definitiofi]2. The new scheme subsumes the approach ifvhich has the form ligd) = (A,,S,) and is constructed as

[14] by behaving ag)LP(D) in the case thaR is chosen as the
identity, and it also subsumes similarity-badef by behaving as
the approach ir [16] and related papers in the caseRhatchosen
asid.

Syntactically,SQLP(R, D) presents almost no changes w.r.t.

QLP(D), but the declarative semantics must be extended to ac-

count for the behavior of the parametrically given simtlarela-
tionR. As in the previous subsection, we assume a signatymm-
viding again constructor and predicate symbdkrmsand Atoms
are built the same way they were@n P (D), andAts will stand
again for the set of all atoms, called tbpen Herbrand baseAn
atom A is calledlinear if there is no variable with multiple occur-
rences inA; otherwiseA is callednon-linear A SQLP(R, D)
programP is a finite set ofD-qualified definite Horn clausesith
the same syntax as @ L P(D), along with aD-valued admissible
similarity relation’R in the sense of Definition] 2, item 2. Figure
shows a simpl&QLP(R,U) program built from the similarity

follows: A, is a linear atom built fromA by replacing eac
additional occurrences of a variah}é by new fresh variableX;
(1 < i < n); andS, is a set ofsimilarity conditionsX ~ X;
(with 1 < ¢ < n) asserting the similarity of all variables ity that
correspond to the same variabiein A. As a concrete illustration,
let us show the linearization of two atoms. Note what happédren
the atomA is already linear as in the first casé; is just the same
asA andS, is empty.

[ ffl p(c(X),Y)
lin(H1) = (p(c(X),Y), {})

o Hy = p(e(X), X,Y)
lin(H) = (p(e(X), X1, Y), {X ~ X1})

Now we are set to formally define tffe-instances of an atom.

Definition 4. (R-instance of an atom). Assume an atéime Ats,
and its linearized version lid) = (A,, S¢). Then, an atomd’ is



said to be arR-instance ofA with similarity degrees, noted as
(A’,8) € [A]r, iff there are some atord® and some substitution
6 such thatd’ = AS@ ands = R(A¢, AS) 1 [{R(X:6, X;6) |
(Xi~ X;) €S} # L.

Next, the(R, D)-entailment relationover Ats (D) is defined
as follows: At d =(r py A’ d’ iff there is some similarity degree
§ such that(A’,6) € [Alr andd’ C d o 4. Finally, anopen
Herbrand interpretation—just interpretationfrom now on— over
(R,D) is defined as any subsgt € Ats(D) which is closed
under (R, D)-entailment. That is, an interpretatidnincluding a
given D-qualified atomA # d is required to include all the ‘similar
instancesA’  d’ suchthatd # d ==, py A’ d’, because we intend
to formalize a semantics in which all such similar instanaes
valid wheneverA £ d is valid. This complements the intuition given
for the D-entailment relation inQLP (D) to include the similar
instances (obtainable due 1) of each atom, and not only those
which are true because we can prove them for a better (i.leehig
D) qualification. Note thaR, D)-entailment is a refinement @3-
entailment, sinced td :=p A’ d’ = there is some substitutigh
suchthatd’ = Afandd’ Cd=(A',T) € [Alr andd’' C doT
= Afd 7(R,D) A i d.

As an example of the closure of interpretations w(fR., D)-
entailment, consider th&/-qualified atomdomestic(cat)#0.8.
As a trivial consequence of Propositidn 2 below, this atotorgs

to the least Herbrand model of the program in Fidure 1. On the

other hand, we also know thaynx is similar tocat with a sim-
ilarity degree of0.8 w.r.t. the similarity relationR in Figure[1.
Therefore domestic(lynx) is aR-instance ofdomestic(cat)

to the degre®.8. Then, by definition of R, I/)-entailment, it turns
out thatdomestic(cat)#0.8 >(r ) domestic(lynx)#0.64,
and thel{-qualified atomdomestic(lynx)#0.64 does also be-
long to the least model of the example program. Intuitivel§4 =
0.8 x 0.8 is the best{-qualification which can be inferred from the
U-qualification0.8 for domestic(cat) and theR-similarity 0.8
betweenomestic(cat) anddomestic(lynx).

We will write Ints (R, D) for the family of all interpretations
over (R, D), a family for which the following proposition can
be easily proved from the definition of an interpretation amel
definitions of the union and intersection of a family of sets.

Proposition 1. The familyInts (R, D) of all interpretations over
(R, D) is a complete lattice under the inclusion orderifigwhose
extreme points aréntx (R, D) as maximum and) as minimum.
Moreover, given any family of interpretatiords C Ints(R, D),

its lub and glb are[ |1 = U{Z € Ints(R,D) | Z € I} and

LI ={Z € Int=(R, D) | Z € I}, respectively.

Similarly as we did for thék-instances of an atom, we will de-
fine what theR-instances of a clause are. The following definition
tells us so.

Definition 5. (R-instance of a clause). Assume a cladse=

A <« d— Bi,...,B; and the linearized version of its head
atom lin(4) = (A, S¢). Then, a claus€’ is said to be ariR-
instance ofC' with similarity degrees, noted agC’,d) € [C]r,

iff there are some atorM® and some substitutiod such that
§ = R(Ar, AS) M [H{R(X:6, X;0) | (Xi ~ X;) € Se} # L
andC’ = AS0 «+d— B0, ..., Bib.

Note that as an immediate consequence from Definifibns @land 5

it is true that given two clauses andC’ such tha(C’, §) € [C]r,
and assumingl to be head atom af’ and A’ to be the head atom
of C’, then we have thatd’, §) € [A]r.

LetC be any clausel + d— Bi, ..., By inthe progran, and
T € Ints (R, D) any interpretation ovefR, D). We say thaf is a
model ofC iff for any clauseC’ = H' +d— B4, ..., B}, such that
(C',8) € [C]r and any qualification values, . .. ,d, € D\{L}

such thatB; ffd; € Zforall1 < i < k,one hasi’' §d’ € Z where
d = do[l{edi,...,dr}. And we say thaf is a model of the
SQLP(R, D) programP (also writtenZ = P) iff Z is a model of
each clause ifP.

We will provide now a way to perform an inference step from
the body of a clause to its head. As in the caseQdiP(D),
this can be formalized in two alternative ways, namely an in-
terpretation transformer and a variant of Horn Logic. Bofh a
proaches lead to equivalent characterizations of leagtano mod-
els. Here we focus on the second approach, defining what we
will call Similarity-based Qualified Horn Logiover (R,D) —
abbreviated asQH L(R, D)—, another variant of Horn Logic and
an extension of the previou@ H L(D). The logicSQH L(R, D)
is also defined as a deductive system consisting just of dee in
ence ruleSQM P (R, D), calledSimilarity-based Qualified Modus
Ponensover (R, D):

If (A" +d— Bi,...,B;),6) € [C]= for some claus€' €
‘P with attenuation valuel, then the following inference step is
allowed foranyd’ € D\{L} suchthat’ C do[]{d,d1,...,dk}:

Bifd By 4 dk
Atd

We will use the notation® Fgqurr,.py Afd (respectively
P Fsouur,p) Afd) toindicate thatd § d can be inferred from
the clauses in prograr® in finitely many steps (respectively
steps). Note thaSQHL(R,D) proofs can be naturally repre-
sented as upwards growimqmoof treeswith D-qualified atoms at
their nodes, each node corresponding to one inference atépgh
the children nodes as premises.

The following proposition contains the main result conasgn
the declarative semantics of tHQLP(R,D) scheme. A full
proof can be developed in analogy to tQ&.P(D) case presented
in [14,[13].

Proposition 2. Given anySQLP(R, D) program P. Theleast
Herbrand mode{M ) of P is

{Aﬁd | P FSQHL(R,D) Aﬁd} .
The following example serves as an illustration of how ttggdo
SQHL(R,D) works over (R,U) using the example program
displayed in Figurgl1.

SQMRAR, D) .

Example 2. The following proof tree proves that the atpet (1y-
nx) can be inferred for at least a qualification value@®@®&0 in the
SQLP(R,U) programP of Figure[d. Let's see it:

(O]
domestic(lynx)#0.64

) 3)
pacific(lynx)#0.57 intelligent (1ynx)#0.70
()]
pet (lynx)#0.50

where the clauses and qualification values used for eacheinée
step are:

(1) pet(lynx) <-1.0- pacific(lynx),intelligent(lynx)
is an instance of claus&2 in P and0.50 < 1.0 x min{1.0,
0.57, 0.70}. Note that the firsi.0 in the minimum is the one
which comes from the similarity relation as for this step we a
just using a plain instance of clause in P.

(2) pacific(lynx) <-0.9- domestic(lynx) is a plain in-
stance of clausé0 in P and0.57 < 0.9 X min{1.0, 0.64}.

(3) intelligent(lynx) <-0.7-is clause9 in P and 0.70 <
0.70 x min{1.0}.

(4) The clausedomestic(lynx) <-0.8- is an R-instance of
clause6 with a similarity degree 0f).8 and we have).64 <
0.8 x min{0.8}. |



4. Reducing Similarities to Qualifications
4.1 A Program Transformation

In this section we prove that anfyQLP(R, D) programP can
be transformed into an equivale@L P (D) program which will
be denoted bys= (P). The program transformation is defined as
follows:

Definition 6. Let P be aSQLP(R, D) program. We define the
transformed programiz (P) as:

SrR(P) =Ps UP~ U Ppay
where the auxiliary sets of claus®s, P~, Ppay are defined as:

* For each clauséH <+ d— B) € P and for eachfl’ such that
R(Hy, H') # L

(H' +d— payr(m, r, Se, B) € Ps

where(Hy, S¢) = lin(H).

eP. = {X ~ X « T-}U{(cXn) ~ Y, «T-
PAYR(c,er), X1 ~ Y1,...,Xn ~ Yy) | ¢, € CS of arity n,
R(c,c') # L}

® Poay = {(payw <+ w—) | for each atonpay., occurring in
P~ UPs}

Note that the linearization of clause heads in this trams&ion
is motivated by the role of linearized atoms in t§@ H L(R, D)
logic defined in Subsectidn 3.2 to specify the declarativessgics
of SQLP(R, D) programs. For instance, assumé@LP(R,U)
programP including the clause(X, X) + 1.0- and two nullary
constructors:, d such thatR(c,d) = 0.8. Then,SQHL(R,U)
supports the derivatio® -gqyuy,z 1) P(c; d) §0.8, and the trans-
formed progranS (P) will include the clauses

p(X,X1) <« 1.0—payi.o, X ~ X1,
X~X <+~ 1.0-,

c~d <~ 1.0— payo s,

payi.o <+ 1.0—,

Payo.s +— 0.8

thus enabling the corresponding derivatich (P)
p(e,d)40.8in QHL(U).

In general,? and Sz (P) are semantically equivalent in the
sense thaP Fgqurr,p) Ad <= Sr(P) Fquimp) Afd
holds for anyD-qualified atomA # d, as stated in Theorelnh 1 below.
The next technical lemma will be useful for the proof of this
theorem.

Lemma 1. Let P be aSQLP(R,D) program andSr(P) its
transformed program according to Definitidd 6. Lets be two
terms inP’s signature andi € D \ {L}. Then:

1. Sr(P) Fquip) (t ~ s)td = d CR(t,s)

2. R(t,s) = d = Sr(P) Fqurm) (t~ s)id

FouLw)

Proof. We prove the two items separately.

1. LetT be aQ H L(D) proof tree witnessing
SR(P) }_QHL(D) (t ~ 3) td

We prove by induction on number of nodes Bfthatd C
R(t,s). The basis case, witl" consisting of just one node,

must correspond to some inference without premises, i.e., a

clause with empty body for. CheckingP.. we observe that
X ~ X <« T— is the only possibility. In this case and s
must be the same term and by the reflexivity7f(Def. [2),
R(t,s) = T, which meansi C R(¢,s) for everyd. In the
inductive step, we consid&r with more than one node. Then

the inference step at the root Bfuses some clauge(X,,) ~
c'(yln) — T — payr(e,ery, X1 ~ X1,...,Xn ~ X;,) € P~,
and must be of the form:

PaYw ﬁU (tl ~ Sl)uel cee (tn ~ Sn)ﬁ@n
c(tn) ~ ' (5n) td

wherew = R(c,c),v € D,v E w, t = c(t,), s =
c(8n), ander,...,en St.d C T o[{v,e1,...,ex}, i€,
d C[{v,e1,...,ex} Byinduction hypothesis; C R(t;, si)
fori = 1...n. Thend C [|{v,e1,...,e,} impliesd C
[{w, R(t1,s1), ..., R(tn, sn)} and hencel C R(t, s) (Def.
[3, item 3).

2.1f R(t,s) = d, d # L, we prove thatSr(P) Fqur(p)
(t ~ s)#d by induction on the syntactic structure of The
basis corresponds to the calse= ¢ for some constant, or
t = Y for some variableV. If ¢ = c thens = ¢’ for some
other constant’. By Definition[8 there is a clause iR.. of the
form (c ~ ¢’ < T — paya). Using this clause and the identity
substitution we can write the root inference step of a proof f
Sr(P) Fquup) (¢ ~ ¢') #d as follows:

payafd

c~c td
The condition required by the inference rule QP is in this
particular casé C T o[ |{d}, andT o[]{d} = d. Proving the
only premisepayq  d in QH L(D) is direct from its definition.
If t =Y, withY avariable, thes = Y andd = T (otherwise
R(t,s) = 1). ThenSr(P) Fqurmpy (Y ~ Y)§T can
be proved by using the claug&X’ ~ X +T—) € P. with
substitutiond = {X — Y}.
In the inductive step; must be of the forne(%,,), withn > 1,
and thers must be of the forna’(s,,) (otherwiseR (¢, s) = L).
Fromd = R(t,s) # L (hypotheses of the lemma) and
Definition[3 we have thaR(c,c’) # L. Then, by Definition
[B, there is a clause iR~ of the form:

C(Yn) ~ Cl(vn) <_T_pay7€(c,c’)7X1 ~Y, ., Xn~Ys

By using the substitutior? = {Xi; — t1,...,Xn —
tn,Y1 — s1,...,Yn — s,} We can write the root inference
step inQH L(D) as:

PayR (c.e) ER(c, ) (ti ~ sid R(ti, 5:))i=1..n
c(tn) ~ c'(3n) td
The inference can be applied because the condition
dC To I_l{R(c7 ), R(t1,81), .-, R(tn,sn)}
reduces to
dC[ {R(c,d),R(t1,51), ..., R(tn,5n)}

which holds by Definitior B, item 3. Moreover, the premises
ti ~ sifR(ti,si), ¢ = 1...n, hold in QHL(D) due to the
inductive hypotheses, and proving

payR(c,c’) ﬁR(Cy Cl)
is straightforward from its definition. |

Now we can prove the equivalence between semantic infesence
in QHL(D) w.r.t. P and semantic inferences $IQH L(R, D)

w.r.t. Sg (P).

Theorem 1. LetP be aSQLP(R, D) program,A an atom inP’s
signature andl € D \ {_L}. Then:

P FSQHL(R,D) Aﬁd — SR(P) FQHL(D) Aﬁd .



Proof. Let T' be aSQHL(R, D) proof tree for some annotated
atom At d in P’s signature witnessin® Fgqnrr,py Afd. We
prove thatSz (P) Fqurpy Afd by induction on the number of
nodes ofT".

The inference step at the root Bfmust be of the form

Bigd - Biide

Atd

with (A « e— Bi,...,B),d) € [C]r for some clause
(H < e— Bi,...,Br) € P (observe that the case
0 corresponds to the induction basis). By Definitlch 5,
H'0, B, = B;0 for some substitutiord and atomH’
such thatt = R(H,, H) NT{R(X:0, X;0) | (Xi ~ X;) €
S} # L, with lin(H) = (H,,S¢). This means in particu-
lar thatw = R(H,, H') # L, which by Definition[® implies
that there is a claus€” in Sz (P) of the form C’ (H" «+

e — payw, Se, B1, ... Bg). Then the root inference step of the
deduction provingP Fqu,py Al d will use the inference rule
QMP(D) with C” and substitutiod (such thatH’0 = A) as fol-
lows:

paywl fw

c
k
A

((wi ~vi)0fei)icicm Bifdi - Byfde

Atd

y Um ~ Um}y ande; =

)
whereS, = {u1 ~ v1,... R(uib,v;0) for
i=1...m.

Next we check that the premises can be proved f8aP) in
QHL(D):

® paywl = pay., SincCepay,, is a nuIIary predicate for every.
ThereforeSx (P) Fquim) Payw fw is immediate from the
definition of pay,, in Definition[d.

e For eachl < i < m, we observe thaR(u;0,v;0) # L
becaused # 1 has been computed above as the infimum
of a set includingR(u;0,v;0) among its members. Then
S%(P) Fqurp) (ui ~ v:)0 holds by Lemméll, iteif 2.

e Foreachl <i <k, (1) shows thaP tgqur,r ) Bi fdi with
a proof tree having less nodes tffatTherefore Sk (P) Fqur,(p)
B! #d; by induction hypothesis.

In order to perform the inference step (2), the QP (nfer-
ence rule also requires that_ eo[ [{w, e1...,em, d1,...,dx}.
This follows from the associativity ofi since:

e As defined above§ = R(H, H') N [{R(X:0,X,0) |
(Xi ~ Xj) S S[}, i.e.d=wn |_|{61 .. .em}.

¢ By the SQMRR, D) inference (1) we know tha C e o
[1{6,dn, ..., di}.

Let T be aQH L(D) proof tree witnessingz(P) tqur(p)
At dfor some atond in P’s signature. We prove by induction on
the number of nodes &f thatP Fgqupr,p) Al d-

SinceA is in P’s signature, the clause employed at the inference
step at the root of' must be in the sePs of Definition[@, and the
inference step at the root @f have of the form of the inference (2)
above. Hence this clause must have been constructed freamisecl
C = (H +e— By,...,B;) € P and some atonf/’ such that
A=H'60andR(H,, H') # L, wherelin(H) = (Hg, S).

Then we can us€’ andd to proveP Fgqurr,p) Afd by a
SQMRR, D) inference like (1) using th&-instanceC’ = A «
e—By,. .., B;, of C. The premises can be provedif) H L(R, D)
by induction hypotheses, since all of them are also preniises
(2). Finally, we must check that the conditions required by (
hold: (C’,8) € [C]r for somed € D,§ # LstdLC eo
[{d,d1,...,dx}. Thisis true for§ = [1{w,el,..., e}, with
e; = R(u;0,v;0) fori = 1...m. Observe that in the premises of

(2) we haveQH L(D) proofs ofu;0 ~ v;ffe; fori =1...m
Thereforee; C e}, by Lemmd, iter]1. Then

d Ceo[{w,e1...,em,d1,...,dx} (by(2)
Ceo[{w,el....em, di,....,dx} (e; Ce€f)
:eo|_|{5,d1,...,dk}

We must still prove that # L. Observe that by the distributiv-
ity of o w.r.t. 1 (Def.[, axiom 2.(e)):
6 o |_|{d17 .

6O|_|{(57d1,.. ,di} = (eo0d) M
6O|_|{d1" ,di})

Therefore
and fromd # L we obtain(e o ) # L which impliesd # L due
to axiom 2.(c) in Definitiof L. This completes the proof. |

,di})

dC (eod)N

4.2 Comparison to Related Approaches

Other program transformations have been proposed in @it
ture with the aim of supportingR-based reasoning while avoiding
explicit R-based unification. Here we draw some comparisons be-
tween the program transformatidh (P) presented in the previous
subsection, the program transformatidiig(7) andP, proposed

in [16], and the program transformatidPz = proposed in[[11].
These three transformations are applied to a classica pwggram

P w.r.t. a fuzzy similarity relatiorR over symbols in the program’s
signature. BothH , (P) and P, are classical logic programs to be
executed bySL D resolution, and their construction depends on a
fixed similarity degree\ € (0, 1]. On the other handPz = is a
multi-adjoint logic program over a particular multi-adjoilattice

G, providing the uncertain truth values in the interj¢al1] and two
operators for conjunction and disjunction in the sense of&bs
fuzzy logic (seel[22] for technical details). As in the caseor
own transformatiorb= (P), the construction 0Pz = does not de-
pend on any fixed similarity degree. The transformatie(P)
proposed in this paper is more general in that it can be appie

an arbitrarySQLP(R, D) programP, yielding aQ L P (D) pro-
gram Sz (P) whose least Herbrand model is the same as that of

We will restrict our comparisons to the case tfrais chosen as
a similarity-based logic program in the senselofi [16]. Aslars4
trative example, consider the simple logic progr2reonsisting of
the following four clauses:

o Cr: r(X,Y) «+ p(X), q(Y), s(X,Y)
Gy ple(l))
. Cy: qld(v))
0 Cs: s(Z,2) +

Assume an admissible similarity relation defined®yc, d) =
0.9 and consider the god : < r(X,Y) for P. Then,R-based
SLD-resolution as defined in_[16] computes the answer substitu-
tiono = {X — ¢(U), Y — d(U)} with similarity degreed.9.
This computation succeeds beca@&édased unification can com-
pute them.g.u. {Z — ¢(U), V — U} with similarity degree).9
to unify the two atoms(c¢(U), d(V')) ands(Z, Z). Let us now ex-
amine the behavior of the the transformed progréfas (P), Po.o,
Swr(P) andPg,= and when working to emulate this computation
without explicit use of @R-based unification procedure.

1. Hoo(P) is defined in[[16] as the set of all claus@ssuch that
R(C,C") > 0.9 for some claus€' € P. In this caseHo.o(P)
includes the four clauses @ and the two additional clauses
p(d(U)) < andq(c(V)) <, derived by similarity fromC),
and C,, respectively. SolvingZ w.r.t. Ho.o(P) by means of



classicalSLD resolution produces two possible answer sub-
stitutions, namelys; = {X — ¢(U),Y — ¢U)} and

o2 = {X — d(U),Y — d(U)}. They are both similar to

o to a degree greater or equal thas9, but none of them is

o itself, contrary to the claim in Proposition 7.1 (i) froin_ |16
Therefore, this Proposition seems to hold only in a somewhat
weaker sense than the statement.in [16]. This problem isaue t
the possible non-linearity of a clause’s head, which is erlyp
taken into account by our transformatiSi (P).

. According to[[16],P,.9 is computed fron?P by replacing all
the constructor and predicate symbols by new symbols that
represent the equivalence classes of the original oneslmodu
R-similarity to a degree greater or equal th&g. In our ex-
ample these classes afe}, {p}, {q}, {s} and{c,d}, that
can be represented by the symbelsp, ¢, s an e, respec-
tively. Then, Py.9 replaces the two clauseS, and C, by
p(e(U)) <« andg(e(V)) <, respectively, leaving the other
two clauses unchanged. Solvirg w.r.t. Po.9 by means of
classical SLD resolution produces the answer substitution
o = {X — e(U),Y ~ e(U)}, which corresponds te
modulo the replacement of the symbols in the original pnogra
by their equivalence classes. This is consistent with thiend
in Proposition 7.2 from [16].

. Note thatP can be trivially converted into a semantically equiv-
alent aSQLP(R,U) program, just by replacing each occur-
rence of the implication siga- in P’s clauses by—1.0—. Then
Swr(P) can be built as & LP(U/) program by the method ex-
plained in Subsectidn4.1. It includes three clauses qoored
ingtoC,., C, andC,, of P plus the following three new clauses:

e Cp: p(d(U)) +1.0— payo.o
e Cy: q(e(V)) +1.0— payo.o
o C; : 8(Z17Z2) —1.0—- 21~ Z>

whereC}, resp.Cy;, come from replacing the linear heads@f
resp.Cy by similar heads, and’s comes from linearizing the
head ofC', which allows no replacements by similarig (P)
includes also the proper clauses for andP,.y, in particular
the following three ones:

o /: X~ X<+1.0-
e S: C(X1) ~ d(Y1) <—1.0—payo,g,X1 ~ Y1
® P: payo.o < 0.9

Solving goalG w.r.t. Sz (P) by means of thé{-qualified SLD
resolution procedure described in[14] can compute the answ
substitutior with qualification degre®.9. More precisely, the
initial goal can be stated ag X,Y)#W [ W > 0.9, and
the computed answer i@, {W ~— 0.9}). The computation
emulatesR-based unification ok(c(U),c(V)) and s(Z, Z)

to the similarity degre®.9 by solvings(c(U), ¢(V)) with the
clauseg””, I, S andP.

. The semantics of thRlALP framework depending on the cho-
sen multi-adjoint lattice is presentedin [11]. A companisdth
the semantics of th) LP(D) scheme (see [14] and Subsec-
tion [3:1 above) shows tha?lALP programs over the multi-
adjoint latticeG behave ax)LP(U’) programs, wheré(’ is
the quasi qualification domain analogoug#introduced at the
end of Subsectioh 2.1 above. For this reason, we can think of
the transformed prograffz, = as presented with he syntax of a
QLP(U") program. The original prograf® can also be written
as aQLP(U') program just by replacing each the implication
sign<— occurring inP by < 1.0—. As explained in[[11] Pz =
is built by extendingP with clauses for a new binary predicate
~ intended to emulate the behaviour®fbased unification be-

tween terms. In our exampl®z, = will include (among others)
the following clause for-:

° Sl : C(X1) ~ d(Y1) +—0.9— X1 ~ Yl

In comparison to the clausgin Sz (P), clauseS’ needs no call

to apayo.o predicate at its body, because the similarity degree
0.9 = R(c, d) can be attached directly to the clause’s implica-
tion. This difference corresponds to the different intetations

of o, which behaves as in &/ and asnin in U/'.

Moreover,Pg = is defined to include a clause of the following
form for each pair ofi-ary predicate symbolsd andpd’ such
thatR(pd, pd’) # 0:

vapd @ pA(Y1,...,Ys) «R(pd,pd)—
pdl(Xl7"'7Xn)7X1 N)/177X7L""Yn

In our simple example, all the clauses of this form corresgon
the trivial case whergd andpd’ are the same predicate symbol
andR(pd, pd') = 1.0. Solving goalG w.r.t.Sz (P) by means

of the procedural semantics described in Section 4 df [14] ca
compute the answer substitutierto the similarity degreé.9.
More generally, Theorem 24 in [11] claims that for any choice
of P, Pr,= can emulate any successful computation performed
by P usingR-basedS LD resolution.

In conclusion, the main difference betwegn (P) and Pe =
pertains to the techniques used by both program transfamnsat
in order to emulate the effect of replacing the head of a elans
the original program by a similar on®g = always relies on the
clauses of the forni,; ,o- andthe clauses for, while Sz (P) can
avoid to use the clauses fer as long as all the clauses involved
in the computation have linear heads. In comparison to tlee tw
transformationsH » (P) and Py, our transformatiorSw (P) does
not depend on a fixed similarity degraeand does not replace the
atoms in clause bodies by similar ones.

4.3 A Goal Solving Example
In order to illustrate the use of the transformed progrs(P)

for golving goals w.r.t. the original prograr®, we consider the

case wheréP is the SQLP(R,U) program displayed in Figufe 1.
The transformed progrart$iz () obtained by applying Definition

is shown in Figuré€]2. The following observations are uségul

understand how the transformation has worked in this sirtgée:

e The valueT in the domairn/ corresponds to the real number

1 and hence by reflexivitfR (A, A) = 1 for any atom in the
signature of the program. Therefore, and as a consequence of
Definition[d, every clause in the original program gives tsa
clause in the transformed program with the same head and with
the same body except for a new, first atpmy; . For instance,
clauses 1, 2 and 3 in Figuké 2 correspond to the same clause
numbers in Figurgl1l.

Apart of the clauses corresponding directly to the original
clauses, the program of Figufé 2 contains new clauses ob-
tained by similarity with some clause heads in the origi-
nal program. For instance, lines 4 and 5 are obtained by
similarity with clauses at lines 1 and 2 in the original pro-
gram, respectively. The subindexes at liter@l correspond to
R(lynx, cat) = 0.8, R(boar, pig) = 0.7, respectively.

e Analogously, for instance the clause at line 10 (with head
farm(1lynx)) is obtained by head-similarity with the clause of
line 6 in the SQLP(R,U) program (headlomestic(cat)),



1 wild(lynx) <-0.9- payi.o

2 wild(boar) <-0.9- payi.o

3 wild(snake) <-1.0- payi.o

4 wild(cat) <-0.9- payo.s

5 wild(pig) <-0.9- payo.7

6 farm(cow) <-1.0- payi.o

7 farm(pig) <-1.0- payi.o

8 farm(boar) <-1.0- payo.7

9 farm(cat) <-0.8- payo.s

10 farm(lynx) <-0.8- payo.3

11 farm(snake) <-0.4- payo.3

12 domestic(cat) <-0.8- payi.o

13 domestic(snake) <-0.4- payi.o

14 domestic(lynx) <-0.8- payo.s

15 domestic(cow) <-1.0- payo.3

16 domestic(pig) <-1.0- payo.3

17 domestic(boar) <-1.0- payo.3

18 intelligent(A) <-0.9- payi.o,domestic(A)
19 intelligent(lynx) <-0.7- payi.o

20 intelligent(cat) <-0.7- payo.s

21 pacific(A) <-0.9- payi.o,domestic(A)
22 pacific(A) <-0.7- payi.o,farm(A)

23 pet(A) <-1.0- payi.o,pacific(A),intelligent (A)
24 payio <-1.0-

25 payo.gs <-0.8-

26 payo.7 <-0.7-

27 payo.3 <-0.3-

Figure 2. Example of transformed program. (Note: no clauses for
~ are needed because the original program was left-linear).

and the subindex atay is obtained from

R(domestic(cat), farm(lynx))
R(domestic, farm) M R(cat, lynx)
0.31M0.8

0.3

e There is no clause for predicate since all the heads in the
original program were already linear and thereféte can be
left empty in practice.

¢ The clauses fopay correspond to the fragme®,., in Defini-
tion[8.

In the rest of this subsection, we will show an execution for
the goalpet (A)#W | W >= 0.50 over the prograntr (P) (see
Figurel2) with the aim of obtaining all those animals thatldce
considered get for at least a qualification value 6f50.

We are trying this execution in the prototype developed glon
with [14] for the instance§) L P (i) andQLP(W). Although this
prototype hasn’t been released as an integrated pgrca¥, you
can downlodll the prototype to try this execution. Please notice
that the prototype does not automatically do the transigiiocess

1Available at: http://gpd.sip.ucm.es/cromdia/qlpd. There you
will also find specific instructions on how to install and raras well as
text files with the program examples tried in here.

from a givenSQ L P (R, D) programP to its transformed program
Sr(P), because it was developed mainly forl[14]. Therefore, the
transformed program shown in Figlide 2 has been computed-manu
ally.

We will start running7 ©Y and loading the) LP (i) instance
with the command/'qlp (w):

Toy> /qlp(u)

this will have the effect of loading thReal Domain Constraints
library and the QLP(U) library into the system, the prompt
QLP (U)> will appear. Now we have to compile our example pro-
gram (assume we have it in a text file calleflimals.qlp in
C:/examples/) with the command/qlptotoy (this command
will behave differently based on the actual instance loaded

QLP(U)> /qlptotoy(c:/examples/animals)

Note that we didn’t write the extension of the file becauseust
be .qlp. This will create the filenimals.toy in the same direc-
tory as our former file. And this one will be an actua) pro-
gram. We run the program withrun(c:/examples/animals)
(again without the extension —although this time we arerassy
.toy as extension—) and we should get the following message:

PROCESS COMPLETE

And finally we are set to launch our goal with the command
/alpgoal. The solutions found for this program and goal are:

QLP(U)> /qlpgoal(pet(A)#W | W>=0.50)
{ A -> cat,
W -> 0.5599999999999999 1}

sol.1, more solutions (y/n/d/a)
{ A -> cat,
W -> 0.7200000000000001 }

[yl?

sol.2, more solutions (y/n/d/a)
{ A -> 1ynx,
W -> 0.5760000000000002 }

[yl?

sol.3, more solutions (y/n/d/a)
{ A -> lynx,
W -> 0.5760000000000002 }

[yl?

sol.4, more solutions (y/n/d/a)
no

[yl?

At this point and if you remember the inference we did in
Example[2 forpet (1ynx)#0.50, we have found a better solu-
tion (as you can see there are two solutionsifatix, and this is
due to the two different ways of provingntelligent (lynx):
intelligent (lynx)#0.7 using clause 19, andntelligent
(1ynx)#0.576 using clauses 18 and 14.

5. Conclusions

Similarity-basedL P has been proposed in [16] and related works
to enhance thd. P paradigm with a kind of approximate reason-
ing which supports flexible information retrieval appliceis, as ar-
gued in[8[ 11]. This approach keeps the syntax for programses

as in classicalL P, and supports uncertain reasoning by using a
fuzzy similarity relationR between symbols in the program’s sig-
nature. We have shown that similarity-base# as presented in
[16] can be reduced to QualifieblP in the Q LP(D) scheme in-
troduced in[[14], which supports logic programming witheati-
ated program clauses over a parametrically given dorfraivhose



elements qualify logical assertions by measuring theisamhess
to various users’ expectations. Using generalized sithjilaela-
tions taking values in the carrier set of an arbitrarily givgual-
ification domainD, we have extended)LP(D) to a more ex-
pressive schem&8QL P (R, D) with two parameters, for program-
ming moduloR-similarity with D-attenuated Horn clauses. We
have presented a declarative semantic$fQIL P (R, D) programs
and a semantics-preserving program transformation whittees
SQLP(R,D) into QLP(D). As a consequence, the sound and
complete procedure for solving goals@W P(D) by D-qualified
SLD resolution and its implementation in tHeO) system[[14]
can be used to implemerfQLP(R,D) computations via the
transformation.

Our framework is quite general due to the availability ofefif
ent qualification domains, while the similarity relationposed
in [16] take fuzzy values in the intervad, 1]. In comparison to
the multi-adjoint framework proposed in [11], tigL P(D) and

SQLP(R, D) schemes have a different motivation and scope, due

to the differences between multi-adjoint algebras andification

domains as algebraic structures. In contrast to the goahsgbro-

cedure used in the multi-adjoint framewotR;qualifiedSLD res-
olution does not rely on costly computations of reductaatses
and has been efficiently implemented.

As future work, we plan to investigate an extension of the
R-basedSLD resolution procedure proposed [n [16] to be used
within the SQLP(R, D) scheme, and to develop an extension of
this scheme which supports lazy functional programmingaord
straint programming facilities. The idea of similaritydeal unifi-
cation has been already applied in][12] to obtain an extaensfo
needed narrowingthe main goal solving procedure of functional
logic languages. As in the case bf [16], the similarity rielas con-
sidered in[[12] take fuzzy values in the real interj¢all].
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