
A Combined Tactical and Strategic Hierarchical Learning Framework in
Multi-agent Games

Chek Tien Tan∗

Ho-lun Cheng†

National University of Singapore

Abstract

This paper presents a novel approach to modeling a generic cog-
nitive framework in game agents to provide tactical behavior gen-
eration as well as strategic decision making in modern multi-agent
computer games. The core of our framework consists of two char-
acterization concepts we term as the tactical and strategic personal-
ities, embedded in each game agent. Tactical actions and strategic
plans are generated according to the weights defined in their re-
spective personalities. The personalities are constantly improved as
the game proceeds by a learning process based on reinforcement
learning. Also, the strategies selected at each level of the agents’
command hierarchy affect the personalities and hence the decisions
of other agents. The learning system improves performance of the
game agents in combat and is decoupled from the action selection
mechanism to ensure speed. The variability in tactical behavior and
decentralized strategic decision making improves realism and in-
creases entertainment value. Our framework is implemented in a
real game scenario as an experiment and shown to outperform var-
ious scripted opponent team tactics and strategies, as well as one
with a randomly varying strategy.

CR Categories: I.2.1 [Artificial Intelligence]: Applications
and Expert Systems—Games I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—[Intelligent agents, Multiagent sys-
tems]

Keywords: game artificial intelligence, game agent architec-
ture, multi-agent cooperation, tactical behavior, strategic planning,
learning

1 Introduction

In the domain of modern game Artificial Intelligence (AI), recent
years have seen much work being performed in the area of synthe-
sizing intelligent behaviors in game agents [Hussain and Vidaver
2006; Horswill and Zubek 1999; Geramifard et al. 2006; Khoo
and Dunham 2002; McDonald et al. 2006; Spronck et al. 2006;
Sweetser 2005; Tan and Cheng 2007; White and Brogan 2006].
Role Playing Games (RPG), Real Time Strategy (RTS) games, First
Person Shooters (FPS) and Sports games make up the major com-
ponents of modern games and game agents constitute the core of
the game worlds. A game agent is defined as a fictional character in
the game world, either a player controlled character (PC) or a non-
player character (NPC). Agent behavioral planning can be classified

∗e-mail: tanchekt@comp.nus.edu.sg
†hcheng@comp.nus.edu.sg

as either tactical or strategic. “Tactical” refers to low level plan-
ning of primitive actions like “shoot”, “attack” and “heal” by each
agent. “Strategic” encompasses high level planning like deciding
on whether to execute a flanking attack or a mass frontal attack as
a team. In short, tactical decisions are short-term and individually-
based whereas strategic decisions are long-term and team-based.

This paper describes our efforts at modeling a generic cognitive
framework in game agents that enables planning in both tactical and
strategic aspects. We find a combined planning approach lacking in
current work, especially in complex modern game environments. It
builds upon an earlier work in tactical behavior generation [Tan and
Cheng 2007] to include strategic planning and the integrated frame-
work has been implemented with positive results. Our framework is
applicable for the different modern game genres as described above.

1.1 Motivation

Although there are large amounts of research being done in the area
of agent planning, current work are more suited for chess-like board
games than for modern games. Most work are based on classical
theories that focus on the intelligent agent problem in a generic
sense. In doing so, they are often too complicated and impractical
for use in commercial games, and are focused on theory rather than
gameplay. In board games, algorithms like alpha-beta game-tree
search can exhaustively enumerate future states to evaluate action
outcomes because of the tactical nature and the branching factor
is relatively small. Modern game developers are also reluctant to
use state of the art intelligent agent algorithms due to the fear of
game agents learning to produce strange or even erratic behavior
that is totally unexpected. Modern game developers require sim-
plicity whilst achieving speed and effectiveness, hence simple and
comprehendible AI like scripting and finite state machines (FSMs)
[Orkin 2004b] are still dominant in today’s game AI. Whilst we
acknowledge that generic and theoretical advancements are of ut-
most importance in the general AI community as a whole, we also
recognize that there is a concurrent need for studies that are imple-
mentable in (or can be combined with) the AI of modern commer-
cial games.

Automatically devising a good playing strategy is much more com-
plex in modern games than in classical board games for a variety of
reasons. Modern games include a variety of agents, each possess-
ing a vast number of diverse actions, whereas board game pieces are
mainly defined by only the type of movement they can make. Addi-
tionally, all agents in modern games are able to act simultaneously
in real time, in contrast with turn-based board games. Considering
the world space, modern game worlds are enormous and continu-
ous compared to the 64 discrete positions of chess or even the 361
positions in Go. These factors make the search space exceptionally
larger and it is impossible to exhaust all searches within a reason-
able time interval for game playing to be smooth. Take for example
if we were to model an RPG in a classical Partially Observable
Markov Decision Process (POMDP) [Foka and Trahanias 2007],
it would be almost impossible to obtain a working policy without
tremendous amounts of heuristics and abstractions, due to the enor-
mous number of belief states. Current successful algorithms solve

to the complexity level of simple poker games [Oliehoek 2005],
which is a far fetch from the complexity we get in modern com-
mercial games [Sailera et al. 2007]. In addition to the performance
aspect, modern game AI also needs to take into account the enter-
tainment value for human players. As such, research in this area is
promising, challenging and interesting.

Given that modern games involve teams of multiple agents work-
ing together with a common goal, there is a need for team-based
cooperative planning. In FPS games like Battlefield 2142 [Elec-
tronic Arts 2006], a player can form teams with non-player char-
acters(NPCs) to play against computer controlled opponent teams
in military-style combat. This is often the case in RPGs like Guild
Wars [NCsoft 2006] when a player teams up with NPCs for mis-
sions, and opponents are mostly organized in large packs. Simi-
larly in RTS games like Warcraft 3 [Blizzard Entertainment 2006],
the computer opponent manages a whole team of units and re-
sources. The AI in these teams is largely scripted and often per-
forms predictably, making the games un-challenging and dull when
the player figures out the patterns. Other than multi-agent pathfind-
ing, research in multi-agent coordination is minimal in modern
games. Current work mainly focuses on tactical behaviors and not
enough attention has been given to strategic decision making. More
details are given in the section on Related Work.

1.2 Aim

The goal of this paper is to model an integrated framework to en-
able both tactical and strategic planning capabilities for agents in
a team-based environment. To reinforce the cooperative capabili-
ties, we establish a communication and command-passing system
amongst the agents. In general, our framework serves as a generic
representation of the cognitive ability of an agent in the game. We
also consider the factors of performance, speed and entertainment
value, three of the most important requirements for game AI to be
useful practically [Spronck et al. 2006]. Besides synthesizing im-
mediate behaviors in normal agents, our work provides strategic
capabilities to agents with leadership abilities. In the simplest case,
each team has a single commander. In more sophisticated games,
there may be a hierarchy of commander agents and our framework
can be used to serve the different management requirements at each
hierarchy of the opposing teams. For example, each team of units
the player or computer agent groups up can be incorporated with
our framework and automatically function on its own after being
given a high level task. This eases the micro-management imposed
on the player in RTS games to allow for more strategic gameplay.
The framework is also generic enough to be applied other game
genres like RPG, FPS and sports games.

1.3 Our Approach

First, each team is organized into a hierarchical tree structure where
each agent is a node in the tree and each parent node is able to
pass a command to its children. A tree-structured team is better
than a graph-like one in terms of performance because the acyclic
manner of command-passing facilitates convergence in the learning
process. Allowing the team to form a cyclic structure may result in
infinite loops as agents affect each other in a back and forth manner.
Moreover, a tree structure better reflects real-life combat establish-
ments like in the military.

Each agent in the hierarchy possesses a tactical personality drawn
from [Tan and Cheng 2007] and a strategic personality. Tactical
and strategic planning is based on the weights defined in the person-
alities and updated based on reinforcement learning concepts [Sut-
ton and Barto 1998] as the game proceeds. In addition, we improve
multi-agent coordination by introducing a hierarchical command-

passing mechanism into the framework. With these methods we
aim to:

• enable tactical and strategic adaptivity to the game environ-
ment,

• conceive effective and interesting character behaviors, and

• enable a hierarchical command-passing system between
agents.

Adaptive learning improves agent performance as the game pro-
ceeds whilst behavioral variability makes agents more interesting
hence improving the entertainment value. Moreover, since our
tactical and strategic selection processes only depend on numeric
weights for decision making, the process is very quick in-game.
Hence our framework satisfies the three requirements in our goal-
speed, performance and entertainment value.

In the remaining sections of this paper, we first review literature
related to our work. Then we describe the system architecture in
detail. Thereafter, we show our experimental results as empirical
proof of our concept, along with an analysis of the results. Lastly,
we conclude the paper together with our plans for future work.

2 Related Work

Synthesizing intelligent game agents has been one of the core ar-
eas in game AI research [Horswill and Zubek 1999; Hussain and
Vidaver 2006; Geramifard et al. 2006; Khoo and Dunham 2002;
McDonald et al. 2006; Sweetser 2005; White and Brogan 2006],
but most studies ignore the strategic aspect. [Khoo and Dunham
2002] devised a stateless FSM system for game agents to efficiently
react to environmental changes. [Sweetser 2005] combines influ-
ence maps with cellula automata techniques for game agent deci-
sion making. Others [Horswill and Zubek 1999; Hussain and Vi-
daver 2006] made use of work in robotics and applied them to game
agents. In view of various agent controllers, [McDonald et al. 2006]
devised a five-level architecture as an abstracted framework to en-
able inter-operability amongst them. [White and Brogan 2006] pre-
sented a method that employs a self-organizing Kohonen map cou-
pled with reinforcement learning to produce effective gameplay in
multiple agents in RoboCup simulated soccer. These work mainly
targeted at devising tactical behavior architectures. Additionally,
these studies make use of decision making systems that need to per-
form heavy computations before each action taken by the agents,
with frequent updates to the knowledge in the system which would
likely cause disruptions to the actual gameplay. In [Tan and Cheng
2007], they have devised a natural and convenient way to represent
actions in a weighted set, in which they call a personality model.
They have also alleviated the problem by decoupling the learning
system from the action selection mechanism. The intensive learn-
ing process only takes place at convenient intervals in the game
(like scenario or map transitions in the game) whereas a fast and
simple action selection can take place as often as needed. However,
their work only plan for primitive action sequences. The work in
this paper largely makes use of their personality representation to
cater for a combined tactical and strategic planning architecture.

A number of studies also focused on specific areas of planning like
pathfinding [Geramifard et al. 2006; Silver 2005] and tactical po-
sitioning [Remco Straatman and van der Sterren 2006; Christian
J. Darken 2006]. Recent pathfinding work [Geramifard et al. 2006;
Silver 2005] concentrated on cooperative, multi-agent pathfinding
primarily in RTS games. [Remco Straatman and van der Sterren
2006] provides a simple map representation to aid the game agent
in evaluating tactical positions, whilst [Christian J. Darken 2006]
combines level annotation with sensor grid algorithm to allow the

agent to dynamically find cover. These studies aim at issues of lo-
cation and do not consider the actual actions that need to be done
after the agents arrive at the location.

A prominent advancement in adaptive agent behavior was the in-
troduction of dynamic scripting [Spronck et al. 2006] where adap-
tive behavior was defined by choosing from a set of scripted ac-
tions. They have shown that dynamic scripting using a learn-
ing system that is adapted from reinforcement learning performs
very well against computer opponents. Moreover, they balanced
the practicality of scripting with the learning capability of rein-
forcement learning. In this paper we adopt a similar approach
for the learning system. However, while their work focuses on
defining adaptive tactical behavior in individual agents, our frame-
work includes strategic decision making as well as a hierarchical
command-passing mechanism for multiple agents. Also, our plan-
ning system reaches into the level of individual actions, whilst theirs
are based on scripts. This adds flexibility in the framework.

In terms of strategic AI in modern games, [Sailera et al. 2007] de-
vised a method that searches through all scenarios to conclude a
winning strategy for an RTS game environment. They simulate
strategy pairs in a fast-forwarded simulation to determine which
strategy would give the best winning chance. Though the simula-
tion is supposedly fast-forwarded according to their algorithm, the
obvious setback is still that it is a tedious search method that re-
quires simulating each scenario all the way to the end to arrive at a
conclusion. In contrast, the strategy selection mechanism in this pa-
per is based on a machine learning approach which is much faster,
albeit at the expense of having a learning period.

In summary, current work in modern games focuses on tactical AI
or strategic AI in isolation. In modern games where large agent
teams exist, an AI that encompasses both aspects would prove very
useful.

3 Agent Cognitive Framework

Every agent in the game possesses the cognitive framework as
shown in Figure 1. First, a strategy, si, is passed down from a parent
agent in the previous hierarchical level. Based on this strategy and
taking certain environment variables into consideration, the tactical
cognition and the strategic cognition define the tactical personality,
Ptactical, and strategic personality, Pstrategy , respectively. Via the
tactical personality, the behavior generator outputs a sequence of
actions, Bi, for the agent’s current tactical behavior. Similarly, the
strategy generator makes use of the strategic personality to produce
a strategy, si+1, for use by the next agent(s). Note that our defi-
nition of strategy is synonymous with that of a command decision
being passed down from a commander to a subordinate.

3.1 Agent Personality

The concept of agent personality was first introduced in [Tan and
Cheng 2007] and an illustration can be seen in the top diagram in
Figure 2. In their work, when an action selection mechanism is
applied, the weight determines the chance of choosing an an ac-
tion in view of other simultaneous adaptable actions. To reiter-
ate the definition using a similar terminology, if P ′tactical is the
set of all tactical personalities, the tactical personality of an agent,
Ptactical ∈ P ′tactical, is a function that assigns a weight to each
adaptable action.

Ptactical : A→W, (1)

where W ∈ [Wmin,Wmax] is the set of all weights with Wmin

and Wmax being the bounds for the weight values, and A is the set
of all adaptable actions.

Figure 1: Agent Cognitive Framework: The tactical behavior and
its strategy for the agents in the current hierarchical level is gov-
erned by the strategy being generated from the commander agents
in the previous hierarchical level. Central to the framework are
the adaptive tactical and strategic personalities which control the
selection process for the behaviors and strategies for each agent.

In our new strategic personality (the bottom diagram in Figure
2), the primitive actions in the tactical personality are replaced
with high level strategies. The commander has several strategies
in mind, each of which is assigned a weight before the start of
the decision making process. Similarly, if P ′strategic is the set
of all strategic personalities, the strategic personality of an agent,
Pstrategic ∈ P ′strategic, is a function that assigns a weight to each
strategy which is determined by the learning framework as elabo-
rated on in later sub-sections.

Pstrategic : S →W, (2)

where S is the set of all strategies.

3.2 Behavior and Strategy Selection

Common to any online learning framework, we need to address the
problem of exploration versus exploitation, namely, at each loop,
the behavior and strategy generators either choose to exploit the cur-
rently learnt knowledge and choose an optimal item, or to choose a
suboptimal item to create new learning instances and improve that
item’s assigned weight.

For the behavior generator, as described in [Tan and Cheng 2007],
we adopt the standard ε-greedy algorithm [Sutton and Barto 1998].
This basically means that the generator chooses a random tactical
behavior sequence with probability ε, and exploits the knowledge
to generate the best behavior (actions with the highest weight) oth-
erwise.

For the strategy generator, the selection process follows a softmax
kind of rule [Sutton and Barto 1998] where a higherwi value means
a higher chance of being selected, where wi ∈ W is the weight
assigned to strategy si ∈ S. The probability, Pr, of selecting a

Figure 2: An example tactical personality (top) and strategic
personality (bottom): For the tactical personality, each action is
tagged with a relative weight that can be evaluated into a probabil-
ity of choosing it. The shaded ones are the adaptable actions whilst
the unshaded ones are non-adaptable. The strategic personality is
similarly defined.

strategy, si, at time t is

Pr(st = si) =
ewi/τ∑n

k=1
ewk/τ

, (3)

where n is the total number of strategies and τ is a temperature
variable to control the greediness of the approach [Sutton and Barto
1998].

These straightforward selection methods ensure that behavior gen-
eration and strategy selection can be done very quickly without in-
terrupting or overlapping with actual gameplay. Also, a change in
the weights directly leads to a different tactical and strategic char-
acteristic for an agent, hence enabling a platform for variability of
gameplay which improves entertainment value. Note that strategy
generation uses a softmax rule as opposed to the ε-greedy method
used in tactical behavior generation. This is because strategically
we prefer a more constant performance over variability whereas
tactically, variability is as important as constant performance (for
the purpose of entertainment value as mentioned). A softmax rule
ensures that higher weights would always result in a higher chance
of being selected whereas the ε-greedy method chooses randomly
when exploring.

After the strategies are passed down the hierarchy and each agent
has determined its behavioral action, the game is executed until the
next reevaluation time, T . This reevaluation time is basically the
time step that is set for the agents to reevaluate the strategies and
hence their behaviors. It can be a periodic time in game or mile-
stones (for example map transitions in an RPG or respawn times in

an FPS). After each execution, a reward value, rT , is generated via
an error function

rT =
∑
ok∈O

γk|HT (ok)| −
∑
o′

k
∈O′

γ′k|HT (o′k)|, (4)

for the particular strategy, i, is used before this reevaluation time,
where O is the set of all objects of the player team (agents, build-
ings, turrets, or other objects useful in determining the winning
chance) and O′ is the set of all objects of the computer controlled
team. Ht(x) defines a function that returns the hit-points or health
of a game object x at time t. γk and γ′k are coefficients to bal-
ance the weightage of each type of unit, where

∑
all k γk = 1 and∑

all k γ
′
k = 1. This value, rT , represents the environment fac-

tor as shown in Figure 2 which is passed on to the reinforcement
process in the tactical and strategy cognitions.

3.3 Reinforcement and Command Injection

The tactical and strategic cognitions each perform a two stage pro-
cess to determine the personalities to be used in behavior and strat-
egy selection, namely reinforcement and command injection. In the
reinforcement stage, only the behavior and strategy in use (before
the current reevaluation time step) is affected. For each adaptable
action, j, in the behavior sequence in use, the update function for its
weight, wj , is

wj = wj + α(rT − rT), (5)

where α is a positive step-size parameter to control the magnitude
of change. rT is a reference point to determine whether the current
reward is large or small [Sutton and Barto 1998], and it can either
be a heuristic value or simply the average rewards over all the pre-
vious reevaluation time steps until the current time step. Similarly,
if strategy i is the current strategy in use, then the update function
for the strategy weight, wi, is

wi = wi + β(rT − rT). (6)

After the tactical and strategic personalities are updated by the rein-
forcement process, the strategy received from the previous hierar-
chy is used to temporarily affect the weight values before the selec-
tion processes are performed. This is the command injection stage.
If si−1 is the strategy passed down from the agent from the previous
hierarchy, we can define

P ′tactical = Ctactical(Ptactical, si−1) and (7)

P ′strategic = Cstrategic(Pstrategic, si−1), (8)

where P ′tactical and P ′strategic are the new personalities respec-
tively. The functionsCtactical andCstrategic can be rule-bases that
define the effect of each individual strategy on the current weights
or a machine learning system trained to assign changes to each of
the weights according to the strategy being received. In this pa-
per, the experimental setup follows a rule-base system because the
nature of our game requires domain knowledge for each strategy
received. Having the functions as rule-bases provides an avenue
for the inclusion of domain knowledge (specific to different game
genres) in our framework.

4 Empirical Evaluation and Discussion

In order to evaluate our framework in a real game environment, we
implement a typical action game scenario built on the Truevision3D
6.5 game engine (a screenshot of the environment is as shown in
Figure 3). While this scenario is close to that of an FPS, the frame-
work can be applied to other games of different genres.

4.1 Game Mechanics

Our test environment consists of two opposing teams with symmet-
rical initial geometric positions and identical team structures. Each
team consists of agents having one base to defend. The team struc-
ture of our main experiment is shown in Figure 4 with a top level
commander directing multiple sub-teams, each with a team leader
agent and a number of subordinate agents. Neither team would have
any tactical or strategic advantage at the start. The experiments are
performed in iterations that end when either team wins or a draw
occurs. A team wins only when the opposing team’s base is de-
stroyed. A draw happens when both teams have no more agents
alive but both bases are not destroyed.

Figure 3: Screenshot of Test Environment: Team A consists of the
lighter colored characters (mainly on the bottom side of the figure)
whilst Team B consists of the darker colored characters.

The constituents that make up the tactical and strategic personal-
ities are also shown in Figure 4. Tactically, each agent is able to
either melee (close range attack with larger damage), shoot (long
range attack with lesser damage) or heal an ally agent. The base
acts as a turret that has a longer range than agents and can attack a
single enemy at a time. Strategically, the strategies available to the
commander agents of each team are

1. Hunting attack. All ally agents would move towards and at-
tack enemy agents first, destroying all opponent agents before
moving on to destroy the enemy base.

2. Critical attack. All ally agents would move towards the en-
emy base and try to bring it down. They keep attacking until
either the enemy base is destroyed or the whole team is anni-
hilated.

3. Flanking attack. Some ally agents would move towards and
attack enemy agents whilst the rest of the ally agents move
towards one side of the enemy base and attack it from there.

4. All defense. All ally agents would stay near the ally base and
attack any enemy agents that come within range. When all
enemy agents are destroyed, they will move to and attack the
enemy base.

5. Attack & Defend. Some ally agents would stay near the ally
base whilst the rest would move towards and attack the enemy
agents or enemy base.

For the team incorporated with our framework (Team A), the be-
havior and strategies are selected and adapted according to the tech-
niques depicted in this paper. For the opposing team (Team B), the

Figure 4: Experimental Setup of Units’ Hierarchy: Each team in
the experiment consists of one commander, two sub-team leaders
and 6 units. All agents have the same type of tactical personal-
ity (with different weights), but the strategic personalities at each
hierarchical level are made up of different items.

tactical behavior is randomly selected between the 3 types shown.
For each experimental setup, one of the 5 strategies is chosen and
fixed for Team B. Hence Team B portrays a team scripted with a
proper strategy and at the same time having some variance in their
tactical behavior. At the start of each experimental setup, Team
A has their tactical and strategic personalities randomly initialized.
We also include an experimental setup whereby Team B chooses a
random strategy at each iteration.

To evaluate the scalability of our framework, we have also ran the
experiments with an increasingly large number of agents. The total
time needed for all the agents to complete decision making at each
reevaluation step is recorded and averaged over 500 runs for each
experiment set.

4.2 Results and Discussion

The main results are shown in Figure 5 on the last page of this
paper. The graphs show the reward value plotted against the num-
ber of iterations. We chose to include all the agents’ hit-points as
well as the bases’ hit-points for the calculation of the reward as de-
picted in Equation 4. A positive reward means Team A has won the
game, and the larger it is, the larger the margin of success (higher
performance), and vice versa. As can be seen, all the experiments
eventually converge to a stable state where Team A constantly wins.
In cases where Team A randomly starts with a poor mix of tactics
and strategies (Sets 1, 2 and 4), it loses first and tries out each of
the other approaches and eventually finds a winning strategy which
is reinforced and constantly applied. In other cases, Team A starts
with a relatively good strategy (Sets 3 and 5) which is also rein-
forced and constantly utilized to win the game. For experiment Set
2 we can see that the opponent’s strategy (all Team B agents at-
tacking the base at once) is a harder one to beat and the positive
rewards are small in value. Nevertheless Team A still finds the best
approach in the end. In experiment Set 6, Team A also manages
to find a winning strategy even though Team B randomly chooses
a strategy at every round. At around 400 iterations there is a spike
down probably due to the randomness, but Team A still manages
to recover after another 50 iterations. In general, we can observe
that our adaptive framework enables the agent to constantly per-
form better than teams with fixed approaches.

In Figure 6, the graph shows the decision making times needed for
experimental runs involving different number of agents. Although
the time required is increasing in a roughly linear fashion, it still
only takes slightly more than one millisecond for 100 agents, which
is rather fast. This shows that the framework can be implemented
even for massive modern games with a large number of intelligent

Figure 6: Scalability Test Results: The average time required for
decision making is plotted against the number of agents. The deci-
sion time increases roughly linear with the number of agents.

agents.

5 Conclusion and Future Work

We have presented a generic cognitive multi-agent framework for
both tactical and strategic planning which is shown to exhibit bet-
ter performance against various scripted opponent team tactics and
strategies, as well as one with a randomly varying strategy. Ad-
vancing from the work done by [Tan and Cheng 2007], we have in-
troduced a new strategic personality concept as well as established
a command-passing mechanism for team hierarchy. The combined
personalities provide a means for adaptation both towards the feed-
back from the environment as well as the strategy command passed
down from the previous hierarchical level. Our method also de-
couples action and strategy selection from the resource intensive
learning process, hence reducing disruptions to actual gameplay.
Moreover, the tactical flexibility in behavioral selection and decen-
tralized strategic planning process introduce interesting and vari-
able character behaviors, increasing the entertainment value for the
player.

As a next step, we hope to investigate a generic system to represent
the tactical and strategic cognitions. The system should ideally be
able to automatically provide the weight differences to the person-
alities, given a new strategy. To do so, we need to formally define
the strategy space. Also, as we did not evaluate the improvements
we achieved in terms of entertainment value, we hope to do so in the
future, using a user survey method to record the gaming experience
of players for our analysis.

References

ANDRADE, G., RAMALHO, G., SANTANA, H., AND CORRUBLE,
V. 2005. Automatic computer game balancing: A reinforcement
learning approach. In Proceedings of the Autonomous Agents
And Multi Agent Systems Conference (July), 1111,1112.

BLIZZARD ENTERTAINMENT, 2006. Warcraft III. Accessed April
12, 2006. Available via http://www.blizzard.com/war3/.

BLIZZARD, 2006. Diablo ii. Accessed April 12, 2006. Available
via http://www.blizzard.com/diablo2/.

BLIZZARD, 2006. World of warcraft. Accessed April 12, 2006.
Available via http://www.worldofwarcraft.com/.

BURO, M., 2007. ORTS - A Free Software RTS Game
Engine. Accessed March 20, 2007. Available via
http://www.cs.ualberta.ca/ mburo/orts/index.html.

CHARLES, D., KERR, A., MCNEILL, M., MCALISTER, M.,
BLACK, M., KCKLICH, J., MOORE, A., AND STRINGER, K.
2005. Player-centred game design: Player modeling and adap-
tive digital games. In Proceedings of the Digital Games Research
Conference, 285,298.

CHRISTIAN J. DARKEN, G. H. P. 2006. Findin Cover in Dy-
namic Environments, first ed. Charles River Media, Hingham,
Massachusetts.

CO-OP, S., 2006. Sven co-op. Accessed September 15, 2006.
Available via http://www.svencoop.com/.

ELECTRONIC ARTS, 2006. Battlefield 2142.
Accessed December 20, 2006. Available via
http://battlefield.ea.com/battlefield/bf2142/.

EXLUNA, INC. 2002. Entropy 3.1 Technical Reference, January.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual sim-
ulation of smoke. In Proceedings of SIGGRAPH 2001, ACM
Press / ACM SIGGRAPH, E. Fiume, Ed., Computer Graphics
Proceedings, Annual Conference Series, ACM, 15–22.

FOKA, A., AND TRAHANIAS, P. 2007. Real-time hierarchical
POMDPs for autonomous robot navigation. In Proceedings of
Robotics and Autonomous Systems, 561,571.

GERAMIFARD, A., CHUBAK, P., AND BULITKO, V. 2006. Biased
cost pathfinding. In Proceedings of the Artificial Intelligence and
Interactive Digital Entertainment conference, 112,114.

HORSWILL, I., AND ZUBEK, R. 1999. Robot architectures for be-
lievable game agents. In Proceedings of the 1999 AAAI Spring
Symposium on Artificial Intelligence and Computer Games,
AAAI Technical Report SS-99-02.

HUNICKE, R., AND CHAPMAN, V. 2004. AI for Dynamic Diffi-
cult Adjustment in Games. In Proceedings of the Challenges in
Game AI Workshop, Nineteenth National Conference on Artifi-
cial Intelligence.

HUSSAIN, T. S., AND VIDAVER, G. 2006. Flexible and purpose-
ful npc behaviors using real-time genetic control. In Proceed-
ings of The IEEE Congress on Evolutionary Computation (July),
785,792.

JOBSON, D. J., RAHMAN, Z., AND WOODELL, G. A. 1995.
Retinex image processing: Improved fidelity to direct visual ob-
servation. In Proceedings of the IS&T Fourth Color Imaging
Conference: Color Science, Systems, and Applications, vol. 4,
124–125.

KARTCH, D. 2000. Efficient Rendering and Compression for Full-
Parallax Computer-Generated Holographic Stereograms. PhD
thesis, Cornell University.

KHOO, A., AND DUNHAM, G. 2002. Efficient, realistic npc con-
trol systems using behavior-based techniques. In AAAI Technical
Report, 02–01.

LANDIS, H., 2002. Global illumination in production. ACM SIG-
GRAPH 2002 Course #16 Notes, July.

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S.,
KOLLER, D., PEREIRA, L., GINZTON, M., ANDERSON, S.,
DAVIS, J., GINSBERG, J., SHADE, J., AND FULK, D. 2000.
The digital michelangelo project. In Proceedings of SIGGRAPH
2000, ACM Press / ACM SIGGRAPH, New York, K. Akeley,
Ed., Computer Graphics Proceedings, Annual Conference Se-
ries, ACM, 131–144.

MCDONALD, D., LEUNG, A., FERGUSON, W., AND HUSSAIN,
T. 2006. An abstraction framework for cooperation among
agents and people in a virtual world. In Proceedings of the Sec-
ond Conference on Artificial Intelligence and Interactive Digital
Entertainment (June).

MICHAEL E. TIPPING, C. M. B. 1999. Probabilistic principal
component analysis. Technical Report NCRG/97/010, Neural
Computing Research Grou (September).

NCSOFT, 2006. Guild wars. Accessed April 12, 2006. Available
via http://www.guildwars.com/.

OLIEHOEK, F. 2005. Game Theory and AI: A unified Approach to
Poker Games. Masters Thesis, 561,571.

ORKIN, J. 2004. Applying Goal-Oriented Action Planning to
Games, first ed. Charles River Media, Hingham, Massachusetts.

ORKIN, J. 2004. Finite State Machines, first ed. Charles River
Media, Hingham, Massachusetts.

ORR, G., SCHRAUDOLPH, N., AND CUMMINS,
F., 1999. Cs-449: Neural networks lecture
notes. Accessed December 20, 2005. Available via
http://www.willamette.edu/ gorr/classes/cs449/intro.html.

PARK, S. W., LINSEN, L., KREYLOS, O., OWENS, J. D., AND
HAMANN, B. 2006. Discrete sibson interpolation. IEEE Trans-
actions on Visualization and Computer Graphics 12, 2 (Mar./
Apr.), 243–253.

PARKE, F. I., AND WATERS, K. 1996. Computer Facial Anima-
tion. A. K. Peters.

PELLACINI, F., VIDIMČE, K., LEFOHN, A., MOHR, A., LEONE,
M., AND WARREN, J. 2005. Lpics: a hybrid hardware-
accelerated relighting engine for computer cinematography.
ACM Transactions on Graphics 24, 3 (Aug.), 464–470.

REMCO STRAATMAN, A. B., AND VAN DER STERREN, W. 2006.
Dynamic Tactical Postion Evaluation, first ed. Charles River
Media, Hingham, Massachusetts.

SAILERA, F., BURO, M., AND LANCTOT, M. 2007. Adver-
sarial planning through strategy simulation. In Proceedings of
the IEEE Symposium on Computational Intelligence and Games
(April).

SAKO, Y., AND FUJIMURA, K. 2000. Shape similarity by ho-
motropic deformation. The Visual Computer 16, 1, 47–61.

SIERRA, 2006. No one lives forever 2. Accessed April 12, 2006.
Available via http://nolf.sierra.com/.

SIERRA, 2007. First encounter assault recon. Accessed December
23, 2007. Available via http://www.whatisfear.com/fear.html.

SILVER, D. 2005. Cooperative pathfinding. In Proceedings of
the First Artificial Intelligence and Interactive Digital Entertain-
ment conference, 117,122.

SPRONCK, P., SPRINKHUIZEN-KUYPER, I., AND POSTMA, E.
2004. Difficulty Scaling of Game AI. In Proceedings of GAME-
ON 2004: 5th International Conference on Intelligent Games
and Simulation, 33,37.

SPRONCK, P., PONSEN, M., SPRINKHUIZEN-KUYPER, I., AND
POSTMA, E. 2006. Adaptive Game AI with Dynamic Scripting.
Springer Netherlands, Netherlands.

SPRONCK, P. 2005. A model for reliable adaptive game intel-
ligence. In IJCAI-05 Workshop on Reasoning, Representation,
and Learning in Computer Games, 95,100.

SUTTON, R. S., AND BARTO, A. G. 1998. Reinforcement
Learning: An Introduction. The MIT Press, Cambridge, Mas-
sachusetts.

SWEETSER, P. 2005. An emergent approach
to game design. Ph.D Thesis. Available via
http://www.itee.uq.edu.au/ penny/publications.

TAN, C. T., AND CHENG, H. 2007. Personality-based Adapta-
tion for Teamwork in Game Agents. In Proceedings of the Third
Conference on Artificial Intelligence and Interactive Digital En-
tertainment, 37.

THUE, D., AND BULITKO, V. 2006. Modeling goal-directed play-
ers in digital games. In Proceedings of the Artificial Intelligence
and Interactive Digital Entertainment conference, 285,298.

WALLACE, N. 2004. Hierarchical Planning in Dynamic Worlds,
first ed. Charles River Media, Hingham, Massachusetts.

WHITE, C., AND BROGAN, D. 2006. The self organization of
context for multi agent games. In Proceedings of 2nd Annual
Conference on Artificial Intelligence in Interactive Digital En-
tertainment (June).

WIKIPEDIA, 2006. Game balance. Accessed December 20, 2006.
Available via http://en.wikipedia.org/wiki/Gamebalance.

YANNAKAKIS, G. N., AND MARAGOUDAKIS, M. 2005. Player
modeling impact on players entertainment in computer games. In
Springer-Verlag: Lecture Notes in Computer Science, 3538:74.

YEE, Y. L. H. 2000. Spatiotemporal sensistivity and visual atten-
tion for efficient rendering of dynamic environments. Master’s
thesis, Cornell University.

Figure 5: Experimental Results: Each experiment set has the reward value plotted against the number of iterations. In general Team A (with
our AI) is always able to converge to a set of good tactics and strategies for a winning approach.

