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ABSTRACT 1 Introduction

Location information is very useful in the design of sensor net- The fast development of sensor networks in recent years has at-
work infrastructures. In this paper, we Study the anchor-free 2D tracted a lot of interest in the net\NOI’king Community. Sensor net-
localization problem by using local angle measurements in a sen-Works, with their flexible and scalable nature, have great poten-
sor network. We prove that given a unit disk graph and the ang|es tial for a Vanety of applications such as environment monitoring,
between adjacent edges, it is NP-hard to find a valid embedding in digital battlefield, etc. Unlike other networks with more logical
the plane such that neighboring nodes are within distance 1 from Structures, sensor networks are closely related to the geometric en-
each other and non-neighboring nodes are at least distance 1 away/ironment where they are deployed. In particular, location infor-
Despite the negative results, however, one can find a planar spannefMation has been proven to be very useful in the design of sensor
of a unit disk graph by using on|y local ang|esl The p|anar span- network infrastructures. First of a”, a sensor network is “data cen-
ner can be used to generate a set of virtual coordinates that enabldric”, where individual sensors are not as interesting as their sensed
efficient and local routing schemes such as geographical routing data. But the data sensed by sensor networks, such as temperature
or approximate shortest path routing_ We also proposed a praC_Or hUm|d|ty, are meaningless if we don’t know where the data are
tical anchor-free embedding scheme by solving a linear program. from. Location information can also help routing. For example,
We show by simulation that not only does it give very good local 9geographical routing makes use of the location of sensor nodes as
embedding, i.e., neighboring nodes are close and non-neighboring2 routing criterion, where a node sends the message to the neighbor
nodes are far away, but it also gives a quite accurate g|0ba| view who is closest to the destination. Under dense sensor deployment,
such that geographical routing and approximate shortest path rout-this greedy routing will successfully deliver the message to the des-
ing on the embedded graph are almost identical to those on the orig-tination in a local and efficient manner.
inal (true) embedding. The embedding algorithm can be adapted to Location information can be obtained by using global position-
other models of wireless sensor networks and is robust to measureing systems (GPS) [14]. But GPS is expensive and does not work
ment noise. indoor. So there has been a lot of study on localization algorithms
that induce the locations of sensor nodes from their local interac-

. ) ) tions, such as the detection of local neighbors and/or the distances
Categories and Subject Descriptors: E.1 [Data]: Dqta Struc- (angles) between neighbors [28, 29, 22, 23, 24, 27, 30, 31, 2, 20,
tures—graphs and networks-.2.2 [Theory of Computation]: anal- 13 'g] Many of them assume the existence of a (sometimes large)
ysis of algorithms and problem complexityen-numerical algo-  hymper of anchor nodes whose positions are already known [28,
rithms and problems 29, 22, 23, 30, 24, 8]. In this paper we focus on anchor-free meth-
ods that deduct the geometry of the network by only the interactions
of the nodes. Existing anchor-free algorithms can be classified into
two categories based how much information they use. Some of
them use only the connectivity of the communication graph [27,
30]. Others also use the distances between sensor nodes, which
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Technology, Pasadena, CA 91125. Email: jgao@ist.caltech.edu. the localization solution is not unique, the embedded graph may
have incorrect folding, where some pieces of the graph fold on top

of other pieces without violating the distance constraints. Finding
an embedding without incorrect folding is a challenging research
problem.
are Interestingly enough, little work has been done on using local
es angle information for localization. Angles between adjacent edges
0 can be measured by using multiple ultrasound receivers [25], in
fic particular, the Angle of Arrival (AOA), or by using directional an-
tennas. Considering angle information adds one more dimension
to the localization problem. Intuitively the angle information tells
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us how the graph stretches out in different directions and preventswhere two nodes are connected by a communication link if and
incorrect folding, thus the localization problem could be made eas- only if their Euclidean distance is no more than 1. Unit-disk graph
ier. embedding is to find an embedding of the vertices in the Euclidean
In this paper, we study what can and what cannot be done usingplane such that the distance between two nodes is athibi$tere
the connectivity together with the local angle information. Given is an edge, and the distance between two nodes is moreltlian
a combinatorial unit disk grapti’ with the angles between adja-  they don’t have an edge.
cent edges specified, we want to find a valid embedding' of By using purely the connectivity information, it's known that de-
the plane. That is, we want to assign Euclidean coordinates to thetermining whether a combinatorial graph is a unit-disk graph is NP-
vertices ofG' such thai is the induced unit disk graph that meets  hard, and thus finding such an embedding is also hard [5]. In fact,
the angle constraints. We prove that this problem is hard. Specif- even a relaxed version of the problem is still hard. It's shown by
ically, it's NP-hard to find a valid embedding where neighboring Kuhn et al. that finding an embedding such that nonqagighboring
nodes are embedded no further than distance 1 from each other anghairs are at least 1 away and neighboring pairs are withir/2 is
non-neighboring nodes are embedded at least distance 1 away. And\p-hard [16]. There have been a number of heuristics proposed for
actually it's still hard to find a solution to some relaxed problems. |ocalization by mere connectivity [27, 30]. But not much is known
In particular, it's NP-hard to find a/2-approximate embedding  on the worst case bound. So far the only known theoretical result
where non-neighboring nodes are embedded at kg away, is an algorithm with an upper bour@(log?® n/log log ) on the
or a topologically-equivalent embedding where two edges cross in ratio of the longest distance between neighboring pairs to the short-
the embedded graph if and only if they cross in a valid embedding. est distance between non-neighboring pairs [21]. In the localization
In spite of the difficulty of embedding, with local angle informa-  problem with range information, we are also given the distances
tion we can find a subgrapf’ of G' such that forany valid em- between certain node pairs in the graph besides the connectivity.
bedding€ of G, the graph€(G’) induced by the same embedding  If only edge lengths are provided, finding a feasible embedding is
is a planar spanner &f(G). Specifically, no two edges cross in  NP-hard [1, 7] (also proved by a slight variation of the proof in [5]).
£(G’) and the shortest path distance between two nod&$d#) When all pairs of inter sensor distances are known, the solution is
is at most a constant factor of thatdifGG). Spanner subgraphs are  unique and can be solved by the classical Multidimensional Scal-
very useful in topology control and geographical routing. In partic- ing (MDS) method [3]. If the distances between ab@(t?) pairs
ular, geographical routing uses face routing on a planar subgraphof nodes are given and there is a unique solution, the embedding
to guide a packet out of the local minima. There has been lots of problem can be formulated as a semi-definite program and solved
work on constructing planar spanner subgraphs of unit disk graphsin polynomial time [31, 2].
(please refer to [26] for an overview), but all of them assume that | practice, many localization algorithms assume the existence
locations are already known. Here we are the first to show that actu- ¢ anchor nodes whose locations are known by GPS or other meth-
ally one does not need as much as the location information to Con- 545 Then trilateration is used to find the locations of the sensors
struct a planar spanner, only the local angle information suffices! progressively [28, 29, 22, 20, 8]. If the distances from a sepsor
Further, a straight line embedding of the combinatorial grapm three anchors are known, the locationpdé uniquely determined.
the plane gives a set of virtual coordinates for sensor nodes with gjmilar methods can also be done by using angles [23, 24]. These
which the geographical routing is guaranteed to deliver a packet {0 jhcremental solutions usually suffer from cascading errors and the

its destination if such a path exists. This shows that just for the pur- |ocgjization result can be beyond tolerable on large-scale networks.
pose of geographical routing, using accurate location information

is unnecessary. : .
For practical applications, we propose an embedding algorithm 2.2 Geographlcal routing

with local angle information that gives surprisingly good results. Geographical routing is a local and efficient routing algorithm pro-
We first formulate the embedding problem by a linear program with posed for ad hoc networks. In the traditional geographical routing,
relaxed constraints such that any valid embedding must be a feasi-each node knows its own location. A source node knows the loca-
ble solution to the LP. Through simulations, we show that the LP tjon of the destination and uses it as the goal of routing. Geograph-
finds an almost identical set of locations as the original ones, evenical routing is composed of two schemes, greedy forwarding and
when the graph is sparse. We also show that the method is robusiperimeter routing (also called face routing) [15, 4]. In greedy for-
to both noisy measurements of angles and different models of sen-warding, a message is forwarded to the neighbor whose Euclidean
sor networks — specifically, the more general quasi-unit disk graph distance to the destination is the minimum among all neighbors.
models. A planar spanner derived based on local angle information\when a message gets stuck at a node whose neighbors are all fur-
equipped with the virtual coordinates obtained through embedding ther away from the destination, it uses perimeter routing to route
enables geographical routing and approximate shortest path routingalong the faces of a planar subgraph until either the destination is
with demonstrated performance almost the same as using the reateached or greedy forwarding can be performed again. Perimeter

locations. routing can also be improved by an ‘early-fallback’ technique to
return to greedy routing as soon as possible [17]. In all these vari-
2 Related work ations, both the location information and a correctly constructed

i . planar subgraph are needed.

2.1 Localization Due to the hardness of the localization problem, people have pro-
The localization problem, i.e., determining the global geometry by posed various schemes of computing virtual coordinates in replace
using only local information, was studied in many communities of the real coordinates. The most prominent work is done by Rao
such as computational biology, machine learning, and sensor net-et al.[27], where they construct a set of virtual coordinates by us-
works. The localization problem can be formulated as a graph em- ing only the connectivity for geographical routing. But when a
bedding problem, i.e., to embed the vertices of a graph in a geomet-message gets stuck at a local minima, the only way for it to reach
ric space such that the embedded drawing satisfies desired properthe destination is to be flooded to the whole network. Comparably,
ties. A sensor network is modelled byuait disk graph (UDG) we use more information, the local angle information, and produce



an embedded planar spanner subgraph together with a set of virtuathe cone defined bxCBD < 7 and A, B are on different sides
coordinates such that stuck messages can be routed to the destinaf the line defined by’ D.

tion by perimeter routing. First we can decide ifi B is located inside the cone defined by
\CBD < = easily by the angle information. Further, 4B is
3  Preliminaries located inside the cone defined BYC'BD and A, B are on the

same side of the line defined layD, then A is inside the triangle
We start with some definitions on unit disk graphs and embeddings. BC'D. See Figure 2 (ii). Thent is connected td3, C, D due to
Throughout the paper we assume that the UDG is connected sinceplane geometry. This situation can be identified sifcé must be
otherwise we’ll work on each connected component separately.  outside the cone defined BWC AD.

Definition 3.1. A unit-disk graphis a combinatorial (unweighted)

graph induced by a set of points in the Euclidean plane such that ¢ ¢ A
two points have an edge in between if and only if their distance is c
no more than 1. D B D
A B D B
0]

We emphasize here that by the notion of unit-disk graph we mean -
the combinatorial graph without the embedding. Such a unit-disk (i (i

graph is induced by a set of points in the Euclidean plane but the Fioure 2. (i) The edaeAB is not located inside the andNCBD and

Conflgura’[lon_ of th? nodes I_R2 IS unkn_own. An embedding of thgsAB, C(}) cannotgcross each other; (i) B is located i%side the cone

such a combinatorial graph in the Euclidean plane may or may not gefined by\C'BD and A, B are on the same side of the line defined by

be the same as the original (unknown) Configuration. Foran embed-CD, then BA must be outside the cone definedY§’ A D; (ii) A correct

ding £, we denote by (p) the embedded point of a noge The crossing betweerl B andC D.

Euclidean distance between two nogeg in an embedding is

denoted byi(€(p), £(q)). We will sometimes abuse the notations

and usep to represeng (p) when the context is clear. The above lemma implies that we can identify all crossing edges
In this paper we study embedding problems by using local angle " @ \_/alld embe_ddlng wnh_locgl angle |_nformat|on. Thus one re-

information. Specifically, besides the combinatorial unit disk graph '@xation of a valid embedding is to require that the topology of the

we are also given the angles between angularly adjacent edges (A”embedded graph_ls equn_/alent with a valid embedding, i.e., only the

angles are measured counterclockwise). See Figure 1. With the®dges that cross in a valid embedding are allowed to cross.

local angles constrained there is still freedom to choose the lengths _ ) )
of the edges. Definition 3.4. A topologically equivalent embeddirfjof a graph

G with angle information is an embedding of the vertices such that
two edges cross ifi if and only if they cross in a valid embedding.
The angle between any two adjacent edgesuw is as specified.

Remark. We notice that without loss of generality we can assume
that in a topologically equivalent embedding the neighboring nodes

cras neighbors ordercd counterclockviee, 1n s paper we aseume thay 21 embedded no further than distance 1. This is because we can

p : : '

the angles between edges; andpu,., are given. always do proper global scaling that doesn’t change the topology
of the embedded graph.

Theorem 3.5. A \/2-approximate embedding is a topologically

Definition 3.2. An a-approximate embedding of a graphG with equivalent embedding.

angle information is an embedding of the vertices such that the dis- PROOF Assume that there are two edgdd3, CD that cross

tance between two nodé$< (u),&(v)) < 1if u,v have an edge  ,,h other in a/2-a ; :

. ’ 2 . -approximate embedding. Also assume that
between them iit, andd(€(u), £(v)) > 1/ if u, v don't have £* is a valid embedding. If the following two claims are true, then
an edge between them@, whereo. > 1. The angle between any £ iis topologically equivalent witis™

two adjacent edgesv, uw is as specified. Aalid embeddings an L . . .
a-approximate embedding with = 1. Claim 1: If AB,_ CD cross in a valid embe_ddm@ , then they
must also cross in @2-approximate embedding.

We observe that by local angle information, we can decide whetheProof of claim 1. If AB, CD cross in a valid embedding®, then
two edges cross in a valid embedding of the unit disk graph. Thus ©ne node must be connected to all the three other nodes. There are
when we say two edges cross in a unit disk gréphhwe actually three possible cases, as illustrated by Figure 3. For case (ii) and
mean that they cross in any valid embedding-of (iii), if the angles between adjacent edges are fixed as specified, the

configuration of the four nodes is unique up to a global rigid mo-
Lemma 3.3. If we know the angles between adjacent edges of a tion and scaling. Thud B, C'D cross in any embedding preserving
unit disk graph, we can determine all pairs of crossing edges in athe local angles. For case (i), we argue that ig'zapproximate
valid embedding. embeddingA B, C'D must also cross each other. In a valid embed-

ding £* as in Figure 4 (i),AC must be longer than botA D and

PROOF In particular, if two edgesi B, C'D intersect with each CD. Thus the anglACDA > =/3. Similarly \BDC > /3.

other, there must be a node that is connected with all the other threeThus\BD A > 27/3. If in a v/2-approximate embedding, AB
nodes [5, 11]. SupposB is connected with the other three nodes. doesn't cros€'D, thenC is embedded inside the triangleD B, as
ThenAB, CD cross each other if and only £ B is located inside shown in Figure 4 (ii). FirsNBCA > \BDA > 2r/3. On the
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(iii)

(ii)

Figure 3. In a valid embedding of the unit disk gragh if two edgesA B,
CD cross each other, there are only three possible cases.

other handd(£(A),£(C)) > V2/2, d(E(B),E(C)) > v2/2,
d(E(A),E(B)) < 1. Thus,

d(£(A),£(C))* +d(E(B),E£(C)* > 1 > d(E(A),E(B))*.
So\BCA < m/2. This leads to a contradiction.

T~
D
(i)

Figure 4. (i) A valid embeddings*; (i) A v/2-approximate embeddingy.

Claim 2: If AB, CD cross in a/2-approximate embedding,
then they must also cross in a valid embeddirig

Proof of claim 2. There are six possible cases based on how the
nodes are connected with each othe€inSee Figure 5. We argue
that none of the cases have both properties that

e AB,CD intersect each other ifi and
e AB,CD don'tintersect each other ifi".

(vi)

(iv)

Figure 5. A v/2-approximate embedding. Solid lines are edges iff.

1. For case (i) in Figure 5, let’s take a look at triangleAC' D
under embedding. We know thatl(£(A), £(C)) > v/2/2,
d(E(A),E(D)) > v/2/2,d(£(C),E(D)) < 1. So the angle
\CAD < 7 /2. Similarly, N\ACB < 7/2,\CBD < 7/2,
\BDA < m/2. This leads to a contradiction since the sum
of the inner angles of a 4-gon must Pe. So this case can
never happen ig.

2. Case (ii) cannot happen for&2-approximate embedding,
The intuition is that if the two edges don't cross in a valid
embedding, then the angeC'OB < 7 /6. This contradicts
with the fact thad(€(B), £(C)) > v/2/2. The details are
in Appendix 8.

3. Case (iii) cannot happen. By the angle constraint, the two
edgesAB, C'D must cross in any planar embedding. But in
a valid embedding there must be a node that is connected to
three other nodes. This leads to a contradiction.

. For cases (iv), (v) and (viAB andCD cross in any valid
embedding.

Therefore if two edges don't cross in a valid embedding, they
cannot cross each other in ag{2-approximate embedding. This
shows that ar/2-approximate embedding is a topologically equiv-
alent embedding.

4 The hardness of UDG embedding with
angles

As shown in the last section, by using local angle information we
can decide on all crossing edges in a valid embedding. However,
local angle information is not sufficient for us to decide a valid em-
bedding. It turns out that the problem of finding a valid embedding
by using the connectivity and the local angle information is still
hard. In fact it's even NP-hard to find a topologically equivalent
embedding or a/2-approximate embedding. In this section we
show a reduction from the 3SAT problem.

A 3SAT problem consists of a set of Boolean variables and clauses
such that each clause is composed of at most 3 literals, which are
either negated or unnegated. The 3SAT problem is to find an as-
signment to the variables such that all the clauses are satisfied. A
3SAT instance” can be formulated as a gragh- where vertices
are the set of clauses and variables, and there is a path connect-
ing a clause with a variable (or its negated version) if the variable
appears in the clause. Please see Figure 6 for an example. Such
a graph can be drawn on a grid in polynomial time [5]. Breu and
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Figure 6. The graphG ¢ of a 3SAT instancézy V2 VZ3) A (22 VZ3) A
(acl V xo V 1‘3).
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Kirkpatrick proved the NP-hardness of unit disk graph embedding
by a reduction from a 3SAT problem [5]. Now we focus on real-
izing the graphG¢ by a unit-disk graph with the angle constraint
such that there is a topologically equivalent embedding if and only
if the corresponding 3SAT problem is satisfied.

4.1 Basic building blocks
We first present a set of building blocks by using unit disk graphs.



e Spring. A spring is a line segment with length betwetsnd
2¢. It can be realized by a set @f + 1 nodes placed on a
straight line such that there are only edges between adjacent
pairs, as shown in Figure 7 (ii). In particular, each edge in
a unit disk graph has length at mdstso a chain o2/ + 1
nodes have length at mo2f. For 3 adjacent nodes, b, c,
sincea cannot communicate witty their distance must be at
leastl away. Thus the chain is no shorter than

A >( B A B
Oo———O o—O0——O0—0——0
<2 2+1

@ (i)

Figure 7. (i) A spring; (ii) The realization of a spring by unit-disk graphs.

e Amplifier . An amplifier is a triangle with fixed inner an-
gles. Thus the ratio between the edge lengths of the triangle
is fixed. For a numbef we can use an amplifier to get the
number?’ = c - ¢ for anyc > 0. An amplifier can be real-
ized by a unit disk graph with pre-specified angles between
adjacent edges.

A 4 C A C

-

@ (i)

Figure 8. (i) An amplifier; (ii) The realization of an amplifier by unit-disk
graphs.

e Propagator and Crossing Propagator A propagator is a

two ways, either by putting the squak&'G H to the left of
I1JKL or the other way around. In the first case, the length
of the pathAE is no more tharf/2, the length ofH D is at
least2¢/3. In the second case, the length of the path is
atleas//3, and the length off D is no more thard/2. The
segmentsAFE, HD, BJ, KC are springs, thus their lengths
can be stretched and shrinked by a factor no more 2han

<12 >20/3 >20/3 <2
Alle  # D 4] Te o
I L
! 2/3
N

B[TJ AI I

11¢/6 110/6

0] (ii)

Figure 10. The only two embedding of a concave cycle without incorrect
crossings.

4.2 Realization of G by unit disk graphs

rectangle. The lengths of the opposing sides of the rectangle Now we are ready to introduce how to realize the gréhhfor a
are the same. It can be implemented by a cycle of nodes with 3SAT instance” by using unit disk graphs with angle constraints.
corresponding angle constraints. A crossing propagator is a The graphG ¢ consists of three components: clauses, variables and

pair of crossing rectangles. See Fig. 9.

Figure 9. (i) Propagator; (ii) Crossing propagator.

e 0/1 block By using the above building blocks, we can con-
struct a 0/1 block that has only two types of valid embedding.
In short, we construct a concave cycle with one top “tooth”
and one bottom “tooth”. If we don't allow the teeth to over-
lap, there are basically two ways to embed the concave cy-
cle, either by putting the top tooth to the left of the bottom

tooth, or the other way around. Please see Figure 10 for the

two types of embedding. The concave cycle is bounded by
AEFGHDCKLIJB, the top tooth is the part of the cy-
cle EFGH, the bottom tooth is the part of the cycld LK.
Suppose the length of B = C'D is ¢, we use amplifiers and
propagators such that the lengthBC = DA = 11£/6.
There are two squareEFGH, IJKL inside the rectan-
gle ABC'D. Both of them have side lengtlY/3. The two

wires to connect them.

e Wires The wires are simply propagators. If the width of a

propagator is no more thati2, this means the variable con-
nected by the wire is assigned ‘1’. If the width of a propa-
gator is at leas®¢/3, the variable connected by the wire is
assigned ‘0’ inGc.

Variable componentsA variable is implemented by a 0/1
block. In fact, we use the length &fE to represent the value
of a variable and the length df D to represent its negated
version. A variablev is assigned if the length of AE is
less than¢/2, and0 if the length of AE is at least2//3.
Correspondingly we use the length HfD to represent the
negated variable.

Clause components\ clause component puts constraints on
the input variables. In particular, it put a total maximum
length on the concatenation of springs whose lengths rep-
resent the assignments of input variables. See Figure 11 (i)
for an example. If a clause is composed of three variables,
then the outer rectangle has width¢/6. Thus at least one

of the variable has length less thé&fe. That is, the clause

is satisfied if at least one variable is assigned valudhe
clauses with two or one variables are designed similarly. See
Figure 11 (ii) and (jii).

squares don't have edges in between. Thus any embedding Now we put all the components together and show a realization
without incorrect crossings will have to embed the graph in of the graphG¢ (Figure 6) for a 3SAT instanc€' by a unit disk



- O(1)-hop angles & distances$ in P this paper
(i) (iii) Q(n?) pairs distances inP [2,31]
all pairs angles inP this paper

) Input Hardness| ref.
¢ u1 ) UDG graph only NP-hard | [5, 16]
11¢/6 vy vy O(1)-hop distances NP-hard | [1]
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Figure 11. Clause components ({p1 V vz V v3); (ii) (v1 V v2); (iii) v1.

Figure 13. A summary of the hardness of finding a valid embedding of a
UDG.

graph in Figure 12. Intuitively, the hardness of the problem is due
to that the ways to embed the 0/1 blocks are affected by each other

through the constraints put by the clauses. 44 A summary of hardness of localization
‘ Localization by using only angles between adjacent edges in a unit
Cy } disk graph is shown to be NP-hard. However, if we have more
information, localization can be solved easily from a theoretical
Cy ‘ point of view. For example, if we have the angles between all pairs

of nodes in the graph, then the graph is basically determined up to
a scaling factor. For another example, if we have both the lengths
of the edges and the angles between adjacent edges in a unit disk
graph, the graph is uniquely determined. A short summary of the
hardness results on localization is shown in Figure 13.
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. o . . _ 5 Planar spanner construction
Figure 12. The realization of a 3SAT instand&y V x2 V Z3) A (z2 V

73) A (21 V T2 V 23) by a unit disk graph. Shaded areas are 0/1 blocks |y the previous section we've shown that by using the communica-
gti\éz;\irelgk.)les. In this example, = 1, z2 = 0, z3 = 0. The instance is graph and local angle information, it's NP-hard to find a valid

embedding of a unit disk graph. On the positive side we’ll show
that by local angle information we can find a planar spanner sub-
graph whose embedding in the plane can be used for geographical
routing with guaranteed delivery.

A planar graph is a graph that can be embedded in the plane with
Now we are ready to prove the NP-hardness of unit disk graph em- no edge crossings. &spannel’ of a graphG is a subgraph of
bedding with local angle information. such that the shortest path distance:.of in G’ is at mostc times
the shortest path distance®fv in G, where the shortest path dis-
tance is the sum of the Euclidean length of all the edges on the
shortest pathc is the spanning ratio of’. A spanner with a con-
stant spanning ratio is usually called a spanner. In this section we'll
show that one can construct a planar spanner for a unit disk graph
by using only the angles between adjacent edges. Recall that the
location information is not available. Thus when we say a planar
spanner we mean a subgraphof the input unit disk graplé: such
that forany valid embedding (G), the subgraplt?’ on the same
embeddingg (G") is a planar spanner. Finding a spanner subgraph
can be easily done without the location information, however, find-
Corollary 4.2. It's NP-hard to find a valid embedding of a unit- ing a spanner subgraph that has a planar embedding for any valid
disk graph with local angle constraint. embedding of the UDG doesn’t seem to be intuitive. The idea is
to find a planar subgraph that is guaranteed to contain a restricted
PROOF The proof is similar with the above theorem. For a Delaunay graph, i.e., a subgraph of the Delaunay triangulation with
graphGc of a satisfiable 3SAT instang€, we can find an em-  all the edges longer thaindeleted [11].
bedding€ of G¢ with no incorrect crossings. Further we can do
proper scaling and local arrangementésuch thatf is a valid
embedding.

4.3 Hardness results

Theorem 4.1. It's NP-hard to find a topologically equivalent em-
bedding of a unit-disk graph with local angle constraints.

PrROOF By the construction of7 - for a 3SAT instancé&r ¢, we
can see that the the instanCecan be satisfied if and only if we can
find an embedding ofi¢ in the plane that has the same topology
and preserves all the local angles. Since 3SAT is NP-hard, it's also
NP-hard to find a topologically equivalent embedding.

A Delaunay triangulation on a point setR? is a triangulation
with “empty-circle” property: the circumcircle of any triangle has
no other points inside. A restricted Delaunay graph, defined as the
subgraph of the Delaunay triangulation with all the edges longer
Corollary 4.3. It's NP-hard to find anx-approximate embedding ~ than 1 deleted, is known to be 2.42-spanner of the unit disk

of a unit-disk graph with local angle constraints, fok V2. graph [11, 19]. Now we claim that with local angle information
we can find a subgrapfi’ of G that is planar and contains all the
PROOF We construct a grapt¥c for a 3SAT instance&”. By edges of a restricted Delaunay graph. Thiids a planar spanner
Theorem 3.5, 8/2-approximate embedding is a topologically equiv- subgraph of7 with spanning ratic.42.
alent embedding. Thus if we have\&-approximate embedding Suppose two edged B, CD cross each other in a unit disk

€ of G, thenC'is satisfiable. The other direction can be proved graph, then only one of them can possibly be a Delaunay edge due
similarly as the above proof. to the planar property. We show that we can decide which onetis



a Delaunay edge by using the local angle information. To be spe- subgraphG’, each node is assigned an Euclidean coordinate that
cific, there are only three possible cases of a pair of crossing edgesgcan be used in geographical routing [15, 4]. Although in our case
as shown in Figure 3. Notice that in cases (ii) and (iii), because the location information can not be obtained unléss= N P, the

of the given angle information, the positions of the four nodes are embedded planar subgraph provides a set of virtual coordinates that
unique up to a rigid motion and a scaling factor. Since the Delau- are equally good for geographical routing. The virtual coordinates
nay triangulation is invariant under global scaling, there is only one guarantee the delivery of a packet if possible at all.

possible Delaunay triangulation, which can be decided by only the

angles. _ _ 5.2 Approximate shortest path routing
For case (i), nod€ is at least of distancé away from nodes
A, B. See Figure 14. We take the bisectors of the eddg BD, In general, graph labelling is to assign a set of distributed labels

41,42, that intersect at a poir®. O is also the center of the cir-  to the vertices such that the shortest path can be inferred by using
cumcircle of AABD. The linesty, ¢, divide the plane into four only the labels of the source and destination. In particular, one can
quadrants. Nod€' must be inside the same quadrant with n@le compute a set of labels, each with size at most/nlogn), on
sinced(E(C),E(D)) < 1 < d(E(C),E(A)), d(E(C),E(D)) < the vertices of a planar graph withvertices, due to the fact that a

1 < d(&(C),E(B)). ThusC is inside the circumcircle ch ABD. planar graph enjoys @(y/n) balanced separator [12]. The basic
This implies that the edgd B is not a Delaunay edge, since it vi- idea is to partition the graph recursively into pieces by small-size
olates the “empty-circle” property of the Delaunay triangulation. separators. The number of recursionsign. For a separator of

a subgraphP, we compute and store distributedly the shortest path
trees of P centered at all nodes of the separator. Each node has
a label with sizeD(y/nlogn). Therefore with the planar spanner
G’ of the unit disk graph, we can use the above graph labelling
algorithm to construct a set of labels with si@€+/n logn) such

that one can find &.42-approximate shortest path 6f by using

only the labels of the source and the destination.

6 A practical solution to UDG embedding and
routing with angles

0 0

) o ) o o Embedding a unit-disk graph is NP-hard, and it is so even when
Eg‘g‘?ctﬁ-] II':(':T: g?terfa?]releidg?é” the unit disk graph. Nedenust lie in the restriction is relaxed to be finding a topologically equivalent
9 : embedding. In practice, however, we still hope to use the local an-
gle information to find localization that well approximates the true
sensor network. The planar spanner of a sensor network is certainly
By the above argument, one can decide a non-Delaunay edgevery useful for geographical routing and approximate shortest path
between a pair of crossing edges in a unit disk graph. Thus we canrouting; yet before the routing works, the spanner firstly needs to be
eliminate crossings by always deleting non-Delaunay edges. In therealized in the plane where edges are embedded as straight-line seg-
end we'll have a planar subgraghf such that all the Delaunay  ments not crossing each other. There are currently known straight-
edges with length no more than 1 are kept. Thatfiscontains the  |ine embedding algorithms for planar graphs [9, 6]; however, when
restricted Delaunay graph, which is a constant spanner. such algorithms are applied to planar spanners of UDG, they distort
the edge lengths and the relative positions among nodes extremely
Theorem 5.1. Given a unit disk graph and the angles between ad- severely, and thus are not effective in practice. In this section, we
jacent edges, one can construct a planar spanner subgraph witlshow that we can construct an embedding method based on linear
spanning rati@.42. programming, which produces very good localization solutions; the
solutions lead to nearly optimal routing performance as well; we
We should also notice that there are possibly infinitely many also demonstrate the robustness of the embedding method to noisy
valid embeddings of a particular unit disk graph that satisfies the measurements of angles and to more general topological models of
angle constraints. However, the planar spanner we found is thesensor networks. This shows that using local angle information to
same for all such embedded graphs. This is a little counter-intuitive do localization and routing is practically good for sensor networks.
since Delaunay triangulation has been considered to be very deli-

cate — a tiny movement of a single point can possibly change the :
whole graph structure. Yet we show that the restricted Delaunay 6.1 UDG embeddlng based on LP

graph has some kind of robustness. Further, such a planar spanye formulate the embedding problem by solving a linear program.
ner subgraph can help us with efficient routing in a sensor network. we include as many constraints as possible such that the optimiza-
In particular, it can be used to produce a set of virtual coordinates tion remains a LP. We take the length of each edgé(e), as a

for efficient geographical routing, or a set of distributed labels for variable. We arbitrar”y p|Ck an edge and make thaxis be par-

approximate shortest path routing. allel to it. By the fact that we know the angle between any two
adjacent edges, thabsolute angleof every edgee — the coun-
5.1 Geographical routing with guaranteed terclockwise angle between the positiveaxis ande — can be

deIivery uniquely determined. We see every edge as the superposition of

two directed edges of opposite directions, whose absolute angles
It's known that any planar graph has a straight line realization in differ by =. Then a valid UDG embedding satisfies the following
the plane [9, 6]. By using a straight line embedding of the planar constraints.



Edge-length constraint V edgee, we have
0<(e) <1. @

Cycle constraint For any cycle that consists of eddles,

are connected by edges, then every cycle that travels through mul-
tiple rigid subgraphs enables us to derive two equations like the
cycle constraindescribed before. If there are enough such equa-
tions, the ratios among the sizes of those subgraphs and the lengths
of the connecting edges can be uniquely determined — then those

€2, - ,ep}, Where forl < i < p, the absolute angle af subgraphs and the edges between them unite and form a larger rigid
Is f;, there exist two constraints subgraph, all of whose edge lengths can be represented with only
x one variable. (For example, see Fig. 15(iii), where two rigid sub-
{(ei) cos e, =0, (2 graphs share the nodé and are also connected by an edgé€'.
i=1 All the edge lengths there have determined ratios between them-
selves and therefore can be represented with only one variable.)
X . The improvement by this approach is large. For example, when
_ t(ei) sin e, = 0. ®) 1000 nodes are placed inl& x 18 square with a uniform distri-
=t bution, the largest connected component typically contains more

e Non-adjacent node pair constraint For any two adjacent ~ than4500 edges; by the above approach, the number of variables
edgegly e2 Whose three endpoints do not induce a triang|e n the LP can nearly aIWayS be reduced to be |eSS maﬁ-hen the
subgraph, we have number of linear constraints can also be reduced.

U(er) + L(ez) > 1. (4) The above method not only reduces complexity, but also gives

us additional constraints for further guarantee on the quality of the
e Crossing-edge constraint For any two edgesl B andC' D embedding. For any two non-adjacent nodesind B in a rigid
crossing each other, one of the four nodes must be connectedsubgraph, lef(e) denote the edge length in the subgraph specially
to all the other three. Let's sap is connected t4, B and chosen to be the variable, theaB| = ¢ - ¢(e) for some constant
C, andAB crosse<’' D at the pointz (see Fig. 15(i)). Then c. We include the constraint- £(e¢) > 1in the LP.

here exi h nstrain . . .
there exists the constraint We have implemented the embedding algorithm and measured

(5) its performance on a variety of inputs. In the first experiment, we
placedn nodes in a5 x 15 square with a uniform distribution, and
embed the largest connected component. The results are shown
in the top part of Fig. 16, where each result is averaged dver

A experiments. In Fig. 16Jistance violationis the number of non-
adjacent node pairs that mistakenly have distance less than or equal
to 1in the embeddingle,ro- is theminimum distanceetween two
non-adjacent embedded nodes that mistakenly have distance less

Bc than or equal to 1 in the embedding. (&9..- < 1if such a pair of

(iii) nodes exist; if no such node pair exists, wedgt.., = 1). Extra
crossingis the number of edge pairs that do not cross in the true

UDG but mistakenly cross each other in the embedding. Note that

the other criteria for embedding are guaranteed to be satisfied by the

LP method: theedge-length constrairguarantees that every edge

has length at most 1; theycle constraintguarantees that all the

The above constraints serve as the linear constraints in our linearangles between adjacent edges are as specifiedrdhsing-edge
programming. A feasible solution to the LP gives us an embedding constraintguarantees that any two edges that cross in the true UDG
of the UDG, since we can use the edge lengths of a spanning treealso cross in the embedding. In Fig. 16 some additional properties
and the angle information to determine the node positions. There are displayed as well, whereder of graphis the number of nodes

are many ways to select the objective function; as a heuristic, we in the embedded UDG, anmibde degreés the average degree of

choose it to be maximizing the minimum length of all edges. nodes. A typical embedding result is shown in Fig. 17.

When the UDG has lots of edges, the large number of variables |, 5 second experiment, we place nodes in an annulus with ex-

and constraints in the LP will lead to high complexity. ‘In such o001 radiugr.5 and internal radiug.5. The results are shown in

cases, we can almost alwgys use the following method to signif_i- the bottom part of Fig. 16. A typical embedding result is shown in
cantly reduce the complexity. First we reduce the number of vari- Fig. 18.

ables. For any three edgésB, BC andC A that form a triangle,
since the values oONABC, \BCA and \CAB are given, the
three edge lengths have fixed ratios. So we can regard/0Alip)

sin \DAB
sin(NADC +\DAB)’

¢(CD) > |zD| = ¢(AD)

Figure 15. (i) Crossing-edge constraint. (ii) A subgraph where any two
edges are related through a sequence of triangles. (iii) Two rigid subgraphs
sharing noded and connected by edgeC.

We can clearly see that the results are very good. Compared to
previous results on embedding in the literature, our results can be
as a variable, and represent the lengthB6fandC A respectively seen to have superb performance without using landmarks [2] or
by ¢1 - ¢(AB) andcs - £(AB), for some constanis andcz. Thus edge-length information [13], even when the edges in the unit disk
three variables are reduced to one variable. Similarly, if a subgraph graphs are sparse. The number of non-adjacent node pairs having
of the UDG satisfies the condition that for any two of its edgges distance less than or equal to 1 in the embedding is very small, and
ande,, there exist edges,, ez, - - -, ep—1 SuUch thake;_, ande; are even for such node pairs, their distances are close to 1. The number
contained in a triangle fof < i < p (see Fig. 15(ii) for an exam- of incorrect edge crossings in the embedded graphs is very close
ple), then all the edge lengths in this subgraph have fixed ratios — to 0. We have also conducted experiments with many other inputs
therefore they can be represented with only one variable. We call and in areas of other shapes, and the results have been consistently
such a subgraph igid subgraph To push this approach further, very good. Therefore the LP-based method does produce an almost
we observe that if several rigid subgraphs share common nodes ortruthful localization for sensor networks.



network in square 16
order of node | distance| derror extra
graph degree| violation crossing <A —
n=1200 | 3322 | 3.6422 0.80 | 0.9728 | 0.00 .~y N V- .
n = 400 337.96 5.4512 9.68 | 0.7642 0.50 A >
n = 600 596.82 7.9110 6.50 | 0.8714 0.68 B
n = 800 799.64 | 10.5237 1.60 | 0.9568 0.10
n = 1000 999.94 | 13.1944 0.68 | 0.9601 0.00 i
network in annulus
order of node | distance| derror extra ]
graph degree| violation crossing
n = 200 59.76 4.1810 1.70 | 0.9368 0.00
n = 400 397.30 7.4084 6.62 | 0.8426 0.42 1
n = 600 599.88 | 11.0106 0.90 | 0.9570 0.08
n = 800 799.88 | 14.6423 0.10 | 0.9909 0.00 1
n = 1000 | 1000.00 | 18.2822 0.00 | 1.0000 0.00
Figure 16. Performance of embedding unit disk graphs deployed in a
square and an annulus. Each result is averagedsovexperiments.

16

6.2 Geographical routing and approximate
shortest path routing

In this section we examine the performance of routing schemes on
the embedding of a unit disk graph by the linear program. In par-
ticular, given a unit disk graph with angle constraints, we find an
embedding by the LP. Further, we embed the planar spanner con-
structed in the previous section using only local angle information.
In particular we exclude the edges not in the spanner from the em- 7 P /4"
bedded UDG,; if two edges still cross, we arbitrarily exclude one , 57 N\ { AN 4“»{/
(this second step is heuristic). We run a particular geographical 3 X
routing protocol (GPSR) and the approximate shortest path routing
on this embedded UDG and its planar subgraph and compare the
performance with that on the original (true) embedding.
Geographical routing and the approximate shortest path routing
have their special requirements that differ from the criteria com-
monly used for localization. Geographical routing constantly makes
local decisions on choosing the next hop, so it is important that the
ranking of the distances from nearby nodes to any faraway desti-
nation is well malntalned by the embgddlng. The graph-labelling- Figure 17. The unit disk graph of 597 nodes randomly deployed inside a
based approximate shortest path routing routes along shortest pathgs", 15 square. Top: the original UDG. Bottom: embedding by LP.
in planar spanners, so the distances between all pairs of nodes, ad-
jacent or not, need to be well maintained in the embedding. Those
requirements are global structures of a localization and differ from
the comparatively more local criteria commonly used for localiza-
tion — whether the node distance passes the threshold of 1, ornal radius7.5 and internal radiug.5, while other conditions are
whether two edges incorrectly cross or not cross. The success of theunchanged. The results for GPSR and approximate shortest path
two routing algorithms in the embedded graphs shows the power of routing (ASPR) are shown in Fig. 19, where each result is aver-
local angle information for routing, which reaches beyond the com- aged ovel50 experiments an@0 source-destination pairs in each
mon objectives of network localization. experiment.

We experiment on sensor networks embedded with the LP ap-
proach, and compare its routing performance to that of the sensor Fig. 19 shows that for GPSR and ASPR, they both have the same
networks with true coordinates. In the first experiment, we place routing performance in the embedded networks as in the true net-
n nodes in al5 x 15 square with a uniform distribution, and em-  works, both in terms of length and hops. In fact, a detailed study
bed the largest connected component. TP@source-destination showed us that most of the time, the routing routes in the embedded
node pairs are randomly selected, and routing is performed for eachnetworks are identical to their counterparts in the true networks.
pair. We measure the Euclidean length (resp., number of hops) of We have also conducted experiment for many other inputs and in
a routing path, as well as that of the routing path with the same areas of other shapes, and the results have been consistently as
source-destination pair in the graph with true coordinates; we call good. Thus not only does the LP give very good local embed-
the ratio between them thength distortion(resp.,hop distortior), ding, i.e., neighboring nodes are close and non-neighboring nodes
and denote it byD, (resp.,D;). (Note that the Euclidean length  are far away, but it also gives a quite accurate global view such that
of a routing path performed on the embedded graph should still geographical routing and approximate shortest path routing on the
be measured based on the true Euclidean lengths of its edges.) Irembedded graph are almost identical to those on the original (true)
the second experiment nodes are placed in an annulus with exterembedding.
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network in square

16 n = n = n = n = n =
200 400 600 800 1000
] GPSRD; | 1.1549 | 1.0011 | 1.0000 | 1.0000 | 1.0000
GPSRDy;, | 1.1403 | 1.0007 | 1.0000 | 1.0000 | 1.0000
ASPRD; 1.0000 | 1.0000 | 1.0001 | 1.0000 | 1.0000
ASPRD);, | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
network in annulus
n = n = n = n = n =
200 400 600 800 1000
GPSRD; | 1.0580 | 1.0078 | 1.0014 | 1.0000 | 1.0000
GPSRDy;, | 1.0575 | 1.0099 | 1.0012 | 1.0000 | 1.0000
ASPRD; | 1.0000 | 1.0001 | 1.0000 | 1.0000 | 1.0000
ASPRDy, | 1.0000 | 0.9989 | 1.0000 | 1.0000 | 1.0000

Figure 19. Length distortion and hop distortion for GPSR and ASPR, aver-
aged oveb0 experiments and0 source-destination pairs per experiment.
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Specifically, thecycle constraints modified to be

x
| l(e;)cosbe,| <e- | sin b, |,
=1 =1
and
g x X
| f(ei)sinbe,| <e- | cos O, |,
i =1 =1
wheree is an additional variable. Theon-adjacent node pair con-
] straint is modified to bel(e1) + £(e2) > « due to the Quasi-
UDG property. Theedge-length constrairis maintained, and the
1 crossing-edge constrainis discarded. The objective function is
modified to be minimizinge — min. #(e). A solution of the LP
1 gives the edge lengths; then we randomly choose a spanning tree
of the network, and use its edge lengths and measured angles to
1 determine node positions. The random spanning tree is generated a
few times, and the one that gives comparatively better embedding
6 performance is picked. In the final step, minor local adjustments in
the node positions and the network size scaling factor are used to
further improve the embedding result.
Figure 18. The unit disk graph of 600 nodes randomly deployed inside an  In the following experiment, we assume that each node measures
annulus. Top: the original UDG. Bottom: embedding by LP. the direction of an incident edge with an error uniformly distributed
in [-A,+A]. As a result, the error of a local angle between ad-
jacent edges can be as large2ds or —2A. For the quasi-UDG
model, we assume that for two nodes whose distanséetween
« and 1, there is an edge with probabili%{%. Such a model has

In this subsection, we address the localization problem with nois the property that nearby nodes are more likely to have edges. We
’ ; P Y .place 225 nodes in B) x 10 square. For the node positions we use
angle measurements and with sensor networks modelled as quasi:

e . ! the grid with perturbationmodel. Specifically, The position of a
unit disk graphs. The simulation we have shown so far assumes . AN ; . )

. node indexed byi, j) is (i- 0+~ cos ¢, j -0+ sin ), whered is
that the angles. are measured acgurately. In practice measuremen, . grid’s step sizey is an i.i.d. Gaussian variable with mean 0 and
ggr? rljeairrfa?cesl/rlig IefoJ ht?e?aouds?amrr:gt\/?/grslfﬂﬁﬁrs rng ‘E,rekfoif‘ (;JUZGIOVafianceai, andy is an i.i.d. variable uniformly distributed in the

’ ’ range(0, 27]. For this experimenty = % ando, = 1.5. The per-

noise, signal interference or obstacles, and the transmission range?ormance measurements include theal distance violationwhich

o Al 01 the number o ode pars tat e ajacen bt haeenbedcin

nodes have an edge for sure if their distance is no’moredharil d!stance more than 1 or that are non-_adja(_:ent_but ha_lve gmbeddlng

don't have an edge if their distance is more than 1 apartian,d maydIStanCe less than,. and thetotal crossing V|olat|onwh|ch is the

or may not have an edge if their distance is betweemd 1 [,18] _number of edg_e pairs that do not actually cross but mistakenly cross

' in the embedding or the other way around. The results are shown in

We will show by simulation that the embedding algorithm by LP  Figure 20. Each result is averaged over 50 experiments. A typical

is robust to measurement errors and network models. Noisy mea-result is shown in Figure 21.

surements will introduce inconsistency in the input data. For ex-  Figure 20 shows that the embedding algorithm by LP is quite

ample, the measured inner angles of a cycle may not sum up to therobust to noisy measurements of angles and the quasi-UDG model.

correct value. Thus we modify the constraints of LP accordingly. The values of total distance violation and crossing violation are

6.3 Variations



total distance violation
A=1°TA=2°TA=3° A=4°] A=5°
a=0.8] 29.66 34.52 42.32 51.90 54.50
a=0.6 17.36 17.56 20.08 24.46 27.76
a=0.4 7.86 9.08 9.18 9.44 10.18
a=0.2 4.00 3.08 4.08 4.30 5.22
total crossing violation
A=1°TA=2° A=3° A=4°] A=5°
a=0.8] 69.46 77.58 90.98 128.26 | 134.24
a=0.6 | 3572 38.68 38.96 52.60 57.80
a=0.4 11.94 13.68 16.10 16.38 16.96
a=0.2 6.98 5.60 7.98 9.26 9.56

Figure 20. Performance of embedding quasi-UDG with noisy angle mea-
surements. Each result is averaged over 50 experiments.

substantially greater than those in Figure 16, but they are not large
considering the size of the graph. And a detailed study shows that
the global structure of the graphs is maintained quite well, even
though in our experiments no landmarks are used to help fix the
large-scale structure. That can also be seen from Figure 21. We
have conducted experiments with many other inputs and different
quasi-UDG models and measurement error models, and the results
have been very consistent.

7 Summary and future work

In this paper we studied embedding a unit disk graph in the plane
with angle constraints. We show theoretically that this problem

is actually NP-hard. We also propose a solution based on linear
programming that gives very good results in practice. This work

raises a few open questions. For example, it's unknown whether
one can find an algorithm that gives a good approximate embedding
with theoretical bounds in the worst case. Also, the linear program
mentioned in this paper is a centralized algorithm, but in practice

distributed localization methods are more desirable.

12+ 1
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Figure 21. Embedding a quasi-UDG, with = 0.8 andA = 3°. Top: the

original quasi-UDG. Bottom: embedding by LP. The total distance violation
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Without loss of generality we assume that edg® is no shorter
thanC' D and the embedding looks like Figure 22 (i). First, if
AB,CD cross in&g, then\BAD + \CDA < =. Otherwise
AB, CD will never cross in any embedding preserving the angles.
Notice that the anglé between lineAB, C' D doesn't change for
any embedding preserving the angles. We argue@lisitat most
/6 if we can find a valid embeddin§* such thatd B, C'D don’t
cross. See Figure 22 (ii). Specifically, in a valid embeddirig
there are no edge$C in the unit disk graph. Thus*(C)) is outside
the unit disk centered &~ (A). £*(B), £*(D) are inside the unit
disk centered af* (A). It's not hard to see that the angl@chieves
the maximumn /6 when£*(A). £*(B), £*(D) are exactly of
distancel pairwise apart and is arbitrarily close taC' such that
CD is arbitrarily close to the tangent &t Sof < «/6.

In a v/2-approximate embedding, suppose) is the intersec-
tion of edgesAB,CD. \BOC = 0 < 7/6. Since the length
of BC,BD,CA are all greater than/§/2, the angles\ACB,
\CBD are both less than/2. Thus the angl&ABCD, \CBA
are less tham/2 as well. Assume without loss of generality that
BO is longer thanCO. We take the perpendicular line through
B to the lineC'O and denote the intersection & P must be
on the interior of line segmeitO since\OCB < 7 /2. Thus the
length of BC' achieves the maximum whe&rO has the same length
of BO. Thusd(£(B),E(C)) < 2d(E(B),£E(0))sin(r/12) <
2sin(7/12) ~ 0.52. This contradicts with the assumption that
BC has length at leasy2/2.



