Body-and-cad geometric constraint systems

Kirk Haller
SolidWorks Corporation
Concord, MA 01742
khaller@solidworks.com

Ileana Streinut
Smith College
Northampton, MA 01063
istreinu@smith.edu

ABSTRACT

Motivated by constraint-based CAD software, we introduce
a new, very general, rigidity model: the body-and-cad struc-
ture, composed of rigid bodies in 3D constrained by pairwise
coincidence, angle and distance constraints. We have identi-
fied 21 relevant geometric constraints and a new, necessary,
but not sufficient, counting condition for minimal rigidity of
body-and-cad structures: nested sparsity. We remark that
the classical body-and-bar rigidity model can be viewed as a
body-and-cad structure that uses only one constraint from
this new set of constraints.

1. INTRODUCTION

This paper and accompanying poster introduce body-and-cad
structures, a class of 3D geometric frameworks with specific
coincidence, angle and distance constraints between rigid
bodies. To the best of our knowledge, these constraints have
not been studied before from this perspective.

Motivation. Popular computer aided design (CAD) soft-
ware based on geometric constraint solvers allow users to
design complex 3D systems by placing geometric constraints
among sets of rigid body building blocks. The constraints
are specified by identifying primitive geometries (points, lines,
planes, or splines) on participating rigid bodies. Analyzing
all of these simultaneously is a very difficult problem. In
this paper, we focus on a subset of these constraints that are
amenable to a rigidity-theoretical investigation.

We define a body-and-cad structure to be composed of rigid
bodies connected by pairwise coincidence, angle (parallel,
perpendicular, or arbitrary fixed angle) and distance con-
straints. These may only be placed on the primitive ge-
ometries of points, lines or planes. In an accompanying pa-
per [1], we develop the pattern of the rigidity matrix and
identify a necessary combinatorial counting property called
nested sparsity, which is the counterpart of the well-known
Maxwell condition for fixed length rigidity. We also show
that this condition is not sufficient.

Related work. Classical rigidity theory focuses on distance
constraints between points [2] or rigid bodies [8, 9]. Direc-
tion constraints are well-understood and arise from parallel
redrawing applications [10]; 2D systems with both length
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and direction constraints are characterized in [6]. Angle con-
straints in the plane have been studied in [11] and [5]. Com-
binatorial sparsity conditions [4, 7] are intimately tied with
rigidity theory, appearing often as necessary conditions (as
for 3D bar-and-joint rigidity) and sometimes even as com-
plete characterizations (as for 2D bar-and-joint, body-and-
bar in arbitrary dimension) [2, §].

2. BODY-AND-CAD STRUCTURES

Geometric constraints. Besides the well-studied distance
constraint between points (as in body-and-bar structures),
we identify 20 new pairwise coincidence, distance and an-
gle constraints between points, lines and planes. We label
constraints by the geometries involved, e.g., a line-plane per-
pendicular constraint between bodies A and B indicates that
a line on A is perpendicular to a plane on B. Here is the
full set of body-and-cad constraints that we study:

e Plane-plane constraints. Parallel, perpendicular,
fixed angle, coincidence, distance.

e Plane-line constraints. Parallel, perpendicular, fixed
angle, coincidence, distance.

e Plane-point constraints. Coincidence, distance.

e Line-line constraints. Parallel, perpendicular, fixed
angle, coincidence, distance.

e Line-point constraints. Coincidence, distance.

e Point-point constraints. Coincidence, distance.

Figure 1: Two dice rigidly stacked; die A is above B. Faces
are labeled by the number of dots, and face 6 lies at the
bottom (opposite 1). The length of an edge is 1.



Body-and-cad rigidity. A body-and-cad structure is rigid
if the only motions respecting the constraints are the triv-
tal 3D motions (rotation and translation); otherwise, it is
flexible. 1t is infinitesimally rigid if the only infinitesimal
motions are trivial. Infinitesimal rigidity is the linearized
version of rigidity.

Body-and-cad minimal rigidity. The concept of mini-
mal rigidity is usually defined as follows: a rigid structure
is minimally rigid if the removal of any constraint results in
a flexible structure. However, in our case, geometric con-
straints may correspond to more than one “primitive” con-
straint. Formally, a primitive constraint yields only one row
in the rigidity matrix, while the body-and-cad constraints
may yield several rows. In our setting, we define minimal
rigidity as above, but referring to the removal of primitive
constraints only.

The example in Figure 1 illustrates the subtleties of this
concept. Let A and B be two dice rigidly stacked with the
following constraints: (i) (Plane-plane parallel) A’s Face
1 is parallel to B’s Face 1, (ii) (Plane-plane perpendicu-
lar) A’s Face 2 is perpendicular to B’s Face 3, (iii) (Plane-
line distance) The distance between A’s Face 1 and B’s
Line 12 (intersection of Faces 1 and 2) is 1, and (iv) (Point-
point coincidence) A’s Corner 236 (the point defined by
Faces 2, 3 and 6) is coincident to B’s Corner 123. This
structure is rigid. We say the structure is overconstrained
since it remains rigid even after removal of constraint (iii).
The resulting structure is now minimally rigid; constraints
(i), (i) and (iv) correspond to 6 primitive constraints. Thus,
the removal of any primitive constraint results in a flexible
structure.

Now consider stacking the dice with the following two
constraints: (i) (Line-line coincidence) A’s Line 26 is co-
incident to B’s Line 12 and (ii) (Line-line coincidence)
A’s Line 36 is coincident to B’s Line 13. This structure is
still rigid. While it becomes flexible after the removal of
either constraint (i) or (ii), it is not minimally rigid. Since
a line-line coincidence constraint corresponds to 4 primitive
constraints, this structure has 8 primitive constraints and is
overconstrained. To give some intuition, note that a struc-
ture composed of 2 rigid bodies has 12 degrees of freedom.
Of these, 6 are trivial, so we fix body A to factor them
out. Now consider constraint (i); the structure is left with
2 degrees of freedom, as B may slide along the line and
rotate about it. This indicates that a line-line coincidence
constraint is somehow “killing” 4 degrees of freedom.

3. NESTED SPARSITY

We introduce a combinatorial condition called nested spar-
sity that is derived naturally from the body-and-cad rigidity
matrix. We have shown that nested sparsity is necessary for
generic rigidity of body-and-cad structures and provide an
counterexample to show that it is not sufficient [3].

A graph on n vertices is (k,£)-sparse if every subset of
n' vertices spans at most kn' — ¢ edges; it is tight if, in
addition, it spans kn — £ total edges. Let G = (V,R U
B) be a graph with its edge set colored into red and black
edges, corresponding to R and B, respectively. We say G is
(k1,01, ko, l2)-nested sparse if G is (k1,¢1)-sparse and G1 =
(V, R) is (k2, £2)-sparse; the graph is (k1, 01, k2, £2)-tight if G
is (k1, ¢1)-tight.

Given a body-and-cad structure, let G = (V, RU B) be
the graph obtained by assigning vertices to bodies and con-
straints to disjoint edge sets R and B, corresponding respec-
tively to primitive angular and blind constraints. In [1], we
show that (6, 6, 3, 3)-nested sparsity is a necessary condition
for generic minimal body-and-cad rigidity. We provide the
counterexample that shows it is not sufficient.

Figure 2 depicts a flexible structure whose associated graph
is (6, 6,3, 3)-nested sparse. It is composed of 3 bodies A, B
and C; Figure 2b colors the constraints. A and B have
2 point-point distance constraints (cyan and purple) and a
line-line coincidence constraint (pink); A and C have a line-
line angle constraint (orange) and a plane-plane coincidence
constraint (yellow); B and C have a plane-line coincidence
constraint (green).

(a) Constraint (b) The structure is (¢) Corresponding
structure in Solid- flexible with one de- graph is (6,6,3,3)-
Works. gree of freedom. nested tight.

Figure 2: Counterexample shows nested sparsity condition
is not sufficient.

4. CONCLUSIONS AND FUTURE DI-
RECTIONS

Motivated by CAD applications, we have initiated the study

of body-and-cad rigidity. Constraint-based CAD software

contains a rich set of geometric constraints. As a first step

towards understanding these, we have identified a class of

constraints amenable to rigidity-theoretical investigation. We
are hopeful that the study of all or some of the body-and-cad

constraints introduced here will prove to be more tractable

than classical 3D bar-and-joint rigidity.
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