Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A 4k2 kernel for feedback vertex set

Published: 06 April 2010 Publication History

Abstract

We prove that given an undirected graph G on n vertices and an integer k, one can compute, in polynomial time in n, a graph G′ with at most 4k2 vertices and an integer k′ such that G has a feedback vertex set of size at most k iff G′ has a feedback vertex set of size at most k′. This result improves a previous O(k11) kernel of Burrage et al., and a more recent cubic kernel of Bodlaender. This problem was communicated by Fellows.

References

[1]
Becker, A., Bar-Yehuda, R., and Geiger, D. 2000. Randomized algorithms for the loop cutset problem. J. Artif. Intell. Res. 12, 219--234.
[2]
Bodlaender, H. L. 1994. On disjoint cycles. Int. J. Found. Comput. Sci. 5, 59--68.
[3]
Bodlaender, H. L. 2007. A cubic kernel for feedback vertex set. In Proceedings of the 24th Annual Symposium on Theoretical Aspects of Computer Science (STACS'07). Lecture Notes in Computer Science, vol. 4393. Springer, 320--331.
[4]
Bodlaender, H. L., Cai, L., Chen, J., Fellows, M. R., Telle, J. A., and Marx, D. 2006. Open problems in parameterized and exact computation. In Proceedings of the International Workshop on Parameterized and Exact Computation (IWPEC'06).
[5]
Bodlaender, H. L., and Penninkx, E. 2008. A linear kernel for planar feedback vertex set. In Proceedings of the 3rd International Workshop on Parameterized and Exact Computation (IWPEC'08). Lecture Notes in Computer Science, vol. 5018. Springer, 160--171.
[6]
Burrage, K., Estivill-Castro, V., Fellows, M. R., Langston, M. A., Mac, S., and Rosamond, F. A. 2006. The undirected feedback vertex set problem has a poly(k) kernel. In Proceedings of the 2nd International Workshop on Parameterized and Exact Computation (IWPEC'06). Lecture Notes in Computer Science, vol. 4169. Springer, 192--202.
[7]
Chen, J., Liu, Y., Lu, S., O'Sullivan, B., and Razgon, I. 2008. A fixed-parameter algorithm for the directed feedback vertex set problem. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC'08). ACM, 177--186.
[8]
Dehne, F., Fellows, M., Langston, M. A., Rosamond, F., and Stevens, K. 2005. An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set problem. In Proceedings of the 11th Annual International Conference on Computing and Combinatorics (COCOON'05). Lecture Notes in Computer Science, vol. 3595. Springer, 859--869.
[9]
Downey, R. G., and Fellows, M. R. 1992. Fixed-parameter tractability and completeness. Congressus Numer. 87, 161--187.
[10]
Downey, R. G., and Fellows, M. R. 1999. Parameterized Complexity. Springer.
[11]
Edmonds, J. 1965. Paths, trees, and flowers. Canad. J. Math. 17, 449--467.
[12]
Flum, J., and Grohe, M. 2006. Parameterized Complexity Theory. Springer.
[13]
Fomin, F. V., Gaspers, S., and Pyatkin, A. V. 2006. Finding a minimum feedback vertex set in time O(1.7548n). In Proceedings of the 2nd International Workshop on Parameterized and Exact Computation (IWPEC'06). Lecture Notes in Computer Science, vol. 4169. Springer, 184--191.
[14]
Gallai, T. 1961. Maximum-Minimum sätze und verallgemeinerte faktoren von graphen. Acta. Math. Acad. Sci. Hungaricae 12, 131--173.
[15]
Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., and Wernicke, S. 2005. Improved fixed- parameter algorithms for two feedback set problems. In Proceedings of the 9th International Workshop on Algorithms and Data Structures (WADS'05). Lecture Notes in Computer Science, vol. 3608. Springer, 158--168.
[16]
Kanj, I. A., Pelsmajer, M. J., and Schaefer, M. 2004. Parameterized algorithms for feedback vertex set. In Proceedings of the 1st International Workshop on Parameterized and Exact Computation (IWPEC'04). Lecture Notes in Computer Science, vol. 3162. Springer, 235--247.
[17]
Kriesell, M. 2005. Disjoint A-paths in digraphs. J. Comb. Theory, Ser. B 95, 1, 168--172.
[18]
Micali, S., and Vazirani, V. V. 1980. An O(| IV| | E|) algorithm for finding maximum matching in general graphs. In Proceedings of the 21st Annual Symposium on Foundations of Computer Science (FOCS'80). IEEE Computer Society, 17--27.
[19]
Niedermeier, R. 2006. Invitation to Fixed Parameter Algorithms. Oxford University Press.
[20]
Raman, V., Saurabh, S., and Subramanian, C. R. 2002. Faster fixed parameter tractable algorithms for undirected feedback vertex set. In Proceedings of the 13th International Symposium on Algorithms and Computation (ISAAC'02). Lecture Notes in Computer Science, vol. 2518. Springer, 241--248.
[21]
Raman, V., Saurabh, S., and Subramanian, C. R. 2005. Faster algorithms for feedback vertex set. Electron. Not. Discr. Math. 19, 273--279.
[22]
Razgon, I. 2006. Exact computation of maximum induced forest. In Proceedings of the 10th Scandinavian Workshop on Algorithm Theory (SWAT'06). Lecture Notes in Computer Science, vol. 4059. Springer, 160--171.
[23]
Schrijver, A. 2001. A short proof of Mader's S -paths theorem. J. Combin.Theory, Ser. B 82, 319--321.

Cited By

View all

Index Terms

  1. A 4k2 kernel for feedback vertex set

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Algorithms
    ACM Transactions on Algorithms  Volume 6, Issue 2
    March 2010
    373 pages
    ISSN:1549-6325
    EISSN:1549-6333
    DOI:10.1145/1721837
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 April 2010
    Accepted: 01 May 2009
    Revised: 01 April 2009
    Received: 01 November 2008
    Published in TALG Volume 6, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Kernelization
    2. feedback vertex set
    3. fixed parameter tractability
    4. matching

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)24
    • Downloads (Last 6 weeks)8
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Parameterized complexity of vertex splitting to pathwidth at most 1Theoretical Computer Science10.1016/j.tcs.2024.1149281021(114928)Online publication date: Dec-2024
    • (2024)Exact algorithms for restricted subset feedback vertex set in chordal and split graphsTheoretical Computer Science10.1016/j.tcs.2023.114326984(114326)Online publication date: Feb-2024
    • (2024)Preprocessing to reduce the search spaceJournal of Computer and System Sciences10.1016/j.jcss.2024.103532144:COnline publication date: 18-Jul-2024
    • (2024)On kernels for d-path vertex coverJournal of Computer and System Sciences10.1016/j.jcss.2024.103531144:COnline publication date: 18-Jul-2024
    • (2024)Kernelization for feedback vertex set via elimination distance to a forestDiscrete Applied Mathematics10.1016/j.dam.2023.12.016346:C(192-214)Online publication date: 31-Mar-2024
    • (2024)Space-Efficient Graph KernelizationsTheory and Applications of Models of Computation10.1007/978-981-97-2340-9_22(260-271)Online publication date: 13-May-2024
    • (2024)Sparsity in Covering SolutionsLATIN 2024: Theoretical Informatics10.1007/978-3-031-55601-2_9(131-146)Online publication date: 6-Mar-2024
    • (2023)Small Vertex Cover Helps in Fixed-Parameter Tractability of Graph Deletion Problems over Data StreamsTheory of Computing Systems10.1007/s00224-023-10136-w67:6(1241-1267)Online publication date: 20-Sep-2023
    • (2023)Parameterized Complexity of Vertex Splitting to Pathwidth at Most 1Graph-Theoretic Concepts in Computer Science10.1007/978-3-031-43380-1_3(30-43)Online publication date: 23-Sep-2023
    • (2022)On the complexity of singly connected vertex deletionTheoretical Computer Science10.1016/j.tcs.2022.08.012934:C(47-64)Online publication date: 23-Oct-2022
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media