
Automatic Multithreaded Pipeline Synthesis from
Transactional Datapath Specifications

Eriko Nurvitadhi, James C. Hoe
Carnegie Mellon University

{enurvita, jhoe}@ece.cmu.edu

Shih-Lien L. Lu, Timothy Kam
Intel Corporation

{shih-lien.l.lu, timothy.kam}@intel.com

ABSTRACT
We present a technique to automatically synthesize a
multithreaded in-order pipeline from a high-level unpipelined
datapath specification. This work extends the previously proposed
transactional specification (T-spec) and synthesis technology (T-
piper). The technique not only works with instruction processors
but also flexible enough to accept any sequential datapath. It
maintains previously proposed non-threaded pipeline features and
is enhanced with multithreading features. We report a design
space exploration study of 32 multithreaded x86 processor
pipelines, all synthesized from a single T-spec.

Categories and Subject Descriptors
B.5.2 [Hardware]: Design Aids – Automatic synthesis.

General Terms
Design.

Keywords
Datapath specification, multithreading, automatic pipelining,
hardware synthesis, design exploration of x86 processor pipelines.

1. INTRODUCTION
Multithreading is a microarchitecture optimization technique that
allows multiple threads of execution to share a pipeline, thereby
improving efficiency. Although multithreading can be applied to
any pipelined datapath, the most common adoption of this
technique has been for instruction processor pipelines. Various
commercial processor pipelines are multithreaded, such as Intel®
Atom and Sun® Niagara.

Developing a non-threaded pipeline by hand is already a difficult
effort by itself, let alone with the complication of multithreading.
There are many additional aspects to consider (e.g., thread
scheduling policy, state sharing attributes among threads,
throughput enhancing schemes on long-latency events) which
exacerbate the pipeline development effort. While there are
existing works on automatic synthesis of in-order pipelines [4-8,
11, 13, 14, 16], to the best of our knowledge there has not been
any for synthesis of in-order multithreaded pipelines. Prior works
[1, 3, 9, 10, 12] have also presented multithreaded processor

pipelines for FPGA prototyping, but they are manually developed.

In this paper, we propose extensions to the recently proposed
transactional datapath specification (T-spec) and its in-order
pipeline synthesis technology (T-piper) [13] to support
multithreading. Our proposal not only works well with instruction
processor pipelines but also is flexible enough to accept any
sequential datapath. It maintains the synthesis features for non-
threaded pipelines proposed previously (e.g., forwarding,
speculation) while supporting various multithreading features,
consisting of those found in modern in-order multithreaded
pipelines (e.g., state sharing, replay on long-latency events) as
well as novel ones (e.g., state sharing by thread groups).

To demonstrate the usefulness of our work, we report a case
study, using multithreading-capable T-spec and T-piper, on rapid
design space exploration of 32 multithreaded processor pipelines
supporting a subset of x86 ISA. The pipelines are all synthesized
from a single T-spec, and they vary in pipeline depths, forwarding
capabilities, thread scheduling policies, and mechanisms for
handling long-latency events.

The rest of the paper is organized as follows. Section 2 gives
background on relevant prior work. Section 3 presents a
motivating example to be used for discussion in the later sections.
Section 4 summarizes the recently proposed transactional datapath
specification (T-spec) and pipeline synthesis from it (T-piper).
Section 5 discusses extensions for T-spec and T-piper to support
multithreading. Section 6, presents a design exploration study of
x86 processor pipelines. Section 7 offers concluding remarks.

2. RELATED WORK
Many previous studies [4-8, 11, 13, 14, 16] have investigated
ways to automate pipeline development. However, all these
studies target in-order pipelines that are not multithreaded.

The only automation work we could find on multithreading is
pipeline generation from a parameterized in-order multithreaded
pipeline template [2], which is very restricted. For example, the
template is fixed to a 4-stage pipeline design for a processor with
MIPS ISA as baseline.

Other recent works [1, 3, 9, 10, 12] also presented design case
studies of multithreaded processor pipelines for FPGA
prototyping. However these pipelines are manually developed.

We believe our work is the first to fully automate the synthesis of
multithreaded in-order pipelines from an unpipelined datapath
specification. Furthermore, it is very flexible. Not only it allows
synthesis of instruction processors with multithreading features
found in previously mentioned FPGA prototyping studies, but it
also allows capturing larger design space of any sequential system

datapath beyond instruction processor as well as enabling new
multithreading features (e.g., states shared by a group of threads).

3. MOTIVATING EXAMPLE: KEY SCAN
To illustrate pipelining and multithreading usage scenarios to be
discussed in this paper, here we present a simple example of a key
scanner that finds the number of occurrences of a given 32-bit key
value in an array of words in memory. Figure 1a shows an
example, where the key K is 7, and 8 words are in the memory M.
Count CNT should be 3 at the end of the scan.

Figure 1. Key scan example.

Figure 1b depicts a sequential datapath for such a key scanner,
which consists of state elements (registers and a memory, shown
in shaded boxes) and combinational logic blocks (white boxes)
that compute next-state values for each state within a clock cycle.
Note that the states are drawn with separate read and write
interfaces, illustrating the read-compute-write cycle that happens
in the datapath within each clock cycle.
The datapath operates as follows. The memory M contains an
array of words to be scanned, with NE initially holding the
number of words in M (e.g., 8 for Figure 1a example). The
register K holds the keyword. Every clock cycle, the word in M
pointed to by the address A is read and compared with keyword K.
If there is a match, then count CNT is incremented by inc. Also, A
is updated by naddr to point to the next word in M, and NE
decremented by dec. When NE reaches 0, the scan is completed.
The state updates are managed by ctrl, which monitors NE to
check for scan completion (NE is 0), and the K and M.rd
comparison result to check for when a K is found in M.

Figure 2. Pipeline development using T-spec and T-piper.

4. T-SPEC PIPELINE DESIGN REVIEW
We can pipeline the datapath in Figure 1b to reduce critical paths
and improve frequency, by dividing the next-state logic blocks
into multiple stages separated by pipeline registers. For example,
Figure 1c shows three possible pipeline implementations of the

datapath in Figure 1b. However, manually pipelining a datapath
can be tedious and error prone. To address this issue, previous
work [13] has presented a transactional design approach to
automate pipeline development.

The approach works as follows. First, a non-pipelined version of
the datapath that performs a set of next-state compute operations,
or a transaction, one at a time is captured using transactional
specification (T-spec). The example in Figure 1b can be specified
in T-spec straightforwardly. Then, to arrive at a pipelined
implementation, T-piper analysis (Figure 2a), based on designer-
specified pipeline-stage boundaries (S-cfg), informs the designer
the available opportunities for applying forwarding and
speculation to resolve hazards (H-cfg). Next, based on the
designer’s selection of which forwarding and speculation
optimizations to include, T-piper generates an RTL-Verilog
implementation of the desired pipeline, which preserves the
transaction semantics of the T-spec datapath. Starting from a T-
spec, the designer can rapidly explore the pipeline design space by
submitting different pipeline configurations to T-piper.

More specifically, T-spec is a textual “netlist” that comprises of
architectural states and next-state compute operations
implemented by a network of logic blocks. An architectural state
(register or array) has explicit state-read and state-write interfaces.
Note that architectural states are those in an unpipelined datapath
in T-spec, which are different than the pipeline registers
automatically inserted by T-piper in the implementation. A next-
state compute logic block can be either a combinational block, or
a fixed/variable multi-cycle (MC) block that implements a
handshake interface based on ready, start, and done signals. All
blocks are treated as black-boxes for analysis, except for
multiplexers, which is a logic primitive understood by T-piper and
used for hazard analysis.

A T-spec captures an abstract datapath, whose execution
semantics is interpreted as a sequence of “transactions” where
each transaction reads the state values left by the preceding
transaction and computes a new set of state values to be seen by
the next transaction (Figure 2b). Many valid implementations may
be derived from T-spec, as long as it preserves the transaction
semantics. Previous work [13] presented a technique to synthesize
a non-threaded in-order pipeline from a T-spec. This paper
presents extensions to the work to synthesize an in-order
multithreaded pipeline from a T-spec.

Figure 2c gives an example T-spec excerpt for Figure 1b datapath.
It starts with a GENERIC module declaration for inc, a black-
box combinational block with 32-bit input and output named din
and dout, respectively. The second module declaration is for a
built-in REG-type 32-bit architectural state CNT. A REG-type state
module has two interfaces: read and write. The read (or write)
interface comprises of a read-enable (or write-enable) and an
output read-data (or input write-data) ports. Lastly, a connection
declaration connects the d output port of CNT‘s rd interface to
the din input port of inc. The declarations for the remaining
modules and connections are omitted for brevity in this example.

5. MULTITHREADED PIPELINE DESIGN
Multithreading is a microarchitecture optimization technique that
allows multiple threads of execution to share a single pipeline.
Each thread of execution is associated with a set of states and a
sequence of transformations on those states. Adding

multithreading to a non-threaded pipeline typically requires the
following logic. First, architectural state elements need to be
replicated to hold multiple contexts. Second, logic for scheduling
and managing the threads need to be added. The rest of the non-
threaded pipeline resources can be shared in a time-multiplexed
manner by all the threads.

There are two main benefits of multithreading. First, it saves area,
at the expense of performance, relative to having multiple full
pipelines to execute multiple threads. Second, when a thread
experiences a long stall (e.g., due to data dependence, or long-
latency event like a memory access), it may be possible to let
other threads to proceed, thereby improving pipeline utilization.

Figure 3. Multithreaded key scan.

5.1 Multithreading the Key Scan Example
Let us suppose that we would like to improve the example
datapath in Figure 1b by pipelining and multithreading that
supports 4 threads (Figure 3a). There are multiple possible
multithreading scenarios that can be employed, three of which are
shown in Figures 3b, 3c, and 3d. First, each thread can be used to
perform an individual scan, of which case the multithreaded key
scanner will accept and return 4 different keywords and counts,
respectively (Figure 3b). Second, only 1 scan is performed, but
accelerated by having the 4 threads scanning different parts of the
memory (Figure 3c). Lastly, the first and second scenarios can be
combined, where there are two scans, each one performed by two
threads (Figure 3d). To facilitate these scenarios, the way threads
access states have to be adjusted appropriately. In the first
scenario, K and CNT support 4 contexts, each privately accessed
by a thread. In the second scenario, they support only a single
context that is accessible by all threads. In the last scenario, they
support 2 contexts, each of which is shared by two threads.

Another aspect of multithreading to consider is thread scheduling,
which decides on which thread gets to use the pipeline at a given
time. For our key scan, we may want to add an architectural state
(e.g., STATUS) and the logic to set it to indicate if a thread is
active (i.e., is scanning) or inactive (not scanning). A thread
scheduler then monitors STATUS and skips inactive threads.
Furthermore, suppose that the implementation of the memory M
utilizes caches to improve overall latency (i.e., specified using a
MC handshake interface mentioned in Section 4), such that an
access to it may happen right away (cache hit) or after multiple
clock cycles (cache miss). In this case, we may want to allow a
thread suffering from a cache miss to be replayed at a later time
while allowing other threads to continue to execute, so that the
cache miss does not block all the threads from progressing.

Our synthesis supports all the multithreading features discussed in
this key scanner example, and more. The next section summarizes
the various multithreading features we support. Following that we
present the details of the extensions we propose to T-spec and T-
piper to support these multithreading features.

5.2 Multithreading Features
5.2.1 Thread Scheduling
A thread scheduler selects the thread that should be allowed to use
the pipeline at a given time. The two most common scheduling
policy for in-order multithreaded pipelines are interleaved
multithreading (IMT) and block multithreading (BMT) [15].

In IMT, a thread switch happens in a fine-grained manner,
whenever the first pipeline stage becomes available. The next
thread to enter the pipeline is typically selected based on a round-
robin policy. The main benefit of IMT is the potential
simplification that can be made to the hazard management logic,
since it may be possible to guarantee that each stage in the
pipeline is occupied by a different thread, making it impossible
for certain data hazards to happen.

In BMT, a thread executes successively until a particular event
occurs in the pipeline, which triggers a context switch to a new
thread. The main benefit of BMT is the ability to deliver a good
single-thread performance because BMT lets a thread to execute
continuously, obtaining full access to the pipeline for a certain
time period, before switching to another. However, continuous
execution requires full hazard management logic, making it
impossible to perform any simplification as in the case of IMT.
An example for thread switch triggering event in BMT in the case
of instruction processor is when a thread enters a critical section,
which would need to be executed as fast as possible [9].

The simpler IMT policy is supported by default by our synthesis
system. Furthermore, we also support custom-made thread
scheduler by using a well-defined thread scheduler interface,
which can be used to implement BMT policy, critical section
acceleration [9], and other custom-designed scheduling policies.

5.2.2 Dealing with Long-Latency Events
When a thread encounters a long-latency event (e.g., a cache
miss), it is often useful to allow other threads to proceed. This
way, the stall experienced by one thread can be hidden by the
execution of other threads.

Our synthesis system supports the recently proposed approach to
deal with long-latency events based on replay [9, 10]. The idea is
to allow a pipeline stage to request a replay when it suffers from a
long-latency event. Upon replay, the thread in that stage is
canceled and re-executed at a later time. Meanwhile, other threads
can use the pipeline and proceed with their execution.
A known shortcoming of replay [10] is that it may lead to a live-
lock when the service for a long-latency event for a thread that
requested a replay keeps being cancelled by the service of another
long-latency event for another thread that also requested a replay
(e.g., conflicting cache misses where two cache line requests evict
one another). To prevent this, we support a mechanism to turn off
replay capability dynamically to guarantee forward progress.

5.2.3 State Sharing Attributes
There are a few possible attributes that an architectural state can
have with respect to the way threads access the state. First, a
private state has multiple contexts, each accessible only by a

thread (e.g., K and CNT in Figure 3b). Second, a global state is
shared by all the threads, and it has only one context accessible by
any thread (e.g., K and CNT in Figure 3c). Third, a group state has
multiple contexts, each accessible only by a set of threads (e.g., K
and CNT in Figure 3d).

Our system supports all these attributes, allowing for generic
sharing, where sharing can be applied to any arbitrary state and
group of threads. Note for instruction processors, the most
common attributes are private (e.g., PC, RF) and global (e.g.,
memory). Thus, a group state is a new kind of attribute enabled by
our synthesis technology.

Figure 4. Extending T-spec for multithreading.

Figure 5. Multithreading support logic and IMT hazard

management logic simplification examples.

5.3 T-spec for Multithreading
5.3.1 Extending the Transaction Abstraction
We extend the transaction abstraction captured by T-spec (as
previously explained in Section 3) to support multithreading.
Figure 4a provides an illustration, where there exist multiple
sequences of transactions, each belongs to a thread of execution

The original transaction abstraction semantics is still preserved,
where the datapath executes one transaction at a time, and each
transaction reads the state values left by the preceding transaction
and computes a new set of state values to be seen by the next
transaction. Except now each transaction is also associated with a
thread (e.g., Thread1 to Thready in Figure 4), and a state may have
multiple contexts.

A thread is associated with a transaction sequence (e.g., Tx, Tx-1,
and so on in Figure 4), which corresponds to the original sequence
of execution of the thread in a non-threaded system (i.e.,

correspond to the program order in the case of instruction
processor, where a transaction is equivalent to an instruction).

A thread is also associated with state sharing attributes (see
section 5.2.3), indicating, for each state, which context it can
access. For example, a state update made by a transaction from a
thread can be read by a subsequent transaction from a different
thread, if both threads access the same context of the state.

Finally, having multiple threads also raises a question on the
orders of the thread execution that should be considered valid.
Here, we consider any possible thread execution order to be valid
(Figure 4a shows a round-robin order, but any order is valid).

5.3.2 T-spec Language Extensions
We incorporated the following extensions to T-spec to capture
multithreaded datapaths based on the aforementioned abstraction.

• First, we add a way to declare threads. Figure 4b shows
declarations of 4 threads (th0, th1, th2, th3) in our key
scan example. Each declared thread will be assigned a unique
thread ID (TID) by T-piper during synthesis.

• Second, since a state now can contain multiple contexts, the
state-read and state-write interfaces are extended with an
additional input, context ID (CID), to indicate the context to
access. T-piper will automatically synthesize logic that drives
this input. Figure 4c shows the declaration for 2-context CNT in
the key scan example. Note that any multi-context state element
implementation can be used, as long as it has appropriate read
and write interfaces.

• Third, we add a way to specify state sharing attributes. Figure
4c shows an example of making CNT a group state, where
context 0 is accessible only by th0 and th2, and context 1 by
th1 and th3. T-spec can specify accessibility to any state
context by arbitrary set of threads, so it can also specify private
(a set of one thread) and global (a set of all the threads) states.

• Fourth, we add a module type to specify a custom thread
scheduler implementation. T-piper synthesis will place the
thread scheduler module at the first stage of the pipeline, so it
can select the next thread to enter the pipeline, as illustrated in
Figure 5a. The figure also shows the interface to the thread
scheduler module, which includes mandatory inputs and
outputs (i.e., en, TID, no_replay, replay_req, and replay_tid) as
well as any arbitrary inputs from interfaces specified in T-spec
that are assigned to the first pipeline stage in S-cfg.

• Finally, the handshake interface of a multi-cycle block is
extended with a replay_req output, and a no_replay input, to
make it replay-capable. When the block needs multiple clocks
to complete, it can ask for a replay by asserting its replay_req
output unless its no_replay input is not asserted.

The thread scheduler interface works as follows. When the first
stage becomes available, en is asserted indicating that scheduling
decision is needed. At this point, TID outputs the decision on the
thread that should enter first stage. A replay can be requested
whenever a thread in the pipeline encounters a long-latency event
performed by a multi-cycle block (i.e., MCs in Figure 5a) through
the block’s handshake interface. T-piper synthesis connects all
replay-capable multi-cycle blocks to the replay network, which
will assert replay_req input of the thread scheduler when a replay
occurs in the pipeline and supply the TID of the thread requesting
a replay to the replay_tid input. These inputs can be used in thread
scheduling decision (e.g., the thread requesting a replay do not get

re-scheduled right away). To ensure forward progress in the case
of a live-lock, the thread scheduler can assert its no_replay output
whenever necessary (e.g., assert periodically to guarantee overall
forward progress). Lastly, the scheduler interface can also be
connected to any arbitrary inputs from the first pipeline stage. An
example usage is to have the scheduler in our key scan example to
monitor STATUS, and de-schedule any thread that is inactive.

The thread scheduler module is allowed to contain persistent
states to help perform scheduling functions. For example, to
implement a BMT scheduling, the thread scheduler may maintain
an internal counter, that is incremented each time its en input is
asserted. When the counter saturates, a thread switch is triggered.

The aforementioned thread scheduler specification strategy allows
for flexibility, since any thread scheduler implementation can be
used, as long it implements the appropriate interface.

5.4 Multithreaded Pipeline Synthesis
5.4.1 Multithreaded data hazard management
In a non-threaded pipeline implementation, T-piper synthesizes
hazard management logic for each state in T-spec to ensure Read-
After-Write (RAW) hazards are detected and resolved accordingly
[13]. To support hazard management in multithreaded pipeline,
we extend such hazard management logic with a context ID (CID)
check logic, which ensures that if there is a RAW hazard on a
state, the hazard targets the same context of that state.

T-spec has already provided the information on how a thread
accesses each state element (e.g. Figure 4c). T-piper uses this
information to synthesize the logic that translates a thread ID
(TID) to a CID for each state element and propagates the CID
along the pipeline (Figure 5a). The CID is used to access the
appropriate context during a state access, and is incorporated to
the hazard management logic, as mentioned above.

Beyond this baseline multithreaded hazard management logic, two
types of simplifications can be made. First, for a global state, the
CID check is always true. So, the logic can be optimized away.

Second, if the default round-robin IMT scheduler is used, it may
be possible to make simplifications since certain hazards could
never happen. Figure 5b provides an example IMT hazard logic
simplifications to the CNT architectural state for the key scan
implementation scenarios shown in Figure 3b, 3c, and 3d,
assuming a 4-stage pipeline target where CNT is read and written
back in the first and last stage, respectively. The lines on the left
side of the pipeline show all possible hazards in the non-threaded
pipeline, with the dashed lines showing the hazards that can never
happen given IMT scheduling and the CNT sharing attribute.

To do this, T-piper enumerates all possible thread orders in the
pipeline, given IMT scheduling. Next, for each thread order, it
translates the TID of the thread occupying the stage to its CID, for
each state element. Figure 5b shows the enumerated TIDs and the
associated CIDs for CNT in the key scan example. Note that the
enumerations deliberately do not consider stalls in the pipeline, so
they represent the most aggressive schedule that could happen.
From the enumerations, T-piper determines the minimum distance
for which hazards can happen. For example, with private CNT,
hazards cannot happen within 4 stages away from the state-read
interface of CNT (i.e., in first stage). Since there are only 4 stages
in the pipeline, the hazard management logic can be eliminated
entirely. For global CNT, the minimum distance is 1. So, no
simplifications can be made, since hazard can happen between the
stage where the state-read is and any of the later stages. Lastly, for

group CNT, the distance is 2. Simplification can be made here,
since hazard can never happen between stage 1 and 2.

5.4.2 Thread scheduler and Replay Support
The synthesis process integrates the thread scheduler (either the
default IMT or a custom-defined one) to the pipeline by
connecting its inputs and outputs to the appropriate pipeline
control signals, as illustrated in Figure 5a.

The en input of the scheduler is connected to the control signal of
the first stage that indicates when a new transaction should enter
the pipeline. The TID output is connected to the TIDtoCID
translation logic. The synthesis also creates the logic for
propagating the CID through the rest of the pipeline, as well as
connecting the CID to appropriate state access interfaces.

For replay, the replay_en and replay_tid inputs are connected to
the network of replay signals from all the replay-capable MC
blocks in the pipeline. This replay network is also automatically
synthesized. It is a simple logic that detects a reply request, and
selects one from the latest stage in case of simultaneous multiple
replay requests. It outputs the TID of the thread requesting replay
(replay_tid) and asserts the replay_en to indicate to the thread
scheduler that a replay is requested. Lastly, the no_replay output
of the scheduler is propagated through the pipeline and is
connected to each replay-capable MC block, indicating to the
block when a replay is prohibited.

Figure 6. Design space exploration of x86 pipelines.

6. A CASE STUDY WITH X86 PIPELINES
The key scan example discussed previously is very simple and
was intended for illustration purposes only. In this section, we
present a non-trivial case study on the design space exploration of
various multithreaded x86 processor pipelines.

The pipelines are all synthesized from a single x86-subset T-spec
using T-piper within minutes. The x86 T-spec is based on [13],
and extended to support 4 threads, a shared memory, and private
architectural states. The memory uses a cache with a hit serviced
right away and a miss serviced in 10 implementation clock cycles.
The T-spec also includes a custom non-x86 1-bit private state
(STATUS) and a custom instruction to set the state to indicate
whether a thread is active (running a benchmark) or inactive
(finished running, in idle loop). Each pipeline is evaluated by

running a mix of 4 benchmarks (DES, Quant, VLC, Bitcount)
from [16]. The benchmarks are of different lengths, each running
as its own thread. At the end of each benchmark, the custom
instruction is used to set the custom state to inactive. Then, the
benchmark enters an idle loop. Thus, overall execution is
completed when all threads have set their STATUS to inactive.

We evaluated a total of 32 pipelines with T-piper, varying the
following parameters: (1) pipeline depths varied from 4 to 7
stages; (2) with (F) and without (NF) inclusion of maximal
forwarding; (3) with (P) and without (NP) inclusion of a thread
scheduler that prioritizes for active threads by monitoring
STATUS, on top of a round-robin IMT policy; and, (4) with (R)
and without (NR) the capability to replay on a cache miss.

Figure 6a shows the cycle count from RTL simulation of each
pipeline. Forwarding improves cycle count since stalls due to
RAW hazards are reduced, allowing the pipeline to host multiple
instructions from the same thread. Thread scheduler that skips
inactive threads also helps cycle counts since completed shorter-
running benchmarks that are in idle loop are no longer scheduled
to use the pipeline, thus accelerating forward progress of the
longer-running still-active threads. Finally, replay improves cycle
count since a cache miss does not block the entire pipeline.

We also synthesized the pipelines using Synopsys DC targeting a
commercial 180nm standard-cell library. Figure 6a shows the
implementation frequency for each pipeline. The improvement
trend is generally the opposite of that of the cycle count because
features that improve cycle count introduce additional
implementation overheads that can result in reduced frequency.
Notice also that deeper pipelines do help improve frequency.

Figure 6b shows the cost-performance tradeoff for the pipelines
we studied. For each pipeline, the area is obtained from Synopsys,
and the run-time is based on the RTL simulation cycle counts,
adjusted by the implementation frequency. Notice that no single
design parameter dominates the pipelines in the Pareto optimal
design points (e.g., 2 points with all R, P and F optimizations; 2
with only F; 1 with only R; 1 with only P; and 1 without
optimization). It would have been impossible to do such
characterize such design points without exploring a large number
of different designs at the RT level.

Previous work [13] has shown that a non-threaded in-order
pipeline generated by T-piper is comparable to a manually
designed one via a case study with a MIPS pipeline. As a sanity
check, we compared the simplest non-threaded pipeline (4-stage,
without optimization) with its 4-threaded counterparts. We found
that multithreading without any optimization (i.e., NR-NP-NF)
resulted to only 26% area increase and 4% frequency decrease,
while shortening run-time by 18%. When all optimizations are
considered (i.e., R-P-F), the area and frequency overheads are
only 51% and 21%, respectively, while run-time improves by 2x.

7. CONCLUSION
This paper presented a novel approach for automatically
synthesizing in-order multithreaded pipelines, by extending the
recently proposed transactional datapath specification (T-spec)
and the associated pipeline synthesis technology (T-piper). T-spec
and T-piper greatly reduce the time and effort to develop in-order
pipelines, with and without multithreading. The effectiveness of
this work was demonstrated through a design space exploration
study of 32 multithreaded processor pipelines supporting an x86

ISA subset, showcasing the benefits of several multithreading
features supported by the proposed synthesis technology.

8. REFERENCES
[1] E. S. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, K. Mai, “A

Complexity-Effective Architecture for Accelerating Full-
System Multiprocessor Simulations Using FPGAs”,
International Symposium on Field-Programmable Gate
Arrays, 2008.

[2] R. Dimond, O. Mencer, W. Luk, “Application-specific
Customization of Multithreaded Soft Processors”, IEE
Computers and Digital Techniques, Vol. 153, Issue 3, 2006.

[3] B. Fort, D. Capalija, Z. G. Vranesic, S. D. Brown, “A
Multithreaded Soft Processor for SoPC Area Reduction”,
Field-Programmable Custom Computing Machines, 2006.

[4] S. Hassoun, C. Ebeling, “Architectural Retiming: Pipelining
Latency-Constrained Circuits”, Design Automation
Conference, 1996.

[5] M. Itoh, S. Higaki, J. Sato, A. Shiomi, Y. Takeuchi, et al.,
"PEAS-III: An ASIP Design Environment," International
Conference on Computer Design, 2000.

[6] T. Kam, M. Kishinevsky, J. Cortadella, M. Galceran-Oms,
“Correct-by-construction Microarchitectural Pipelining”,
International Conference on Computer-Aided Design, 2008.

[7] A. Kejariwal, P. Mishra, N. Dutt, “Synthesis-driven
Exploration of Pipelined Embedded Processors”,
International Conference on VLSI Design, 2004.

[8] D. Kroening, W. Paul, “Automated pipeline design”, Design
Automation Conference, 2001.

[9] M. Labrecque, J. G. Steffan, “Fast critical sections via thread
scheduling for FPGA-based multithreaded processors”,
Field-Programmable Logic and Applications, 2009.

[10] M. Labrecque, P. Yiannacouras, J. G. Steffan, “Scaling Soft
Processor Systems”, Field-Programmable Custom
Computing Machines, 2008.

[11] M. V. Marinescu, M. Rinard, “High-level Automatic
Pipelining for Sequential Circuits”, International Symposium
on System Synthesis, 2001.

[12] R. Moussali, N. Ghanem, M. A. R. Saghir, “Supporting
Multithreading in Configurable Soft Processor Cores”,
International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, 2007.

[13] E. Nurvitadhi, J. C. Hoe, T. Kam, S. L. Lu, “Automatic
Pipelining from Transactional Datapath Specifications”,
Design Automation and Test in Europe, 2010.

[14] O. Schliebusch, A. Chattopadhyay, R. Leupers, G. Ascheid,
H. Meyr, et al., “RTL Processor Synthesis for Architecture
Exploration and Implementation”, Design Automation and
Test in Europe, 2004.

[15] T. Ungerer, B. Robic, J. Silc, “A Survey of Processors with
Explicit Multithreading”, ACM Computing Surveys, 2003.

[16] P. Yiannacouras, J. G. Steffan, J. Rose, “Exploration and
Customization of FPGA-Based Soft Processors”, IEEE
Transaction on Computer Aided Design of Integrated
Circuits and Systems, 2007.

