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ABSTRACT 
We present a technique to automatically synthesize a 
multithreaded in-order pipeline from a high-level unpipelined 
datapath specification. This work extends the previously proposed 
transactional specification (T-spec) and synthesis technology (T-
piper). The technique not only works with instruction processors 
but also flexible enough to accept any sequential datapath. It 
maintains previously proposed non-threaded pipeline features and 
is enhanced with multithreading features. We report a design 
space exploration study of 32 multithreaded x86 processor 
pipelines, all synthesized from a single T-spec. 

Categories and Subject Descriptors 
B.5.2 [Hardware]: Design Aids – Automatic synthesis.  

General Terms 
Design. 

Keywords 
Datapath specification, multithreading, automatic pipelining, 
hardware synthesis, design exploration of x86 processor pipelines. 

1. INTRODUCTION 
Multithreading is a microarchitecture optimization technique that 
allows multiple threads of execution to share a pipeline, thereby 
improving efficiency. Although multithreading can be applied to 
any pipelined datapath, the most common adoption of this 
technique has been for instruction processor pipelines. Various 
commercial processor pipelines are multithreaded, such as Intel® 
Atom and Sun® Niagara. 

Developing a non-threaded pipeline by hand is already a difficult 
effort by itself, let alone with the complication of multithreading. 
There are many additional aspects to consider (e.g., thread 
scheduling policy, state sharing attributes among threads, 
throughput enhancing schemes on long-latency events) which 
exacerbate the pipeline development effort. While there are 
existing works on automatic synthesis of in-order pipelines [4-8, 
11, 13, 14, 16], to the best of our knowledge there has not been 
any for synthesis of in-order multithreaded pipelines. Prior works 
[1, 3, 9, 10, 12] have also presented multithreaded processor 

pipelines for FPGA prototyping, but they are manually developed. 

In this paper, we propose extensions to the recently proposed 
transactional datapath specification (T-spec) and its in-order 
pipeline synthesis technology (T-piper) [13] to support 
multithreading. Our proposal not only works well with instruction 
processor pipelines but also is flexible enough to accept any 
sequential datapath. It maintains the synthesis features for non-
threaded pipelines proposed previously (e.g., forwarding, 
speculation) while supporting various multithreading features, 
consisting of those found in modern in-order multithreaded 
pipelines (e.g., state sharing, replay on long-latency events) as 
well as novel ones (e.g., state sharing by thread groups). 

To demonstrate the usefulness of our work, we report a case 
study, using multithreading-capable T-spec and T-piper, on rapid 
design space exploration of 32 multithreaded processor pipelines 
supporting a subset of x86 ISA. The pipelines are all synthesized 
from a single T-spec, and they vary in pipeline depths, forwarding 
capabilities, thread scheduling policies, and mechanisms for 
handling long-latency events. 

The rest of the paper is organized as follows. Section 2 gives 
background on relevant prior work. Section 3 presents a 
motivating example to be used for discussion in the later sections. 
Section 4 summarizes the recently proposed transactional datapath 
specification (T-spec) and pipeline synthesis from it (T-piper). 
Section 5 discusses extensions for T-spec and T-piper to support 
multithreading. Section 6, presents a design exploration study of 
x86 processor pipelines. Section 7 offers concluding remarks. 

2. RELATED WORK 
Many previous studies [4-8, 11, 13, 14, 16] have investigated 
ways to automate pipeline development. However, all these 
studies target in-order pipelines that are not multithreaded.  

The only automation work we could find on multithreading is 
pipeline generation from a parameterized in-order multithreaded 
pipeline template [2], which is very restricted. For example, the 
template is fixed to a 4-stage pipeline design for a processor with 
MIPS ISA as baseline. 

Other recent works [1, 3, 9, 10, 12] also presented design case 
studies of multithreaded processor pipelines for FPGA 
prototyping. However these pipelines are manually developed. 

We believe our work is the first to fully automate the synthesis of 
multithreaded in-order pipelines from an unpipelined datapath 
specification. Furthermore, it is very flexible. Not only it allows 
synthesis of instruction processors with multithreading features 
found in previously mentioned FPGA prototyping studies, but it 
also allows capturing larger design space of any sequential system 

 



datapath beyond instruction processor as well as enabling new 
multithreading features (e.g., states shared by a group of threads). 

3. MOTIVATING EXAMPLE: KEY SCAN 
To illustrate pipelining and multithreading usage scenarios to be 
discussed in this paper, here we present a simple example of a key 
scanner that finds the number of occurrences of a given 32-bit key 
value in an array of words in memory. Figure 1a shows an 
example, where the key K is 7, and 8 words are in the memory M. 
Count CNT should be 3 at the end of the scan.  

 
Figure 1. Key scan example. 

Figure 1b depicts a sequential datapath for such a key scanner, 
which consists of state elements (registers and a memory, shown 
in shaded boxes) and combinational logic blocks (white boxes) 
that compute next-state values for each state within a clock cycle. 
Note that the states are drawn with separate read and write 
interfaces, illustrating the read-compute-write cycle that happens 
in the datapath within each clock cycle. 
The datapath operates as follows. The memory M contains an 
array of words to be scanned, with NE initially holding the 
number of words in M (e.g., 8 for Figure 1a example). The 
register K holds the keyword. Every clock cycle, the word in M 
pointed to by the address A is read and compared with keyword K. 
If there is a match, then count CNT is incremented by inc. Also, A 
is updated by naddr to point to the next word in M, and NE 
decremented by dec. When NE reaches 0, the scan is completed. 
The state updates are managed by ctrl, which monitors NE to 
check for scan completion (NE is 0), and the K and M.rd 
comparison result to check for when a K is found in M.  

 
Figure 2. Pipeline development using T-spec and T-piper. 

4. T-SPEC PIPELINE DESIGN REVIEW 
We can pipeline the datapath in Figure 1b to reduce critical paths 
and improve frequency, by dividing the next-state logic blocks 
into multiple stages separated by pipeline registers. For example, 
Figure 1c shows three possible pipeline implementations of the 

datapath in Figure 1b. However, manually pipelining a datapath 
can be tedious and error prone. To address this issue, previous 
work [13] has presented a transactional design approach to 
automate pipeline development.  

The approach works as follows. First, a non-pipelined version of 
the datapath that performs a set of next-state compute operations, 
or a transaction, one at a time is captured using transactional 
specification (T-spec). The example in Figure 1b can be specified 
in T-spec straightforwardly. Then, to arrive at a pipelined 
implementation, T-piper analysis (Figure 2a), based on designer-
specified pipeline-stage boundaries (S-cfg), informs the designer 
the available opportunities for applying forwarding and 
speculation to resolve hazards (H-cfg). Next, based on the 
designer’s selection of which forwarding and speculation 
optimizations to include, T-piper generates an RTL-Verilog 
implementation of the desired pipeline, which preserves the 
transaction semantics of the T-spec datapath. Starting from a T-
spec, the designer can rapidly explore the pipeline design space by 
submitting different pipeline configurations to T-piper.  

More specifically, T-spec is a textual “netlist” that comprises of 
architectural states and next-state compute operations 
implemented by a network of logic blocks. An architectural state 
(register or array) has explicit state-read and state-write interfaces. 
Note that architectural states are those in an unpipelined datapath 
in T-spec, which are different than the pipeline registers 
automatically inserted by T-piper in the implementation. A next-
state compute logic block can be either a combinational block, or 
a fixed/variable multi-cycle (MC) block that implements a 
handshake interface based on ready, start, and done signals. All 
blocks are treated as black-boxes for analysis, except for 
multiplexers, which is a logic primitive understood by T-piper and 
used for hazard analysis. 

A T-spec captures an abstract datapath, whose execution 
semantics is interpreted as a sequence of “transactions” where 
each transaction reads the state values left by the preceding 
transaction and computes a new set of state values to be seen by 
the next transaction (Figure 2b). Many valid implementations may 
be derived from T-spec, as long as it preserves the transaction 
semantics. Previous work [13] presented a technique to synthesize 
a non-threaded in-order pipeline from a T-spec. This paper 
presents extensions to the work to synthesize an in-order 
multithreaded pipeline from a T-spec.  

Figure 2c gives an example T-spec excerpt for Figure 1b datapath. 
It starts with a GENERIC module declaration for inc, a black-
box combinational block with 32-bit input and output named din 
and dout, respectively. The second module declaration is for a 
built-in REG-type 32-bit architectural state CNT. A REG-type state 
module has two interfaces: read and write. The read (or write) 
interface comprises of a read-enable (or write-enable) and an 
output read-data (or input write-data) ports. Lastly, a connection 
declaration connects the d output port of CNT‘s rd interface to 
the din input port of inc. The declarations for the remaining 
modules and connections are omitted for brevity in this example. 

5. MULTITHREADED PIPELINE DESIGN 
Multithreading is a microarchitecture optimization technique that 
allows multiple threads of execution to share a single pipeline. 
Each thread of execution is associated with a set of states and a 
sequence of transformations on those states. Adding 



multithreading to a non-threaded pipeline typically requires the 
following logic. First, architectural state elements need to be 
replicated to hold multiple contexts. Second, logic for scheduling 
and managing the threads need to be added. The rest of the non-
threaded pipeline resources can be shared in a time-multiplexed 
manner by all the threads.  

There are two main benefits of multithreading. First, it saves area, 
at the expense of performance, relative to having multiple full 
pipelines to execute multiple threads.  Second, when a thread 
experiences a long stall (e.g., due to data dependence, or long-
latency event like a memory access), it may be possible to let 
other threads to proceed, thereby improving pipeline utilization. 

 
Figure 3. Multithreaded key scan. 

5.1 Multithreading the Key Scan Example 
Let us suppose that we would like to improve the example 
datapath in Figure 1b by pipelining and multithreading that 
supports 4 threads (Figure 3a). There are multiple possible 
multithreading scenarios that can be employed, three of which are 
shown in Figures 3b, 3c, and 3d. First, each thread can be used to 
perform an individual scan, of which case the multithreaded key 
scanner will accept and return 4 different keywords and counts, 
respectively (Figure 3b). Second, only 1 scan is performed, but 
accelerated by having the 4 threads scanning different parts of the 
memory (Figure 3c). Lastly, the first and second scenarios can be 
combined, where there are two scans, each one performed by two 
threads (Figure 3d). To facilitate these scenarios, the way threads 
access states have to be adjusted appropriately. In the first 
scenario, K and CNT support 4 contexts, each privately accessed 
by a thread. In the second scenario, they support only a single 
context that is accessible by all threads. In the last scenario, they 
support 2 contexts, each of which is shared by two threads. 

Another aspect of multithreading to consider is thread scheduling, 
which decides on which thread gets to use the pipeline at a given 
time. For our key scan, we may want to add an architectural state 
(e.g., STATUS) and the logic to set it to indicate if a thread is 
active (i.e., is scanning) or inactive (not scanning). A thread 
scheduler then monitors STATUS and skips inactive threads. 
Furthermore, suppose that the implementation of the memory M 
utilizes caches to improve overall latency (i.e., specified using a 
MC handshake interface mentioned in Section 4), such that an 
access to it may happen right away (cache hit) or after multiple 
clock cycles (cache miss). In this case, we may want to allow a 
thread suffering from a cache miss to be replayed at a later time 
while allowing other threads to continue to execute, so that the 
cache miss does not block all the threads from progressing. 

Our synthesis supports all the multithreading features discussed in 
this key scanner example, and more. The next section summarizes 
the various multithreading features we support. Following that we 
present the details of the extensions we propose to T-spec and T-
piper to support these multithreading features. 

5.2 Multithreading Features 
5.2.1 Thread Scheduling 
A thread scheduler selects the thread that should be allowed to use 
the pipeline at a given time. The two most common scheduling 
policy for in-order multithreaded pipelines are interleaved 
multithreading (IMT) and block multithreading (BMT) [15].  

In IMT, a thread switch happens in a fine-grained manner, 
whenever the first pipeline stage becomes available. The next 
thread to enter the pipeline is typically selected based on a round-
robin policy. The main benefit of IMT is the potential 
simplification that can be made to the hazard management logic, 
since it may be possible to guarantee that each stage in the 
pipeline is occupied by a different thread, making it impossible 
for certain data hazards to happen.  

In BMT, a thread executes successively until a particular event 
occurs in the pipeline, which triggers a context switch to a new 
thread. The main benefit of BMT is the ability to deliver a good 
single-thread performance because BMT lets a thread to execute 
continuously, obtaining full access to the pipeline for a certain 
time period, before switching to another. However, continuous 
execution requires full hazard management logic, making it 
impossible to perform any simplification as in the case of IMT. 
An example for thread switch triggering event in BMT in the case 
of instruction processor is when a thread enters a critical section, 
which would need to be executed as fast as possible [9]. 

The simpler IMT policy is supported by default by our synthesis 
system. Furthermore, we also support custom-made thread 
scheduler by using a well-defined thread scheduler interface, 
which can be used to implement BMT policy, critical section 
acceleration [9], and other custom-designed scheduling policies.  

5.2.2 Dealing with Long-Latency Events 
When a thread encounters a long-latency event (e.g., a cache 
miss), it is often useful to allow other threads to proceed. This 
way, the stall experienced by one thread can be hidden by the 
execution of other threads. 

Our synthesis system supports the recently proposed approach to 
deal with long-latency events based on replay [9, 10]. The idea is 
to allow a pipeline stage to request a replay when it suffers from a 
long-latency event. Upon replay, the thread in that stage is 
canceled and re-executed at a later time. Meanwhile, other threads 
can use the pipeline and proceed with their execution.  
A known shortcoming of replay [10] is that it may lead to a live-
lock when the service for a long-latency event for a thread that 
requested a replay keeps being cancelled by the service of another 
long-latency event for another thread that also requested a replay 
(e.g., conflicting cache misses where two cache line requests evict 
one another). To prevent this, we support a mechanism to turn off 
replay capability dynamically to guarantee forward progress. 

5.2.3 State Sharing Attributes 
There are a few possible attributes that an architectural state can 
have with respect to the way threads access the state. First, a 
private state has multiple contexts, each accessible only by a 



thread (e.g., K and CNT in Figure 3b). Second, a global state is 
shared by all the threads, and it has only one context accessible by 
any thread (e.g., K and CNT in Figure 3c). Third, a group state has 
multiple contexts, each accessible only by a set of threads (e.g., K 
and CNT in Figure 3d).  

Our system supports all these attributes, allowing for generic 
sharing, where sharing can be applied to any arbitrary state and 
group of threads. Note for instruction processors, the most 
common attributes are private (e.g., PC, RF) and global (e.g., 
memory). Thus, a group state is a new kind of attribute enabled by 
our synthesis technology. 

 
Figure 4. Extending T-spec for multithreading. 

 
Figure 5. Multithreading support logic and IMT hazard 

management logic simplification examples. 

5.3 T-spec for Multithreading 
5.3.1 Extending the Transaction Abstraction 
We extend the transaction abstraction captured by T-spec (as 
previously explained in Section 3) to support multithreading. 
Figure 4a provides an illustration, where there exist multiple 
sequences of transactions, each belongs to a thread of execution  

The original transaction abstraction semantics is still preserved, 
where the datapath executes one transaction at a time, and each 
transaction reads the state values left by the preceding transaction 
and computes a new set of state values to be seen by the next 
transaction. Except now each transaction is also associated with a 
thread (e.g., Thread1 to Thready in Figure 4), and a state may have 
multiple contexts.  

A thread is associated with a transaction sequence (e.g., Tx, Tx-1, 
and so on in Figure 4), which corresponds to the original sequence 
of execution of the thread in a non-threaded system (i.e., 

correspond to the program order in the case of instruction 
processor, where a transaction is equivalent to an instruction). 

A thread is also associated with state sharing attributes (see 
section 5.2.3), indicating, for each state, which context it can 
access. For example, a state update made by a transaction from a 
thread can be read by a subsequent transaction from a different 
thread, if both threads access the same context of the state.  

Finally, having multiple threads also raises a question on the 
orders of the thread execution that should be considered valid. 
Here, we consider any possible thread execution order to be valid 
(Figure 4a shows a round-robin order, but any order is valid).  

5.3.2 T-spec Language Extensions 
We incorporated the following extensions to T-spec to capture 
multithreaded datapaths based on the aforementioned abstraction. 

• First, we add a way to declare threads. Figure 4b shows 
declarations of 4 threads (th0, th1, th2, th3) in our key 
scan example. Each declared thread will be assigned a unique 
thread ID (TID) by T-piper during synthesis. 

• Second, since a state now can contain multiple contexts, the 
state-read and state-write interfaces are extended with an 
additional input, context ID (CID), to indicate the context to 
access. T-piper will automatically synthesize logic that drives 
this input. Figure 4c shows the declaration for 2-context CNT in 
the key scan example. Note that any multi-context state element 
implementation can be used, as long as it has appropriate read 
and write interfaces. 

• Third, we add a way to specify state sharing attributes. Figure 
4c shows an example of making CNT a group state, where 
context 0 is accessible only by th0 and th2, and context 1 by 
th1 and th3. T-spec can specify accessibility to any state 
context by arbitrary set of threads, so it can also specify private 
(a set of one thread) and global (a set of all the threads) states. 

• Fourth, we add a module type to specify a custom thread 
scheduler implementation. T-piper synthesis will place the 
thread scheduler module at the first stage of the pipeline, so it 
can select the next thread to enter the pipeline, as illustrated in 
Figure 5a. The figure also shows the interface to the thread 
scheduler module, which includes mandatory inputs and 
outputs (i.e., en, TID, no_replay, replay_req, and replay_tid) as 
well as any arbitrary inputs from interfaces specified in T-spec 
that are assigned to the first pipeline stage in S-cfg.  

• Finally, the handshake interface of a multi-cycle block is 
extended with a replay_req output, and a no_replay input, to 
make it replay-capable. When the block needs multiple clocks 
to complete, it can ask for a replay by asserting its replay_req 
output unless its no_replay input is not asserted. 

The thread scheduler interface works as follows. When the first 
stage becomes available, en is asserted indicating that scheduling 
decision is needed. At this point, TID outputs the decision on the 
thread that should enter first stage. A replay can be requested 
whenever a thread in the pipeline encounters a long-latency event 
performed by a multi-cycle block (i.e., MCs in Figure 5a) through 
the block’s handshake interface. T-piper synthesis connects all 
replay-capable multi-cycle blocks to the replay network, which 
will assert replay_req input of the thread scheduler when a replay 
occurs in the pipeline and supply the TID of the thread requesting 
a replay to the replay_tid input. These inputs can be used in thread 
scheduling decision (e.g., the thread requesting a replay do not get 



re-scheduled right away). To ensure forward progress in the case 
of a live-lock, the thread scheduler can assert its no_replay output 
whenever necessary (e.g., assert periodically to guarantee overall 
forward progress). Lastly, the scheduler interface can also be 
connected to any arbitrary inputs from the first pipeline stage. An 
example usage is to have the scheduler in our key scan example to 
monitor STATUS, and de-schedule any thread that is inactive. 

The thread scheduler module is allowed to contain persistent 
states to help perform scheduling functions. For example, to 
implement a BMT scheduling, the thread scheduler may maintain 
an internal counter, that is incremented each time its en input is 
asserted. When the counter saturates, a thread switch is triggered.  

The aforementioned thread scheduler specification strategy allows 
for flexibility, since any thread scheduler implementation can be 
used, as long it implements the appropriate interface. 

5.4 Multithreaded Pipeline Synthesis 
5.4.1 Multithreaded data hazard management 
In a non-threaded pipeline implementation, T-piper synthesizes 
hazard management logic for each state in T-spec to ensure Read-
After-Write (RAW) hazards are detected and resolved accordingly 
[13]. To support hazard management in multithreaded pipeline, 
we extend such hazard management logic with a context ID (CID) 
check logic, which ensures that if there is a RAW hazard on a 
state, the hazard targets the same context of that state. 

T-spec has already provided the information on how a thread 
accesses each state element (e.g. Figure 4c). T-piper uses this 
information to synthesize the logic that translates a thread ID 
(TID) to a CID for each state element and propagates the CID 
along the pipeline (Figure 5a). The CID is used to access the 
appropriate context during a state access, and is incorporated to 
the hazard management logic, as mentioned above.  

Beyond this baseline multithreaded hazard management logic, two 
types of simplifications can be made. First, for a global state, the 
CID check is always true. So, the logic can be optimized away. 

Second, if the default round-robin IMT scheduler is used, it may 
be possible to make simplifications since certain hazards could 
never happen. Figure 5b provides an example IMT hazard logic 
simplifications to the CNT architectural state for the key scan 
implementation scenarios shown in Figure 3b, 3c, and 3d, 
assuming a 4-stage pipeline target where CNT is read and written 
back in the first and last stage, respectively. The lines on the left 
side of the pipeline show all possible hazards in the non-threaded 
pipeline, with the dashed lines showing the hazards that can never 
happen given IMT scheduling and the CNT sharing attribute. 

To do this, T-piper enumerates all possible thread orders in the 
pipeline, given IMT scheduling. Next, for each thread order, it 
translates the TID of the thread occupying the stage to its CID, for 
each state element. Figure 5b shows the enumerated TIDs and the 
associated CIDs for CNT in the key scan example. Note that the 
enumerations deliberately do not consider stalls in the pipeline, so 
they represent the most aggressive schedule that could happen. 
From the enumerations, T-piper determines the minimum distance 
for which hazards can happen. For example, with private CNT, 
hazards cannot happen within 4 stages away from the state-read 
interface of CNT (i.e., in first stage). Since there are only 4 stages 
in the pipeline, the hazard management logic can be eliminated 
entirely. For global CNT, the minimum distance is 1. So, no 
simplifications can be made, since hazard can happen between the 
stage where the state-read is and any of the later stages. Lastly, for 

group CNT, the distance is 2. Simplification can be made here, 
since hazard can never happen between stage 1 and 2. 

5.4.2 Thread scheduler and Replay Support 
The synthesis process integrates the thread scheduler (either the 
default IMT or a custom-defined one) to the pipeline by 
connecting its inputs and outputs to the appropriate pipeline 
control signals, as illustrated in Figure 5a.  

The en input of the scheduler is connected to the control signal of 
the first stage that indicates when a new transaction should enter 
the pipeline. The TID output is connected to the TIDtoCID 
translation logic. The synthesis also creates the logic for 
propagating the CID through the rest of the pipeline, as well as 
connecting the CID to appropriate state access interfaces.  

For replay, the replay_en and replay_tid inputs are connected to 
the network of replay signals from all the replay-capable MC 
blocks in the pipeline. This replay network is also automatically 
synthesized. It is a simple logic that detects a reply request, and 
selects one from the latest stage in case of simultaneous multiple 
replay requests. It outputs the TID of the thread requesting replay 
(replay_tid) and asserts the replay_en to indicate to the thread 
scheduler that a replay is requested. Lastly, the no_replay output 
of the scheduler is propagated through the pipeline and is 
connected to each replay-capable MC block, indicating to the 
block when a replay is prohibited. 

 
Figure 6. Design space exploration of x86 pipelines. 

6. A CASE STUDY WITH X86 PIPELINES 
The key scan example discussed previously is very simple and 
was intended for illustration purposes only. In this section, we 
present a non-trivial case study on the design space exploration of 
various multithreaded x86 processor pipelines.  

The pipelines are all synthesized from a single x86-subset T-spec 
using T-piper within minutes. The x86 T-spec is based on [13], 
and extended to support 4 threads, a shared memory, and private 
architectural states. The memory uses a cache with a hit serviced 
right away and a miss serviced in 10 implementation clock cycles. 
The T-spec also includes a custom non-x86 1-bit private state 
(STATUS) and a custom instruction to set the state to indicate 
whether a thread is active (running a benchmark) or inactive 
(finished running, in idle loop). Each pipeline is evaluated by 



running a mix of 4 benchmarks (DES, Quant, VLC, Bitcount) 
from [16]. The benchmarks are of different lengths, each running 
as its own thread. At the end of each benchmark, the custom 
instruction is used to set the custom state to inactive. Then, the 
benchmark enters an idle loop. Thus, overall execution is 
completed when all threads have set their STATUS to inactive. 

We evaluated a total of 32 pipelines with T-piper, varying the 
following parameters: (1) pipeline depths varied from 4 to 7 
stages; (2) with (F) and without (NF) inclusion of maximal 
forwarding; (3) with (P) and without (NP) inclusion of a thread 
scheduler that prioritizes for active threads by monitoring 
STATUS, on top of a round-robin IMT policy; and, (4) with (R) 
and without (NR) the capability to replay on a cache miss.  

Figure 6a shows the cycle count from RTL simulation of each 
pipeline. Forwarding improves cycle count since stalls due to 
RAW hazards are reduced, allowing the pipeline to host multiple 
instructions from the same thread. Thread scheduler that skips 
inactive threads also helps cycle counts since completed shorter-
running benchmarks that are in idle loop are no longer scheduled 
to use the pipeline, thus accelerating forward progress of the 
longer-running still-active threads. Finally, replay improves cycle 
count since a cache miss does not block the entire pipeline.  

We also synthesized the pipelines using Synopsys DC targeting a 
commercial 180nm standard-cell library. Figure 6a shows the 
implementation frequency for each pipeline. The improvement 
trend is generally the opposite of that of the cycle count because 
features that improve cycle count introduce additional 
implementation overheads that can result in reduced frequency. 
Notice also that deeper pipelines do help improve frequency. 

Figure 6b shows the cost-performance tradeoff for the pipelines 
we studied. For each pipeline, the area is obtained from Synopsys, 
and the run-time is based on the RTL simulation cycle counts, 
adjusted by the implementation frequency. Notice that no single 
design parameter dominates the pipelines in the Pareto optimal 
design points (e.g., 2 points with all R, P and F optimizations; 2 
with only F; 1 with only R; 1 with only P; and 1 without 
optimization). It would have been impossible to do such 
characterize such design points without exploring a large number 
of different designs at the RT level.  

Previous work [13] has shown that a non-threaded in-order 
pipeline generated by T-piper is comparable to a manually 
designed one via a case study with a MIPS pipeline. As a sanity 
check, we compared the simplest non-threaded pipeline (4-stage, 
without optimization) with its 4-threaded counterparts. We found 
that multithreading without any optimization (i.e., NR-NP-NF) 
resulted to only 26% area increase and 4% frequency decrease, 
while shortening run-time by 18%. When all optimizations are 
considered (i.e., R-P-F), the area and frequency overheads are 
only 51% and 21%, respectively, while run-time improves by 2x. 

7. CONCLUSION 
This paper presented a novel approach for automatically 
synthesizing in-order multithreaded pipelines, by extending the 
recently proposed transactional datapath specification (T-spec) 
and the associated pipeline synthesis technology (T-piper). T-spec 
and T-piper greatly reduce the time and effort to develop in-order 
pipelines, with and without multithreading. The effectiveness of 
this work was demonstrated through a design space exploration 
study of 32 multithreaded processor pipelines supporting an x86 

ISA subset, showcasing the benefits of several multithreading 
features supported by the proposed synthesis technology. 
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