Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1837934.1837963acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Decomposition of generic multivariate polynomials

Published: 25 July 2010 Publication History

Abstract

We consider the composition f =g o h of two systems g= (g0, ..., gt) and h=(h0, ..., hs) of homogeneous multivariate polynomials over a field K, where each gj ∈ K[y0, ..., ys] has degree ℓ each hk ∈ K[x0, ..., xr] has degree m, and fi = gi(h0, ..., hs) ∈ K[x0, ..., xr] has degree n = ℓ · m, for 0 ≤ i ≤ t. The motivation of this paper is to investigate the behavior of the decomposition algorithm Multi-ComPoly proposed at ISSAC'09 [18]. We prove that the algorithm works correctly for generic decomposable instances -- in the special cases where ℓ is 2 or 3, and m is 2 -- and investigate the issue of uniqueness of a generic decomposable instance. The uniqueness is defined w.r.t. the "normal form" of a multivariate decomposition, a new notion introduced in this paper, which is of independent interest.

References

[1]
V. S. Alagar and M. Thanh. Fast Polynomial Decomposition Algorithms. In Proc. EUROCAL85, Lecture Notes in Computer Science, vol. 204, pp. 150--153, Springer--Verlag, 1985.
[2]
M. Bardet. Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie. Thèse de doctorat, Université de Paris VI, 2004.
[3]
M. Bardet, J-C. Faugère, and B. Salvy. On the Complexity of Gröbner Basis Computation of Semi-Regular Overdetermined Algebraic Equations. In Proc. of International Conference on Polynomial System Solving (ICPSS), pp. 71--75, 2004.
[4]
M. Bardet, J-C. Faugère, B. Salvy and B-Y. Yang. Asymptotic Behaviour of the Degree of Regularity of Semi-Regular Polynomial Systems. In Proc. of MEGA 2005, Eighth International Symposium on Effective Methods in Algebraic Geometry, 2005.
[5]
D. R. Barton and R. E. Zippel. Polynomial decomposition algorithms. J. Symb. Comp., 1, pp. 159--168, 1985.
[6]
B. Buchberger. An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal (German), PhD Thesis, University of Innsbruck, Math. Institute, Austria, 1965. (English Translation: J. S. C., Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol. 41 (3--4), pp 475--511, 2006).
[7]
B. Buchberger. Ein algorithmisches Kriterium fur die Lšsbarkeit eines algebraischen Gleichungssystems (An Algorithmical Criterion for the Solvability of Algebraic Systems of Equations) Aequationes mathematicae 4/3, 1970, pp. 374--383. (English translation in: B. Buchberger, F. Winkler (eds.), Gröbner Bases and Applications, Proc. of the International Conference "33 Years of Gröbner Bases", 1998, RISC, Austria, London Mathematical Society Lecture Note Series, Vol. 251, Cambridge University Press, 1998, pp. 535--545.)
[8]
B. Buchberger. Gröbner Bases: an Algorithmic Method in Polynomial Ideal Theory. Recent trends in multidimensional systems theory. Reider ed. Bose, 1985.
[9]
B. Buchberger, G.-E. Collins, and R. Loos. Computer Algebra Symbolic and Algebraic Computation. Springer-Verlag, second edition, 1982.
[10]
E.-W. Chionh, X.-S. Gao, L.-Y. Shen. Inherently Improper Surface Parametric Supports. Computer Aided Geometric Design 23 (2006), pp. 629--639.
[11]
D. A. Cox, J. B. Little, and D. O'Shea. Ideals, Varieties, and Algorithms: an Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer-Verlag. New York, 1992.
[12]
M. Dickerson. The functional Decomposition of Polynomials. Ph.D Thesis, TR 89-1023, Departement of Computer Science, Cornell University, Ithaca, NY, July 1989.
[13]
M. Dickerson. General Polynomial Decomposition and the s-l-decomposition are NP-hard. International Journal of Foundations of Computer Science, 4:2 (1993), pp. 147--156.
[14]
F. Dorey and G. Whaples. Prime and composite polynomials. J. Algebra,(28), pp. 88--101, 1974.
[15]
J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Basis without Reduction to Zero: F5 . Proceedings of ISSAC, pp. 75--83. ACM press, July 2002.
[16]
J.-C. Faugère, L. Perret. Cryptanalysis of 2R- schemes. Advances in Cryptology -- CRYPTO 2006, Lecture Notes in Computer Science, vol. 4117, pp. 357--372, Springer--Verlag, 2006.
[17]
J.-C. Faugère, L. Perret. An Efficient Algorithm for Decomposing Multivariate Polynomials and its Applications to Cryptography. Special Issue of JSC, "Gröbner Bases techniques in Coding Theory and Cryptography", on-line available.
[18]
J.-C. Faugère, L. Perret. High order derivatives and decomposition of multivariate polynomials. Proceedings of ISSAC, pp. 207--214. ACM press, July 2009.
[19]
R. Fröberg. An inequality for Hilbert series of graded algebras. Math. Scand., 56(2) :117--144, 1985.
[20]
J. von zur Gathen. The number of decomposable univariate polynomials. Proceedings of ISSAC, pp. 359--366. ACM press, July 2009.
[21]
J. von zur Gathen. Functional decomposition of polynomials: the tame case. J. Symb. Comput. (9), pp. 281--299, 1990.
[22]
J. von zur Gathen. Functional decomposition of polynomials: the wild case. J. Symb. Comput. (10), pp. 437--452, 1990.
[23]
J. von zur Gathen, J. Gutierrez, R. Rubio. Multivariate Polynomial Decomposition. Applicable Algebra in Engineering, Communication and Computing, 14 (1), pp. 11--31, 2003.
[24]
J. Gutierrez, D. Sevilla. Computation of Unirational fields. J. Symb. Comput. 41(11), pp. 1222--1244, 2006.
[25]
J. Gutierrez, R. Rubio, D. Sevilla. On Multivariate Rational Function Decomposition. J. Symb. Comput. 33(5), pp. 545--562, 2002.
[26]
D. Kozen, and S. Landau. Polynomial Decomposition Algorithms. J. Symb. Comput. (7), pp. 445--456, 1989.
[27]
J. F. Ritt. Prime and Composite Polynomials. Trans. Amer. Math. Soc., (23), pp 51--66, 1922.
[28]
M. Sweedler. Using Gröbner Bases to Determine the Algebraic and Transcendental Nature of Field Extensions: Return of the Killer Tag Variables. Proc. AAECC, 66--75, 1993.
[29]
S. M. Watt. Functional Decomposition of Symbolic Polynomials. In Proc. International Conference on Computational Sciences and its Applications, (ICCSA 2008), IEEE Computer Society, pp. 353--362.
[30]
D. F. Ye, Z. D. Dai and K. Y. Lam. Decomposing Attacks on Asymmetric Cryptography Based on Mapping Compositions, Journal of Cryptology (14), pp. 137--150, 2001.

Cited By

View all
  • (2023)Using monodromy to recover symmetries of polynomial systemsProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597106(251-259)Online publication date: 24-Jul-2023
  • (2018)Key-Recovery Attacks on ASASAJournal of Cryptology10.1007/s00145-017-9272-x31:3(845-884)Online publication date: 1-Jul-2018
  • (2014)Cryptographic Schemes Based on the ASASA Structure: Black-Box, White-Box, and Public-Key (Extended Abstract)Advances in Cryptology – ASIACRYPT 201410.1007/978-3-662-45611-8_4(63-84)Online publication date: 2014
  • Show More Cited By

Index Terms

  1. Decomposition of generic multivariate polynomials

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ISSAC '10: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation
    July 2010
    366 pages
    ISBN:9781450301503
    DOI:10.1145/1837934
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    • Gesellschaft fur Informtatik

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 25 July 2010

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Gröbner bases
    2. functional decomposition
    3. generic uniqueness

    Qualifiers

    • Research-article

    Conference

    ISSAC '10
    Sponsor:

    Acceptance Rates

    ISSAC '10 Paper Acceptance Rate 45 of 110 submissions, 41%;
    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)4
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 12 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Using monodromy to recover symmetries of polynomial systemsProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597106(251-259)Online publication date: 24-Jul-2023
    • (2018)Key-Recovery Attacks on ASASAJournal of Cryptology10.1007/s00145-017-9272-x31:3(845-884)Online publication date: 1-Jul-2018
    • (2014)Cryptographic Schemes Based on the ASASA Structure: Black-Box, White-Box, and Public-Key (Extended Abstract)Advances in Cryptology – ASIACRYPT 201410.1007/978-3-662-45611-8_4(63-84)Online publication date: 2014
    • (2012)On functional decomposition of multivariate polynomials with differentiation and homogenizationJournal of Systems Science and Complexity10.1007/s11424-012-1144-825:2(329-347)Online publication date: 11-Apr-2012

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media