
Awareness Requirements for Adaptive Systems∗

Vítor E. Silva Souza
Dept. Inf. Eng. and Computer

Science - Univ. of Trento
Via Sommarive, 14 - Trento,

Italy - 38123
vitorsouza@disi.unitn.it

Alexei Lapouchnian
Dept. of Computer Science -

University of Toronto
10 King’s College Road -

Toronto, Canada - M5S 3G4
alexei@cs.toronto.edu

William N. Robinson
Dept. of Computer Inf. Sys. -

Georgia State University
35 Broad St NW, Suite 927 -

Atlanta, GA, USA - 30303
wrobinson@gsu.edu

John Mylopoulos
Dept. Inf. Eng. and Computer

Science - Univ. of Trento
Via Sommarive, 14 - Trento,

Italy - 38123
jm@disi.unitn.it

ABSTRACT
Recently, there has been a growing interest in self-adaptive
systems. Roadmap papers in this area point to feedback
loops as a promising way of operationalizing adaptivity in
such systems. In this paper, we define a new type of require-
ment — called Awareness Requirement — that can refer to
other requirements and their success/failures. We propose
a way to elicit and formalize such requirements and offer a
requirements monitoring framework to support them.

Categories and Subject Descriptors
D.2 [Software Engineering]: Requirements/Specifications

General Terms
Requirements, Adaptivity

Keywords
Requirements engineering, modeling, adaptive systems, aware-
ness, monitoring

1. INTRODUCTION
There is much and growing interest in software systems

that can adapt to changes in their environment or their
requirements in order to continue to fulfill their mandate.
Such adaptive systems usually consist of a system proper
that delivers a required functionality, along with a monitor-
analyze-plan-execute (MAPE [9]) feedback loop that opera-
tionalizes the system’s adaptability mechanisms. Indications

∗An extended version of this paper is available in [16].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS ’11, May 23–24, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0575-4/11/05 ...$10.00.

for this growing interest can be found in recent workshops
and conferences on topics such as adaptive, autonomic and
autonomous software (e.g., [3]).

Feedback loops constitute an architectural prosthetic to a
system proper, introducing monitoring, analysis/diagnosis,
etc. functionalities to the overall system. We are interested
in studying the requirements that lead to this feedback loop
functionality. In other words, if feedback loops constitute an
(architectural) solution, what is the requirements problem
this solution is intended to solve? The nucleus of an answer
to this question can be gleamed from any description of feed-
back loops: “... the objective ... is to make some output,
say y, behave in a desired way by manipulating some input,
say u ...” [4]. Suppose then that we have a requirement r =
“supply customer with goods upon request” and let s be a
system operationalizing r. The “desired way” of the above
quote for s is that it always fulfills r, i.e., every time there
is a customer request the system meets it successfully. This
means that the system somehow manages to deliver its func-
tionality under all circumstances (e.g., even when one of the
requested items is not available). Such a requirement can be
expressed, roughly, as r1 =“Every instance of requirement r
succeeds”. And, of course, an obvious way to operationalize
r1 is to add to the architecture of s a feedback loop that
monitors if system responses to requests are being met, and
takes corrective action if they are not. We can generalize on
this: we could require that s succeeds more than 95% of the
time over any one-month period, or that the average time
it takes to supply a customer over any one week period is
no more than 2 days. The common thread in all these ex-
amples is that they define requirements about the run-time
success/failure/quality-of-service of other requirements. We
call these self-awareness requirements.

A related class of requirements is concerned with the truth
/ falsity of domain assumptions. For our example, we may
have designed our customer supply system on the domain
assumption d =“suppliers for items we distribute are always
open”. Accordingly, if supplier availability is an issue for our
system, we may want to add yet another requirement r2=“d
will not fail more than 2% of the time during any 1-month
period”. This is also an awareness requirement, but it is
concerned with the truth/falsity of a domain assumption.

Figure 1: An example of a high-level goal model for an Ambulance Dispatch System.

The objective of this paper is to study Awareness Require-
ments (hereafter referred to as AwReqs), which are charac-
terized syntactically as requirements that refer to other re-
quirements or domain assumptions and their success or fail-
ure at runtime. AwReqs are represented in a formal language
and can be directly monitored by a requirements monitoring
framework. In the future, we plan to propose a systematic
process for designing full MAPE loops from a set of AwReqs.
Here, however, our focus is on the definition and study of
AwReqs and their monitoring at runtime.
Awareness is a topic of great importance within both

Computer and Cognitive Sciences. In Philosophy, aware-
ness plays an important role in several theories of conscious-
ness. In fact, the distinction between self-awareness and
contextual requirements seems to correspond to the distinc-
tion some theorists draw between higher-order awareness
(the awareness we have of our own mental states) and first-
order awareness (the awareness we have of the environment)
[15]. In Psychology, consciousness has been studied as “self-
referential behavior”. Closer to home, awareness is a ma-
jor design issue in HCI and CSCW. The concept in various
forms is also of interest in the design of software systems
(security / process / context / location / ... awareness).
The rest of the paper is structured as follows. Section 2

presents the research baseline; section 3 introduces AwReqs
and talks about their elicitation; section 4 discusses their for-
malization; section 5 talks about AwReqs monitoring imple-
mentation and presents evaluation results from experiments
with our proposal; section 6 summarizes related work; fi-
nally, section 7 concludes the paper.

2. BASELINE
This section briefly presents research background on GORE

and requirements monitoring.

2.1 Goal-Oriented Requirements Engineering
To model and analyze requirements, we adopt a goal-

oriented approach: requirements are goals that stakeholders
want to fulfill and constitute the mandate of a system-to-be.

Goal-Oriented RE (GORE) approaches adopt as primitives
concepts such as: goals, softgoals, quality constraints (QCs)
and domain assumptions (DAs) [8]. Figure 1 shows a goal
model for an Ambulance Dispatch System (ADS).

In our example, the main goal of the system is to sup-
port ambulance dispatching. Goals can be AND/OR de-
composed with obvious semantics. For example, to receive
an emergency call, one has to input its information, deter-
mine its uniqueness (have there been other calls for the same
emergency?) and send it to dispatchers, all on the assump-
tion that “Communication networks [are] working”. On the
other hand, periodic update of an ambulance’s status can be
performed either automatically or manually. Goals are de-
composed until they reach a level of granularity where there
are tasks an actor (human or system) can perform to fulfill
them. In the figure, goals are represented as ovals and tasks
as hexagons.

Softgoals are special types of goals that do not have clear-
cut satisfaction criteria. In our example, stakeholders would
like ambulance dispatching to be fast, dispatched calls to be
unambiguous and prioritized, and selected ambulances to
be as close as possible to the emergency site. Softgoal sat-
isfaction can be estimated through qualitative contribution
links that propagate satisfaction or denial and have four lev-
els of contribution: break (- -), hurt (-), help (+) and make
(++). E.g., selecting an ambulance using the software system
contributes positively to the proximity of the ambulance to
the emergency site, while using manual ambulance status
update, instead of automatic, contributes negatively to the
same criterion. Contributions may exist between any two
goals (including hard goals).

Softgoals are obvious starting points for modeling non-
functional requirements. To make use of them in design,
however, they need to be refined to measurable constraints
on the system-to-be. These are QCs, which are perceivable
and measurable entities that inhere in other entities [8]. In
our example, unambiguity is measured by the number of
times two ambulances are dispatched to the same location,

Figure 2: An example of OCLTM constraint.

while fast assistance is refined into two QCs: ambulances
arriving within 10 or 15 minutes to the emergency site.
Finally, domain assumptions indicate states of the world

that we assume to be true in order for the system to work.
For example, we assume that communication networks (tele-
phone, Internet, etc.) are available and functional. If this
assumption were to be false, its parent goal (“Receive emer-
gency call”) would not be satisfied.

2.2 Requirements Monitoring
In our proposal, as discussed in the introduction, adap-

tivity is to be implemented through MAPE feedback loops.
Monitoring is the first step in this kind of loop and since
AwReqs refer to the success/failure of other requirements,
we will need to monitor requirements at runtime.
Therefore, we have based the monitoring component of

our implementation on the requirements monitoring frame-
work EEAT1, formerly known as ReqMon [11]. EEAT, an
Event Engineering and Analysis Toolkit, provides a pro-
gramming interface (API) that simplifies temporal event
reasoning. It defines a language to specify goals and can
be used to compile monitors from the goal specification and
evaluate goal fulfillment at runtime.
EEAT’s architecture is presented in more detail along with

our implementation in section 5. In it, requirements can be
specified in a variant of the Object Constraints Language
(OCL), called OCLTM — meaning OCL with Temporal
Message logic [12]. OCLTM extends OCL 2.0 with: Flake’s
approach to messages [6], standard temporal operators (◦,
♦, �, etc.), scopes and patterns as defined by Dwyer et al.
[5] and timeouts that can be associated with such scopes.
Figure 2 shows an example of OCLTM constraint, taken

from a protocol definition for buyer and seller agents. The
invariant getsQuote determines that if the buyer receives
the quote message, eventually the seller should receive the
rRequestQuote message and both messages should refer to
the same qID argument. Given an instrumented Java im-
plementation of these actors and a program in which they
exchange messages through method calls, EEAT is able to
monitor and assert this invariant at runtime. In section 5,
we describe in more detail how EEAT accomplishes this in
the context of AwReqs monitoring.
Although in our proposal AwReqs can be formalized in

any language that provides temporal constructs (e.g., LTL),
examples of AwReq formalization in section 4 will be given
using OCLTM , which is also the language used for our pro-
posal’s validation, presented in section 5.

1http://eeat.cis.gsu.edu:8080/

Figure 3: States assumed by requirements.

3. AWARENESS REQUIREMENTS
AwReqs are requirements that talk about the success or

failure of other requirements. More generally, AwReqs talk
about the states requirements can assume during their ex-
ecution at runtime. Figure 3 shows these states which, in
the context of our modeling framework, can be assumed by
goals, tasks, DAs, QCs and AwReqs themselves. When an
actor starts to pursue a requirement, its result is yet Un-

decided. Eventually, the requirement will either have Suc-

ceeded, or Failed. For goals and tasks, there is also a Can-

celed state.
Table 1 shows some of the AwReqs that were elicited dur-

ing the analysis of the ADS. These examples are presented
to illustrate the different types of AwReqs, which are dis-
cussed in the following paragraphs, and also some patterns
(§3.1) that can facilitate their elicitation (§3.2).

We can identify a number of types of AwReq. AR1 shows
the simplest form of AwReq : the requirement to which it
refers should never fail. Considering a control system, the
reference input is to fulfill the requirement. If the actual
output is telling us the requirement has failed, the control
system must act (compensate, reconcile — not discussed
in this paper) in order to bring the system back to an ac-
ceptable state. AR1 considers every instance of the referred
requirement. An instance of a task is created every time it
is executed and the “never fail” constraint is to be checked
for every such instance. Similarly, instances of a goal exist
whenever the goal needs to be fulfilled, while DA and QC
instances are created whenever their truth/falsity needs to
be checked in the context of a goal fulfillment.

An aggregate AwReq refers to the instances of another
requirement and imposes constraints on their success/failure
rate. E.g., AR2 is the simplest aggregate AwReq : it demands
that the referred DA be true 99% of the time the goal Re-
ceive emergency call is attempted. Aggregate AwReqs can
also specify the period of time to consider when aggregating
requirement instances (e.g., AR3). The frequency with which
the requirement is to be verified is an optional parameter for
AwReqs. If it is omitted, then the designer is to select the
frequency. AR5 is an example of an AwReq with verification
interval specified.

Another pattern for aggregateAwReq specifies the min/max
success/failure a requirement is allowed to have (e.g., AR4).
AwReqs can combine different requirements, like AR5, that
integrates two QCs with different target rates. One can even
compare the success counts of two requirements (AR6). This
captures a desired property of the alternative selection pro-
cedure when deciding at runtime how to fulfill a goal.
AR7 is an example of a trend AwReq that compare success

rates over a number of periods. Trend AwReqs can be used
to spot problems in how success/failure rates evolve over
time. Delta AwReqs, on the other hand, can be used to

Table 1: Examples of AwReqs, elicited in the context of the ADS, and their types and patterns.

Id Description Type Pattern

AR1 Input emergency information should never fail Regular NeverFail(T-InputInfo)

AR2 Communications networks working should have 99% suc-
cess rate

Aggregate SuccessRate(D-CommNetsWork, 99%)

AR3 Search call database should have a 95% success rate over
one week periods

Aggregate SuccessRate(G-SearchCallDB, 95%,
7d)

AR4 Dispatch ambulance should fail at most once a week Aggregate MaxFailure(G-DispatchAmb, 1, 7d)

AR5 Ambulance arrives in 10 minutes should succeed 60% of
the time, while Ambulance arrives in 15 minutes should
succeed 80%, measured daily

Aggregate @daily SuccessRate(Q-Amb10min,
60%) and SuccessRate(Q-Amb15min,
80%)

AR6 Update automatically should succeed 100 times more
than the task Update manually

Aggregate ComparableSuccess(T-UpdAuto,
T-UpdManual, 100)

AR7 The success rate of No unnecessary extra ambulances for
a month should not decrease, compared to the previous
month, two times consecutively

Trend not TrendDecrease(Q-NoExtraAmb,
30d, 2)

AR8 Update arrival at site should be successfully executed
within 10 minutes of the successful execution of Inform
driver, for the same emergency call

Delta ComparableDelta(T-UpdArrSite,
T-InformDriver, time, 10m)

AR9 Mark as unique or duplicate should be decided within 5
minutes

Delta StateDelta(T-MarkUnique,
Undecided, *, 5m)

AR10 AR3 should have 75% success rate over one month periods Meta SuccessRate(AR3, 75%, 30d)

AR11 AR5 should never fail Meta NeverFail(AR5)

specify acceptable thresholds for the fulfillment of require-
ments, such as achievement time. AR8 specifies that task
Update arrival at site should be satisfied (successfully fin-
ish execution) within 10 minutes of completing task Inform
driver. This means that once the dispatcher has informed
the ambulance driver where the emergency is, she should
arrive there within 10 min.
Another delta AwReq, AR9, shows how we can talk not

only about success and failure of requirements, but about
changes of states, following the state machine diagram of
figure 3. In effect, when we say a requirement “should [not]
succeed (fail)” we mean that it “should [not] transition from
Undecided to Succeeded (Failed)”. AR9 illustrates yet an-
other case: the task Mark as unique or duplicate should be
decided — i.e., should leave the Undecided state — within 5
minutes. In other words, regardless if they succeeded or fail,
operators should not spend more than 5 minutes deciding if
a call is a duplicate of another call or not.
These three non-regular types of AwReq bear similari-

ties with the three components of the proportional-integral-
differential (PID) controller, a widely used feedback con-
troller type [4]. Aggregate AwReqs act like the integral
component, which considers not only the current difference
between the output and the reference input (the control er-
ror), but aggregates the errors of past measurements. Delta
AwReqs were inspired by how proportional control sets its
output proportional to the control error, while trend AwReqs
follow the idea of the derivative control, which sets its output
according to the rate of change of the control error.
Finally, AR10 and AR11 are the examples of meta-AwReqs:

AwReqs that talk about other AwReqs. One of the motiva-
tions for meta-AwReqs is the application of gradual reconcil-
iation/compensations actions. This is the case with AR10: if

AR3 fails (i.e., Search call database has less than 95% success
rate in a week), tagging the calls as “possibly ambiguous”
(reconciling AR3) might be enough, but if AR3’s success rate
considering the whole month is below 75% (e.g., it fails at
least two out of four weeks), a deeper analysis of the DB
search problems might be in order (reconciling AR10).

Another useful case for meta-AwReqs is to avoid execut-
ing specific reconciliation/compensation actions too many
times. For example, AR5 states that 60% of the ambulances
should arrive in up to 10 minutes and 80% in up to 15 and
to reconcile we should trigger messages to all users of the
ADS. To avoid sending repeated messages in case it fails
again, AR11 states that AR5 should never fail and, in case
it does, its reconciliation decreases AR5’s percentages by 10
points (to 50% and 70%, respectively), which means that a
new message will be sent only if the emergency response per-
formance actually gets worse. If sending this message twice
a month were to be avoided, AR11’s reconciliation could be,
for example, disabling AR5 for that month.

With enough justification to do so, one could model an
AwReq that refers to a meta-AwReq, which we would call
a meta-meta-AwReq (or a third-level AwReq). There is no
limit on how many levels can be created and to avoid circu-
lar references we organize requirements in different strata,
like depicted in figure 4, allowing AwReqs to only reference
requirements from the stratum directly below.

3.1 Patterns and Graphical Representation
Formalizing AwReqs is not a trivial task. For this reason

we propose AwReq patterns to facilitate their elicitation and
analysis and a graphical representation that allows us to in-
clude them in the goal model, improving the communication
among system analysts and designers.

Figure 4: Strata for Awareness Requirements.

Figure 5: Graphical representation of AwReqs.

The last column in table 1 shows the patterns for each
of the AwReqs elicited for our running example. The list of
patterns shown in the table is by no means exhaustive and
each organization is free to define its own patterns. By using
such patterns we create a common vocabulary for analysts
and code generation tools could be provided to automati-
cally write AwReqs in the language of choice based on the
pattern, relieving requirements engineers from most of the
OCL coding. In section 5.1, we provide EEAT/OCLTM id-
ioms for this kind of code generation.
Furthermore, patterns are used in the graphical represen-

tation of AwReqs in the goal model, along with other ele-
ments such as goals, tasks, softgoals, DAs and QCs. For
that purpose, we introduce the notation shown in figure 5.
Due to space limitations, we show only a small portion of the
goal model with three AwReqs and a meta-AwReq. AwReqs
are represented by thick circles with arrows pointing to the
element to which they refer and the AwReq pattern besides
it. The first parameter of the pattern is omitted, as the
AwReq is pointing to it. In case an AwReq does not fit a
pattern, the analyst should write its name and document its
formalization elsewhere.

3.2 Awareness Requirements Elicitation
Like other types of requirements, AwReqs must be sys-

tematically elicited. Since they refer to the success/failure
of other requirements, their elicitation takes place after the
basic requirements have been elicited and the goal model
constructed. There are several common sources of AwReqs.
One obvious source consists of the goals that are critical

for the system-to-be to fulfill its purpose. If the aim is to
create a robust and resilient system, then there have to be
goals/tasks in the model that are to be achieved/executed
at a consistently high level of success. Such a subset of crit-
ical goals can be identified in the process and AwReqs spec-
ifying the precise achievement rates that are required for
these goals will be attached to them. This process can be

viewed as the operationalization of high-level non-functional
requirements (NFRs) such as Robustness, Dependability,
etc. For example, the task Input emergency information is
critical for this process since all subsequent activities depend
on it. Also, government regulations and rules may require
that certain goals cannot fail or be achieved at high rates.
Similarly, AwReqs are applied to DAs that are critical for
the system (e.g., Communications networks working).

As shown in section 3, AwReqs can be derived from soft-
goals. There, we presented a QC Ambulance arrives in 10
minutes that metricizes a high-level softgoal Fast assistance.
Then, AwReq AR5 is attached to it requiring the success rate
of 60%. This way the system is able to quantitatively eval-
uate at runtime whether the quality requirements are met
over large numbers of process instances and make appropri-
ate adjustments if they are not.

Qualitative softgoal contribution labels in goal models cap-
ture how goals/tasks affect NFRs, which is helpful, e.g., for
the selection of the most appropriate alternatives. In the ab-
sence of contribution links, AwReqs can be used to capture
the fact that particular goals are important or even critical
to meet NFRs and thus those goals’ high rate of achievement
is needed. This can be viewed as an operationalization of a
contribution link. For example, the task Prioritize calls in
figure 1 positively affects the softgoal Prioritized informa-
tion and can even be considered critical with respect to that
softgoal. So, an AwReq, say, SuccessRate(Prioritize Calls,
90%), can be added to the model to capture that fact. On
the other hand, if a goal has a negative effect on an NFR,
then an AwReq could demand a low success rate for it.

In Tropos [2] and other variations of goal modeling nota-
tion, alternatives introduced by OR-decomposed goals are
frequently evaluated with respect to certain softgoals. The
goal Periodical updates in figure 1 is such an example. The
evaluations are qualitative and show whether alternatives
contribute positively or negatively to softgoals. In our ap-
proach, softgoals are refined into QCs and the qualitative
contribution links are removed. However, the links do cap-
ture valuable information on the relative fitness of alterna-
tive ways to achieve goals. AwReqs can be used as a tool
to make sure that “good” alternatives are still preferred over
bad ones. E.g., the AwReq AR6 states that automatic up-
dates must be executed more often than manual ones, pre-
sumably because this is better for proximity of ambulances
to target locations and due to the costs of manual updates.
This way the intuition behind softgoal contribution links
is preserved. If multiple conflicting softgoals play roles in
the selection of alternatives, then a number of alternative
AwReqs can be created since the selection of the best alter-
native will be different depending on the relative priorities
of the conflicting NFRs.

One of the difficulties with AwReqs elicitation is coming
up with precise specifications for the desired success rates
over certain number of instances or during a certain time
frame. To ease the elicitation and maintenance we recom-
mend a gradual elicitation, first using high-level qualitative
terms such as “medium” or “high” success rate, “large” or
“medium” number of instances, etc. Thus, the AwReq may
originate as “high success rate of G over medium number of
instances” before becoming SuccessRate(G, 95%, 500). Of
course, the quantification of these high-level terms is depen-
dent on the domain and on the particular AwReq. So, “high
success rate” may be mapped to 80% in one case and to

Figure 6: Class model for requirements in GORE.

99.99% in another. Additionally, using abstract qualitative
terms in the model while providing the mapping separately
helps with the maintenance of the models since the model
remains intact while only the mapping is changing.

4. FORMALIZING AWREQS
We have just introduced AwReqs as requirements that re-

fer to the success or failure of other requirements. This
means that the language for expressing AwReqs has to treat
requirements as first class citizens that can be referred to.
Moreover, the language has to be able to talk about the
status of particular requirements instances at different time
points. The language we have chosen is OCLTM . Our gen-
eral approach to using it is as follows: (i) design-time re-
quirements — as shown in figure 1, but also the AwReqs of
table 1 — are represented as UML classes, (ii) run-time in-
stances of requirements, such as various ambulance dispatch
requests, are represented as instances of these classes. Rep-
resenting the system requirements (previously modeled as a
goal model) in a UML class diagram is a necessary step for
the formalization of AwReqs in any OCL-based language,
as OCL constraints refer to classes and their instances, at-
tributes and methods.
The model illustrated in figure 6 can be extended to spec-

ify requirements. For example, consider AR1 (table 1), which
refers to a UML Task requirement. Figure 7 presents AR1

as an OCL invariant on the class T-InputInfo, which is
a subclass of Task (from figure 6) and represents require-
ment Input emergency information. The invariant dictates
that instances of T-InputInfo should never be in the Failed
state, i.e., Input emergency information should never fail.
Each requirement of our system is represented by a UML

class, extending the appropriate class in the diagram of fig-
ure 6, like the T-InputInfo example we have just described.
Mnemonics were used to name these classes so one can de-
duce which requirement of figure 1 is being represented from

Figure 7: Some AwReqs formalized in OCLTM .

the class name. Moreover, the first letter of each class name
indicates which element of figure 6 is being extended (T for
Task, G for Goal and so forth). It is important to note that
these classes are only an abstract representation of the ele-
ments of the goal model and they are part of the monitoring
framework that will be presented in section 5. They are not
part of the monitored system (i.e., the ADS). In other words,
the actual requirements of the system are not implemented
by means of these classes.

Figure 7 also shows examples of formalization for different
categories of AwReqs: aggregate (AR3), trend (AR7) and delta
(AR8 and AR9). Meta-AwReqs also belong to one of the above
categories and, thus, are formalized similarly.

Aggregate AwReqs place constraints over a collection of
instances. In AR3, all instances of G-SearchCallDB are re-
trieved in a set, then we use the select() operation to
separate the subset of the instances that succeeded and,
finally, we compare the sizes of these two sets in order to
assert that 95% of the instances are successful at all times
(always). Also, we used date comparison as in [12] to indi-
cate the evaluation should be done considering only the past
week. Trend AwReqs are similar, but more complicated as
we must separate the requirements instances into different
time periods. For AR7, the select() operation was used to
create sets with the instances of Q-TwoDispatches for the
past three months to compare the rate of success over time.

Delta AwReqs specify invariants over single instances of
the requirements. AR8 singles out the instances of T-UpdAt-

Figure 8: Formalization of AwReqs for EEAT.

Site that are related to T-InformDriver in the related

set by comparing the callID argument using OCLTM ’s ar-
guments() operation [12]. Its invariant states that eventu-
ally the related set should have exactly one element, which
should both be successful and finish its execution within 10
minutes of T-InformDriver’s end time. AR9 shows how to
formalize the example in which we do not talk specifically
about success or failure of a requirement, but its change of
state: eventually tasks T-MarkUnique should not be in the
Undecided state and the difference between their start and
end times should be at most 5 minutes.

5. IMPLEMENTATION AND EVALUATION
This section presents an evaluation of our proposal. Using

experimental and descriptive evaluation methods of Design
Science [7], we show that AwReqs can be monitored at run-
time (§5.1) and that this monitoring framework can provide
value for the analysis of a real system (§5.2). We also briefly
discuss the performance of this solution (§5.3).

5.1 Monitoring AwReq Patterns
As mentioned in section 2.2, we have used EEAT to mon-

itor AwReqs expressed in OCLTM . In its current version,
EEAT compiles the OCLTM expression into a rule file that is
triggered by messages exchanged by objects at runtime (i.e.,
method calls). For this reason, we have to transform the ini-
tial formalization of the AwReqs to one based on methods
received by the run-time instances which represent the re-
quirements. Figure 8 shows three of the five AwReqs formal-
ized previously in figure 7 in their “EEAT formalizations”.
For monitoring to work, then, the source code of the mon-

itored system (the ADS) has to be instrumented in order to
create the instances of the classes that represent the require-
ments at runtime and call the methods defined in classes De-
fineableRequirement and PerformativeRequirement from
figure 6. Methods start() and end() should be called when
the system starts and ends the execution of a goal or task
(or the evaluation of a QC or DA), respectively. Together
with the between clause (one of Dwyer et al. scopes, see
§2.2), these methods allow us to define the period in which

AwReqs should be evaluated, because otherwise the rule sys-
tem could wait indefinitely for a given message to arrive.

Given the right scope, the methods success(), fail()

and cancel() are called by the monitored system to indicate
a change of state in the requirement from Undecided to one
of the corresponding final states (see figure 3). These meth-
ods are then used in the “EEAT formalization” of AwReqs.
For example, we define AR1 not as never being in the Failed
state, but as never receiving the fail()message in the scope
of a single execution (between begin() and end()).

An aggregate requirement, on the other hand, aggregates
the calls during the period of time defined in the AwReq. For
AR3, this is done by monitoring for calls of the newWeek()

method, which are called automatically by the monitoring
framework at the beginning of every week. Similar methods
for different time periods, such as newDay(), newHour() and
so forth, should also be implemented.

The last example shows the delta AwReq AR8, which uses
OCLTM timeouts to specify that the success() method
should be called in the T-InformDriver instance within 10
minutes after the same method is called in T-UpdAtSite,
given that both instances refer to the same call ID, an ar-
gument that can be passed along the method. This can be
implemented by having a collection of key-value pairs passed
as parameters to the methods start(), success(), etc.

An automatic translator from the AwReqs’ initial formal-
ization to their “EEAT formalization” could be built to aid
the designer in this task. Another possibility is to go di-
rectly from the AwReq patterns presented in section 3.1 to
this final formalization. Table 2 illustrates how some of the
patterns of table 1 can be expressed in OCLTM . These for-
mulations are consistent with those shown in figure 8. The
definitions and invariants are placed in the context of UML
classes that represent requirements (see §4). For example, a
receiveMessage(‘fail’) for context R, denotes the called
operation R.fail() for class R. Therefore, invariant pR in
the first row of table 2 is true if R.fail() is never called.

Of course, the patterns of table 1 represent only common
kinds of expressions. AwReqs include the range of expres-
sions where a requirement R1 can express properties about
requirement R2, which include both design-time and run-
time requirements properties. OCLTM explicitly supports
such references, as the following expressions illustrate:

def: p1: PropertyEvent =

receivedProperty(‘p:package.class.invariant’)

inv p2: never(p1.satisfied() = false)

In OCLTM , all property evaluations are asserted into the
run-time evaluation repository as PropertyEvent objects.
The definition expression of p1 refers to an invariant (on a
UML class, in a UML package). Properties about p1 include
its run-time evaluation (satisfied()), as well as its design-
time properties (e.g., p1.name()). Therefore, in OCLTM ,
requirements can refer to their design-time and run-time
properties and, thus, AwReqs can be represented in OCLTM .

To determine if the AwReq patterns can be evaluated at
runtime, we constructed scenarios for each row of table 2.
Each scenario includes three alternatives, which should eval-
uate to true, false, and indeterminate (non-false) during re-
quirements evaluation. We had EEAT compile the patterns
and construct a monitor. Then, we ran the scenarios. In all
cases, EEAT correctly evaluated the requirements.

Table 2: EEAT/OCLTM idioms for some patterns.

Pattern OCLTM idiom

NeverFail(R) def: rm: OclMessage =
receiveMessage(‘fail’)

inv pR: never(rm)

SuccessRate(R,
r, t)

def: msgs: Sequence(OclMessage) =
receiveMessages()->
select(range().includes(timestamp()))

- - Note: these definitions
are patterns that are assumed
in the following definitions

def: succeed: Integer = msgs->select
(methodName = ‘succeed’))->size()

def: fail: Integer = msgs->select
(methodName = ‘fail’))->size()

inv pR: always(succeed /
(succeed + fail) > r)

ComparableSuc
cess(R, S, x, t)

- - c1 and c2 are fully specified
class names

inv pR: always(c1.succeed >
c2.succeed * x)

MaxFailure(R,
x, t)

inv pR: always(fail < x)

P1 and/or P2;
not P

- - arbitrary temporal and real-time
logical expressions are allowed over
requirements definitions and run-time
objects

To illustrate how EEAT evaluates OCLTM requirements
in general, the next subsection describes in detail a portion
of the evaluation of the ADS’ monitoring system, which was
generated from the requirements of table 1.

5.2 Evaluating an AwReq Scenario
The requirements of the ADS provide a context to eval-

uate the AwReq framework. The ADS is implemented in
Java. Its requirements (table 1) are represented as OCLTM

properties, using patterns like those presented in table 2
and figure 8. Scenarios were developed to exercise each re-
quirement so that each of them should evaluate as fail or
success. When each scenario is run, EEAT evaluates the
requirements and returns the correct value. Thus, all the
scenarios that test ADS requirements presented here evalu-
ate correctly.
Next, we describe how this process works for one require-

ment and one test. Consider a single vertical slice of the
development surrounding requirement AR1:

1. Analysts specify the Emergency input information task
of figure 1 (i.e., T-InputInfo) as a task specification
(e.g., input, output, processing algorithm) along with
AwReqs such as AR1;

2. Developers produce an input form and processor ful-
filling the specification. In a workflow system archi-
tecture, T-InputInfo is implemented as a XML form
which is processed by a workflow engine. In our stan-
dard Java application, T-InputInfo is implemented as
a form that is saved to a database. In any case, the
point at which the input form is processed is the in-
strumentation point;

3. Validators (i.e., people performing requirements moni-
toring) instrument the software. Five events are logged
in this simple example: (a) T-InputInfo.start(), (b)

T-InputInfo.end(), (c) T-InputInfo.success(), (d)
T-InputInfo.fail(), and (e) T-InputInfo.cancel().
Of course, the developers may have chosen a different
name for T-InputInfo or the five methods, in which
case, the validator must introduce a mapping from
the run-time object and methods to the requirements
classes and operations. Given the rise of domain-driven
software development, in which requirements classes
are implemented directly in code, the mapping func-
tion is often relatively simple — even one-to-one;

4. The EEAT monitor continually receives the instru-
mented events and determines the satisfaction of re-
quirements. In the case of AR1, if the T-InputInfo

form is processed as succeed or cancel, then AR1 is
true.

The architecture and process of EEAT provides some con-
text for the preceding description. EEAT follows a model-
driven architecture (MDA). It relies on the Eclipse Mod-
eling Framework (EMF) for its meta-model and the OSGi
component specifications. This means that the OCLTM lan-
guage and parser is defined as a variant of the Eclipse OCL
parser by providing EMF definitions for operations, such
as receivedMessage. The compiler generates Drools rules,
which combined with the EEAT API, provide the processing
to incrementally evaluate OCLTM properties at runtime.

EEAT provides an Eclipse-based UI. However, the run-
time operates as a OSGi application, comprised as a dy-
namic set of OSGi components. For these experiments, the
EEAT run-time components consist of the OCLTM prop-
erty evaluator, compiled into a Drools rule system, and the
EEAT log4j feed, which listens for logging events and adds
them to the EEAT repository. The Java application was in-
strumented by Eclipse TPTP to send CBE events via log4j
to EEAT, where the event are evaluated by the compiled
OCLTM property monitors. For a more complete descrip-
tion of the language and process of EEAT, see [13, 14].

5.3 Monitor Performance
Monitoring has little impact on the target system, mostly

because the target system and the monitor typically run
on separate computers. The TPTP Probekit provides opti-
mized byte-code instrumentation, which adds little overhead
to some (selected) method calls in the target system. The
logging of significant events consumes no more than five per-
cent, and typically less than 1 percent overhead.

For real-time monitoring, it is important to determine if
the target events can overwhelm the monitoring system. A
performance analysis of EEAT was conducted by comparing
the total monitoring runtime vs. without monitoring using
40 combinations of the Dwyer et al. temporal patterns [5].
For data, a simple two-event sequence was the basis of the
test datum; for context, consider the events as an arriving
email and its subsequent reply. These pairs were continu-
ously sent to the server 10,000 times. In the experiment, the
event generator and EEAT ran in the same multi-threaded
process. The test ran as a JUnit test case within Eclipse on
a Windows Server 2003 dual core 2.8 GHz with 1G mem-
ory. The results suggest that, within the test configura-
tion, sequential properties (of length 2) are processed at 137
event-pairs per second [13]. This indicates that EEAT is
reasonably efficient for many monitoring problems.

6. RELATED WORK
A number of recent proposals offer alternative ways of

expressing and reasoning about partial requirements satis-
faction. RELAX by Whittle, et al. [17] is one such approach
aimed at capturing uncertainty (mainly due to environmen-
tal factors) in the way requirements can be met. Unlike
our goal-oriented approach, RELAX assumes that struc-
tured natural language requirements specifications (contain-
ing the SHALL statements that specify what the system
ought to do) are available before their conversion to RE-
LAX specifications. The modal operators available in RE-
LAX, SHALL and MAY. . .OR, specify, respectively, that
requirements must hold or that there exist requirements al-
ternatives. We, on the other hand, capture alternative re-
quirements refinement using OR decompositions of goals.
In RELAX, points of flexibility/uncertainty are specified

declaratively, thus allowing designs based on rules, planning,
etc. as well as to support unanticipated adaptations. Some
requirements are deemed invariant — they need to be satis-
fied no matter what. This corresponds to the NeverFail(R)
AwReq pattern in our approach. Other requirements are
made more flexible in order to maintain their satisfaction
by using “as possible”-type RELAX operators. Because of
these, RELAX needs a logic with built-in uncertainty to
capture its semantics. The authors chose fuzzy branching
temporal logic for this purpose. It is based on the idea of
fuzzy sets, which allows gradual membership functions. E.g.,
the function for fuzzy number 2 peaks at 1 given the value
2 and slopes sharply towards 0 as we move away from 2,
thus capturing “approximately 2”. Temporal operators such
as Eventually and Until allow for temporal component in
requirements specifications in RELAX.
Our approach is much simpler compared to RELAX. The

AwReqs constructs that we provide just reference other re-
quirements. Thus, we believe that it is more suitable, e.g.,
for requirements elicitation activities. Our specifications do
not rely on fuzzy logic and do not require a complete re-
quirements specification to be available prior to the intro-
duction of AwReqs. Also, our language does not require
complex temporal constructs. However, the underlying for-
malism used for AwReqs — OCLTM — provides temporal
operators, as does EEAT, so temporal properties can be ex-
pressed and monitored. Most of the work on generating
OCLTM specifications can be automated through the use of
patterns.
With each relaxation RELAX associates “uncertainty fac-

tors”: properties of the environment that can or cannot be
monitored, but which affect uncertainty in achieving require-
ments. Our future work includes such integration of domain
models in our approach.
Using AwReqs we can express approximations of many of

the RELAX-ed requirements. For instance, AR5 from table
1 can be used as a rough approximation of the requirement
“ambulances must arrive at the scene AS CLOSE AS POS-
SIBLE to 10 minutes’ time”. The general pattern for ap-
proximating fuzzy requirements is to first identify a number
of requirements that differ in their strictness, depending on
our interpretation of what “approximately” means. E.g., R1
= “ambulance arrives in 10 min”, R2 = “ambulance arrives
in 12 min”, R3 = “ambulance arrives in 15 min”. Then, we
assign desired satisfaction levels to these requirements. For
instance, we can set success rate for R1 to 60% (as in AR5),
R2 to 80%, and R3 to 100%. This means that all ambulances

will have to arrive within 10–15 min from the emergency call.
The AwReq will then look like AR12 = SuccessRate(R1, 60%)
AND SuccessRate(R2, 80%) AND SuccessRate(R3, 100%).
On the other hand, AR13= SuccessRate(R1, 80%) AND Suc-
cessRate(R2, 100%) provides a much stricter interpretation
of the fuzzy duration with all ambulances required to arrive
within 12 minutes.

Another related approach called FLAGS is presented in
[1]. FLAGS requirements models are based on the KAOS
framework and are targeted at adaptive systems. It pro-
poses crisp (Boolean) goals (specified in linear-time tem-
poral logic, as in KAOS), whose satisfaction can be easily
evaluated, and fuzzy goals that are specified using fuzzy con-
straints. In FLAGS, fuzzy goals are mostly associated with
non-functional requirements. The key difference between
crisp and fuzzy goals is that the former are firm require-
ments, while the latter are more flexible. Compared to RE-
LAX, FLAGS is a goal-oriented approach and thus is closer
in spirit to our proposal.

To provide semantics for fuzzy goals, FLAGS includes
fuzzy relational and temporal operators. These allow ex-
pressing requirements such as something be almost always
less than X, equal to X, within around t instants of time,
lasts hopefully t instants, etc. As was the case with the RE-
LAX approach, AwReqs can approximate some of the fuzzy
goals of FLAGS while remaining quite simple. The exam-
ple that we presented while discussing RELAX also applies
here. Whenever a fuzzy membership function is introduced
in FLAGS, its shape must be defined by considering the pref-
erences of stakeholders. This specifies exactly what values
are considered to be “around” the desired value. As we have
shown above with AR12 and AR13, AwReqs can approximate
this “tuning”of fuzzy functions while not needing fuzzy logic
and thus remaining more accessible to stakeholders.

Additionally, in FLAGS, adaptive goals define counter-
measures to be executed when goals are not attained, us-
ing event-condition-action rules. We are currently working
on integrating compensations into our approach and a full-
fledged compensation language remains future work. How-
ever, discussion in section 3 illustrates how AwReqs and
meta-AwReqs could be used to enact the required compensa-
tion behavior, including relaxation of desired success rates.

Letier and van Lamsweerde [10] present an approach that
allows for specifying partial degrees of goal satisfaction for
quantifying the impact of alternative designs on high-level
system goals. Their partial degree of satisfaction can be the
result of, e.g., failures, limited resources, etc. Unlike FLAGS
and RELAX, here, a partial goal satisfaction is measured
not in terms of its proximity to being fully satisfied, but in
terms of the probability that it is satisfied. The approach
augments KAOS with a probabilistic layer. Here, goal be-
havior specification (in the usual KAOS temporal logic way)
is separate from the quantitative aspects of goal satisfaction
(specified by quality vars. and objective functions). Objec-
tive functions can be quite similar to AwReqs, except they
use probabilities. For instance, one such function presented
in [10] states that the probability of ambulance response
time of less than 8 min should be 95%. Objective functions
are formally specified using a probabilistic extension of tem-
poral logic. An approach for propagating partial degrees of
satisfaction through the model is also part of the method.

Overall, the method can be used to estimate the level of
satisfaction of high-level goals given statistical data about

the current or similar system (from rather low-level measur-
able parameters). Our approach, on the other hand, nat-
urally leads to high-level monitoring capabilities that can
determine satisfaction levels for AwReqs.
There is a fundamental difference between the approaches

described above and our proposal. There, by default, goals
are treated as invariants that must always be achieved. Non-
critical goals — those that can be violated from time to
time — are relaxed. Then, the aim of those methods is to
provide the machinery to conclude at runtime that while
the system may have failed to fully achieve its relaxed goals,
this is acceptable. So, while relaxed goals are monitored
at runtime, invariant ones are analyzed at design time and
must be guaranteed to always be achievable at runtime.
In our approach, on the other hand, we accept the fact

that a system may fail in achieving any of its initial (stratum
0) requirements. We then suggest that critical requirements
are supplemented by AwReqs that ultimately lead to the
introduction of feedback loop functionality into the system
to control the degree of violation of critical requirements.
Thus, the feedback infrastructure is there to reinforce criti-
cal requirements and not to monitor the satisfaction of ex-
pendable (i.e., relaxed) goals, as in RELAX/FLAGS. The
introduction of feedback loops in our approach is ultimately
justified by criticality concerns.

7. DISCUSSION AND CONCLUSIONS
The main contribution of this paper is the definition of

a new class of requirements that impose constraints on the
run-time behavior of other requirements. The technical de-
tails of the contribution include linguistic constructs for ex-
pressing such requirements (reference to other requirements,
requirement states, temporal operators), expression of such
requirements in OCLTM , as well as fragments of a proto-
type implementation founded on an existing requirements
monitoring framework.
The real usefulness of this new class of requirements for

adaptive systems, however, comes from a full implemen-
tation of the feedback loop that provides adaptivity, most
likely instantiating the well-known monitor-analyze-plan-ex-
ecute feedback loop proposed by autonomic computing re-
searchers [9]. A conceptual architecture for such a loop is
presented and discussed in some detail in the extended ver-
sion of this paper [16]. Defining a systematic approach for
the design of adaptive systems starting on AwReqs and in-
tegrating such systems in a framework that implements this
feedback loop architecture is at the core of our future work.
Concerning AwReqs themselves, future steps in our re-

search include the integration of domain models in the ap-
proach (as mentioned in section 6) and improvements in the
definition and formalization of AwReqs. For instance, we
plan on developing support for adaptivity AwReqs such as
“if requirement r fails more than N times over a time period,
relax it”, which are closely related to the RELAX proposal.

8. REFERENCES
[1] L. Baresi, L. Pasquale, and P. Spoletini. Fuzzy goals

for requirements-driven adaptation. IEEE
International Conference on Requirements
Engineering, pages 125–134, 2010.

[2] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia,
and J. Mylopoulos. Tropos: An Agent-Oriented

Software Development Methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, 2004.

[3] B. Cheng et al. Software Engineering for Self-Adaptive
Systems: A Research Roadmap. Software Engineering
for Self-Adaptive Systems, 5525/2009:1–26, 2009.

[4] J. Doyle, B. Francis, and A. Tannenbaum. Feedback
Control Theory. McMillan Publishing, 1990.

[5] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Patterns in property specifications for finite-state
verification. In ICSE ’99: Proceedings of the 21st
international conference on Software engineering,
pages 411–420, Los Angeles, USA, 1999. ACM Press.

[6] S. Flake. Enhancing the Message Concept of the
Object Constraint Language. In SEKE ’04:
Proceedings of the 16th International Conference on
Software Engineering & Knowledge Engineering, pages
161–166, Banff, Canada, 2004.

[7] A. R. Hevner, S. T. March, J. Park, and S. Ram.
Design science in information systems research. MIS
Quarterly, 28(1):75–105, 2004.

[8] I. J. Jureta, J. Mylopoulos, and S. Faulkner.
Revisiting the Core Ontology and Problem in
Requirements Engineering. In RE ’08: 16th IEEE
International Requirements Engineering Conference,
pages 71–80, Barcelona, Spain, 2008. IEEE.

[9] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[10] E. Letier and A. van Lamsweerde. Reasoning about
partial goal satisfaction for requirements and design
engineering. In SIGSOFT ’04/FSE-12: 12th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, pages 53–62, 2004.

[11] W. N. Robinson. A requirements monitoring
framework for enterprise systems. Requirements
Engineering, 11(1):17–41, Mar. 2006.

[12] W. N. Robinson. Extended OCL for Goal Monitoring.
In Ocl4All ’07: Proceedings of the 7th International
Workshop on Ocl4All: Modelling Systems with OCL,
Nashville, USA, 2007. Springer Berlin / Heidelberg.

[13] W. N. Robinson and S. Fickas. Designs can talk: A
case of feedback for design evolution in assistive
technology. In W. A. et al., editor, Design
Requirements Engineering: A Ten-Year Perspective,
volume 14 of Lecture Notes in Business Information
Processing, pages 215–237. Springer, 2009.

[14] W. N. Robinson and S. Purao. Monitoring service
systems from a language-action perspective. IEEE
Transactions on Services Computing, 2010.

[15] D. Rosenthal. Consciousness and Mind. Oxford
University Press, USA, Jan. 2006.

[16] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and
J. Mylopoulos. Awareness requirements for adaptive
systems: Extended report. In University of Trento
Technical report DISI-11-352, 2011.

[17] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and
J.-M. Bruel. RELAX: Incorporating Uncertainty into
the Specification of Self-Adaptive Systems. In RE ’09:
Proceedings of the 17th IEEE International
Requirements Engineering Conference, pages 79–88,
Atlanta, USA, 2009. IEEE.

