Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1998196.1998261acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

Guarding polyominoes

Published: 13 June 2011 Publication History

Abstract

We explore the art gallery problem for the special case that the domain (gallery) P is an m-polyomino, a polyform whose cells are m unit squares. We study the combinatorics of guarding polyominoes in terms of the parameter m, in contrast with the traditional parameter n, the number of vertices of P; in particular, we show that floor((m+1)/3) point guards are always sufficient and sometimes necessary to cover an m-polyomino. When m d 3n/4 - 4, the point guard sufficiency condition yields a strictly lower guard number than floor(n/4), given by the art gallery theorem for orthogonal polygons. When pixels behave themselves like guards (pixel guards), we prove that floor(3m/11) + 1 guards are sufficient and sometimes necessary to cover an m-polyomino. We also study the algorithmic complexity of computing optimal guard sets for polyominoes. We prove that determining the guard number of a given m-polyomino is NP-hard. We provide polynomial-time algorithms to solve exactly some special cases in which the polyomino is "thin".

References

[1]
J. Alber, L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica, 33:461--493, 2002.
[2]
Y. Amit, J. S. B. Mitchell, and E. Packer. Locating guards for visibility coverage of polygons. International Journal of Computational Geometry and Applications, 20(5):601--630, 2010.
[3]
B. Ben-Moshe, M. J. Katz, and J. S. B. Mitchell. A constant-factor approximation algorithm for optimal terrain guarding. SIAM Journal on Computing, 36:1631--1647, 2007.
[4]
T. Biedl, M. T. Irfan, J. Iwerks, J. Kim, and J. S. B. Mitchell. Guarding Polyominoes. Technical Report, 2011.
[5]
I. Bjorling-Sachs and D. Souvaine. An efficient algorithm for placing guards in polygons with holes. Discrete and Computational Geometry, 13:77--109, 1995.
[6]
B. Brodén, M. Hammar, and B. J. Nilsson. Guarding lines and 2-Link polygons is APX-Hard. In Proc. 13th Canadian Conference on Computational Geometry, pages 45--48, 2001.
[7]
A. Efrat and S. Har-Peled. Guarding galleries and terrains. Information Processing Letters, 100(6):238--245, 2006.
[8]
F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory, Series B, 16(1):47--56, 1974.
[9]
S. Ghosh. Approximation algorithms for art gallery problems. In Proc. of Canadian Information Processing Society Congress, pages 429--434, 1987.
[10]
S. Ghosh. Approximation algorithms for art gallery problems in polygons. Discrete Applied Mathematics, 158(6):718--722, 2010.
[11]
E. Györi. A short proof of the rectilinear art gallery theorem. SIAM Journal on Algebraic and Discrete Methods, 7(3):452--454, 1986.
[12]
F. Hoffman. On the rectilinear Art Gallery Problem. In Proc. 17th International Colloquium on Automata, Languages and Programming, vol. 443 Lecture Notes in Computer Science, pages 717--728. Springer, 1990.
[13]
J. Kahn, M. Klawe, and D. Kleitman. Traditional galleries require fewer watchmen. SIAM Journal on Algebraic and Discrete Methods, 4(2):194--206, 1983.
[14]
M. J. Katz and G. S. Roisman. On guarding the vertices of rectilinear domains. Computational Geometry: Theory and Applications, 39(3):219--228, 2008.
[15]
D. T. Lee and A. K. Lin. Computational complexity of art gallery problems. IEEE Transactions on Information Theory, 32(2):276--282, 1986.
[16]
J. S. B. Mitchell. A PTAS for robust guard coverage. Manuscript, in preparation, 2011.
[17]
B. J. Nilsson. Approximate guarding of monotone and rectilinear polygons. In Proc. 32nd International Colloquium on Automata, Languages and Programming, vol. 3580 Lecture Notes in Computer Science, pages 1362--1373. Springer, 2005.
[18]
J. O'Rourke. An alternate proof of the rectilinear art gallery theorem. Journal of Geometry, 21(1):118--130, Dec. 1983.
[19]
J. O'Rourke. Art gallery theorems and algorithms. Oxford University Press, Inc., 1987.
[20]
D. Schuchardt and H. Hecker. Two NP-Hard Art-Gallery problems for Ortho-Polygons. Mathematical Logic Quarterly, 41(2):261--267, 1995.
[21]
T. Shermer. Recent results in art galleries. Proceedings of the IEEE, 80(9):1384--1399, 1992.
[22]
J. Urrutia. Art gallery and illumination problems. Handbook of Computational Geometry, pages 973--1027, 2000.
[23]
C. Worman and J. M. Keil. Polygon decomposition and the orthogonal art gallery problem. International Journal of Computational Geometry and Applications, 17(2):105--138, 2007.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SoCG '11: Proceedings of the twenty-seventh annual symposium on Computational geometry
June 2011
532 pages
ISBN:9781450306829
DOI:10.1145/1998196
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 June 2011

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. NP-hardness
  2. art gallery problem
  3. computational geometry
  4. polyomino
  5. visibility problem

Qualifiers

  • Research-article

Conference

SoCG '11
SoCG '11: Symposium on Computational Geometry
June 13 - 15, 2011
Paris, France

Acceptance Rates

Overall Acceptance Rate 625 of 1,685 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)13
  • Downloads (Last 6 weeks)1
Reflects downloads up to 30 Aug 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Guarding Polyominoes Under k-Hop VisibilityLATIN 2024: Theoretical Informatics10.1007/978-3-031-55598-5_19(288-302)Online publication date: 18-Mar-2024
  • (2023)The Dispersive Art Gallery ProblemComputational Geometry10.1016/j.comgeo.2023.102054(102054)Online publication date: Oct-2023
  • (2022)On r-Guarding SCOTs – A New Family of Orthogonal PolygonsLATIN 2022: Theoretical Informatics10.1007/978-3-031-20624-5_43(713-729)Online publication date: 29-Oct-2022
  • (2021)Art Gallery Problem with Rook and Queen VisionGraphs and Combinatorics10.1007/s00373-020-02272-8Online publication date: 21-Jan-2021
  • (2020)NP-completeness of chromatic orthogonal art gallery problemThe Journal of Supercomputing10.1007/s11227-020-03379-8Online publication date: 23-Jul-2020
  • (2019)The Art Gallery Theorem for PolyominoesDiscrete & Computational Geometry10.5555/3116673.311714248:3(711-720)Online publication date: 1-Jan-2019
  • (2014)Computational Complexity of the $$r$$-visibility Guard Set Problem for PolyominoesDiscrete and Computational Geometry and Graphs10.1007/978-3-319-13287-7_8(87-95)Online publication date: 21-Nov-2014
  • (2013)Guarding thin orthogonal polygons is hardProceedings of the 19th international conference on Fundamentals of Computation Theory10.1007/978-3-642-40164-0_29(305-316)Online publication date: 19-Aug-2013
  • (2012)The Art Gallery Theorem for PolyominoesDiscrete & Computational Geometry10.1007/s00454-012-9429-148:3(711-720)Online publication date: 9-May-2012

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media