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Behavior-Based Adaptive Call Predictor

SANTI PHITHAKKITNUKOON, Newcastle University
RAM DANTU, University of North Texas
ROB CLAXTON, British Telecommunications
NATHAN EAGLE, Massachusetts Institute of Technology

Predicting future calls can be the next advanced feature of the next-generation telecommunication networks
as the service providers are looking to offer new services to their customers. Call prediction can be useful to
many applications such as planning daily schedules, avoiding unwanted communications (e.g. voice spam),
and resource planning in call centers. Predicting calls is a very challenging task. We believe that this is an
emerging area of research in ambient intelligence where the electronic devices are sensitive and responsive
to people’s needs and behavior. In particular, we believe that the results of this research will lead to higher
productivity and quality of life. In this article, we present a Call Predictor (CP) that offers two new advanced
features for the next-generation phones namely “Incoming Call Forecast” and “Intelligent Address Book.”
For the Incoming Call Forecast, the CP makes the next-24-hour incoming call prediction based on recent
caller’s behavior and reciprocity. For the Intelligent Address Book, the CP generates a list of most likely
contacts/numbers to be dialed at any given time based on the user’s behavior and reciprocity. The CP
consists of two major components: Probability Estimator (PE) and Trend Detector (TD). The PE computes
the probability of receiving/initiating a call based on the caller/user’s calling behavior and reciprocity. We
show that the recent trend of the caller/user’s calling pattern has higher correlation to the future pattern
than the pattern derived from the entire historical data. The TD detects the recent trend of the caller/user’s
calling pattern and computes the adequacy of historical data in terms of reversed time (time that runs
towards the past) based on a trace distance. The recent behavior detection mechanism allows CP to adapt its
computation in response to the new calling behaviors. Therefore, CP is adaptive to the recent behavior. For
our analysis, we use the real-life call logs of 94 mobile phone users over nine months, which were collected
by the Reality Mining Project group at MIT. The performance of the CP is validated for two months based
on seven months of training data. The experimental results show that the CP performs reasonably well as
an incoming call predictor (Incoming Call Forecast) with false positive rate of 8%, false negative rate of 1%,
and error rate of 9%, and as an outgoing call predictor (Intelligent Address Book) with the accuracy of 70%
when the list has five entries. The functionality of the CP can be useful in assisting its user in carrying out
everyday life activities such as scheduling daily plans by using the Incoming Call Forecast, and saving time
from searching for the phone number in a typically lengthy contact book by using the Intelligent Address
Book. Furthermore, we describe other useful applications of CP besides its own aforementioned features
including Call Firewall and Call Reminder.
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1. INTRODUCTION

With the rapid development of telecommunication technologies and the fast-growing
number of users on the networks, more and more services are being offered by tele-
phone service providers. As phone companies are engaged in a fiercely fought race to
add new advanced features to their products, today’s phones become more than just
communication devices. In addition to the voice calls, they can be used to send email,
take photos and videos, navigate the Internet, play online games, listen to music, and
even conduct bank transactions. Mobile phones have become an indispensable part of
life for many people who perform several activities using their phones such as read-
ing novels and books on mobile phones [Web Japan 2006], shopping by mobile phones
[Trendhunter 2006], and getting cyber counselors for quitting smoking [Ntuli 2007]. In
2005, Google filed a patent including details about the new Google Phone (GPhone) that
could predict what a user is searching for or the words that are typed in a text message
by taking into account the user’s location, previous searching/messaging history, and
time of the day.

However, none of these aforementioned features offers the ability to predict future
calls. To the best of our knowledge, no scientific research has been reported in predicting
the incoming/outgoing calls for phone services. Predicting calls using just the call
history is a challenging task. We believe that this is an emerging area of research
in ambient intelligence where the electronic devices are sensitive and responsive to
people’s needs and behavior.

Prediction plays an important role in many applications and it is widely applied in
various areas such as weather, economic, stock, disaster (e.g., earthquake and flooding),
network traffic, and call center forecasting. Companies use predictions of demands for
making investments and allocating resources efficiently. Call centers use predictions of
workload to prepare the right number of staff in place to handle it. Network administra-
tors use traffic predictions to assess future network capacity requirements and to plan
network development so as to better use network resources and to provide better qual-
ity of services. Prediction is also applied in the human behavior study by combining the
computer technology and social networks, for example, Eagle and Pentland [2005, 2006]
and Eagle et al. [2007].

Predicting the next-day incoming calls can be very useful for scheduling a day (e.g., it
can be used to avoid unwanted calls and schedule time for wanted calls). People check
weather forecasts before leaving homes and watch for signs of approaching storms
to prepare and schedule their days accordingly. Knowing what is coming next gives
us supplemental time to think, prepare, and optimize the solutions. We believe that
prediction of future calls can be very useful for daily planning and it will become an
important element as an initiative decision support for daily life scheduling. People
will start the day by checking the weather forecast as well as the call prediction.
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Predicting outgoing calls can be used to improve the “last number dialed” func-
tionality that is normally provided on today’s phones. Providing the most likely con-
tacts/numbers to be dialed on the top of the list instead of only the recent called
contacts/numbers reduces the searching time and enables better life synchronization
for the phone user.

In this article, we present a model for predicting incoming and outgoing calls based
on the caller/callee and phone user’s past communication information. The rest of
this article is structured as follows. Section 2 presents the architecture of the Call
Predictor (CP). Section 3 describes our real-life datasets. Sections 4 and 5 present the
CP’s framework, which carries out the receiving/initiating call probability computation
along with the discussion on the caller’s behavior trend detection. The performance
of the CP is then evaluated and discussed in Section 6. Section 7 reemphasizes the
autonomous and adaptive characteristics of CP as well as describes applications of CP
in the context of the smart phone. The literatures that are related to our work are
discussed in Section 8. Section 9 concludes our contribution with a summary and an
outlook on future work.

2. CALL PREDICTOR

The Call Predictor (CP) described here is intended to offer the ability to predict in-
coming calls as well as outgoing calls as the new advanced features to today’s personal
phones. The CP allows the user to see the “Incoming Call Forecast” of the next 24 hours
which may be used as an initiative decision support for the user’s daily life scheduling
or other purposes. The CP also attempts to provide an improvement over the “last num-
ber dialed” functionality that is often provided on phones and communication clients
(e.g., VoIP soft-phones). It is common for the user interface on a mobile phone to provide
easy access to a list of recently dialed numbers and therefore takes no account of the
user’s situation (e.g., location, time, social relationship, etc.) to inform a better “guess”
of the numbers that the user will find most useful. Therefore, the CP generates a list of
the most likely contacts/numbers to be dialed at any given time. This list can then be
presented to the user in a number of different ways for different purposes. The principle
mode of presentation envisaged is as an “Intelligent Address Book,” that is, an address
book that anticipates the contacts that the user wants to call and gives these contacts
higher precedence in any listing. In this mode, the information presented to the user
is not intended as a direct replacement for the normal Address Book functionality (i.e.,
where the user may search for contacts) but as an improved short-cut device.

The CP makes use of the user’s past call logs, that is, incoming/outgoing calls, to
build a probabilistic model of calling behavior. The call logs can be derived locally on
a single device or from the operator’s network (e.g., billing information). Similarly, the
model itself can be stored locally on the user’s device or maintained “in the network”
(in which case it can be shared and made available across a range of devices that the
user has access to). The basic architecture of the CP is illustrated in Figure 1.

With the architecture shown in the figure, the CP can operate in two modes upon the
user’s request: Incoming Call Forecast and Intelligent Address Book.

(1) Incoming Call Forecast: For any time that phone user requests a call prediction
of a particular caller, the CP detects the most recent calling trend of the caller
and computes the probability of receiving calls of the next 24 hours based on the
caller’s past history (caller’s incoming calls) and the user’s call history towards the
caller (user’s outgoing calls). These historical call logs are maintained by the CP by
logging the call-specific information for every call received and made by the user.
The computed receiving call probability is then checked with the preconfigured
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Fig. 1. Basic architecture of Call Predictor (CP).

threshold value to make a decision as to predict “call” or “no call” for each of the
next 24-hour time slots.

(2) Intelligent Address Book: For any time the phone user attempts to make a call (i.e.,
unlock the keypad, flip up the phone, etc.), the CP detects the most recent calling
trend of the user and computes the probability of making a call to each caller (whom
the user previously made calls to) based on user’s call history towards the caller
(user’s outgoing calls) and the caller’s past history (caller’s incoming calls). The list
of the most likely contacts/numbers to be dialed is then generated according to the
computed probabilities.

3. REAL-LIFE DATASETS

Everyday phone calls include calls from different sections of our social life. We receive
calls from family members, friends, supervisors, neighbors, and strangers. We believe
that every person exhibits a unique calling pattern. These calling patterns can be
analyzed for predicting the future calls to/from the phone user.

To study calling patterns, we use the real-life call logs of 94 individual mobile phone
users over nine months which were collected at Massachusetts Institute of Technology
(MIT) by the Reality Mining Project [Massachusetts Institute of Technology 2007].
These 94 individuals are faculty, staff, and students. The datasets include people with
different types of calling patterns and call distributions.

We extract 5-tuple information of the call record for each phone user from the
datasets: {Date of call, Start time of call, Type of call (Outgoing, Incoming), Call
ID, Call duration}. We use our real-life datasets for deriving the traffic profiles for
each caller who called the individuals. To derive the profile, we infer the arrival time
(time of receiving a call), inter-arrival time (elapsed time between adjacent incoming
calls), and inter-arrival/departure time (elapsed time between adjacent incoming and
outgoing calls).

4. INCOMING CALL PREDICTION FRAMEWORK

To predict the future incoming calls, a dynamic decision making technique has to be
integrated with behavior learning models. These models should incorporate mecha-
nisms for capturing the caller’s behavior (based on call arrival time and inter-arrival
time), the user’s behavior (based on call departure time), reciprocity (based on call
inter-arrival/departure time), and caller’s behavior trend, to construct the probabilistic
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model for the caller’s incoming calls and finally generate the “Incoming Call Forecast”
(the next-24-hour incoming call prediction.)

4.1. Probability Computation

In our daily life, when we receive a phone call, at the moment of the first phone ring
before we look at the caller ID, we often guess who the caller might be. We usually base
this estimation on the following information.

—Caller’s past behavior. Each caller has a unique calling pattern. These patterns can
be observed through historical calling time (we normally expect a call from a caller
who has history of making several calls at some particular time, e.g., your spouse
likes to call you while you are driving to work in the morning and in the evening
after work, and therefore when your phone rings while you are on the way to work
or back home, you are likely to guess that it is a phone call from your spouse), and
periodicity of calls (we normally expect that a caller who calls periodically will repeat
the same pattern, e.g., your best friend calls you at about 2:00 PM every Tuesday,
and therefore you expect a call from him/her at about 2:00 PM for the next Tuesday).

—Reciprocity. The past communication activities between each caller and the user also
establish a unique pattern. These patterns can be observed in forms of the number
of the user’s outgoing calls per caller’s incoming call and call interarrival/departure
time.

Therefore, we believe that receiving a call is influenced by the caller’s past incoming
calls and historical call interaction between caller and phone user. The pattern of the
caller’s incoming calls can be observed from call arrival time and interarrival time.
The pattern of call interaction between caller and phone user can be observed from the
number of outgoing calls per incoming call and the interarrival/departure time.

4.1.1. Probability Computation Based on Caller’s Behavior. Based on the pattern of the
caller’s call arrival time, callers can be roughly divided into two groups.

(1) Single-Hop Callers. There are callers who tend to make more calls at around one
particular time of the day and the number of calls gradually decreases as time of the
call deviates from that time (favorite time). Thus, we make a hypothesis that call
arrival time has a normal distribution N(μW , σ2W ) where μW is the mean and σ 2

W is
the variance of call arrival time which can be calculated by (1) and (2) respectively.

μW = 1
N

N∑
n=1

w(n) (1)

σ 2
W = 1

N

N∑
n=1

(w(n) − μW )2 (2)

Let a random variable W represent the arrival time of phone calls, and let {w(1),
w(2), w(3), . . . , w(N)} be a set of observed values of arrival times. Here, N is the
total number of calls and w(n) is the nth call arrival time. The estimated probability
density (pdf) of W is given by (3) where μW and σ 2

W are mean and variance of W.

a(w) = 1√
2πσ 2

W

e−(w−μW )2/2σ 2
W (3)

Hence the probability of receiving a call from caller k between wth and (w + 1)th

hour slot is given by (4) where μW,k and σ 2
W,k

are the corresponding mean and
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Fig. 2. An example of single-hop caller whose call arrival time is fitted with normal distribution.

variance of call arrival time of caller k and Wk is random variable W of caller k.

Pa
k (w) = Pr{w ≤ Wk < w + 1} =

∫ w+1

w

1√
2πσ 2

W,k

e−(t−μW,k)2
/ 2α2

W,kdt (4)

To check our hypothesis, we randomly (by visual inspection) select 30 single-hop
callers (based on visual inspection) from our datasets and perform the chi-square
goodness-of-fit test (or χ2-test) [Leon-Garcia 1994] which tests the validity of the
assumed distribution for a random phenomenon. All 30 single-hop callers pass the
test, which is performed using a significant level α = 0.01. Note that those callers
in our datasets who do not pass the χ2-test may belong to another group of callers
which will be described in the next section.

As an example, in Figure 2 the histogram of the call arrival time over the course
of nine months on time-of-the-day scales of a single-hop caller and fitted normal
distribution are illustrated where we shift our window of observation to begin at
5AM and end at 4:59AM such that the entire calling pattern is captured in the
middle. In fact, we find that it is a proper window of observation for the majority
of the callers in our datasets.

(2) Multihop Callers. There is another group of callers whose calling patterns based on
arrival time are more random. These callers tend to have more than one favorite
calling time which draws multiple peaks (or hops) in their arrival time’s histograms.

The normal distribution is obviously not suitable for this type of callers. In
fact, none of the parametric probability models fits their structures. Therefore, a
probability density model must be determined from the data by using nonparamet-
ric density estimation. The most popular method is the kernel density estimation
which is also known as the Parzen window estimator [Parzen 1962] given by (5).

a(w) = 1
Nh

N∑
i=1

K
(

w − wi

h

)
(5)

K(u) is kernel function and h is the bandwidth or smoothing parameter. The
most widely used kernel is the Gaussian of zero mean and unit variance which is
defined by (6).

K(u) = 1√
2π

e−u2/2 (6)
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Fig. 3. An example of a multihop caller whose call arrival time is fitted with kernel density estimation.

The choice of the bandwidth h is crucial. Several optimal bandwidth selection
techniques have been proposed, for example, Jones et al. [1996] and Wand and
Jones [1994]. In this article, we use AMISE optimal bandwidth selection using the
Sheather-Jones solve-the-equation plug-in method which was proposed in Sheather
and Jones [1991].

Likewise, the probability of receiving a call from caller k between time w(i) and
w(i + 1) can be calculated similarly to (4) but using the pdf defined in (5). As an
example, the histogram of a multihop caller over nine months on time-of-the-day
scales and fitted kernel density estimation is illustrated in Figure 3.

We define a call matrix of a single user as a matrix whose entries are call indicators
where rows are hours of the day and columns are days of observation. The Call Indicator
(CI) indicates if there is at least one incoming call or outgoing call or both incoming
call and outgoing call or no call. The CI’s values and its indications are given by (7). As
an example, a call matrix of 15 days of observation is illustrated in Figure 4.

CI =

⎧⎪⎨
⎪⎩

0, no call
1, at least one incoming call
2, at least one outgoing call
3, at least one incoming call and one outgoing call

(7)

The behavior of the caller can also be observed through the call inter-arrival time.
However, inter-arrival time in a normal sense is the elapsed time between temporally
adjacent calls made on a per-day basis, which we believe does not accurately represent
the caller’s behavior, due to human nature. People require a state of rest (represented
by night-time hours), and sleeping time causes an inaccuracy in the average inter-
arrival time. In fact, it increases that average from its true value. Thus, we believe
that the more accurate point of view to observe calling pattern based on inter-arrival
time is to scan over each hour time slot of the day through days of observation, that is,
capturing the pattern of inter-arrival time by observing each row of the call matrix.

Let a random variable Xi represent inter-arrival of the ith hour slot where i =
1, 2, 3, . . . , 24. A normal distribution N(μX,i, σ

2
X,i) is assumed for the call inter-arrival

time since no information is available that Pr (Xi ≤ μX,i − c) < Pr (Xi ≥ μX,i + c) or vice
versa therefore it can be safely assumed that Pr (Xi ≤ μX,i − c) = Pr (Xi ≥ μX,i + c),
where the mean μX,i and variance σ 2

X,i of the ith hour can be calculated by (8) and (9),
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17 2 3 0 0 0 2 3 1 0 0 2 1 2 0 0
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4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 2 0 0 0 0 0 3 0 0 1 0 0 2

2 1 0 0 1 0 0 2 0 2 1 0 0 0 2 1
1 0 1 0 0 1 2 1 0 0 1 2 2 1 1 1
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Day of observation                                     Predicting

Fig. 4. An example of a call marix of 15 days of observation.

respectively.

μX,i = 1
N − 1

N−1∑
n=1

xi(n) (8)

σ 2
X,i = 1

N − 1

N−1∑
n=1

(xi(n) − μX,i)2 (9)

The variable N is the total number of calls and xi(n) is the nth inter-arrival time
where both are on the ith hour slot. The inter-arrival time is now treated as a
normal random variable Xi that consists of observed values of inter-arrival times
{xi(1), xi(2), xi(3), . . . , xi(N − 1)} and its pdf is given by (10).

bi(xi) = 1√
2πσ 2

X,i

e−(xi−μX,i)2
/2σ 2

X,i (10)

The variable N is the total number of calls and xi(n) is the nth inter-arrival time
where both are on the ith hour slot. The inter-arrival time is now treated as a
normal random variable Xi that consists of observed values of inter-arrival times
{xi(1), xi(2), xi(3), . . . , xi(N − 1)} and its pdf is given by (10).

For example, if a caller calls on average every 3 days, the chances of receiving a call
one day earlier (day 2) or one day later (day 4) are the same.
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Fig. 5. An example of calculating μY,i and σ 2
Y,i for one hour slot (5th hour) of 18 days of observation.

The probability of receiving a call during ith hour slot from caller k between xth and
(x+1)th day can be calculated by (11).

Pb
k (i) = Pr(x ≤ Xi,k < x + 1) =

∫ x+1

x

1√
2πσ 2

X,i,k

e−(t−μX,i,k)2
/ 2σ 2

X,i,kdt (11)

4.1.2. Probability Computation Based on Reciprocity. As previously mentioned that receiv-
ing a call is influenced by not just the caller’s behavior but also reciprocity, one way to
observe the calling patterns based on reciprocity is to monitor the number of outgoing
calls per incoming call. This can give us a good approximation of when the next call can
be expected. A normal distribution N(μY,i, σ

2
Y,i

) is also assumed for the same reason as
in the inter-arrival time case, where the number of outgoing calls per incoming call of
the ith hour time slot is represented by a random variable Yi where the mean μY,i and
variance σ 2

Y,i can be calculated by (12) and (13), respectively.

μY,i = 1
M

M−1∑
n=1

yY,i(n) (12)

σ 2
Y,i = 1

M

M−1∑
n=1

(yY,i(n) − μY,i)2 (13)

The variable M is the total number of incoming calls of ith hour and yi(n) is the
number of outgoing calls between the nth and (n + 1)th incoming call. The pdf is given
by (14).

ci(yi) = 1√
2πσ 2

Y,i

e−(yi−μY,i)2
/2σ 2

Y,i (14)

For clarification, an example of computing μY,i and σ 2
Y,i is illustrated in Figure 5.

Thus, the probability of receiving a call during ith hour slot from caller k between yth

and (y + 1)th day can be calculated by (15).

Pc
k (i) = Pr(y ≤ Yi,k < y + 1) =

∫ y+1

y

1√
2πσ 2

Y,i,k

e−(t−μY,i,k)2
/2σ 2

Y,i,kdt (15)

Let a random variable Zi represent the inter-arrival/departure time of the ith hour. A
normal distribution N(μZ,i, σ

2
Z,i) is also assumed by the same reason as in the previous
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Fig. 6. An example of calculating μZ,i and σ 2
Z,i for one hour slot (5th hour) of 18 days of observation.

cases where μZ,i is the mean and σ 2
Z,i is the variance. These are given by (16) and (17),

respectively.

μZ,i = 1
L − 1

L−1∑
n=1

zi(n) (16)

σ 2
Z,i = 1

L − 1

L−1∑
n=1

(zi(n) − μZ,i)2 (17)

The variable L is the total number of incoming calls of ith hour where zi(n) is the
average inter-arrival/departure time between the nth and (n+1)th incoming calls (an
example is illustrated in Figure 6). Thus, the pdf of the inter-arrival/departure time is
given by (18).

di(zi) = 1√
2πσ 2

Z,i

e−(zi−μZ,i)2
/ 2σ 2

Z,i (18)

An example is also illustrated in Figure 6 for clarification.
The probability of receiving a call during ith hour slot from caller k between zth and

(z + 1)th day based on the inter-arrival/departure time can be calculated by (19).

Pd
k (i) = Pr(z ≤ Zi,k < z + 1) =

∫ z+1

z

1√
2πσ 2

Z,i,k

e−(t−μZ,i,k)2
/2σ 2

Z,i,kdt (19)

From (4), (5), (11), (15), and (19), we can infer the probability of receiving a call from
“Caller A” during ith hour (PA(i)) as the average of the probability of receiving a call
based on the caller’s behavior (arrival time and inter-arrival time) and the reciprocity
(number of outgoing calls per incoming call and inter-arrival/departure time), which is
given by (20) where i =1, 2, 3, . . . , 24.

PA(i) = 1
4

[
Pa

A(i) + Pb
A(i) + Pc

A(i) + Pd
A(i)

]
(20)

Note that the pdf based on arrival time is to be chosen between (3) and (5), depending
upon the result of the χ2-test, that is, a positive result (passing the test) leads to
selecting (3) over (5) and vice versa.

There are some callers who never received any calls back from the user, that is, no
reciprocity. More likely these callers are telemarketers or voice spammers. Since there
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Fig. 7. A randomly selected phone user with 30 consecutive days of computed receiving-call probability of
an arbitrary caller, plotted with the actual received calls represented with vertical pulses.

is no history of call interaction between the callers and the user, (20) reduces to the
average over the probability based only on the caller’s behavior, which is given by (21).
Likewise, for the normal callers (not telemarketers or spammers), occasionally some
hour slots (rows of call matrix) have no reciprocity, in which (20) also reduces to (21).

PA(i) = 1
2

[
Pa

A(i) + Pb
A(i)

]
(21)

To present the accuracy of the receiving-call probability model, a phone user is
randomly selected from our datasets. Figure 7 shows the computed receiving-call prob-
ability of 30 consecutive days for an arbitrary caller where the actual calls during these
30 days are represented with vertical pulses.

From Figure 7, it can be observed that most of the calls are received when the
computed receiving-call probability is high and no calls are received during the 0AM
to 9AM period, when the probability of receiving a call is low.

4.2. Behavior Trend Detection

So far, we have described the CP which consists of a Probability Estimator (PE) that
computes the probability of receiving calls of the next 24 hours based on the call history
which is simultaneously collected from the phone user’s call activities. However, as the
amount of historical call logs increases over time, the computational density can easily
overwhelm the PE. Hence the adequacy of historical data has to be identified.

4.2.1. Adequacy of Historical Data. In the previous section, we show that a single-hop
caller can be estimated by a normal distribution model N(μ, σ 2), which is characterized
by the mean μ and variance σ 2. In attempt to find out how much historical data
is actually needed or adequate, we monitor the values of the mean and variance of
arrival time for all single-hop callers as more historical data (increased by day) are
taken into computations. We observe the convergence of means and variances. As an
example, Figure 8 shows the convergence of mean and variance of arrival time of a
single-hop caller as the number of days towards the past increases.

It can be observed that the values of mean and variance converge to nearly constant
after taking approximately the last 30 days of historical data. This means that the
mean and variance of the entire historical call logs are approximately the same as the
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Fig. 8. An example of observed convergence of: (a) mean and (b) variance of arrival time of a single-hop
caller.

10 15 20 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
(a) Entire data

Time of day

P
ro

ba
bi

lit
y

10 15 20 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
(b) Last 30 days

Time of day

P
ro

ba
bi

lit
y

Fig. 9. A comparison of pdf between: (a) taking entire historical data and (b) taking only the last 30 days of
call logs.

mean and variance of the last 30 days of call logs. Since a single hop is estimated by
a normal distribution, which is characterized by the mean and variance, we can infer
that the last 30 days of call logs are adequate to capture the behavior of the single-hop
caller. It is evident in Figure 9 that the pdf derived from taking entire historical call
logs and taking only the last 30 days are similar.

A knowledge of the mean and variance may not provide enough information to
capture the pattern of a multihop caller due to the characteristics of the nonparametric
density estimation. However, we believe that it captures physical significance in the
behavior of the caller. In fact, the convergence of values of mean and variance of the
multihop callers is also observed. As an example, Figure 10 shows that the mean
and variance of a multihop caller converge as the number of days towards the past
increases.

It is observed that the convergence time for this multihop caller is approximately
60 days. Thus, Figure 11 shows the comparison of the pdf derived from the entire
historical call logs and the pdf derived the last 60 days of call logs. The two appear to
be slightly different in shape, but the means and variances are nearly the same.

We believe that the call logs represent human behavior associated with trends and
changes of behavior over time. Considering historical call logs within the convergence
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Fig. 10. An example of observed convergence of: (a) mean and (b) variance of arrival time of a multihop
caller.
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Fig. 11. A comparison of pdf between: (a) taking entire historical data and (b) taking only the last 60 days
of call logs.

time may provide us the recent trend of the caller’s behavior which can be more relevant
to the future observation of behavior.

Our hypothesis is that the future caller’s pattern (behavior) is more relevant to the
pattern derived from the recent call logs (trend) than the pattern derived from the
entire historical call logs (given that the entire call logs are more than the recent trend
call logs). This hypothesis will be validated by an experiment conducted later in this
section.

We have previously approximated the convergence time for the sample callers shown
in Figure 8 and Figure 10 based on visual inspection. To find the exact value of the
convergence time, we propose a simple technique for finding convergence time using
Trace Distance (tD).

Let us consider a sample of a converging signal shown in Figure 12 where the vertical
axis represents the amplitude and the horizontal axis represents reversed time (time
that runs towards the past) as similar to the plots shown in Figure 8 and Figure 10.

A trace distance at time k(tDk) of a signal s is defined as a difference between the
minimum and maximum amplitude from time k to infinity (the most right-hand side
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Fig. 12. A converging signal which displays trace distances (tDa and tDb) at reversed time a and b for
demonstrating convergence time computation.

of time k based on Figure 12) which is given by (22).

tDk = ||kmax| − |kmin|| (22)

where kmax and kmin are defined by (23) and (24), respectively

kmax = max{s(k), s(k + 1), s(k + 2), . . . , s(∞ − 1), s(∞)} (23)

kmin = min{s(k), s(k + 1), s(k + 2), . . . , s(∞ − 1), s(∞)} (24)

Thus, the trace distances at time a and b shown in Figure 12 can be computed as
tDa = ||amax| − |amin|| and tDb = ||bmax| − |bmin||.

Therefore, the Convergence Time (CT) of the signal s is defined as the time that
the trace distance (tD) reaches the predefined threshold (tDth) as the trace distance
computation starts from reversed time equals to zero to infinity which is given by (25).

CTs = {k|tDk = tDth, k ∈ {0, 1, 2, . . . ,∞}} (25)

For our case, the signal s can be a reversed time series of mean and variance, and
the variable k represents the number of days towards the past.

To investigate the relationship of the convergence time between the callers in our
datasets, the convergence time is computed for each caller with the tDth set to 1. We
find that the convergence time increases as the number of hops increases. Figure 13
shows a plot of the average convergence time versus the number of hops.

We find that the result is reasonable. People who have random behaviors tend not
to establish any behavioral pattern in a short period of time, but rather to expand a
recognizable structure over longer period of observation time. For example, one caller
was initially making several calls in the morning, then started to make some calls in the
evening, and eventually making calls consistently in both morning and evening hours
(a two-hop caller). It would take more time to observe this caller’s calling behavior
than another caller who has been calling only during the morning hours (a single-hop
caller).

4.2.2. Validation of Hypothesis. To validate our hypothesis that the future caller’s pattern
(behavior) is more relevant to the pattern derived from the recent call logs (trend) than
the pattern derived from the entire historical call logs, an experiment is conducted.
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Fig. 13. A plot of the number of hops versus the average convergence time where the average convergence
time gets larger as the number of hops increases.

The following experiment is performed to present the comparison of the relevance or
similarity in caller’s behavior between: (i) the future pattern and the pattern derived
from the entire historical call logs, and (ii) the future pattern and the pattern derived
from the recent call logs (within the convergence time). To measure the similarity in
the calling pattern, the correlation coefficient is chosen.

Correlation coefficient [Leon-Garcia 1994] has value between −1 and 1 which mea-
sures the degree to which two random variables are linearly related. A correlation
coefficient of 1, -1, and 0 implies perfect linear relationship, inversely proportional re-
lationship, and no linear relationship, respectively. A correlation coefficient (r) can be
computed by (26) where P and Q are random variables that consist of small random
variables {p(1), p(2), p(3), . . . , p(N)} and {q(1), q(2), q(3), . . . , q(N)} respectively.

r =
∑N

n=1 (p(n) − P)(q(n) − Q)√∑N
n=1 (p(n) − P)2(q(n) − Q)2

(26)

In many applications, a correlation coefficient is used to measure how well trends
in the predicted values follow trends in past actual values or how well the predicted
values from a forecast model fit with the real-life data. In our case, P and Q can be
the N-tuple probability mass functions of the future observation and testing period,
respectively, where P and Q are the means of P and Q respectively. Therefore, our
testing periods are: (i) entire historical call logs and (ii) within the convergence time.

The experiment is conducted with 100 randomly selected callers including 30 single-
hop callers and 70 multihop callers from our datasets. The most recent seven days of
the call logs are assumed to be the future observation (pattern). The trace distance
threshold (tDth) is set to 1 to compute the Convergence Time (CT).

The results of the computed values of the correlation coefficient between: (i) the
future calling pattern and the pattern derived from the entire historical call logs, and
(ii) the future calling pattern and the pattern derived from the recent pattern (within
the convergence time) are graphically illustrated for comparison in Figure 14(a) where
the first 30 callers (callers 1–30) are single-hop callers and the rest of the callers are
multihop callers (callers 31–100).

In addition to the comparison purposes, the differences or the changes in the correla-
tion coefficient from considering the entire historical call logs to the convergence time
are shown in Figure 14(b).
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Fig. 14. (a) Comparison of the correlation coefficients and (b) its corresponding change from taking the
entire historical call logs to taking call logs within the convergence time of each caller.

Table I. The Average Correlation Coefficient between the Observed Future Pattern and the Pattern Derived from
Entire Historical Call Logs compared to the Future Pattern and the Pattern Derived from the Call Logs within the
Convergence Time

Average Correlation Coefficient
Average Correlation Coefficient of Taking Data within Convergence

Callers of Taking Entire Data Time Average Change
Single-hop 0.1280 0.1633 +0.0353
Multi-hop 0.0008 0.2241 +0.2233

It can be observed that the value of the correlation coefficient increases as the con-
vergence time is considered for all 100 callers, which tells us that the recent caller’s
behavior (pattern) is more relevant (correlated) to the future calling pattern than the
pattern derived from the entire call history.

In addition, the experiment is performed for all 4,156 callers among which there
are 541 single-hop callers and 3,615 multihop callers. The results are summarized
in Table I, which lists average values of the correlation coefficient when the entire
historical call logs have been considered as well as when the convergence time has
been considered, and their average changes for single-hop and multihop callers.

It can be observed from the graphical representations in Figure 14 as well as the
numerical results summarized in Table I that since the single-hop callers have nor-
mal distributions (pdf are very similar between deriving from the entire call logs and
the convergence time as previously shown in Figure 9), the changes in the similarity
measures are relatively low compared to the multihop callers.

Overall, this experimental result shows that the call logs within the convergence
time are adequate to capture the caller’s calling behavior and in fact they compose a
recent trend of the pattern, which is more similar or relevant to the future observed
pattern than the pattern composed by the entire historical call logs.

5. OUTGOING CALL PREDICTION FRAMEWORK

To predict the future outgoing calls, similar behavior learning models to those described
in Section 4 can be used. Similarly, these models capture the user’s behavior (based on
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call departure time and interdeparture time), the callee’s behavior (based on call ar-
rival time), reciprocity (based on call interarrival/departure time), and user’s behavior
trend, to construct the probabilistic model for the user’s outgoing calls and eventually
generate a list of the most likely contacts/numbers to be dialed, which is envisaged as
an “Intelligent Address Book.”

Similar to the incoming call prediction scenario, as we are at the potential caller’s
point of view, so we also believe that initiating a call by the user is influenced by the
user’s past behavior (past outgoing calls to the caller) and reciprocity (historical call
activities between the user and the caller.)

Similar analysis to the incoming call prediction framework can be applied here,
where the calling patterns of the user toward different callers can be classified as
single-hop and multihop based on the call departure time (i.e., time of initiating calls).
Hence the pdf derived from the arrival time of single-hop and multihop callers given
by (3) and (5) can be utilized for the departure time for single-hop and multihop calling
patterns, respectively.

For a single-hop calling pattern, let a normal random variable R represent the depar-
ture time where R = {r(1), r(2), r(3), . . . , r(N)} where N is the total number of outgoing
calls and r(n) is the nth call departure time and its pdf is given by (27).

e(r) = 1√
2πσ 2

e−(r−μ)2/ 2σ 2
(27)

For a multihop calling pattern, the kernel density estimator is given by (28) where h
is the bandwidth and kernel function K(u) is given in (6).

e(r) = 1
Nh

N∑
i=1

K
(

r − ri

h

)
(28)

The behavior of the user can also be characterized by the call inter-departure time.
Based on the call matrix shown in Figure 4, the pdf of the interdeparture time can be
derived similarly to (10) where variable N is the total number of outgoing calls, sk(n)
is the nth inter-departure time, Sk = {sk(1), sk(2), sk(3), . . . , sk(N − 1)}, and μS,k and σ 2

S,k
are mean and variance of inter-departure time of the ith hour slot. Its pdf is given by
(29).

fi(si) = 1√
2πσ 2

S,i

e−(si−μS,i)2
/ 2σ 2

S,i (29)

As previously mentioned, initiating a call by the phone user is not only influenced by
the user’s past calling behavior, but reciprocity as well. Again, similar to the incoming
call prediction scenario, the reciprocal calling patterns can be observed via the number
of incoming calls per outgoing call which can give us a good time frame approximation
of the next outgoing call. With the similar analysis which derives (14), let a random
variable Ui represent the number of incoming calls per outgoing call of the ith hour
time slot where μU,i and σ 2

U,i
are its mean and variance, respectively, hence its pdf can

be calculated by (30).

gi(ui) = 1√
2πσ 2

U,i

e−(ui−μU,i)2
/ 2σ 2

U,i (30)

Besides monitoring the number of incoming calls per outgoing call, the calling pat-
tern based on reciprocity can also be observed from the inter-departure/arrival time.
Similar to the analysis used to derive (18), let random variable Vi represent the
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inter-departure/arrival time of the ith hour time slot where vi(n) is the average inter-
departure/arrival time of the nth incoming call to all right-hand-side outgoing calls
(across the call matrix’s row) prior to reaching the (n+1)th outgoing call. Hence the pdf
of the interdeparture/arrival time is given by (31).

hi(vi) = 1√
2πσ 2

V,i

e−(vi−μV,i)2
/ 2σ 2

V,i (31)

From (27), (28), (29), (30), and (31), the probability of initiating a call by the phone
user to “Callee B” at ith hour (PB(i)) can be computed as the average of the prob-
ability of initiating a call based on the user’s behavior (departure time and inter-
departure time) and reciprocity (number of incoming per outgoing calls and inter-
departure/arrival time), which is given by (30) where i = 1, 2, 3, . . . , 24 and probabili-
ties (Pa

B(i), Pb
B(i), Pc

B(i), and Pd
B(i)) can be calculated in the similar fashion with (4), (11),

(15), and (19).

PB(i) = 1
4

[
Pa

B(i) + Pb
B(i) + Pc

B(i) + Pd
B(i)

]
(32)

Similar to the incoming call prediction scheme, the probability based on departure
time is to be chosen between (27) and (28) depending upon the result of the χ2-test,
that is, a positive result (passing the test) leads to selecting (27) over (28) and vice
versa.

Again, there is a situation in which some callees never made a single call to the user,
hence no reciprocity. Since there is no history of call interaction between the user and
the potential callee, (32) reduces to the average over the probability based on only the
user’s behavior, which is given by (33). Likewise, occasionally some hour slots (rows of
call matrix) have no reciprocity, in which (32) also reduces to (33).

PB(i) = 1
2

[
Pa

B(i) + Pb
B(i)

]
(33)

Again, similar to the incoming call prediction scheme, the same analysis for the
behavior trend detection can also be applied here for the user’s calling behavior.

6. PERFORMANCE ANALYSIS

In this section, two experiments are conducted to validate the performance of the CP
against the actual call logs.

The first experiment is performed to test the performance of the CP as an incoming
call predictor, that is, “Incoming Call Forecast.” Its performance is measured by the
false positives, false negatives, and error rate. A false positive is considered when a call
is predicted but no call is received during that hour slot. A false negative is considered
when no call is predicted but at least one call is received during that hour slot. The
error rate is the percentage of the number of fault predictions to the total number of
predictions.

The experiment is conducted with 30 phone users who are randomly selected from
our datasets. The call logs of the latest 60 days are assumed to be the future observed
call activities where the rest of the call logs (about seven months) represent the call
history. For each of the 60 days of testing period, the new call prediction is consequently
made by the CP at midnight (0AM) with all available call history (up to that day) taken
into account. The trace distance threshold (tDth) is set to 1 to compute the Convergence
Time (CT). The computed receiving-call probability is checked with the threshold value
to make a decision as to predict “Call” or “No Call” for each of the next 24 hours. The
average number of calls per day is computed and rounded to the next largest integer
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Fig. 15. Performance of the predicted list.

G. The threshold value is dynamically set as G hour slots to be selected to make
“Call” prediction and the rest of the (24-G) hour slots are predicted “No Call.” The
experimental results are shown in Table A.I (Appendix). Note that the prediction is
made for the callers who have at least 20 past incoming calls.

The CP has made a total of 314,784 call predictions with 27,320 fault predictions
for these 30 phone users. Note that the number of predictions for each phone user
is different due to the different number of associated callers for each user. The av-
erage false positive rate is 8.2351%, the average false negative rate is 1.0144%, and
the average error rate is 9.2495% (or accuracy rate of about 90.75%). Therefore the
average number of fault predictions per day (24 predictions) is 2.2199 with an average
tolerance of 2.1407 hours. The average tolerance is a measure of how far off (in hours)
the predicted call is from the actual call when the fault prediction occurs.

The second experiment is to test the performance of the CP as an outgoing call
predictor, that is, “Intelligent Address Book.” The experiment is conducted with the
same 30 phone users from the first experiment. Similarly, the latest 60 days of call
logs are assumed to be the future observed call activities (testing period) where the
rest of the call logs (about seven months) represent the call history (training period).
For every call made by the user during the testing period, the CP generates a list of
contacts/numbers that the user wants to call and gives these contacts higher prece-
dence on the list. Clearly if the CP performed perfectly, one would expect the actual
called number to be at the top of the predicted list. Generally such performance is not
achievable, but one might expect that the called number would tend to appear early
rather than late in the list.

Table A.II (Appendix) shows the percentage of the actual called numbers that appear
within the predicted list as the length of the list varies (1, 3, 5, and 15) for each user.
The result shows that on the average if the predicted list is only allowed one entry,
the CP correctly predicts the number dialed 41% of the time. If the predicted list has
five entries, the CP correctly predicts the dialed number 70% of the time. Finally, if
the predicted list contains 15 entries, the dialed number is always present in the list.
The average accuracy, which is measured by the percentage of the called numbers in
the predicted list, along with the absolute values of all 30 users, is plotted in Figure 15
in black bold line and color lines respectively.
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Fig. 16. Accuracy of predicted list at different total number of callees and different length of the list (1-10).

The accuracy of the predicted list is also affected by the population of the called
numbers, that is, the number of callees. If the user has been making all calls to only
one person, then this user is perfectly predictable. Prediction becomes harder as the
number of callees increases (i.e., more possible called numbers). To see this relationship,
we plot the total number of callees versus the accuracy of the CP for 10 different lengths
of the list in Figure 16.

7. ANALYSIS OF AUTONOMY AND ADAPTATION

As the autonomy and adaptation of computing systems are the subjects of interest
of ACM TAAS readers, it is thus important to reemphasize these properties of the
proposed model of CP as well as present the useful applications of CP by which the
smart phone becomes smarter with these properties—more adaptive and responsive.
Therefore this section aims to describe autonomous and adaptive characteristic aspects
of the CP as well as its applications.

7.1. Autonomous and Adaptive Characteristics of CP

The CP exploits the historical call logs to construct a probabilistic calling behavior
model. Human behavior tends to repeat periodically and creates a pattern that changes
over time. Since call logs are also human behavioral data, it follows the same charac-
teristic. In fact, recent behavior is more relevant to future behavior than the old one.
Thereby the recent trend of behavior is detected with TD. The call prediction can then
be made based on the recent behavior calling pattern either by the user’s request (as
in incoming call prediction scheme) or automatically (as in outgoing call prediction
scheme). Autonomy and adaptation of CP are evidenced by the recent behavior detec-
tion mechanism that allows the model to adapt its computation in response to the new
calling behaviors. Hence the prediction is made adaptive to the most recent behavior.
Moreover, this mechanism provides a means to automatically remove unnecessary data
such that the model remains computationally feasible as more data arrive. Figure 17
shows the architecture of CP displaying a feedback loop for updating stored call logs
so that the CP remains adaptive to the user/caller’s recent calling behavior.

To demonstrate the impact of the feedback control, we conduct an additional ex-
periment by testing CP with different update feedback rates and recording their cor-
responding error/accuracy rates. The experiment is conducted with 30 users and the
latest 60 days are used for testing while the rest are used as training data. Figure 18
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Fig. 17. Architecture of CP showing feedback loop such that it continues to be adaptive to the user/caller’s
recent behavior.
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Fig. 18. The update rate (number of calls received) and its corresponding error rate of CP as an incoming
call predictor. The last reading (farthest right) is the error rate of CP without using TD.
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Fig. 19. The update rate (number of calls made) and its corresponding accuracy rate of CP as an outgoing
call predictor. The last reading (farthest right) is the error rate of CP without using TD.

shows the result of CP used as an incoming call predictor while Figure 19 shows the
result of CP as an outgoing call predictor (at list length = 5). The error rate of the in-
coming call predictor starts from the minimum value at 9.25% when the update is done
for every incoming call and it remains at this value until the update rate is 14 when
it begins to increase. Figure 18 also shows that without TD, the error rate would have
been 20.60%. This result tells us two things. First, the feedback control is essential for
the model to remain adaptive as evidenced from the increase of error rate of 11.35% by
not using TD (that is, no feedback control). Second, the update rate does not have to be
at every incoming call; based on the result from this testing dataset, the update rate
can be set at every 14 calls such that it saves computational cost as it usually means
power. Similar observations can be made for the result of the outgoing call predictor;
the accuracy rate starts off at a constant maximum rate then begins to drop at the
update rate of 13 outgoing calls, and a gap of 14.18% difference in accuracy rate can be
observed between the model with and without TD.
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Fig. 20. System overview of Call Firewall constructed with CP, VSD, and ND for proactively handling the
incoming calls.

7.2. Applications of CP

To demonstrate the usefulness of CP besides its own features; Incoming Call Forecast
and Intelligent Address Book, we describe here two applications of CP including Call
Firewall and Call Reminder.

7.2.1. Call Firewall. By adopting the concept of firewall (the wall that keeps destructive
forces away from our computer systems), Call Firewall basically monitors and handles
incoming calls by keeping unsolicited and unwanted calls away while allowing desired
calls to pass through. The problem of unwanted telemarketing calls or spam calls is
expected to be a serious problem especially in VoIP networks due to its much lower com-
munication cost than the circuit-switched telephone network system (it also becomes
an attractive target for spammers). In fact, SPIT (Spam over Internet Telephony) is
roughly three orders of magnitude less expensive to generate than traditional circuit-
based telemarketing calls [Rosenberg et al. 2006]. Unlike email spam, call spam is a
real-time problem which requires a real-time defense mechanism. The real challenge
is thus to block the spam call before the phone rings. Not only do these spam calls
create a nuisance for the user, Kolan and Dantu [2008] showed that each incoming
phone call creates different levels of nuisance depending on the user’s presence (mood
or state of mind) based on situational, spatial, and temporal contexts. Therefore, to
address this problem of unwanted calls, the system for detecting voice spam and esti-
mating spamminess level (known as VoIP Spam Detector or VSD) described by Kolan
and Dantu [2007] and Dantu and Kolan [2005] and the nuisance computation model
(known as Nuisance Detector or ND) proposed by Kolan and Dantu [2008] can be inte-
grated with the call prediction model proposed in this article (CP) to proactively handle
incoming calls before the phone rings. VSD, as described in Kolan and Dantu [2007]
and Dantu and Kolan [2005], is a multistage adaptive spam filer based on presence
(location, mood, time), trust, and reputation to spam in voice calls. It uses a close-loop
feedback control between different stages to detect a spam call. As described in Kolan
and Dantu [2008], ND is a model for computing the nuisance level of incoming calls
based on the social closeness and other behavioral patterns such as periodicity of the
caller and reciprocity.

As shown in Figure 20, CP generates a periodic 24-hour call prediction to be fed
into VSD to learn the behavior of callers (among which are spammers) and analyze
trustworthiness (VSD indicates the untrusted calls to be “dropped”) and ND computes
the nuisance level associated with each predicted call (ND determines each call to be
either sent directly to “voicemail” or “ringer” to ring the phone), then a set of firewall
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rules is generated, for example, IF John calls between 10am–11am, THEN forward it
to voicemail, IF Pizza House calls between 4pm–5pm, THEN drop the call. The firewall
rules are updated periodically (can be as often as every hour, depending on the user).
The user can also provide feedback about the actual nuisance level or reporting spam
calls in order to improve the performance of the firewall. In summary, the proposed
Call Firewall is an autonomous system that is adaptive to recent calling behaviors
as it proactively manages incoming calls based on the preconfigured set of rules by
keeping unsolicited calls away while allowing wanted calls to either ring the phone or
be forwarded to voice mail (if nuisance level is high).

To show the performance of the Call Firewall, an experiment is conducted with 30
users (latest 60 days are testing data while the rest are training data). Table A.III
(Appendix) shows the false negative rate, true negative rate, and true positive rate of
all 30 users. False negative rate measures the percentage of the incoming calls that
pass through the Call Firewall but should have been blocked. We assume that all
“Missed Call” in our dataset means that the user does not want to take the call and
hence it should be blocked by the Call Firewall. Despite many other reasons for the
missed calls such as being away from the phone, not hearing the ringer, and forgetting
to switch the phone back to ringer from silent mode, we carry out the experiment
with this assumption. True negative rate is a percentage of correctly blocked calls
by Call Firewall, that is, (number of blocked calls)/(number of predicted calls to be
blocked). True positive rate is a percentage of calls that are correctly let through by
Call Firewall, that is, (number of pass-through calls)/(number of predicted calls to be
allowed to pass through firewall). Based on this experiment, the Call Firewall performs
with the average false negative rate of 10.40%, true negative rate of 75.70%, and true
positive rate of 83.03%.

7.2.2. Call Reminder. One of the common problems of everyday life is forgetting to make
a phone call that could either be an event-based call such as birthday call, meeting
planning call, etc., or a nonevent-based call such as calling parents on weekends,
calling girlfriend/boyfriend during a lunch break, etc. Therefore, besides the Intelligent
Address Book (an automatic function that computes the probability of outgoing calls
based on recent calling behavior and generates a list of potential callees to help avoid
searching for a number to call through a typical lengthy address/contact book) we
present here a Call Reminder that makes use of CP as an outgoing call predictor by
integrating it with ND and an Event Calendar to generate a “reminder” for the user to
place a call to a particular person based on the user’s past history, nuisance level, and
events.

As shown in Figure 19, CP periodically makes outgoing call prediction (e.g., hourly),
which will be mapped onto the nuisance level computed by ND. The result is then eval-
uated by the decision maker to generate the call reminder, for example, high probability
and low nuisance level would imply prompting a call reminder. The event calendar (a
function that normally comes with today’s mobile phones) is used to provide details
about the call reminder, for example, birthday call, meeting plan, project discussion,
etc. The user would be prompted with a reminding message such as “Would like to
call John about the ABC conference?”, “Would like to call Alice about the birthday?”,
“Would you like to call Mom regarding dinner?”. The user records new events into the
event calendar for future reminders. Feedback sensor forwards the actual outgoing
calls to CP to be analyzed for prediction as well as provides the user’s feedback to
ND to calibrate nuisance computation. In summary, the proposed Call Reminder is an
autonomous system that is adaptive to the recent calling behaviors as it provides an
automatic reminder for placing a call based on the probability of making a call to a
particular person, nuisance level of the user, and associated events (Figure 21).
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Fig. 21. System overview of Call Reminder constructed with CP, ND, and Event Calendar for reminding
the user to place a call.

To see the performance of the Call Reminder, we conduct an experiment with call
logs of 30 users where the latest 60 days comprise the testing period while the rest of
the data are used for initial training. Since there is no event calendar information in
our dataset, the performance is based solely on CP and ND. The goal is to measure the
percentage of the calls made because of the prompted reminders generated by the Call
Reminder. Our assumption here is that each outgoing call needs to be reminded. Clearly,
it is not completely realistic. Nonetheless, to get the first glance at how Call Reminder
would perform in real life, we conduct the experiment on this assumption. Therefore,
with our dataset, we verify for each outgoing call if it would be reminded by the Call
Reminder. Table AIV (Appendix) shows the result of the true positive rate, which is
computed as ratio of the number of actual outgoing calls made that are among the five
numbers/contacts reminded by the Call Reminder to the total number of outgoing calls.
Based on this experiment, the Call Reminder performs with the average true positive
rate of 69.27%. Note that we believe that the performance can be relatively improved
with an event calendar. Moreover, in more realistic setup, only some outgoing calls
should be reminded. To see the real performance of the proposed Call Reminder, one
would be interested in finding out if the user does make an outgoing call when a call
reminder is generated. This will be in our future study.

8. RELATED WORK

There have been some literatures on predictive models for telephone call demands.
In Brown et al. [2005], the authors applied queuing theory to characterize queuing
primitives such as the arrival time process, the service-time distribution, and the
distribution of customer impatience. In Aldor-Noiman [2006], the author developed two
variations of Poisson process models for describing count data of call center arrivals
that utilized the proposed mixed models technique. There is also literature describing
a predictive model for the emergency 9-1-1 call volumes ([Jasso et al. 2007]) where the
authors used a multiple linear regression model technique to construct the proposed
multidimensional linear predictor based on call history.

To the best of our knowledge, the literature that is closest to our work is Harless
and Kowalski [2000]. The authors developed a system for predicting a future
communication activity based on the past communication event information. The sys-
tem analyzed the past communication event information (including phone calls and
emails) to determine whether a correlation existed in the past communication and
predicted the future communication event based on the current communication event
and the correlation. The correlation is computed based on the pattern of incoming and
outgoing calls, for example, if a call received from “person A” results in a later orig-
ination of a call to “person B,” the correlation value between the “person A” and the
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“person B” is increased proportionately and the correlation values corresponding to
other persons not dialed is decreased accordingly.

In contrast, our work is focused to predicting the future incoming calls for the next
24 hours and outgoing calls in form of a list of the most likely contacts/numbers to be
dialed based on the past communication information of the phone user and the potential
callers/callees. We do not correlate the callers using their past communication patterns
towards the phone user. However, we think that considering the temporal sequence
of call activities in computing the probability of receiving/initiating a future call may
improve the accuracy of the CP for which will be discussed further in our future work.

9. CONCLUSION

Over the past few years, there has been a rapid development and deployment of new
advanced phone features, including Internet access, email access, scheduling software,
built-in cameras, contact management, accelerometers, and navigation software, as
well as the ability to read documents in variety of formats such as PDF and Microsoft
Office. However, none of these features offers the ability to predict future calls. In this
article, we propose a Call Predictor (CP) that can operate as an incoming call predictor,
which offers a new feature for the next-generation phones known as “Incoming Call
Forecast,” and an outgoing call predictor, which provides an improvement over the “last
numbers dialed” functionality that is often provided on the phones by an “Intelligent
Address Book.”

As an incoming call predictor, the CP computes receiving-call probability based on
the caller’s past behavior and the reciprocity, and makes the next-24-hour call pre-
diction. The caller’s past behavior is characterized by the past incoming call pattern,
which can be observed by the arrival time and inter-arrival time. On the other hand,
the reciprocity is characterized by the number of outgoing calls per an incoming call
pattern, and the inter-arrival/departure time pattern. We believe that call logs include
trends or changes of human behavior over time. In fact, we have proved that the re-
cent trend of the caller’s behavior has higher correlation to future behavior than the
patterns derived from the entire historical data. Thus, the CP detects the recent trend
of the caller’s behavior and computes the adequacy of historical data in terms of the
reversed time based on the trace distance to reduce the computational density.

As an outgoing call predictor, the CP computes the probability of initiating a call to
each callee based on the user’s past calling behavior towards each callee and reciprocity,
and it generates a list of the most likely contacts/numbers to be dialed at a given time.
The user’s past behavior is characterized by the past outgoing call pattern which can
be observed via the call departure time and inter-departure time. The reciprocity or the
past call interaction activity is characterized by the pattern of the number of incoming
calls per outgoing call and the inter-departure/arrival time. Similar to the incoming
call prediction scheme, the CP also detects the recent trend of the user’s calling pattern
and computes the adequacy of historical call logs as the recent calling pattern is proven
more relevant to future observation than the pattern derived from the entire historical
call logs.

The performance of the CP is validated against the actual call logs of two months
based on the historical call logs of seven months. The result of the Incoming Call
Forecast shows a fairly good performance with low false positives, false negatives, and
error rate. Likewise, the Intelligent Address Book also shows a promising result of its
performance. Nevertheless, the prediction technique proposed here is preliminary and
other approaches need to be considered in order to improve the performance of the pre-
dictor. In addition, we describe two applications of CP including Call Firewall and Call
Reminder. Call Firewall proactively manages incoming calls based on preconfigured
set of rules by keeping unsolicited calls away while allowing wanted calls to either
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ring the phone or be forwarded to voice mail. Call Reminder provides an automatic
reminder for placing a call based on the probability of making a call to a particular
person, nuisance level of the user, and associated events. Our future work will involve
in investigating other parameters to characterize the behavior of the phone users and
examining other prediction techniques to improve the performance of the CP.

APPENDIX

Table A.I. The Experimental Results for Validating the Performance of the CP as an Incoming Call Predictor

Number of False False Number of fault Average
Phone Number of fault positive negative predictions per tolerance
user predictions predictions (%) (%) Error rate day (hours)
1 7440 746 9.4515 0.5754 10.0269 2.4065 1.7379
2 5952 748 11.7444 0.8228 12.5672 3.0161 1.7621
3 7320 687 9.0113 0.3739 9.3852 2.2525 1.5182
4 16728 1353 7.4419 0.6463 8.0882 1.9412 2.3943
5 9216 665 6.6384 0.5773 7.2157 1.7318 1.6243
6 16992 1902 10.552 0.6415 11.1935 2.6864 2.8270
7 24408 2391 9.3439 0.4521 9.7960 2.3510 2.0253
8 4320 246 5.6481 0.0463 5.6944 1.3667 2.2054
9 14544 1191 7.5894 0.5995 8.1889 1.9653 1.9231

10 6072 787 9.8646 3.0965 12.9611 3.1107 2.2347
11 12744 1439 10.2307 1.0609 11.2916 2.7100 1.8578
12 2208 259 8.5532 3.1769 11.7301 2.8152 2.1824
13 8472 766 8.1713 0.8702 9.0415 2.1700 1.5090
14 10992 1396 11.3392 1.3609 12.7001 3.0480 2.1659
15 25296 1644 4.7204 1.7787 6.4991 1.5598 1.9186
16 23400 1117 3.8552 0.9183 4.7735 1.1456 2.3365
17 6864 291 2.6285 1.6110 4.2395 1.0175 2.3299
18 5688 301 3.5764 1.7154 5.2918 1.2700 2.4003
19 11472 961 7.9437 0.4332 8.3769 2.0105 2.1440
20 2880 344 11.3194 0.6250 11.9444 2.8667 1.9922
21 6312 724 9.7778 1.6924 11.4702 2.7529 2.1722
22 11592 1210 9.6047 0.8335 10.4382 2.5052 1.8449
23 12048 1355 10.5679 0.6788 11.2467 2.6992 1.7855
24 21240 1325 5.2053 1.0329 6.2382 1.4972 2.1254
25 2880 281 8.9931 0.7638 9.7569 2.3417 2.3516
26 8640 857 9.3634 0.5556 9.9190 2.3806 2.9585
27 6144 634 9.4502 0.8688 10.3190 2.4766 2.4200
28 4656 567 10.735 1.4428 12.1778 2.9227 2.7085
29 15144 841 4.8884 0.6650 5.5534 1.3328 2.3532
30 3120 292 8.8426 0.5164 9.3590 2.2462 2.4136

Table A.II. The Experimental Results of the CP as an Outgoing Call Predictor

Percentage of called numbers in the predicted list
Total number of List

Phone user outgoing calls length = 1 List length = 3 List length = 5 List length = 10 List length = 15
1 865 35.2959 55.8273 71.5278 90.1269 100
2 303 58.9858 79.2705 86.0320 100 100
3 155 51.7157 80.1469 100 100 100
4 625 34.5789 43.0000 49.5263 78.5789 100
5 174 39.0151 42.0454 54.1667 87.5000 100
6 822 37.2976 47.7584 55.8530 95.8281 100
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Table A.II. Continued

7 887 66.5983 73.4289 77.8005 100 100
8 409 55.9911 94.4526 100 100 100
9 694 46.7278 54.8430 63.2199 86.2566 100

10 898 31.4368 40.8621 71.2068 100 100
11 529 29.1487 37.7694 51.5624 97.0366 100
12 517 45.4698 56.8792 72.0918 100 100
13 1203 48.8699 71.9326 85.6780 100 100
14 489 33.3933 49.2206 61.6907 99.3405 100
15 947 36.0040 47.5731 57.1475 80.8177 100
16 592 54.3795 61.3139 66.4233 90.8759 100
17 543 34.5699 39.7312 53.4946 76.2903 100
18 796 41.6348 74.3296 93.2312 100 100
19 654 49.9174 58.4983 73.3498 89.3564 100
20 290 41.6071 81.9643 100 100 100
21 132 39.5833 73.9583 90.6250 100 100
22 576 32.9060 43.1623 53.4188 89.1025 100
23 705 32.7329 44.3321 48.3744 86.1599 100
24 609 43.0625 51.3125 56.0626 76.5626 100
25 158 30.9160 38.5496 53.8168 98.8549 100
26 368 39.1304 51.0869 66.6667 100 100
27 337 35.7744 53.6195 73.8215 100 100
28 200 32.9268 48.1707 80.4878 100 100
29 278 38.1278 44.5205 52.7398 93.8356 100
30 378 37.2659 49.2510 70.2248 100 100

Table A.III. The Experimental Result of the Performance of the Call Firewall

Phone user False negative (%) True negative (%) True positive (%)
1 7.9167 60.5657 81.1345
2 13.6364 70.6599 78.7067
3 20.1220 68.9306 85.9894
4 18.5185 73.4268 84.3915
5 2.8571 71.2957 73.0827
6 6.7805 90.5238 89.2000
7 30.6250 70.9195 68.8482
8 29.0909 73.9037 74.4131
9 5.1049 62.6718 80.4147

10 17.0000 61.2121 74.1722
11 0 85.5233 83.5608
12 26.4151 75.4762 86.7951
13 0 95.4762 100
14 3.3333 74.9153 85.2941
15 3.6364 69.6364 74.5827
16 2.5641 70.0632 81.7840
17 6.6667 61.3043 70.0880
18 30.1887 79.5116 77.1222
19 21.5686 79.4787 80.9110
20 4.5455 68.6689 90.8333
21 0 77.4271 84.6699
22 2.1739 69.8182 82.2090
23 12.1951 75.6426 78.1295
24 0 93.5915 94.1000
25 7.1429 86.4356 92.8571
26 0 71.7921 94.5113
27 8.4337 86.1017 86.8067
28 18.3019 76.2393 82.7376
29 11.9048 88.4960 85.3029
30 1.2195 81.2656 88.0456
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Table A.IV. The Experimental Result of the Performance of the Call Reminder

Phone user True positive (%) Phone user True positive (%)
1 70.5202 16 65.8784
2 86.1386 17 53.0387
3 100 18 92.0854
4 49.6000 19 72.9358
5 54.0230 20 100
6 54.7445 21 90.9091
7 76.3247 22 52.0833
8 98.7775 23 47.9433
9 62.3919 24 55.9934
10 70.7127 25 53.7975
11 51.0397 26 66.5761
12 72.1470 27 73.8872
13 85.4530 28 80.5000
14 61.5542 29 52.5180
15 56.8110 30 69.5767
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