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Wireless sensor networks (WSNs) appeal to a wide range of applications that involve the monitoring of 
various physical phenomena. However, WSNs are subject to many threats. In particular, lack of pervasive 
tamper-resistant hardware results in sensors being easy targets for compromise. Having compromised a 
sensor, the adversary learns all the sensor secrets, allowing it to later encrypt/decrypt or authenticate 
messages on behalf of that sensor. This threat is particularly relevant in the novel unattended wireless 
sensor networks (UWSNs) scenario. UWSNs operate without constant supervision by a trusted sink. UWSN's 
unattended nature and increased exposure to attacks prompts the need for special techniques geared towards 
regaining security after being compromised. 

In this article, we investigate cooperative self-healing in UWSNs and propose various techniques to allow 
unattended sensors to recover security after compromise. Our techniques provide seamless healing rates even 
against a very agile and powerful adversary. The effectiveness and viability of our proposed techniques are 
assessed by thorough analysis and supported by simulation results. Finally, we introduce some real-world 
issues affecting UWSN deployment and provide some solutions for them as well as a few open problems 
calling for further investigation. 

1. INTRODUCTION 

Wireless sensor networks (WSNs) are used for data collection in numerous application 
settings and scenarios, such as environmental monitoring, disaster relief, and home­
land security. Security in WSNs presents a number of difficult and novel challenges 
due to the low cost and resource constraints of individual sensors. 



The security research community's initial focus has been on WSNs operating in a 
real-time data collection mode: a trusted entity (usually called a sink) is assumed to be 
always present. Its presence allows nodes to submit measurements soon after sensing. 
While many WSNs operate in this model, some WSNs do not have the luxury of a 
constantly present sink. We refer to such networks as unattended WSNs or UWSNs 
[Di Pietro et al. 2008; Ma and Tsudik 2007]. In a UWSN, the sink periodically visits the 
network and collects data obtained and accumulated by sensors. Thus, a sensor cannot 
communicate with the sink at will. Instead, it collects data in situ and waits for the 
sink's next visit. A sensor's inability to off load data in real time exposes accumulated 
data to increased risks. This general model has been endorsed by national agencies 
[DARPA 2007] and private companies [Trident Systems 2010]. We believe it fits several 
network scenarios where the UWSN is deployed in a hostile environment and there is 
no online sink. One reason for not having an online sink might be the need to avoid 
having a single point of failure, as a sink is very likely a valuable attack target for the 
adversary. Another reason could be the network s large scale and/or remote location. In 
either case, there might be incentives for the sink to be itinerant, rather than fixed. For 
example, if the network is deployed along a national border to detect border crossing, 
the size of the monitored area precludes the possibility of having an online sink. The 
latter would be rather mounted on a vehicle of the border control corpse and would 
collect sensor measurements as it drives along the border. 

Aside from the sink's constant availability, prior WSN security work typically as­
sumed that there is an upper bound on the number of sensors that can be compromised 
during entire WSN deployment. Thus, most prior WSN security work focused on attack 
detection [Conti et al. 2008; 2009]. This is reasonable, since a constantly present sink 
can help to detect and react to attacks. 

In a UWSN, the unattended nature of the network gives the adversary extra ad­
vantages. In particular, during sink absence, the adversary can roam the network and 
compromise sensors. Thus, adversarial models used in prior sensor network security 
cannot be used in evaluating security solutions for UWSNs. The powerful mobile adver­
sary considered here, /xAVV, takes advantage of the unattended nature of the network: 
it compromises a number of sensors within a particular interval and moves on to an­
other set of sensors in the next interval. We anticipate that the adversary might also 
compromise a number of sensors and stay put, but it would gain no advantage in doing 
so. A static adversary (i.e., the adversary that has been considered so far in WSN liter­
ature) would only learn measurements collected by the compromised sensors. Indeed, 
if intervals are much shorter than the time between successive sink visits and the 
adversary roams compromising different sets of sensors, it might subvert the entire 
network, gradually undermining security. 

In this article, we focus on techniques to defend UWSNs against a curious mobile ad­
versary whose goal is to learn data collected by sensors. We assume that the adversary 
does not have resources to set up its own network infrastructure or that corrupting 
sensors and reading their measurements is a more cost-effective solution [Luo et al. 
2008]. When a curious mobile adversary compromises a sensor, it reads all memory and 
storage of that sensor and leaves no evidence of its presence. Once a sensor is compro­
mised and the adversary learns its secrets, collected data—even if encrypted—become 
exposed. 

If we assume that the adversary compromises a given sensor and maintains it un­
der direct control for a certain length of time, data collected by that sensor can be 
partitioned into three categories based on the time of compromise: (1) before compro­
mise, (2) during compromise, and (3) after compromise. Nothing can be done about 
the secrecy of data in category (2) since the adversary is fully in control. The chal­
lenge is in protecting the secrecy of data in categories (1) and (3), which requires, 



respectively, the following. 

—Forward secrecy. The term forward means that category (1) data remains secret as 
time goes forward. 

—Backward secrecy. The term backward means that category (3) data remains secret 
even though a compromise occurred before it was collected. 

Contributions. This article investigates two cooperative self-healing strategies [Ma 
and Tsudik 2008; Di Pietro et al. 2008] that allow an UWSN to recover from compromise 
and maintain the secrecy of collected data. Because the cure comes from peer sensors, 
the network exhibits a self-healing property that emerges through collaboration of 
all nodes—something no individual node can provide. This distributed self-healing 
strategy provides a tunable probabilistic assurance of data secrecy across all nodes 
and compromise intervals. We completely characterize via analysis the features that 
capture this emergent property, that is, adversarial capability (number of nodes /xAVV 
can compromise at the same time), amount of internode communication the UWSN can 
support, and number of data collection intervals between successive sink visits. We also 
show that, in this context, healing capabilities are subject to a 0-1 law. Results obtained 
from our analysis are supported by extensive simulations, showing that the proposed 
protocols are very effective in self-healing, despite the power of the mobile adversary. 
Finally, some issues related to UWSN deployment are addressed, while some open 
research problems calling for further investigation are introduced. 

Organization. The article is organized as follows. We start surveying related work 
in Section 2 and provide an overview of existing techniques and point out why they 
cannot satisfy our security requirements in Section 3. We then present our network 
and adversarial model in Section 4 and show two self-healing schemes in Section 5. We 
analyze the effectiveness of the proposed schemes and present simulation results in 
Section 6. Next, we discuss certain limitations and potential improvements that pave 
the way for further research in the field in Section 7. The article concludes in Section 8. 

2. RELATED WORK 

Data secrecy is a fundamental security issue in sensor networks, and encryption is 
the standard way to achieve it [Hu and Sharma 2005]. Many research efforts have 
yielded techniques for establishing pairwise keys used to secure sensor-to-sensor and 
sink-to-sensor communication (e.g., [Eschenauer and Gligor 2002; Di Pietro et al. 2003; 
Du et al. 2004; Chan and Perrig 2005]). Local keys are updated periodically to miti­
gate the effect of sensor compromise. Mauw et al. [2006] proposed some techniques 
for providing forward-secure data authentication and confidentiality for node-to-sink 
communication. 

Wang et al. [2009] limit the damages of secret-exposure in WSN using secret-sharing 
and erasure codes; their proposed scheme achieves secure and dependable data storage, 
allowing for dynamic integrity of sensed data. A work related to ours is Whisper [Naik 
et al. 2003], a protocol which provides both forward and backward secrecy for commu­
nication between pairs of sensors. However, Whisper's security relies on an unrealistic 
assumption that the adversary cannot compromise both sensors simultaneously. Also, 
every sensor must be equipped with a TRNG. 

Recently, unattended sensors and sensor networks have become subjects of attention. 
The initial work [Ma et al. 2009] introduced the UWSN scenario, defined the mobile 
adversary, and discussed a number of challenges in the new scenario. Di Pietro et al. 
[2008] investigated simple techniques to counter attacks focused on erasing specific 
data. This work was later extended [Di Pietro et al. 2009a] to include the case where 
the adversary's goal is to indiscriminately erase all sensor data. The problem of data 



survivability in UWSN was also studied [Park and Shin 2005; Ruan et al. 2010; Ren 
et al. 2010, 2009; Vitali et al. 2011]. Another recent result [Di Pietro et al. 2009b] 
introduced simple cryptographic techniques for preventing the adversary from locating 
data that it aims to erase. Authentication in UWSN was studied in Di Pietro et al. 
[2009] and Yu et al. [2010]. Forward- and backward-secure data authentication in 
UWSNs was also explored [Ma 2008; Ma and Tsudik 2007; Di Pietro et al. 2009; Yavuz 
and Ning 2009]. Self-healing techniques for UWSNs where sensors are mobile have 
been proposed in Di Pietro et al. [2010a, 2010b]. Their protocols leverage node mobility 
to afford self-healing, while this article focuses on networks with static nodes. 

Mobile adversaries have been studied in the cryptographic literature for a long time 
[Ostrovsky and Yung 1991]. An entire branch of cryptography, called Proactive Cryp­
tography, has been developing cryptographic techniques that preserve security in the 
presence of such a mobile adversary [Frankel et al. 1997; Rabin 1998]. However, the goal 
of the cryptographic mobile adversary is to discover some system-wide secret (usually 
a decryption or a signature key) predistributed via secret-sharing techniques among 
the system components. Whereas, in a UWSN, the mobile adversary's goal is to read, 
erase, or modify data collected by unattended sensors. Consequently, research results 
in proactive cryptography do not apply to the problem at hand. Also, the resource-
constrained capabilities of sensors makes the domain of UWSN very different from 
that in proactive cryptography, thus motivating radically different solutions. 

The result most related to this article is that of Canetti and Herzberg [1994] in which 
a generic deterministic scheme is proposed that maintains secrecy in the presence of 
a mobile adversary. In this scheme, a node must communicate with all other nodes to 
update its state at each round. This might work for small wired networks, but due to 
communication overhead, the proposal would not scale to the envisaged UWSN size. 
Also, since sensor communication is wireless and broadcast in nature, eavesdropping is 
easy, which makes our analysis very different from that in Canetti and Herzberg [1994]. 

An adversarial model for WSN similar to the one considered in this article, was 
studied in Luo et al. [2008], where the adversary is parasitic and unobtrusive. That is, 
the adversary tries to learn sensor collected data but does not modify sensor code. 

3. SIMPLE NON-COOPERATIVE SCHEMES 

We now briefly examine a few noncooperative schemes to achieve forward and/or back­
ward secrecy. More detailed descriptions of these schemes can be found in Ma and 
Tsudik [2008]. 

3.1. Simple Symmetric Key Scheme 

A scheme based on symmetric cryptography assumes that each sensor st shares a key 
K° with the sink. At round r, st collects data d\ and encrypts it to produce E\ = 
Enc{K\,d\,r,Si). 

It then computes the next round key as Kr
t
+1 = F{K\) where F(-) is a suitable 

pseudorandom function (PRF).1 Finally, it securely deletes K\ and moves to the next 
round. During its next visit, the sink collects all ciphertexts produced by Si and decrypts 
them to retrieve data. Since the sink knows K°t, it can easily recompute all keys used 
by Si in each round. 

In this simple scheme, forward secrecy is achieved through one-way key update. 
However, backward secrecy is lacking: once the adversary compromises st at round 
r and learns Kr

t, it can compute any future key K^' (r' > r) by mimicking the key 
evolution process. 
1 In practice, a PRF can be constructed from a block cipher, such as AES (AES is a good pseudorandom 
permutation). Other even more practical constructions of PRFs deployed in standards use "good" MAC 
functions, such as HMAC [Bellare et al. 1996]. 



Table I. Notation 
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number of sensors in the network 
number of compromised sensors at any round 
sensor i 
collection round indices 
degree of collaboration 
si' key at round r 
pseudorandom function 
one-way collision-resistant hash function 
number of rounds between successive sink visits 
set of red sensors at round r 
set of yellow sensors at round r 
set of green sensors at round r 
set of all contributions sent to s; at round r 
set of all contributions received by s; at round r 
jth contribution received by s; at round r 

3.2. Simple Public Key Scheme 

In this scenario, the sink has a long-term public key, PKsink, known to all sen­
sors. At round r, sensor s; collects data d\ and encrypts it to produce E\ = 
Enc{PKsink, Rr

t, d\, r, st), where Rr
t is a one-time random value included in each ran­

domized encryption operation, as specified in the OAEP+ quasi-standard [Shoup 2000]. 
Upon its next visit, the sink collects all ciphertexts produced by S; and decrypts them 
with its private key SKsink. Since sensors have no secrets of their own, no critical infor­
mation is exposed upon compromise. Thus, the only way /xAVV can determine cleartext 
data is by guessing and trying to encrypt it with the sink's public key, PKsink. Since 
the value of sensor data can have a small range, defending against a guessing attack 
requires the use of randomized encryption. 

On the one hand, if random numbers are obtained from a true random number gen­
erator (TRNG), both forward and backward secrecy can be trivially achieved. On the 
other hand, if random numbers are obtained from a pseudorandom number genera­
tor (PRNG), the resulting security is similar to the preceding simple symmetric key 
scheme, that is, forward secrecy is attained but backward secrecy is lacking. 

3.3. Key-Insulated and Intrusion-Resilient Schemes 

There are certain advanced cryptographic techniques that provide both forward and 
backward secrecy. They include key-insulated [Dodis et al. 2002] and intrusion-resilient 
[Dodis et al. 2003,2004] encryption schemes. In both models, secret key update requires 
a separate secure entity, typically in the form of a remote trusted server or local tamper-
resistant hardware. However, such schemes are unsuitable for UWSNs, since there is 
no trusted server and pervasive secure hardware is unrealistic. 

3.4. Summary 

Having reviewed simple intuitive approaches, we observe that except for the public 
key scheme used in conjunction with all sensors equipped with TRNGs, none of the 
schemes achieves both forward and backward secrecy. However, we believe that per-
sensor TRNG is not viable for current and emerging sensor networks due to resource 
and cost constraints. 

4. NETWORK AND ADVERSARY MODEL 

This section presents our network and adversary model. Symbols used in the rest of 
the article are reflected in Table I. 



4.1. Network Model 

We assume a homogeneous UWSN with n sensors uniformly distributed over a fixed 
geographical area. The sink periodically visits the UWSN to collect data. 

We define the time between two consecutive visits by the sink as an unattended 
epoch. Time within each unattended epoch is divided into fixed collection intervals, 
and each sensor collects a single data unit per round.2 Round synchronization can 
be implemented via any well-known technique, for example, that of Ganeriwal et al. 
[2005]. 

There is a system-wide parameter, v, denoting the maximum number of collection 
rounds in an unattended epoch. We assume sensors have enough storage to accommo­
date 0{v) data units.3 

The UWSN is always connected, and any two sensors can communicate either directly 
or via peers, according to the underlying routing protocol. However, messages can be 
lost and sensors can fail. 

Each sensor can perform cryptographic hashing, symmetric key encryption, and, 
optionally, public key encryption (but not decryption).4 Also, each sensor has a PRNG 
initialized with a unique secret seed shared with the sink. 

Finally, every time the sink visits the UWSN, it empties all sensor storage, securely 
re-initializes secret seed values for all sensors, and resets the round counter. 

We assume the adversary is not present during sink visits to the network. Since 
sensor secrets are refreshed, /xAVV cannot retain control over sensor-across multiple 
unattended epochs; hence, our ultimate goal is intrusion-resilience within one unat­
tended epoch. 

4.2. Adversarial Model 

IxAVVs main goal is to learn as many sensor secrets (keys or other secret material) as 
possible. An adversary with similar goals was introduced in Luo et al. [2008]. To ease 
exposition, we assume that the adversarial round is the same as the sensor collection 
round. At the end of each round, /xAVV picks a set of sensors to compromise next. At the 
start of the next round, it releases the currently compromised sensors and compromises 
the new set. 

IxAW can simultaneously compromise at most k sensors (k <£. n) per round, similarly 
to the adversary in Luo et al. [2008] and Kong and Hong [2003]. However, /xAVV has no 
restriction on the location of sensors to compromise, that is, compromised sensors might 
be not clustered. While a sensor is compromised, /xAVV reads its storage/memory and 
listens to all incoming and outgoing communication. However, /xAVV is not a global 
eavesdropper: it can only monitor traffic germane to currently compromised nodes. 

We also stress that /xAVV does not interfere with sensors' behavior, that is, we deal 
with an unobtrusive, as defined in Luo et al. [2008]. This is in order to stay undetected 
for as long as possible. Actually, any modification to the sensor code can be later 
discovered by the sink using techniques [Park and Shin 2005; Seshadri et al. 2004; 
Yang e t a l . 2007]. 

If the sink does not recognize malicious activity during its absence, the adversary 
can benefit from multiple attacks to the network over periods of sink absence. 

2We use the term round or interval interchangeably. 
3This assumption will be later relaxed as we trade off space requirement for improved robustness. 
4In the context of resource-constrained sensor networks, we are interested in encryption schemes that allow 
for efficient encryption, while we might tolerate more expensive decryption operations at the sink. For 
example, the RSA public key encryption scheme allows for efficient encryption using small public exponents. 



ALGORITHM 1: SEND 
{Rtl,..., i ^} «-$; 
{sh,...,sit} ^ $ ; 
for (j <r- 1 to t) do 

I Send i^ to s;. 
end 

ALGORITHM 2: RECEIVE 
S = 0 ; 
while (roundTimer) do 

Receive c;. from s*. ; 
AddQ. to S ; 

end 
Sort S ; 
Kr

t
+1 = F(.K<); 

for (j <- l t o |S | Jdo 
| K<+1= FlK^Ucij); 

end 

5. SELF-HEALING STRATEGIES 

We now present two cooperative self-healing schemes that provide forward and back­
ward secrecy. 

As discussed in Section 3, since forward secrecy can be easily achieved through key 
evolution, our main goal is backward secrecy within one unattended epoch. In other 
words, we need a previously compromised sensor to compute a new (next-round) key 
unknown to ixAVV and thus regain security. 

The main idea behind our techniques is for each sensor to serve as a source of 
randomness for other sensors. The key observation is that a sensor not currently 
occupied by /xAVV but with a compromised state5 can regain security by computing 
a new secure state if it obtains at least one "infusion" of secure randomness from a 
peer sensor whose secret state is not compromised. Since our goal is to allow a sensor 
to obtain backward secrecy (recover from prior compromise), an infusion of secure 
randomness achieves exactly this goal. 

Using our cooperative self-healing approach, nodes can either explicitly solicit ran­
dom contributions from others or volunteer their own random contributions to peers. 
Based on this difference, we propose two concrete schemes: PUSH [Di Pietro et al. 
2008] and PULL [Ma and Tsudik 2008]. In the former, each node voluntarily supplies 
a random set of peers with its random contributions. Whereas, in the latter, each node 
asks for contributions from a random set of peers. Although similar, these two schemes 
are inherently different in regards to healing rates and behaviors, as described in the 
next sections. 

5.1. PUSH 

At each round, every sensor runs Algorithm 1 and Algorithm 2. In SEND, based on 
its current PRNG state, each sensor picks a random set of t peers and, for each of 
them, generates and sends a pseudorandom value. In RECEIVE, each sensor receives 
contributions from others and uses these contributions (together with its current key) 

5In other words, its current key is known to \iADV. 
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ALGORITHM 3: RECEIVE 
S = {sit,..., sk} ^ $ ; 
for (j <- t to \S\) do 

| Send RE Q to stj ; 
end 
S = 0 ; 
while (roundTimer) do 

Receive c*. from s,- ; 
Add ctj to S ; 

end 
Sort S ; 
Kr

t
+1 = F{K\); 

for (j <r- 1 to |S|; do 
| Kr+1= FlK^Ucij); 

end 

ALGORITHM 4: SEND 
while (roundTimer) do 

Receive i?£Q from Sj ; 
cJi ^ $ ; 

Send Cjt to s7 ; 
end 

as inputs to the key evolution function used to compute the next round's key. In both 
algorithms, we denote with ^ $ an invocation of a sensor's PRNG. 

5.2. PULL 

In this protocol, each sensor runs Algorithm 3 and Algorithm 4. In SEND, a sensor 
waits for requests for randomness and replies, if asked. In RECEIVE, a sensor selects 
t random peers and asks each of them for a random contribution. Having received all 
contributions, a sensor uses them (together with its current key) as inputs to the key 
evolution function used to compute the next round's key. In both algorithms we denote 
with ^ $ an invocation of a sensor's PRNG. 

6. ANALYSIS AND SIMULATION RESULTS 

In this section, we analyze the effectiveness of the proposed cooperative self-healing 
schemes, that is, the number of healed sensors they can afford. We also develope a 
simulator to further confirm and validate analytical results. For all configuration of 
parameters taken into account, the difference between analytical and simulated data 
was negligible.6 Hence, for the sake of readability, we will only provide figures of our 
simulations. Before presenting our analysis and simulation results, we state our system 
abstraction and refine the adversarial strategy. 

6.1. Sensor States—Coloring 

To simplify our analysis, at each round, we partition sensors into three distinct groups. 
A sensor can be red, yellow, or green, as defined next. 

In 98% of our experiments , the difference between the number of healed nodes and the outcome of the 
analysis was less than 1. The largest difference we experienced was 4, that is, less than 1% of the network 
size. 



Fig. 1. Sensor state transition diagram. 

—Red sensors (Rr). A sensor is red if it is currently (in round r) controlled by fiADV. 
This means that /xAVV knows its current key and eavesdrops on all incident com­
munication. ixAW also learns the next-round key, since it is computed at the end of 
the current round. 

—Yellow sensors (Yr). A sensor is yellow if it has been compromised in round r' < r 
and subsequently released by /xAVV later. However, its current key is still known by 
IxAW (but ixAW cannot eavesdrop on it.) 

—Green sensors (Gr). A sensor is green if its current key is unknown to ixAW. Either 
it has never been compromised or it was "healed" through our protocols. 

Given this coloring scheme, it is easy to see that (1) a green sensor remains green 
until ixAW compromises it; (2) a red sensor cannot become green without becoming 
yellow first; and (3) a yellow sensor can become green if and only if it receives at least 
one contribution from a green sensor that was not eavesdropped upon by /xAVV. The 
state transition diagram in Figure 1 captures these axioms and illustrates how sensors 
change colors. 

Since knowledge of sensor keys allows /xAVV to decrypt data previously encrypted 
under these keys, /xAVV's goal is to maximize the number of both red and yellow 
sensors. To this end, we analyze the effectiveness of the proposed protocols in terms of 
the number of green sensors present at each round. 

Evolutionary model approximation. This model just introduced completely depicts 
the possible evolution among states (colors). In the following, we will provide an ana­
lytical representation. To this goal, we need to introduce some (limited) approximations. 

(1) Inter-round dependency. Note that the exposed model introduces a dependency of 
the actual state of the system (at round r) on the previous state of the system (at 
round r — 1). Consider, for instance, the number of green sensors at the beginning 
of round r. This number depends on the number of green nodes at the beginning 
of round r — 1 and the ones remaining at the end of round r — 1. To simplify the 
analysis, we will approximate the number of green sensors at the beginning of 
round r with its expected value nPr^1. 



(2) Absorbing states. No single state in Figure 1 is an absorbing one. However, note 
that if the number of green sensors drops to zero, no "healing randomness" will 
be spread throughout the network, and all sensor will remain either yellow or 
red. Hence, if the number of green sensors drops below /xAVV 's compromising 
capability ( Gr < k), next round will lead the system to be composed of red and 
yellow sensors only. Since this last step in the network evolution is of little inter­
est, in the following analysis, we assume the network enjoys a number of green 
sensors higher than k—this hypothesis being verified by all rounds except the last 
one. 

6.2. Adversarial Strategies 

The adversarial model summarized in Section 4.2 omits both the criteria and the 
strategies /xAVV uses to migrate between successive sets of compromised sensors. 
This is because /xAVV's behavior (given its goal) would be based on the specific defense 
mechanism employed by the UWSN. 

While ixAW can arbitrarily choose the set of sensors to compromise, its best strategy 
is to compromise as many green nodes as possible at any round. However, since ixAVV is 
not a global eavesdropper, it cannot determine current status of all nodes. Nevertheless, 
[i AW knows the identities of nodes that have ever been compromised. Thus, moving in 
a round-robin fashion, it can keep compromising green sensors for the first \f~\ rounds. 
However, once a node has been compromised and later released, /xAVV has no certainty 
on that node's status in following rounds. Thus, a realistic /xAVV might inadvertently 
pick some yellow sensors in the next round compromise set. 

Despite this, we consider a model of Informed Adversary {INIF — ixAW), which is 
always aware of the current set of green nodes. Although unrealistic, we believe that 
TNT — ixAW represents the upper bound in adversarial capability. It thus serves 
as a reference point for the worst-case analysis. If our protocols perform well in the 
presence of TNT - /xAVV, they would perform considerably better with a more limited 
(and realistic) adversary. 

A more realistic adversary can still compromise green sensors for the first |~|] rounds, 
moving in a round-robin fashion. Then, it can apply some heuristics to maximize its 
chances of selecting green nodes. Based on the heuristic that earliest-compromised 
nodes had the most rounds to recover secrecy, /xAVV might keep its round-robin 
strategy, even after round [ f ] . We refer to this adversary type as TZTZ-fxAVV. In 
the next sections, we show the difference in performance between TNT - /xAVV and 
nn - ixAW. 

Critical parameters for the success of our self-healing techniques are the ratio \ and 
the degree of collaboration among sensors, t. Another important factor is the adver­
sary's ability to eavesdrop on exchanged contributions. A single green contribution can 
help a yellow sensor to regain secret state, only if the contribution is not eavesdropped 
by ixAW via compromised (red) sensors. Local eavesdropping is determined by the 
network layout. Also, routing algorithms can clearly influence /xAVV's eavesdropping 
power and the results of proposed self-healing techniques. We decided to make our 
analysis independent of such factors, yet realistic. To this extent, we define p as the 
probability of any message being eavesdropped by the adversary. 

6.3. PUSH 

We define Pr
Q (Pf, Pr

R) as the probability that st e Gr (st e Yr,st e Rr) at the end of 
round r, while jir is the probability that a yellow sensor at the beginning of round r 
does not become green in the next round. 

A sensor is red at the end of round r if it was compromised at the beginning of the 
same round. Recall tYi&tTNT — ixAW only compromises green sensors. Thus, we have 



the following. 
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A sensor is yellow at the end of round r if it was yellow at the start of that round and 
did not become green during the same round. A sensor is yellow at the start of a round 
if it was either yellow or red at the end of the previous one. Thus, we have 

P^ = {P^ + P^)p\ 

At round r, a yellow sensor does not become green by the contribution of one green 
peer if (1) it is not chosen as a recipient by that green peer, or (2) the contribution is 
intercepted by TNT — \xADV. The probability of (1) is 1 - ^ - j - , while the probability of 
(2) is ^ . D u r i n g round r, the average number of green nodes is n • PQ 1 — k, as there 
were, on average, n-Pff1 green nodes at the start of the round and k of them were later 
compromised. Thus, leveraging the approximation introduced in Section 6.1, jir can be 
computed as 

p = (i-_L_ + i - M = i-t-
In— 1 / V re—1 

Finally we have the following. 

Pr
G = l-Pr

R-PY 

= l-P^-iP^ + P^flr 

= ±-k--(prRi+*n* 

- 1 - " - ^ 1 + ^ 1 ) ' ( 1 - - r e - l y 

Recall that at round 0, P° = P° = 0, while at round 1, P^ •• 

) • 

= »• Pk = = f. We can then 
compute PQ for any round. 

Figure 2 shows our simulation results7 for a network of 500 nodes, t = 4, and k 
ranging between 20 and 100. As shown in Figure 2, if TNT — /xAVV eavesdrops on 
20% or 40% of the messages (Figure 2(a) and Figure 2(b)), the number of green sensors 
decreases in the first rounds and then remains constant. However, if TNT - /xAVV 
increases its eavesdropping power, it eventually subverts the whole network, as shown 
in Figure 2(c), and Figure 2(d). 

6.4. PULL 

In PULL, the game between the UWSN and the TNT - /xAVV changes only in terms 
of sensor cooperation specifics, tha t is, jir is different. Here, each sensor asks for 
contributions from a set of randomly chosen peers. A yellow requester becomes green 
if at least one of the requested peers is green and the contribution is not intercepted. 

7Values were averaged over 1,000 trials. 
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Fig. 2. Simulation results for PUSH (n = 500, t = 4). 

To estimate jir, we consider that a yellow sensor does not get healed because (a) it 
selects t sponsors from Rr UYr, or (6) it selects 0 < i < t sponsors from Gr, but their 

/n-P£_1+*-l\ 

contributions are intercepted. Event (a) happens with probability P(a) = ' t. ', 
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Thus we have the following. ( . ) 
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(a) p = 0.2 (b) p = 0.4 

(c) p = 0.6 (d) p = 0.8 

Fig. 3. Simulation results for PULL (n = 500, t = 4). 

Figure 3 shows our simulation results of PULL under the same set of parameters as in 
PUSH. The number of green sensors remains stable, even iilJVJ7 - /xAVV eavesdrops 
on 60% of all messages. However, note that the number of messages required by the 
PULL protocol is twice the number of messages required by the PUSH protocol. A 
comparison between PUSH and PULL focusing on this specific aspect is provided in 
Section 6.7. 

6.5. Threshold Phenomena (0-1 law) 

From the plots in Figures 2 and 3, it is easy to see that both PUSH and PULL exhibit 
a threshold phenomenon. The few first rounds show a decrease in the number of green 
nodes proportional to /xAVV's compromise and message interception power. After this 
initial phase, if system parameters in, k, t, p) are below a threshold configuration, the 
number of green nodes remains stable thereafter. Regardless of /xAVV's strategy, there 
are always enough green sensors to heal some yellow sensors so that the size of Gr 

remains stable. However, if parameters cross the threshold, /xAVV becomes powerful 
enough to counter the healing activity; it eventually compromises the entire network. 
Thereafter, collaborative self-healing is useless. 

To characterize the threshold behavior, we define the set of sick sensors (either 
yellow or red) as Sr = Rr U Yr. We hence define the probability of a node being sick 
as Pg = PR + Py and investigate the configuration of system parameters under which 
the network reaches steady state. We use PUSH as an example of illustrating the 
threshold phenomena (as for PULL, the threshold phenomena can be addressed via a 



(a) t = 2 (b) t = 4 

(c) t = 6 

Fig. 4. Fixpoint of /(•) for PUSH (n = 500, k = 100, p = 0.4). 

similar argument). P£ can be represented as the following. 
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Since Pg = 0 and P j = ^ we can define a recursive function /"(•) as follows. 

r o 
/X0) - * 

i fr = 0, 
i f r = 1, 

Pr = f(Pr
s-

v) if r > 1, 

where 
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re V re- 1 
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The network reaches a steady state if Ps equals the fixpoint of /"(•). Given the per­
ceived threat factors as \ and p, it is easy to find the smallest t such that there exists 
a solution 0 < x < 1 to equation /"(x) = x. This value is the minimum t for which the 
network reaches a steady number of green nodes. 

Figure 4 plots /"(•) against the straight line j = x for different values of t, while 
re, &, and p remain constant. The first plot (Figure 4(a)) with t = 2 does not exhibit a 
fixpoint, as /"(•) never intersects J = x. That is, /x*4Z?V is expected to turn the number 



(a) INT - iiADV (b) KK - fiAW 

Fig. 5. Comparison between INT - fiAVV and KK - fiAVV in PUSH (n = 500, k = 100, t = 4). 

of green nodes to 0. However, if t is increased to 4 (Figure 4(b)), the curve intersects 
y = x in two points, and the first, x, yields Pr

s for which the network is in steady state. 
In other words, the number of green nodes first drops to n • (1 - x) and then remains 
stable. As shown in Figure 4(c), by increasing t, we can decrease the fixpoint of /"(•) and, 
consequently, increase the number of green nodes at steady state. However, increasing 
t involves more overhead. Once we find the minimum t for which /"(•) has a fixpoint, 
it might not be advantageous to increase the degree of collaboration. However, since 
our analysis leverages the assumption of Section 6.1, the required t might be slightly 
larger than the computed one. 

6.6. XMT - iiADV vs. IVR. - iiADV 
The analysis provided in the previous section considers an adversary that is always 
aware of the status of each sensor and compromises green nodes only (if any). As 
explained in Section 6.2, such an adversary is not realistic, and it is studied as a 
benchmark for our self-healing protocols. A more realistic adversary would not have 
knowledge of the status of all the sensors and would, rather, use some heuristic to pick 
the set of sensors to compromise during the next round. 1Z1Z - /xAVV, uses compro­
mise time as a rationale for a simple yet meaningful heuristic: a sensor compromised 
earlier in the past has more chances to become green than a sensor compromised later 
on in time. Thus, 1Z1Z - /xAVV partitions the network into \f~\ sets of k sensors and 
moves through them in a round-robin fashion. Figure 5 shows the results of simula­
tion of PUSH against IN IF — /xAVV and 1Z1Z - /xAVV. Since the latter might choose 
to compromise sensors that are not green, network resilience performance is sensibly 
better. 

Hence, on the one hand, when dealing with a realistic adversary, the desired degree 
of resilience can be achieved with a reduced degree of cooperation as compared to an 
omniscient yet unrealistic adversary. On the other hand, the UWSN could be tuned 
to adopt the worst case represented by the TNT — /xAVV, hence offering a stronger 
resilience against a realistic yet unknown adversary. 

6.7. PUSH and PULL Comparison 

Message Overhead. The number of messages exchanged is an important overhead factor 
for resource-constrained UWSNs. Security of the proposed collaborative approaches is 
based on sensors' ability to communicate with any peer in the network. In general, 
the number of messages generated by any sensor during one round of PUSH is t; the 
energy spent to forward messages on behalf of other peers is highly dependent on the 
network shape, topology, background noise, sensor position, etc.. PULL requires twice 



(a) PULL -t = 2 (b) PUSH -t = 4 

Fig. 6. Comparison between PUSH and PULL (n = 500, & = 50) given a fixed number of messages per 
round. 

as many messages as PUSH, because it needs two messages—request and reply—for 
each contribution. PUSH entails a single (unsolicited) contribution message. Given the 
same number of messages per round, Figure 6 shows the difference between the two 
schemes with t = 4 for PUSH and t = 2 for PULL. While the network always reaches 
a stable number of green sensors in PUSH, a powerful /xAVV eventually compromises 
all sensors in PULL. 

Contribution Assurance. In PULL, all sensors receive the same number it) of con­
tributions. In PUSH, sponsored peers are picked randomly, and (for small values of 
t) contributions can reflect a small unbalance in their allocation to peers. This is why 
PULL performs better than PUSH for small values of t. If t is small, there might 
be sensors that receive no contributions at all in PUSH. Conversely, there might be 
sensors that receive far more than t contributions. 

We note that the differences in self-healing between the two schemes are negligible 
as long as all sensors receive at least one contribution. In particular, for PUSH, t must 
be tuned so that each sensor gets at least one contribution. For example, if t = ln(n) + c, 
the probability8 of a sensor receiving no contribution is upper bounded by e~c. 

Targeting Specific Sensors. In PULL, /xAVV could constantly keep control of a spe­
cific, previously compromised sensor state, even while being away from that sensor. 
Indeed, /xAVV knows which peers each yellow (and red) sensor will ask for a contri­
bution. For example, at the end of round r, /xAVV can release a red $ (let it become 
yellow) and continue monitoring Si's key evolution; indeed, before releasing it, \xAW 
copies the current state of st, and it knows K\ as well as the set of Sj's future sponsors. 
IxAW can compromise all green sponsors (if any) among the Sj's future sponsors and 
acquire their contributions to st. This allows \xAW to compute K\+1, that is, Si remains 
yellow. 

The control capability of /xAVV is annihilated by PUSH, because \xAW can not 
predict the behavior of any green sensor. In particular, /xAVV does not know which t 
peers a given green sensor will sponsor. Thus, once /xAVV releases a previously red Sj, 
it can not determine with certainty the set of sensors that might contribute to Kr

t
+1. 

Indeed, each green sensor (if any) has the same probability l/(n - 1) to contribute to 
st. ixAW has only two ways to be sure that st continues evolving in a yellow state: (a) 
there are no green sensors in the UWSN, or (b) \xAW must control the area around si, 
in order to eavesdrop on all incoming messages—something that could not be always 
practical for real-world \xAW. 

8Derived from the Coupon Collector's Problem. 



7. COOPERATION DRAWBACKS AND IMPROVEMENTS 

If the sensor secret state (or, in particular, keys) evolves, as in Section 3.1, the sink can 
use the secret it shares with sensor st at round 0 to mimic the secret state evolution 
process and compute subsequent round secret states, so that it can decrypt any cipher-
text produced by S; at any round. However, if collaboration among sensors is used to 
update the secret state, the sink must be aware of which interactions occurred among 
sensors, and this must hold for each round. In other words, since the sink knows the 
initial state of each sensor, it can recompute the state of each s; (notably, K\) at every 
round. This assertion holds as long as communication is perfect, that is, all messages 
are delivered in a timely fashion and sensors do not fail. Unfortunately, this is not the 
case in real-word deployments where messages can go lost because of the unreliable 
communication medium, while sensors can fail due to unexpected malfunctioning, bat­
tery exhaustion, or deliberate destruction, to cite a few. We now attempt to relax these 
ideal-world assumptions. Without loss of generality, we will only discuss the preceding 
issues with regards to PUSH. A similar argument could be developed for PULL. 

7.1. Unreliable Communication & Reliable Sensors 

In the following, we assume that while sensors still do not fail, messages are delivered 
with some probability smaller than 1 (we deal with sensors failure in next section). In 
other words, a contribution sent in round r to S; might not be received by the latter. 
This would desynchronize the key evolution process between st and the sink. 

Let W[ be the set of contributions sent to st at round r and let Z[ c W[ be the set 
of contributions actually received by st at the same round. Then, st would compute 
Kr

t
+1 = FiKIWZt), while the sink would compute Kr

t
+1 = F(Kr

t\\Wp. Clearly, 
the sink needs extra information to correctly compute K\+l. A simple and effec­
tive solution would be for st to store, for each round r, a set of IDs: TV\ = 
[j\Sj has a contribution in Z[}. With this amendment, storage overhead is kept lin­
ear, tha t is, 0(v * t), where v is the maximum number of unattended collection rounds 
and t is the maximum number of contributions received within a round. The advantage 
is that once the sink learns TV\, it can correctly compute K\. 

Note that TVr
i only provides information about the sponsors of Sj at round r. It does 

not give any information about the actual contributions. 

7.2. Unreliable Communication & Unreliable Sensors 

If we now relax the assumption that sensors do not fail, learning TD\ for a given secret 
state update might not be enough for the sink to recompute K -+1. For example, suppose 
that Sj sponsors St at round r, and then Sj fails at some later round. When the sink visits 
the network, it can not reconstruct the status of Sj at round r and, as a result, can not 
compute K\+l. This demonstrates the interdependence among sensors' secret states 
and reveals that both PULL and PUSH are fragile with respect to sensors failures. 

A viable and secure solution is to introduce public key cryptography. While public 
key cryptography has been regarded as a poor match for resource-constrained sen­
sors, recent studies [Wander et al. 2005] show that public key cryptography can be 
sporadically used in WSNs to afford high security at reasonable costs. 

Assuming that the sink has a well-known permanent public key PKsink, both PUSH 
and PULL would operate in almost the same manner, as previously described. The 
only difference is that St would encrypt its secret K\ under PKsink using some suitable 
public key encryption technique (e.g., Elliptic Curve, ElGamal, or RSA). However, st 
would still encrypt data sensed in round r via conventional encryption under K\. This 
"PKsink + Kr

t" approach seems to simultaneously solve all problems stemming from 



both unreliable communication and unreliable sensors. However, it incites Deletion-
n-Replace attacks. That is, /xAVV can simply delete any data found on sensors and 
then replace them with arbitrary values. This motivates us to look at extra security 
mechanisms to prevent such attacks. 

7.3. Defending Against Delete-n-Replace Attack 

Delete-n-replace attacks could be avoided using Forward Secure Aggregation Authen­
tication (FssAgg) techniques [Ma and Tsudik 2007] along with the "PKsink + K\" ap­
proach. The augmented scheme has the following system operations. 

(1) Initialization Stage. Before deployment, sensor st uses its initial key Kf shared 
with the sink to generate a MAC /x0,o over a dummy data item df known by the 
sink. The generation of /x0jo is necessary, since it prevents /xAVV to erase all data 
found on s;. 

(2) Data Generation Stage. At round r, upon sensing data d\, sensor st does the 
following. 
(a) Encrypts d\ with K\:E\ = Encx^). 
(b) Computes /x0,r = H(ii0tr-i\\MAC(K\, Er

t)), where MAC is a generic algorithm 
for producing a message authentication code. 

(c) Encrypts K\ with PKsink: CK\ = Enc(PKsink, Kr
t). 

(d) Generates Kr+l through PUSH or PULL. 
A sensor's storage at the end of round r contains the following. 
[(d°), (Ej, CKj),..., (El C%), MO,., Kr+\ PKsmk]. 

(3) Data Processing Stage. At round r, the sink approaches the network and gets 
[(df), (Ej, CKj),..., (Ef, CKi'), fi0,r'] from a sensor. It performs the following 
operations. 
(a) Checks whether r = r'. If not, /xAVV has compromised the sensor and either 

inserted fake data or deleted existing data. The sink simply discards the data 
and moves to the next sensor. 

(b) Otherwise, decrypts CKt using its private key SKsink to get Kf for r' = 1 , . . . , r. 
(c) Computes ix'0r = H( H(... H(MAC(Kf,df)\\MAC(Kj,dj))...)\\MAC(Kr

i,d
r
i)) 

and compares whether i^'0r = ^o,r- If not, /xAVV has compromised the sen­
sor and replaced some faked data. 

(d) Otherwise, uses K\ to decrypt E\ and extracts sensor readings. 

In this augmented scheme, forward and backward secrecy are achieved through 
PUSH or PULL. In the following, we discuss /xAVV's attempt to mount delete-n-replace 
attacks. Suppose /xAVV compromises sensor st at round r\, then releases the sensor at 
round r\ + 1, and comes back to compromise the sensor again at time r2. 

—If the sensor's state is green at r2 - 1, /xAVV cannot modify any data entry before r2, 
including all data entries generated after round r\. 

—If the sensor's state is yellow at r2 - 1, /xAVV can modify and forge data entries 
between rx and r2, since /xAVV knows all the keys during these intervals, as well as 
M0,r-

So for ixAW to have a chance to modify pre-compromise data, it must recompromise 
the sensor before it becomes green. 

8. CONCLUSION 

This article provides several contributions. First, we revised a recently introduced 
model (by the same authors): unattended wireless sensor networks (UWSNs). Further, 



we provided a thorough analysis of two self-healing mechanisms for UWSNs; this anal­
ysis led to a full, characterization of the proposed models. In particular, other than being 
interesting on its own, this analysis allows for the tuning of the security parameters 
of the model (and related overhead) to the security threat the UWSN is supposed to 
face. Another result is the first characterization of a 0-1 law for this type of model. 
Extensive simulations support our findings. We also highlighted implementation is­
sues which UWSNs are subject to and provided a few solutions to tackle these issues. 
However, further research is still needed to fully explore the introduced model, as well 
as mechanisms, related threats, and consequent security solutions. 
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