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Complex pervasive applications need to be distributed for two main reasons: due to the typical resource

restrictions of mobile devices, and to use local services to interact with the immediate environment. To set

up such an application, the distributed components require spontaneous composition. Since dynamics in

the environment and device failures may imply the unavailability of components and devices at any time,

finding, maintaining, and adapting such a composition is a nontrivial task. Moreover, the speed of such a

configuration process directly influences the user since in the event of a configuration, the user has to wait.

In this article, we introduce configuration algorithms for homogeneous and heterogeneous environments. We

discuss a comprehensive approach to pervasive application configuration that adapts to the characteristics

of the environment: It chooses the most efficient configuration method for the given environment to minimize

the configuration latency. Moreover, we propose a new scheme for caching and reusing partial application

configurations. This scheme reduces the configuration latency even further such that a configuration can be

executed without notable disturbance of the user.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Sys-

tems—Distributed Applications; D.2.11 [Software Engineering]: Software Architectures—Domain-

specific architectures

General Terms: Algorithms, Design, Management, Measurement

Additional Key Words and Phrases: Adaptivity, Automation, Components, Heterogeneity, Hybrid Configu-

ration, Middleware, Partial Configurations, Pervasive Applications, Service Composition

1. INTRODUCTION

Pervasive Computing focuses on the development of abstractions and concepts for
seamless integration of information processing into everyday activities and objects.
Due to enormous developments in wireless communication technologies as well as on-
going technological miniaturization, completely new types of mobile end-user devices
like smart phones or netbooks have become reality. Moreover, application scenarios
like Smart Homes [Helal et al. 2005], ubiquitous cities [Whitman et al. 2008] or even
pervasive service ecosystems [Zambonelli and Viroli 2011], providing various services
and applications, are emerging. Pervasive Computing aims at enabling seamless con-
nections between these devices and applications, without distracting the users. Ideally,
users are not even aware of the involved computer systems.

In pervasive scenarios, the application functionality is normally distributed among
several devices since a single device is not capable of executing an entire application.
Therefore, a Pervasive Application (PA) needs to be configured prior to their execution
to ensure that all required functionality is available at execution time. Configuring an
application means finding a suitable set of components (resources and services) which
can be instantiated concurrently. A valid composition provides the functionality re-
quired by the application while considering the limited resources in the environment.

Beyond the initial configuration, automatic adaptation (i.e., re-configuration) at run-
time is needed to find alternative components for those parts of the application that
have become unavailable, e.g., due to device failures or user mobility. Configurations
and adaptations imply latencies which are experienced by the user as undesired de-
lays. These latencies need to be minimized to make the systems really unobtrusive.

Here, we present a new integrated solution which efficiently and automatically sup-
ports various typical Pervasive Computing scenarios. This leads to faster configura-
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tions and adaptations in heterogeneous scenarios and, in consequence, to less user
distractions. Moreover, an adaptive mechanism based on clustering is presented to al-
low for the automatic switching between different approaches in dynamic scenarios
[Schuhmann et al. 2008a]. The resulting system provides seamless application config-
uration in various homogeneous and heterogeneous environments.

Here, we introduce a concept for automatic caching and re-use of partial configura-
tions assembled in previous configuration processes. Our approach focuses on scenar-
ios with frequently ongoing configuration processes (e.g., the synchronization of data
between a set of devices). Here, caching component sets with high potential for further
re-use (e.g., the data sources as well as the communication interfaces of the involved
devices) and integrating them into future configurations significantly reduces the con-
figuration amount, as it minimizes the number of components that actually need to be
configured. In evaluations performed on our system software, average configuration
latencies of this new caching approach in typical scenarios are only 9 % higher than in
the optimum case where the complete application has been pre-configured before.

The rest of this article is structured as follows: After introducing our system model
in Section 2, we present the problem statement for this work in Section 3. In Section 4,
we discuss the concepts and algorithms of our comprehensive solution for automatic
configuration of distributed applications. This is followed by a presentation of our eval-
uation results in Section 5. Finally, we discuss related approaches in Section 6 and
conclude this article in Section 7 with a brief outlook on our future work.

2. SYSTEM MODEL

Next, we discuss our system model, covering devices, environments, applications, and
general requirements we pose on the system software. We derive our main assump-
tions about realistic application sizes empirically through studies of existing systems.

2.1. Devices and Environments

We focus on Pervasive Computing scenarios that include devices with different proper-
ties and computational power. Each device has a unique device ID. In terms of scenario
heterogeneity, we distinguish between two different types of involved devices:

— Resource-poor devices are usually mobile wearable devices like PDAs or smart
phones. Due to their limited computation power, they can slow down the configu-
ration process if too much workload is put on them. Resource-poor devices typically
have a low degree of availability, as they are highly mobile and their battery power is
strictly limited. Thus, they should preferably not be burdened with computationally
intensive tasks. We call environments with only resource-poor devices homogeneous.

— Resource-rich devices can be stationary infrastructure devices such as desktop PCs
or mobile devices with powerful computation resources, e.g., laptops. Due to their in-
creased power, resource-rich devices are perfectly suited for performing computation-
intensive tasks such as the calculation of configurations or adaptations. We call an
environment heterogeneous if at least one resource-rich device is present besides the
resource-poor devices. Furthermore, several degrees of heterogeneity are possible,
ranging from weakly heterogeneous environments where only one resource-rich de-
vice is available (e.g., an office with one desktop PC) to strongly heterogeneous sce-
narios with several resource-rich devices (e.g., an auditorium during a conference).

2.2. Applications

Pervasive Applications rely on functionality that is distributed among multiple coop-
erating devices. We assume a component-based application model, i.e., an application
consists of components and each component instance requires a certain amount of re-
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Fig. 1. a) Travelling businessman scenario, b) Distributed Presentation Application

sources. Figure 1a shows an exemplary scenario of a businessman who controls such
applications (e.g., home entertainment, car navigation, video conferencing) only using
his smart phone, while traveling from his home to his office by car. In such a scenario,
the available set of components that may be used by applications changes considerably.

An application is represented by a tree of interdependent components that is con-
structed by recursively starting the components required by the root instance, the
so-called application anchor. Figure 1b shows the component tree of an exemplary dis-
tributed presentation application in an office environment, where the businessman
may hold a talk and present new products to business partners. The application au-
tomatically uses the resources available in the vicinity (e.g., displays, microphones,
or speakers) as application components. A single component has a unique ID and is
resident on a specific device such as a laptop or a smart phone.

Dependencies between components as well as resource requirements are described
by directed contracts which specify the functionality required by the parent component
and provided by the child component. In the example shown in Figure 1b, the contract
for providing the functionality ”Acoustic Output” connects a control device as parent
component (e.g., a laptop) and the speakers as child component.

Since a parent component relies on its child components, it can only be instanti-
ated if all of its children have been instantiated before. If there exist several alter-
native options for a contract (e.g., several different speaker systems), we call this a
multi-optional contract. The number of multi-optional contracts is depending on the
currently available resources and may change over time in dynamic environments.

Typical application sizes are shown in Table I, divided into applications for homoge-
neous, heterogeneous, and visionary Pervasive Computing scenarios. Application sizes
may widely vary between less than 10 and up to several hundreds of components.
The table also shows that applications in heterogeneous scenarios are generally larger
than in homogeneous scenarios. We evaluate our system based on applications that
have the order of magnitude in size shown in the table.

2.3. System Software

We rely on a communication middleware that provides basic services to enable dis-
tributed applications and supports different communication models. It has to supply
a device registry, maintaining a list of all currently reachable devices. The device reg-
istry on a specific device is kept up to date as every device periodically broadcasts
heartbeat messages. Through this, global knowledge among all devices is established.
As we rely on single-hop environments like conference rooms and a relatively low de-
gree of dynamics where devices typically stay within an environment for some time, we
consider to maintain global knowledge as a feasible solution. In our work, we use the
BASE middleware [Becker et al. 2003] as it meets the requirements presented here.
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Table I. Typical application sizes in homogeneous and heterogeneous environments

Reference Application Scenario Typical Size
[Edwards et al. 2002] Resource sharing among users 10 components

[Grimm 2004] Travelling consultant scenario 10 components
[Handte et al. 2006] Pervasive Presenter 8 components
[Sadiq et al. 2011] Service Composition in Opportunistic Networks 20 components

Typical (average) size for homogeneous scenarios 12 comp.s

[Helal et al. 2005] Smart House with 17 ”hot spots” 30 components
[Cámara et al. 2008] Wireless Medical Information System 20 components
[Fujii and Suda 2009] Service composition according to User References in Restaurant environment 13 components
[Mukhtar et al. 2011] Composition of User Task Services 15 components

Typical (average) size for heterogeneous environments 20 comp.s

[Herrmann et al. 2008] Pervasive Workflow (horizontal) adaptation / evolution 10...50 components
[Ferrari and Mamei 2011] City-wide Sports tracking application 10...100 components

[Zambonelli and Viroli 2011] Real-time traffic control; augmented reality services >100 components
[Zambonelli 2011] Pervasive urban crowdsourcing >1000 components

Typical size for visionary pervasive environments 100 comp.s and more

Moreover, we rely on a component system that is executed on top of the communica-
tion middleware. To enable application configuration and runtime adaptation, the com-
ponent system needs to provide event-based signaling mechanisms to detect changes
in the availability and quality of specific devices and services. Within this system, the
configuration algorithms have to be implemented as assemblers accessing the compo-
nents and composing them together. We use the system PCOM [Becker et al. 2004] as
component system. However, the mechanisms and algorithms presented here are inde-
pendent from PCOM/BASE and can potentially be used on every middleware system
that fulfills the basic requirements discussed above.

3. PROBLEM STATEMENT

In the following, we first discuss the dynamic configuration of distributed PAs in het-
erogeneous environments (Section 3.1), which represents the main challenge we focus
on. Then, we discuss the requirements (Section 3.2) for an adequate solution.

3.1. Adaptive Configuration in Heterogeneous Environments

Configuration denotes the task of determining a valid composition of components that
can be instantiated simultaneously as an application. Such a composition is subject
to two classes of constraints: Structural constraints, given by the functionality that is
required by a parent components and needs to be provided by its children for resolving
a dependency (e.g., the access to a remote database), and resource constraints caused
by the limited availability of specific resources (e.g., a single display cannot be used
by two applications simultaneously). The complexity of finding a valid configuration
arises from the fact that both types of constraints must be fulfilled simultaneously. An
application can be started successfully if for each contract a suitable component which
satisfies all requirements was found and, thus, all dependencies have been resolved by
the configuration algorithm.

The problem of configuring an application in a distributed manner represents an NP-
complete Distributed Constraint Satisfaction Problem (DCSP) [Handte et al. 2005]. A
DCSP is a problem that is defined as a set of objects whose state must satisfy a num-
ber of constraints. Backtracking algorithms from the domain of Distributed Artificial
Intelligence [Yokoo et al. 1998] represent typical solutions to such a problem.

The configuration latency comprises the time between the start of an application
and its availability to the user. This latency includes the delays for calculating the
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configuration and instantiating all application components. Hence, the configuration
latency must be minimized to provide a seamless user experience.

The configuration problem has already been solved in homogeneous scenarios by
providing decentralized algorithms for peer-based configuration [Handte et al. 2005].
However, decentralized schemes perform suboptimal in heterogeneous environments,
since they do not exploit the heterogeneity by distributing the configuration tasks in
a resource-aware manner among the currently available devices. In this article, we
present a comprehensive solution to these problems.

We aspire an adaptive way of configuring distributed applications in a twofold way:

(1) Adaptive configuration means that the validity of calculated configurations needs
to be maintained even in environments where the availability of specific compo-
nents dynamically changes, e.g., due to device failures or user mobility. In such sit-
uations, components which are part of the current application configuration may
become unavailable during application execution. This induces that the respective
parts of the configuration have to be adapted (i.e., exchanged) at runtime. There-
fore, the configuration algorithm has to identify alternative components which pro-
vide the same functionality. We focus on this issue in Section 4.1.3.

(2) However, not only the configuration itself, but the algorithm that distributes the
configuration load among the available devices has to be chosen in an adaptive
way to exploit the degree of heterogeneity in computation power of the involved
devices. This requires the provision of several configuration schemes (spanning the
complete spectrum from decentralized to centralized approaches) and a mechanism
to switch between different approaches. Section 4.2.1 specifically focuses on the
adaptive selection of the most suitable configuration in a particular environment.

3.2. Requirements

Solutions to the above discussed challenges have to meet the following requirements:

— Adaptivity: As discussed above, dynamic Pervasive Computing environments re-
quire the provision of approaches optimized for specific environments. The most
suitable configuration algorithm has to be selected adaptively for every configura-
tion process based on the characteristics of the environment.

— Automation: Many related projects demand users or application developers to han-
dle configuration and adaptation issues manually. However, providing an automated
solution where the system software is responsible for determining valid configura-
tions yields systems that are much more transparent to users and developers.

— Efficiency: Configuration and adaptation processes induce latencies which users
perceive as undesired delays, since the application is not available for a certain time.
Thus, a major goal is to achieve efficiency by minimizing these delays. Therefore, the
configuration schemes have to be aware of the computation power on the available
devices and distribute the load uniquely according to the performance of the devices.

4. CONFIGURATION ALGORITHMS

For homogeneous environments, completely decentralized algorithms for peer-based
application configuration [Handte et al. 2005] and runtime adaptation [Handte et al.
2006] based on Constraint Satisfaction (cf. Section 3.1) have been presented. These
algorithms distribute the task of configuring an application equally among all devices
and cannot exploit the increased computation resources of specific devices. However,
this leads to inefficient configuration processes in heterogeneous environments. The
general support of exchangeable configuration algorithms [Handte et al. 2007] in-
creases the range of supported environments, but it does not allow the adaptive switch-
ing between algorithms in dynamic scenarios with different degrees of heterogeneity.
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In this article, we focus on these issues and present an integrated solution which au-
tomatically adapts to different environments and efficiently supports all kinds of sce-
narios. An overview of this solution is presented in Figure 2. We propose an efficient
centralized algorithm [Schuhmann et al. 2008b] for weakly heterogeneous environ-
ments (e.g., offices) in Section 4.1. In Section 4.2, we discuss a hybrid scheme [Schuh-
mann et al. 2010] embedded in a clustering framework [Schuhmann et al. 2008a]
which represents a generalization of the decentralized and centralized schemes. Fi-
nally, in Section 4.3, we introduce a novel approach that re-uses the results of previous
configuration processes to reduce the latencies even further.

4.1. Centralized Configuration Approach

In weakly heterogeneous environments with several resource-weak and exactly one
resource-rich device, this device can compose configurations much faster than the
resource-poor devices, due to its significantly higher computation power. Therefore, we
introduce an efficient centralized configuration algorithm called Direct Backtracking
(DBT, [Schuhmann et al. 2008b]) for such weakly heterogeneous environments.

DBT avoids unnecessary adaptations that arise in many other backtracking algo-
rithms without significantly increasing memory usage. This leads to considerably re-
duced latencies, as we will show in our evaluations. To perform centralized configu-
ration completely local on the resource-rich device (i.e., without involving remote de-
vices), DBT needs to proactively obtain the relevant resource information of the other
devices. We will discuss a framework which supplies this functionality in Section 4.2.2.

4.1.1. General Approach. Like many other backtracking algorithms, DBT proceeds in a
depth-first manner from the application root down to the leaf nodes. A leaf contract is
the contract of a component Ca whose dependencies have not yet been fully resolved by
assigning adequate child components. The algorithm tries to find a suitable component
Cb satisfying this contract and assigns Cb to Ca. This is performed recursively until
DBT either has found a suitable component for each dependency (i.e., it terminates
with a valid configuration), or it could not find a component for at least one dependency
(i.e., it terminates unsuccessfully). DBT features two intelligent mechanisms to render
backtracking processes more efficient, as discussed in the following Sections 4.1.2 and
4.1.3. A more detailed description of DBT is given in [Schuhmann et al. 2008b].

4.1.2. Proactive Backtracking Avoidance. To avoid most resource conflicts and the sub-
sequent backtracking processes from the start, DBT contains a proactive mechanism
which cautiously selects components of multi-optional contracts. Within multi-optional
contracts, components are ordered in a list according to their resource consumption:
The component with least resource requirements has highest priority. If there are mul-
tiple components with the same resource consumption for a specific dependency, they
are additionally ordered according to the ID of the device which is hosting them.
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We assume that R is a resource type and that a certain amount of resources exists
in the system for every resource type. At any time, some of these resources of R are
allocated (used by some component) and the remaining resources are free (e.g., in a
room, there are 4 screens of which 3 are currently used by some component and 1 is
free). For any multi-optional contract, DBT initially selects the first (i.e., the highest-
prior) component in its ordered list to be instantiated. If this component consumes the
total free amount of R, the algorithm scans the ordered list for alternative components
whose instantiation would leave some amount of R unused. Among those alternatives,
DBT selects the highest-prior one to decrease the potential for future conflicts.

4.1.3. Intelligent Backtracking. If none of the possible components for a contract C can be
instantiated, adaptation via backtracking has to be performed. Backtracking means
that the algorithm changes the component assignment for one of the already config-
ured contracts further up in the tree. It replaces components to make them available
to the contract that produced the conflict. If more than one candidate for an adaptation
exists, DBT performs the intelligent backtracking process described below that selects
the contract to be adapted carefully to minimize the adaptation overhead.

Let the components that could not be instantiated because of a missing resource of
type R form a set S1 = {Cmp1, Cmp2, ..., Cmpi}. If C is not multi-optional, S1 includes
only one component. DBT determines the set Ds = {d1, d2, ..., dj} of containers that
host at least one component in S1, i.e.

(∃k, l : k ∈ {1, ..., i} ∧ l ∈ {1, ..., j} ∧ Cmpk ∈ dl) ⇒ dl ∈ Ds (1)

Let S2 be the set that contains those multi-optional contracts for which a component is
currently instantiated that is resident on one of the containers included in Ds. More-
over, S2 contains only those components which can be adapted because an alternative
component on another container is available. The components in S2 are sorted in de-
scending order according to the amount of R they consume. This means that the com-
ponent which consumes the largest amount of R is at the beginning of the list, since its
termination causes a considerable deallocation of resources. Proceeding in this order
reduces the number of needless adaptations which would have to be revised later.

If only one suitable component exists as a backtracking target, the adaptation of
the respective contract is initiated. In case of several suitable backtracking targets
which consume an identical amount of R, an additional selection criterion is needed to
judge their suitability for backtracking. Since the adaptation of a contract induces the
adaptation of its subtrees, DBT selects the component that has the lowest number of
subjacent child components to reduce the adaptation. In case of multiple contracts with
a subtree of the same size, the algorithm selects the one whose currently instantiated
component consumes the largest amount of resources.

If the resource conflict cannot be solved by adapting the first contract in S2, DBT
tries to solve it by adapting the second contract in S2, and so on. If the conflict cannot
be solved by adapting any contract included in S2, then DBT jumps to the parent con-
tract and continues with the intelligent backtracking process from here. If none of the
contracts can be adapted to resolve the conflict, the algorithm terminates unsuccess-
fully and informs the user of this failure which happens due to missing resources.

4.2. Hybrid Configuration Approach

Neither the decentralized nor the centralized configuration approach can be applied
efficiently in all perceivable environments: In a homogeneous environment, the de-
centralized algorithm should be used, while the centralized one should be applied in
weakly heterogeneous environments. Moreover, for any setting between these two ex-
tremes, it should be possible to adapt the degree of decentralization accordingly.
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Therefore, we propose a hybrid scheme [Schuhmann et al. 2010] with adaptable de-
gree of decentralization in the following. This approach represents a generalization
of the centralized and decentralized approaches and combines their advantages: It
enables application configurations to be computed in a distributed fashion simultane-
ously on multiple devices, while exploiting the increased power of resource-rich devices.

We first present a simple algorithm to automatically switch between different con-
figuration approaches. Then, we introduce a clustering framework in Section 4.2.2
for identifying resource-rich and resource-poor devices and enable mappings between
different devices. Mapping means assigning a resource-poor device to exactly one
resource-rich device which is then responsible for configuring this resource-poor de-
vice’s components. The clustering framework enables an equal configuration load
among the resource-rich devices. Then, we introduce the Virtual Container concept
in Section 4.2.3, which enables the local emulation of remote devices. This concept
increases the efficiency of the configuration in heterogeneous environments, as it en-
ables a proactive loading of configuration information from mapped devices. Finally,
we present an exemplary hybrid configuration process in Section 4.2.4.

4.2.1. Efficient Support of Exchangeable Configuration Algorithms. To adapt the degree of de-
centralization in application configuration, we introduce the selector abstraction as a
mechanism to dynamically select the most suitable of the provided configuration algo-
rithms in a specific scenario. Whenever a user starts an application, a selector decides
based on the number of currently available resource-rich devices which configuration
algorithm is chosen: In case of a homogeneous scenario with no resource-rich devices,
a decentralized scheme [Handte et al. 2005] is executed on all devices. If exactly one
resource-rich device is available, the selector initiates the centralized approach dis-
cussed in Section 4.1 on this resource-rich device. In case of multiple resource-rich
devices, configurations are calculated using the hybrid algorithm introduced below.

As the information about the current environmental condition (degree of heterogene-
ity) is provided by the device registry of the middleware which is running on every
device, the selectors on all devices have the same global view on the current envi-
ronmental conditions, i.e., each device knows about the available resource-rich and
resource-poor devices. Thus, when a user starts an application, the system software
running on her device looks up the currently available devices and sends the informa-
tion about a pending configuration to the relevant devices determined by the selector.

The selector abstraction is designed in a way that the implementation of additional
strategies is easily possible if further configuration schemes are implemented. This
represents a flexible solution for supporting an adaptable degree of decentralization in
various homogeneous as well as heterogeneous Pervasive Computing scenarios.

4.2.2. Clustering Framework. To maximize the efficiency of configurations, we estab-
lished a resource-aware mechanism for decentralized configurations, i.e., the distri-
bution of the configuration tasks is based on the computation power of the devices.
Therefore, we developed a Clustering Framework [Schuhmann et al. 2008a] that uses
a distributed algorithm [Basagni 1999] to obtain the cluster heads which act as coordi-
nators for the remaining cluster members. As clustering is performed prior to any con-
figuration, this process causes additional latencies. Thus, the actual clustering scheme
needs to guarantee stable clusters by avoiding re-clustering processes if possible.

To achieve this, the chosen node weight of the clustering algorithm is based on a
device’s specific computation power – a property which typically does not change over
time. To measure its performance for configuration processes, each device initially per-
forms a simple benchmark: It locally calculates a specific application configuration via
DBT and, according to the arising latency, assigns itself a cluster weight w ∈ [0, 1] –
the faster the configuration was calculated, the higher the weight is chosen. Only de-
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vices with weights above a defined threshold declare themselves as cluster heads and
actively calculate configurations. Therefore, we call them Active Devices (ADs), while
the resource-poor cluster members represent the Passive Devices (PDs).

Each PD needs to be mapped to exactly one AD. To reduce the risk of possible bot-
tlenecks, the number of PDs mapped to each AD should be balanced, even in case of
changing device availabilities. Furthermore, each AD should not be required to know
about the mappings at the other ADs. To achieve this, we developed a scheme which
establishes balanced clusters in dynamic heterogeneous environments. It builds on the
election of ADs and uniquely maps each PD to an AD such that the difference in cluster
sizes is at most one. Therefore, a round robin-based scheme is used which determines
the mappings according to the device IDs. A mapping procedure is initiated by an AD
by sending a mapping request to the PD it wants to map. The PD reacts by transmit-
ting its current resource information to the respective AD so that the AD can create a
local representation of the remote PD. This scheme is performed in parallel on all ADs,
as they map disjoint sets of PDs due to the unique device IDs.

Re-clustering is needed to maintain a balanced load in environments where devices
may join or leave the network at any time. Our scheme avoids unnecessary merging
and splitting of clusters by simply re-mapping single PDs. Re-clustering comprises four
cases: The appearance of a new PD or a new AD, and the disappearance of a PD or an
AD. As an example, let us discuss the case of a newly appearing PD here. Then, the
round robin distribution of the PDs to the ADs is simply continued: as each AD knows
about the number of ADs and PDs and the number of PDs which are mapped to itself,
it can determine appropriate to the device IDs if it has to map this new PD to itself or
not. For the sake of brevity, we refer to [Schuhmann et al. 2010] for further details.

4.2.3. Virtual Containers. Each cluster head acts as the coordinator for its mapped clus-
ter members and is, thus, responsible for calculating configurations for this cluster. The
concept of Virtual Containers (VCs) is used for managing the resources used for con-
figurations on the cluster heads, enabling completely local configurations of the com-
ponents within a cluster on the respective cluster head. Therefore, the cluster heads
need to proactively acquire knowledge about the currently available components and
resources on the mapped devices. To achieve this, we transmit the resource informa-
tion of a cluster member to its cluster head. The cluster head then creates a VC which
emulates the cluster member device by providing the respective resource and service
information. As each cluster member automatically notifies its cluster head via events
about changes in its resource conditions, the state of a VC is kept up to date. Through
this concept, we decouple the configuration processes from the real devices.

4.2.4. Example. Figure 3 sketches an examplary hybrid configuration process: The
scenario consists of two resource-rich devices – a desktop PC (AD 0) and a laptop
(AD 1) – and three smart phones (PDs 0 to 2), representing the resource-poor devices.
Initially, the cluster structure is established using the round robin scheme. This yields
the desktop PC as cluster head for the PDs 0 and 2, and the laptop as cluster head for
PD 1 (step 1). In step 2, the PDs transfer their current resource information to their
respective ADs. Based on this information, the ADs build the local representations of
the mapped PDs within VCs in step 3, yielding two VCs at AD 0, and one VC at AD 1.

When a user starts an application on her mobile device (PD 2) in step 4, the appli-
cation’s resource information is transmitted to AD 0 as the responsible cluster head
for PD 2. Subsequently, AD 0 initiates the configuration of the application (step 5). At
first, it verifies which of the dependencies can be resolved by components of its own
container and the VCs representing its mapped PDs. Then, these dependencies are
resolved locally on AD 0 using DBT, as presented in Section 4.1. AD 0 requests AD 1 to
resolve the remaining, unresolved dependencies. AD 1 provides AD 0 with the respec-
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Fig. 3. Hybrid application configuration example

tive fitting components and the devices that host these components. This represents
the decentralized part of the hybrid configuration. Subsequently, the complete con-
figuration is constructed by AD 0. After the successful configuration, the PDs whose
components are used in the configuration are notified by their cluster head about their
component configurations. Finally, the components are initialized, the bindings be-
tween the components are established, and the application is successfully started.

4.3. Re-Use of Partial Application Configurations

In many pervasive environments, there is a fixed set of applications, devices and com-
ponents which are frequently used, e.g. a presentation application in combination
with a multimedia system, covering video projectors, microphones and the stationary
speaker system at a conference venue (cf. Figure 1b). There, the same set of compo-
nents is often used in successive configuration processes. Thus, the involved devices
undergo a quite similar configuration process whenever an application is launched.
Starting the composition from scratch every time not only consumes a lot of time, but
also increases communication overhead and burdens the involved devices. These prob-
lems can be solved by providing pre-cached component sets which have been used in
previous configuration processes. We refer to one of these component sets as a Partial
Application Configuration (PAC). The components involved within a PAC represent a
pre-computed subtree of the complete application tree. To enable their future reuse
even in homogeneous scenarios where decentralized configuration is chosen, PACs are
stored in a cache on all present devices after they were used in a configuration process.
If all components included in a cached PAC are currently available, this PAC can be
integrated into a newly calculated configuration without having to configure all the
components in the PAC individually. This saves a lot of overhead and, thus, time.

As the cache size is typically limited on mobile devices, only those PACs with the
largest expected utility for future configuration processes should be cached. To deter-
mine suitable PACs, we present our utility function in Section 4.3.1. Furthermore, a
replacement strategy that decides which of the stored PACs are replaced if the cache
space is exceeded is discussed in Section 4.3.2. Finally, we focus on issues concerning
storage and communication overhead in Section 4.3.3.

4.3.1. PAC Utility Value. The utility value of a PAC is introduced for expressing the ex-
pected benefit of using a PAC within a configuration process. The more components of
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an application tree a PAC covers, the more its use decreases the configuration latency,
as a larger number of components does not need to be configured individually. The two
most important factors for defining the utility of a PAC for configuration processes are

— how often a PAC can be used in configuration processes (i.e., the frequency with
which the PAC is usable), and

— the expected latency reduction when a PAC is used (i.e., to which extent the PAC
covers the application tree).

Both of these factors depend on the size of the PAC and the devices involved in a PAC:
Small PACs involve few devices (that have to be present) and are more versatile (can
potentially be used in more configuration processes). Moreover, small PACs can be
stored in a cache more efficiently: While large PACs may not fit into the cache due to
their size, small PACs fit more often. However, large PACs have a higher potential for
reducing latencies drastically since many components are already configured. Thus,
neither providing only large PACs, nor only small PACs is obviously desirable.

We use the utility function proposed for web caching [Lee et al. 2001] and for adap-
tive overlay networks [Dürr and Rothermel 2008], since this function can compactly
represent how often and how recently a PAC was used. In our context, this function
defines the utility, up(t), of a PAC p at time t. Each device that is involved in the config-
uration process updates the utility of each cached PAC at time tc when a configuration
has finished. The utility up(t) ∈ [0, 1] of PAC p at time tc = t′ + ∆t of the current con-
figuration (where t′ = time of the previous configuration, ∆t = time span between the
previous and the current configuration) is calculated as follows:

up(tc) =

{

up(t
′) · f(∆t) + f(∆t), if PAC p was usable

up(t
′) · f(∆t), if PAC p was unusable

(2)

As proposed by related approaches (e.g., [Bahn et al. 2002]), we use the monotonously
decreasing function f(∆t) = 0.5λ·∆t with λ ∈ [0, 1] that defines the influence of reference
recency and frequency, leading to a combined Least Recently/Frequently Used (LRFU)
policy. With this function, a PAC’s utility value is increased if the PAC was usable at
time tc (i.e., all PAC components were available), and reduced if it was not usable.

With the radix of 0.5 in f(∆t), switching to pure Least Frequently Used (LFU, λ = 0)
and Least Recently Used (LRU, λ = 1) strategies is easily possible by adjusting λ. The
question of how to choose λ is discussed in the evaluation section.

4.3.2. PAC Cache Maintenance. According to the PAC utility values, the configuration
algorithm decides which PACs should be cached for future configuration processes. As
the cache space is limited, it has to be used as efficiently as possible. Therefore, we dis-
tinguish between two different types of PACs that are relevant for PAC configuration:

— Green PACs represent the PACs with highest current utility values. The PAC infor-
mation that is relevant for configuration processes – the PAC structure, the devices
that host the PAC components, and the utility values – is stored in the cache table.
Additionally, the complete representation of a PAC in PCOM’s specific XML format
is stored in the so-called PAC Repository. This representation enables the simple
inclusion of the PAC into the complete application assembly in a configuration.

— Yellow PACs are those which were previously used less frequently, leading to a
lower utility value than green PACs. The structure, the hosting devices, and the
utility values of yellow PACs are recorded in the cache, but not their complete XML
information. Thus, a yellow PAC consumes only around 1/6 of the space which the
equivalent green PAC would consume. Yellow PACs are not directly usable in config-
urations, but the information stored in them can be used to quickly create a green
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Fig. 4. Cache structure of C with Cgreen, the PAC Repository, and Cyellow

PAC: When the utility value of a yellow PAC increases in the future, the respec-
tive XML file is created, enabling the direct use of this PAC. Providing yellow PACs
reduces cache miss rates, as our evaluations will show.

The remaining PACs – those which are neither green nor yellow – are not relevant
for configuration, either because they have never been referenced before, or a long
time ago and, hence, they have been removed from the cache in the meantime. Thus,
no information is currently stored about them in the tables.

Figure 4 shows that green and yellow PACs are maintained in the so-called PAC
Cache C of size |C|, which is divided into the two areas Cgreen and Cyellow that hold
the respective PAC information. Cyellow can be regarded as a ”waiting area”, allowing
PACs to increase their utility values due to recent and frequent usage and becoming
green PACs in the future. Each entry in C contains the following fields:

— the involved PAC components and the devices which host these components,
— the utility value of the PAC, and
— its current availability, as determined by the conjunction of the availabilities of the

involved components. Only currently available PACs are usable in a configuration.

Cgreen is of limited size |Cgreen| < |C| and covers the size of the PAC entries in the
cache table as well as the respective XML representations in the PAC repository. The
sizes of Cgreen and Cyellow sum up to the total cache size |C| = |Cgreen|+|Cyellow|. A main
issue in the evaluations is to find the optimal partitioning of C into Cgreen and Cyellow

to maximize cache efficiency. Therefore, we introduce the split factor f ∈ [0, 1] which
determines the relative amount of |C| that is available for Cyellow (|Cyellow| = f · |C|).
Reasonable values for f are identified in Section 5.3. Since the PAC utilities change
over time, e.g., due to unavailability of components, the utility value of a yellow PAC
may exceed the utility value of a PAC stored in Cgreen. We define the Least-Green PAC,
plg(t), as the PAC with the minimum utility value in Cgreen at a specific time t:

∀p ∈ Cgreen : uplg
(t) ≤ up(t) (3)

The PAC p′ with highest utility value in Cyellow replaces plg at configuration time tc, if

up′(tc) > uplg
(tc) (4)

Subsequently, the PAC assembly is created and added for the (now green) PAC p′,
while plg is moved to Cyellow and its assembly is removed. PAC replacements are made
until no yellow PAC p′ exists for which the condition in Equation 4 is fulfilled.

4.3.3. PAC Overhead. Providing a PAC cache induces overheads concerning disk space
and communication (for transferring the PAC Repository to newly arriving devices).
For both types of overhead, the size |C| that is reserved for the PAC cache is the rele-
vant parameter. As this parameter highly influences the performance of the PAC con-
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Fig. 5. Hybrid configuration latencies, compared to centralized and decentralized approaches in strongly
heterogeneous environment with a) 31 and b) 127 components

cept, we take a closer look on the cache size |C| in Section 5.3.1 and evaluate various
cache sizes to find a trade-off between good performance and low overhead.

When using the utility function up(t), the utility value of a PAC p decreases monoton-
ically between two consecutive references to p. Thus, two PACs that are not referenced
do not change their order in the cache. We only need to compare the utility of a yellow
PAC py with the utility of plg when py is referenced, ensuring an efficient realization.

5. EVALUATION

5.1. Evaluation Setup

We evaluated our approach using applications with a binary tree structure and tree
heights between 2 and 6, yielding applications with 7 up to 127 components, i.e., in
the same order of magnitude in size than the applications discussed in Section 2.2.
The components represent single functionalities required by a distributed presenta-
tion application [Handte et al. 2006] which takes advantage of the input and output
components in the surrounding of a lecturer. Each value given in the graphs repre-
sents the average of 50 measurements. We implemented the concepts in a real-world
prototype of the component system PCOM [Becker et al. 2004] and performed mea-
surements on devices which are typically used in Pervasive Computing environments:
Laptops (Pentium Centrino CPU, 1.6 GHz) represent the resource-rich devices, while
the resource-poor devices are represented by smart phones (PXA 270 CPU, 528 MHz).
We used IEEE 802.11b as standard wireless communication technology and rely on the
device and service registry provided by the communication middleware BASE [Becker
et al. 2003]. In larger-scale scenarios with more than 12 devices, we used the network
emulation simulator NET [Grau et al. 2009] in combination with our system software
to provide realistic results.

5.2. Configuration in Weakly and Strongly Heterogeneous Environments

To measure the performance of the hybrid approach in strongly heterogeneous scenar-
ios, we compared its overall latencies with those of the decentralized (ABT) and cen-
tralized (DBT) approaches. Here, we used two different application sizes (31 and 127
components), different numbers of devices, and 50 % resource-rich devices in each sce-
nario. Figures 5a (for an application with 31 components) and b (for an application with
127 components) show the overall latencies. As shown on the x-axes, the evaluation of
the small application was performed with 4 to 12 devices, while the evaluation of the
larger application involved up to 85 devices in the emulations. The figures show that
the latencies of hybrid configuration are lowest, thanks to the resource-aware distribu-
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Fig. 6. a) Investigation of optimal static λ values for S1, S2 and S3, b) Correlation between PAC cache miss
rate and configuration latency

tion of the configuration tasks among the resource-rich devices, and as calculations can
be performed in parallel as multiple resource-rich devices are involved. In the small
application scenario, the centralized approach performs better than the decentralized
approach, which however reverts in the larger-scale scenario since the available com-
putation resources distributed among the resource-rich devices are not exploited by the
centralized approach (here, always one device calculates the complete configuration).
With an increasing number of devices, latencies of hybrid and decentralized configura-
tion first drop. This happens due to a larger absolute number of resource-rich devices
which are involved in calculating a configuration, while in centralized configuration,
only one resource-rich device is always used to calculate configurations. When the to-
tal number of devices exceeds 12 (for decentralized configuration) or 16 (for hybrid
configuration), the overall latencies slightly rise again, as the increased latencies for
establishing the component bindings exceed the reduced latencies for the configura-
tion calculation. The latencies of the centralized approach show continuous growth,
as the overhead for the result distribution increases with a rising number of devices.
At the same time, the configuration latency remains constant, as the configuration is
performed locally on the cluster head.

The hybrid approach outperforms the decentralized approach by 35.7 % (31 com-
ponents) and by 34.5 % (127 components) on average. Moreover, the hybrid approach
outperforms the centralized approach by 26.3 % (31 components) and by 44.1 % (127
components) on average. As the latency reduction is still achieved for large applica-
tions with many involved devices, the hybrid approach scales well. More detailed eval-
uation results concerning latencies at the different stages of the configuration can be
found in [Schuhmann et al. 2010].

5.3. Adaptive Configuration in Static and Dynamic Environments

In a first step, we investigate three static scenarios:

(1) a homogeneous environment (scenario S1), consisting only of resource-poor devices;
(2) a weakly heterogeneous environment (S2), including one additional resource-rich

infrastructure device;
(3) a strongly heterogeneous environment (S3), consisting of 50 % resource-rich devices

and 50 % resource-poor devices.

Additionally, we evaluate the PAC concept in dynamically changing environments. We
used sizes of 7 (S1), 15 (S2), and 31 (S3) components.

5.3.1. Evaluation in Static Environment. First, we determine the optimal static values for
λ for the LRFU strategy in the different scenarios, i.e., the values where the cache
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miss rate becomes minimal. In these initial measurements, we set |Cyellow| = 0. In
Figure 6a, it can be seen that neither choosing pure LFU (λ = 0) nor choosing pure
LRU (λ = 1) leads to the best results. On the one hand, the recency is relevant, as
we consider dynamic environments where components may be available only for a
limited amount of time. Thus, relying on PACs which have recently shown to be usable
makes sense. On the other hand, the frequency also needs to be regarded, as devices
which were previously available, but are unavailable now may return again in the
future. In this case, it needs to be considered how often PACs have been used before,
leading to a higher utility for these PACs. Thus, both the recency and the frequency
of a PAC’s availability need to be taken into account to minimize the cache miss rate.
The optimal λ changes from 0.4 (S1) to slightly higher values of 0.5 (S2) and 0.6 (S3),
since the degree of dynamics decreases and, thus, the recency of a PAC’s availability
becomes more relevant, as the PACs are valid for a longer average period of time in
heterogeneous scenarios. We decided to use a static value of λ = 0.5 in the following
measurements, as this leads to a low cache miss rate in all three environments.

Next, we are looking for reasonable values for the fixed cache size |C| as well as for
the split factor f . For this purpose, suitable overall cache sizes for the different en-
vironments were investigated. The user obviously wants to have an application to be
configured as fast as possible, which is the case when the cache miss rate is low. How-
ever, no cache misses at all can only be achieved with an unbounded cache, which is
not possible in practical use, particularly in resource-constrained homogeneous envi-
ronments. Thus, there is a trade-off between small cache size and low cache miss rate.
Figure 6b shows the correlation between the cache miss rate and the expected config-
uration latency, relative to the latency of a configuration that does not rely on PACs at
all. The configuration latency is lowest when no cache misses appear at all, and rises
monotonously with rising cache miss rates. In case of cache miss rates close to 1 (i.e.,
none of the application contracts are covered by a PAC), the configuration latency is
slightly higher than standard configuration without PACs, as the contract matching
process for the cached PACs requires some additional time in each configuration.

Figure 7 shows the cache miss rate (depicted in z-axis) with variable overall cache
sizes |C| (x-axis) and split factors f (y-axis) in the evaluated weakly (a) and strongly (b)
heterogeneous scenarios. It can be seen that the cache miss rate is comparatively high
in both scenarios in case of strict cache limits and for large values of f . In this case,
the cache space for Cgreen becomes the limiting factor, yielding only few PACs that
actually fit into the cache. Moreover, the contour lines of the figures (which represent
the 2.5 %, 5 %, 7.5 %, and 10 % cache miss rate bounds) show that the more resources
the environment has, the smaller the achieved cache miss rates become. For example,
if the cache miss rate should not exceed 10 %, then one can infer from Figures 7a - c
that a cache size of 400 kB is sufficient to stay below this limit: With |C| = 400 kB, the
cache miss rates are 8.6 % (S2), and 7.3 % (S3) and, thus, below 10 % in both scenarios.
Regarding the choice of f , the cache miss rates become minimal if we choose values of
16.3 % (S2) and 25.1 % (S3) for f . The respective data points X2(400 kB, 16.3 %, 8.6 %)
and X3 (400 kB, 25.1 %, 7.3 %) are drawn in Figures 7a and b.

5.3.2. Evaluation in Dynamic Environment with Adaptive Parameters. Since static parameters
perform suboptimal in dynamic environments, we now focus on adaptive parameters
for f and λ that are automatically adjusted to changing environments. For this pur-
pose, we simulate the user mobility using a General Pareto Distribution, as it has
been found that the periodically changing availability and disavailability of mobile
users in several user studies (taken e.g. in University campuses, corporate environ-
ments, research conferences) typically follows this propability distribution [Karagian-
nis et al. 2007]. |C| is set to 400 kB in all experiments since this value provided
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Fig. 7. Distribution of Cache Miss Rate in a) S2, b) S3

good performance in all scenarios. Note that adapting |C| would require to allocate
or de-allocate memory every time |C| is changed, yielding significant overhead es-
pecially on the resource-poor mobile devices. From our experiences with the devel-
oped configuration approaches, we found that the ratio s of resource-rich devices (i.e.,

s = # resource−rich devices

# all devices
) available in the environment is the most important factor for

the choice of an adequate configuration scheme. Thus, we adapt f and λ based on s.
At first, we focus on an adaptive split factor f . Therefore, we evaluated the arising

cache miss rates with various values of s (from 0 % to 40 %) and determined the op-
timum value for f in each scenario. To find if there are interdependencies between λ
and f , we performed these measurements with three different values of λ: 0.25, 0.5,
and 0.75. The results of these measurements are shown in Figure 8a. This figure re-
veals two things: 1.) The results with varying λ values are very close to each other.
We infer from these results that the parameters f and λ have little interdependency
on each other. 2.) The optimum f values (i.e., the values where the cache miss rate
becomes minimal) rise with increasing values of s. This is since an increasing number
of resource-rich devices leads to a lower degree of dynamics, yielding less frequent re-
placements in the cache. Thus, the size |Cgreen| is not that crucial as in higher dynamic
scenarios. So, increasing |Cyellow| at the cost of |Cgreen| reduces the cache miss rate, as
the cache stores more yellow PACs then, which may possibly change to green PACs
after some time.

Figure 8b shows the optimal λ values (i.e., the values where the cache miss rate
becomes minimal) which we gained by evaluating the same scenarios with the deter-
mined adaptive f values and different λ values between 0.0 and 1.0. The optimal λ
becomes slightly larger with a rising number of strong devices, since the degree of dy-
namics decreases and, thus, the recency of a PAC’s availability becomes more relevant,
as the PACs are valid for a longer average period of time. Typical optimal values for λ
are around 0.3 in case of few strong devices (s ≤ 15 %), and rise to around 0.6 as the
number of strong devices in the environment increases to 40 %.

Finally, we performed evaluation runs over a time span of 3600 s where we peri-
odically configured an application with period time 50 s, i.e. we performed 72 con-
figurations in total. The availability of each device was randomly and dynamically
changed using a Pareto distribution. When a configuration was started, the configura-
tion framework accessed the device registry and determined the number of currently
available resource-rich devices. Then, the fitting configuration scheme – decentralized,
centralized, or hybrid – was chosen according to the selection strategy presented in
Section 4.2.1. We compared the following configuration approaches to each other:

— Configuration without PAC use, i.e., no PAC Repository was established and stan-
dard hybrid, decentralized, or centralized configuration was performed.
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Fig. 8. Investigation of a) optimal adaptive split factor f , b) optimal adaptive λ

Fig. 9. Latency measurements with Static and Adaptive Cache Parameters: a) Depending on s, b) Average

— Configuration with PACs (|C| = 400 kB) and static parameters (f = 0.15, λ = 0.5).
— Configuration with PACs (|C| = 400 kB) and adaptive f and λ (cf. Figure 8).
— Configuration with PACs with an unbounded cache (|C| = ∞), i.e. every used PAC is

cached forever in Cgreen and is never replaced, which represents the optimum (but
infeasible) case for configuration.

Figure 9a shows the latency overhead compared to the optimum case with different
values for s. Using PACs with adaptive parameters yields low latencies that are very
close to the optimum with only 9 % slowdown. Using static PAC parameters leads to
an increased overhead of 31 % compared to the optimum, since the parameters do
not adapt to dynamically changing scenarios. Configuration without PACs performs
worst with an average overhead of 66 % and can only compete with PAC configuration
that uses static parameters when no resource-rich devices are available. Figure 9b
shows the overall average latencies. This figure illustrates that PAC use which relies
on adaptive parameters is only around 150 ms slower than the optimum case of PAC
use in combination with an unbounded cache, despite the 400 kB cache size restriction.
When PACs are used with static parameters, the configuration is around 450 ms slower
than the fastest possible configuration, so you see that dynamic parameters increase
the efficiency of the PAC approach. Standard configuration without PAC use needs
around 950 ms more time than the optimum, but works without a cache.

5.4. Summary

In our evaluations, we have shown three significant results:
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(1) In weakly heterogeneous environments, a centralized configuration approach with
proactive loading of the relevant resource information from other devices reduces
the latencies drastically. If the configuration is calculated on the resource-richest
device, latencies drop by almost 40 % compared to decentralized configuration.

(2) In strongly heterogeneous environments, a hybrid scheme reduces the configura-
tion latencies by around 35 % both compared to centralized and to decentralized
configuration. This is because configurations are calculated cooperatively and in
parallel by the resource-rich devices, without involving the resource-poor devices.

(3) The re-use of previous configuration results further decreases the configuration
latencies in all of the regarded scenarios by up to 31 % when static parameters
are used, and even by up to 66 % when adaptive parameters are used. Adaptive
parameters change their values according to changes in pervasive environments.

6. RELATED WORK

Numerous projects such as Olympus [Ranganathan et al. 2005], Gaia [Román et al.
2002] or Aura [Poladian et al. 2004] provide middleware systems for configuration of
distributed applications in heterogeneous environments. They supply services for the
development of context-aware mobile applications, and represent highly integrated
environments supporting stationary as well as mobile devices. Some projects such
as PICO [Kalasapur et al. 2007] additionally put the satisfaction of user preferences
in their focus [Fujii and Suda 2009; Mukhtar et al. 2011]. Relying on infrastructure
support, all of the mentioned systems are however not suited for the use in homoge-
neous scenarios. Most recent approaches for heterogeneous scenarios introduce self-
organizing overlay networks [Al-Oqily and Karmouch 2011] or autonomic applications
(AutoHome, [Bourcier et al. 2011]) in service composition. Moreover, some of them aim
at coordination frameworks for service composition [Majuntke et al. 2010], applica-
tions interacting with public displays [Clinch et al. 2012], semantic quality metrics
of service composition [Lecue and Mehandjiev 2011], or trustworthy service composi-
tion [Hang and Singh 2011].

In recent years, many projects like MundoCore [Aitenbichler et al. 2007] or
RUNES [Costa et al. 2007] aim at providing system support for configuration
in homogeneous scenarios. These projects provide automatic application configura-
tion, whereas other peer-to-peer based approaches assign this task to the appli-
cation programmer or the user (e.g., Pervasive Collaboration [Pering et al. 2009],
Medusa [Davidyuk et al. 2010]). All of these projects are suited for various environ-
ments. However, they do not benefit from the increased computation power of resource-
rich devices, yielding inefficient configurations in heterogeneous environments.

The component system PCOM [Becker et al. 2004], embedded in the research project
3PC [Handte et al. 2012] initially was also developed to provide system support for ho-
mogeneous environments. With the extensions discussed here, PCOM now adaptively
supports a broad spectrum of pervasive scenarios.

None of the mentioned projects provides concepts for the re-use of previous configu-
ration results. However, this re-use approach has already been introduced in applica-
tions for distributed media device control (e.g., OSCAR [Newman et al. 2008]). These
systems rely on end-user composition, i.e., they do not provide automated configura-
tion by the system, but manual composition by the user. Beyond this, systems like
CAMP [Truong et al. 2004] or iCAP [Dey et al. 2006] even rely on end-user program-
ming, thus by far not achieving the grade of pervasiveness we want to attain.

7. CONCLUSIONS

In this article, a comprehensive set of concepts and mechanisms for the efficient and
adaptive composition of distributed applications both in heterogeneous and in homo-
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geneous pervasive scenarios were presented. Different configuration schemes that are
specifically suited for efficient application composition in different Pervasive Comput-
ing environments were proposed. Furthermore, a concept to enable automatic switch-
ing between the different configuration approaches in case of dynamic changes in the
environment was presented. Finally, an approach for automatically caching Partial
Application Configurations (PACs) and for including them in new configurations was
presented. This leads to a large reduction of the configuration overhead.

Our work drastically lowers configuration latencies in the complete spectrum of pos-
sible pervasive scenarios: While centralized configuration reduces latencies in weakly
heterogeneous environments by 39 % compared to decentralized configuration, hy-
brid configuration on the subset of resource-rich devices further reduces latencies
in strongly heterogeneous environments by around 35 %. The additional use of pre-
cached PACs leads to very efficient configuration processes that produce only around
9 % latency overhead compared to the fastest possible configuration where the com-
plete application was pre-configured. In summary, our work leads to much less user
distraction and, in consequence, to more seamless configurations processes. Thus, this
work represents a large step towards seamless user support, which is essential to make
computer systems disappear in the background and achieve true pervasiveness.
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