
HAL Id: hal-04083405
https://hal.science/hal-04083405v1

Submitted on 27 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based dynamic distribution of user interfaces of
critical interactive systems

David Navarre, Célia Martinie, Philippe Palanque, Alberto Pasquini, Martina
Ragosta

To cite this version:
David Navarre, Célia Martinie, Philippe Palanque, Alberto Pasquini, Martina Ragosta. Model-based
dynamic distribution of user interfaces of critical interactive systems. 3rd International Conference
on Application and Theory of Automation in Command and Control Systems (ATACCS 2013), May
2013, Naples, Italy. pp.66-75, �10.1145/2494493.2494502�. �hal-04083405�

https://hal.science/hal-04083405v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12646

Official URL: http://dx.doi.org/10.1145/2494493.2494502

To cite this version : Navarre, David and Martinie De Almeida, Celia and Palanque,
Philippe and Pasquini, Alberto and Ragosta, Martina Model-based dynamic
distribution of user interfaces of critical interactive systems. (2013) In: 3rd
International Conference on Application and Theory of Automation in Command and
Control Systems (ATACCS 2013), 28 May 2013 - 30 May 2013 (Naples, Italy).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Model-Based Dynamic Distribution of User Interfaces of
Critical Interactive Systems

David Navarre, Célia Martinie, Philippe Palanque
Institute of Research in Informatics of Toulouse

University of Toulouse

Interactive Critical Systems (ICS) team

118, route de Narbonne

31042 Toulouse Cedex 9, France

{martinie, navarre, palanque}@irit.fr

Alberto Pasquini, Martina Ragosta
Deep Blue

Piazza Buenos Aires 20

00198 Roma, ITALY {alberto.pasquini,

martina.ragosta}@dblue.it

ABSTRACT

Evolution in the context of use requires evolutions in the

user interfaces even when they are currently used by

operators. This paper proposes a model-based approach to

support proactive management of context of use evolutions.

By proactive management we mean mechanisms in place to

plan and implement evolutions and adaptations of the entire

user interface (including behaviour) in a generic way. This

generic model-based approach is exemplified on a safety

critical system from the space domain. It presents how the

new user interfaces can be generated at runtime to provide a

new user interface gathering in a single place all the

information required to perform the task. These user

interfaces have to be generated at runtime as new rocedures

(i.e. sequences of operations to be executed in a semi-

autonomous way) can be defined by operators at any time

in order to react to adverse events and to keep the space

system in operation. Such contextual, activity-related user

interfaces complement the original user interfaces designed

for operating the command and control system. The

resulting user interface thus corresponds to a distribution of

user interfaces in a focus + context way improving usability

increasing efficiency and effectiveness.

Author Keywords

Model-Based approaches, formal description techniques,

interactive software engineering, automation, distributed

user interfaces, dynamic reconfiguration of user interfaces.

ACM Classification Keywords

D.2.7 Distribution, Maintenance, and Enhancement, D.2.11

[Software] Software Architectures - Languages (e.g.,

description, interconnection, definition), H.5 [Information

Systems] Information Interfaces and Presentation

General Terms

Design, Automation, Reliability, Human Factors.

INTRODUCTION

In the early days, the basic design rationale for User

Interfaces for control rooms was to assign one display to

each component to be monitored and one physical input to

each command to be sent to one component of the

controlled system. This resulted in very large command and

control rooms being rather easy to design and build but

rather cumbersome to operate. Such difficulties have been

largely studied and reported in scientific work looking at

the design aspects (e.g. [31] and [9]), at the implication on

operations (see typical image of controls customization

where operators add beer labels on top of control levers p.

95 [27] from [32]) and safety when incident or accident

occurred ([30] p 193 on Chernobyl accident). In order to

overcome such constraints, design drivers for command and

control systems have been targeting at concentration
1
 and

integration of both displays and controls. In several

domains such as control rooms and aviation, such

concentration was achieved by adding computing resources

for concentrating data from multiple displays into a single

(or sometimes several in case of large and complex

systems) display unit. In aeronautics such concentration of

display is known under the notion of “glass cockpit” as

computer screens were replacing previous analog displays.

The benefits of such concentration had significant positive

impact on operations making, for instance, large

commercial aircraft operations evolve from 3 operators to

only 2 in the Airbus 320 (the first commercial civil aircraft

using glass cockpit technology) even though other factors

such as weight were also predominant to the migration.

However, nowadays, operators of safety critical systems are

facing more and more sources of information competing for

attention which might affect their abilities to complete their

tasks thus reaching limits of user interfaces concentration.

Automation (i.e. delegation of user’s tasks to the system)

can reduce tasks’ complexity and time consumption

allowing operators to focus on other tasks. However, too

much (or inadequate) automation can lead to complacency,

1
 By concentration we refer here to the terms coined by J.

Vanderdonckt in [35]

loss of situational awareness, or skill degradation, whereas

not enough automation can lead to an unmanageable,

unsafe or problematic workload [29]. This is the reason

why, for instance, the SESAR (Single European Sky ATM
2

Research) programme targets higher levels of automation in

aviation in order to improve safety and efficiency of ATM

operations.

Work on function allocation such as the ones described in

[11] or [4] aim at supporting the design of automation and

more precisely at identifying and assessing candidate

functions to be automated. Beyond that, if the use of the

system is highly dynamic i.e. evolves regularly (for instance

in order to handle unexpected adverse events such as

malfunctions, faults, malicious attacks …), there is a need

for dedicated support to anticipating evolutions and for

providing adequate solutions. This paper proposes a model-

based tool-supported approach for the design and

development of distributed user interfaces in the context of

highly dynamic complex systems requiring repetitive and

systematic activities to be allocated to the system in order to

allow operators to be focussing on more analysis and

decision related tasks. This approach embeds automatic

generation of distributed user interfaces allowing operators

to monitor the execution of semi-autonomous procedures.

Next section presents with more details the context that has

been introduced above. The following section presents the

process associated with the approach exhibiting why there

is a need of distributing the operators’ user interfaces in two

different parts, one being the standard command and

control interface and the other one being an additional UI

generated for handling a dedicated adverse event. The last

section presents a case study about satellite ground

segments applying step by step the approach. Finally a

conclusion and directions for future work are presented.

AUTOMATION IN THE CONTEXT OF COMPLEX
SYSTEMS

There are many different levels for implementing design

decisions in order to include autonomous behaviors in a

computing system. The first one (static level) consists in

defining and designing the allocation at design time and to

design and build the interactive system according to this

allocation of functions. This is for instance the case in

automotive industry with the ABS (anti-lock braking

system). This autonomous system prevents vehicles wheel

from blocking while the driver is breaking. Even though the

autonomous system is triggered by the user, its behavior is

“hard coded” and cannot be altered. The second one

(dynamic execution level) consists in designing and

defining flexible and redundant functions as in the

aeronautics domain with the auto pilot. All the functions

that are available in that autonomous system (such as

climbing to a certain altitude) can also be performed

2
 Air Traffic Management

manually by the pilot. The decision to allocate the

execution of the function to the autonomous system remains

in the hand of the user. The last level (dynamic execution

and definition level) allows the user to define the behavior

of the automation and also to decide when such

autonomous behavior will be executed. Such level

corresponds for instance to the definition and execution of

macros in Microsoft Excel or the text styles in Microsoft

Word.

The current paper addresses the last level (presented above)

applied to command and control systems for satellite

control rooms. Indeed, in case of malfunction the operator

is required to define a procedure in charge of solving the

identified problem. Such procedures are then tested and

executed either in an autonomous or manual way. However,

even in the case of autonomous execution some information

might be required from the operator to complete the

execution. Such information can be values of some

parameters (presented on some display units) of the satellite

or go/no go that contacted experts in the domain of the

failure (e.g. engines, electricity …) have provided to the

operator. One of the issues related to that problem is that

the information required from the operator can be

distributed amongst many displays making this activity

cumbersome, time consuming or even error-prone. The

objective of this research work is to exploit the content of

the procedure defined by the operator to generate and

additional user interface dedicated to the management of

the procedure. This user interface gathers all the

information that has to be checked and provided by the

operator throughout the execution of the procedure. How

such user interfaces can be generated from the definition of

the procedure is presented in details in the following

section. It is important to note that the point is not here to

modify the existing user interface of the application but to

generate an additional, contextual user interface. This

prevents difficulties that may occur and which are known

under the term “automation surprises” [28] if the routine

interface was unpredictably altered by the generation

process. Indeed, currently the new interface generated can

be simply ignored, at no cost, by the operators.

USER INTERFACE GENERATION FOR DYNAMIC
PARTLY AUTOMATED SYSTEM

As presented in the previous section, in the area of complex

command and control systems, some of the user tasks and

activities cannot be identified beforehand i.e. at design

time. In addition to that issue, these tasks can be complex

and/or inadequate for a human being (requiring for

instance, management of a large amount of information,

execution of multiple commands under strong temporal

constraints, …). Such tasks are thus good candidates for

delegation to an autonomous sub-system. In order to

address those issues there is a need to provide operators

with meta-level systems able to combine multiple

commands and to delegate their execution to an

autonomous agent. The design of this part of the partly-

autonomous command and control system requires the

same level of reliability and usability as the rest of the

application. While the reliability aspects of user interfaces

can be addressed using standard dependability and fault-

tolerance techniques such as the COM/MON architecture

proposed by [14] and applied/extended to user interfaces in

interactive cockpits [33], the usability aspects have to be

addressed according to the work done in the area of

automatic generation of User Interfaces as described in [34]

or more recently in [26].

Several model-based approaches and toolkits aim at

designing and implementing Distributed User Interfaces

(DUIs) reconfigurable at runtime. Fröberg et al [10] present

a framework called Marve in order to support graphical

components reallocation across platform. Their work

particularly focuses on event communication structure

management. Melchior et al. [21] introduce a toolkit to

deploy DUIs and then a framework based on state transition

diagrams to represent distribution states of a DUI [22].

Kjeldsen et al. [13] also present a system architecture for

widget interaction reconfiguration on planar surfaces.

Another set of contributions dealing with dynamic

reconfiguration of distributed user interfaces layout are

based on the CAMELEON framework [5]. Manca and

Paterno present a dialog model description language which

aims at supporting dynamic distribution of user interfaces

elements across various devices [15]. Other contributions

deal with runtime architectures. Clerckx et al. [6] propose a

design process and runtime architecture supporting partial

dynamic redistribution of the user interface at runtime.

These contributions do not take into account or partially (in

the case of state transition diagrams to represent the

distribution states [21]) the behavioural part of the

distributed interactive applications. This is a critical aspect

when dealing with command and control of safety critical

systems which might lead to deadlocks. We previously

addressed that aspect by proposing fault-tolerant

architectures dedicated to the dynamic reconfiguration of

user interfaces in the context of cockpits of large civil

aircrafts. This reconfiguration supports distribution as well

as relocation of user interfaces of critical applications to

other displays unit when the default one is faulty [24] and

[23].

AN AUTOMATED DESIGN PROCESS FOR GENERATING
INTERFACES FOR PARTLY AUTOMATED SYSTEMS

Generation of user interfaces can be envisioned if

behavioural description of the automation is available and if

a generic mechanism for distribution is available. However,

such generation of the user interface must not have a

negative impact on monitoring activities, so distribution to

another display and/or to another window is required. This

distribution allows decoupling the introduction of new

interfaces (generated) from the set of existing ones. The

design process presented in this section aims at

guaranteeing the continuity of operation so that the

predefined set of interfaces for monitoring and control is

not altered by the generated ones.

Overview of the process

Figure 1 presents the generic process involving dynamic

generation of part of the User Interface. That Figure is split

in three parts.

Design of UI for procedures

Generation of UI for procedures

Design and development of

standard generic UI

Developped

standard generic UI

Generated UI for

new or modified

procedure

Design automation

(function allocation)

Requirements and needs analysis

Pattern extraction

Design of standard

generic UI
Design of

procedures for UI

Automatic

generation of UI

for procedure

Programming of

standard generic UI

Programming of UI

for procedures

Design and development time

Runtime

Developped UI for

procedures

Procedure creation

or modification

Complete UI

Figure 1. General overview of the approach

The first part (called Design and development time) on top

corresponds to the design and development of the User

Interface that is done following a classical user-centered

development process. The only difference is located in the

phase called (Design Automation (function allocation as

defined in [4])) dedicated to the attribution of functions

either to the partly-autonomous system or to the operator.

Of course the description of the process remains on purpose

abstract not even showing the iterations as we only

highlight here the main principles. The interested reader can

find a more complete and precise description of such a user-

centered design process in [20]. This part is split into two

threads of developments represented by the two swim lines.

The right-hand side corresponds to the standard

development aiming at producing a usable user interface.

The underlying concept behind this process is that there are

two types of user interfaces that will be used by the

operator. A generic user interface allowing the operator to

perform the main tasks assigned to him/her and a set of

specific user interfaces aiming at supporting specific

activities defined by procedures. The generic user interface

corresponds to the UI of the command and control system

allowing managing the entire system while the specific UI

are dedicated to procedure (that might have been defined

after the UI of the command and control system has been

finalized). This process is rather generic in critical systems

where modification of the command and control systems

might involve time and resource consuming activities such

as certification by external authorities.

The other two boxes in Figure 1correspond to the design

and development of the specific user interfaces dedicated to

the management of specific procedures. The one on the

right-hand side corresponds to procedures that have been

identified during the design phases of the command and

control system and follow the standard user-centered design

process. The one at the bottom of Figure 1corresponds to

the generation of a user interface while the command and

control system is in operation. Indeed, in many cases e.g.

change is usage processes or handling of unexpected

adverse events not envisioned during the design phases of

the command and control system. The resulting user

interface of the command and control system is thus the

sum of these 3 interfaces. It is important to note that the

generated part does not replace the existing one but is

proposed as a kind of contextual help to the operators.

 Key

ICO behavioural

description of

procedure

Standard generic UI

Behavioural

Patterns

UI

Components

Generated UI

Mapping

Pattern- UI

Components

Logical structure of

the targeted UI

Generic

canvas

Automated

Transformation

Data

repository

Produced

data

UI Generation

Complete User Interface

ICO specification

finalisation

HAMSTERS

description of

operators’

activities

Pattern extraction

Generated

UI for

procedure

Final

system
Manual

Transformationon

Modification of

procedure

Figure 2. Generic generation process for the user interface of procedures

Distribution and generation

Figure 2 refines the user interface generation process

presented at the bottom of Figure 1. It starts with a manual

activity carried out by the operator consisting at modifying

an existing (or potentially creating a new one).

· To describe the procedure (as explained with more

details in the case study section) operators are provided

with behavioral description languages such as YAWL

[12]. Our process is based on another language called

ICOs (Interactive Cooperative Objects) [25] which

combines Petri nets and Object-Oriented constructs

allowing manipulating values within the Petri net-

based behavioral description. Beyond that, activation

and rendering functions in ICO make it possible to

connect this behavioral description to the graphical

user interface it describes. This activity is represented

as a manual and automated process as it is performed

using dedicated editing tool. The ICO description of

the procedure provides the grounding of the behavioral

part of the user interface that will be generated.

· To describe the operators’ activities that cannot be

inserted in ICO models, HAMSTERS (Human-centred

Assessment and Modelling to Support Task

Engineering for Resilient Systems) notation is used.

HAMSTERS is a task modelling notation designed for

representing the decomposition of human goals into

activities (perceptive, cognitive, motor, interactive…).

· The ICO procedure is then automatically analyzed

using a Petri net pattern detector based on a collection

of patterns descriptions. These patterns correspond to

the basic bricks that constitute the procedure behavior

and depend on the application it is related to. The

product of this pattern extraction is a logical structure

of the targeted application as a collection of

instantiated patterns (an instantiated pattern contains

attributes that directly relate it to the part of the ICO

description it corresponds to). As within our generation

process this description is only transient, we do not

handle it as a model per se, even if it would be

possible.

· For each of these instantiated patterns, the UI

generation phase associates a concrete component

using a predefined mapping and these components are

then composed within a generic graphical canvas,

creating a default layout of these components. The

production of this phase is a model that does not

describe the behaviour of the generated application

(the behaviour being provided by the ICO model in the

next step). This is not presented on Figure 2 but the

components, the generic canvas and the produced

application are customizable, allowing a fine tuning of

the produced user interface. This would be needed for

instance when maintenance is performed of the

application thus going back to the design process.

· Lastly, the generated model and the ICO procedure are

put together to provide the final interactive user

interface (using the activation function and the

rendering function of ICO introduced above).

This generation process is instantiated and illustrated on a

case study in the following section.

Figure 3. Examples of textual and graphical synoptics

Relationship with Previous Work

As presented above this work build on top of previous

work we have done on the formal description and

prototyping of user interfaces. While that previous work

was focussing on supporting developers in a) identifying

users activities and goals (using the notation HAMSTERS

[17]) b) describing in a complete and unambiguous way

both the interface and the associated interaction techniques

using the ICO formal description technique [25] c) a set of

case tools called CIRCUS integrating HAMSTERS case

tool and ICO case tool called PetShop [1].

HAMSTERS
3
 is a tool-supported graphical task-modeling

notation aiming at representing human activities in a

hierarchical and ordered way. Goals can be decomposed

3
http://www.irit.fr/recherches/ICS/softwares/hamsters/index.html

into sub-goals, which can in turn be decomposed into

activities, and the output of this decomposition is a

graphical tree of nodes. Nodes can be tasks or temporal

operators.

The ICO formalism is a formal description technique

dedicated to the specification of interactive systems [25].

It uses concepts borrowed from the object-oriented

approach (dynamic instantiation, classification,

encapsulation, inheritance, client/server relationship) to

describe the structural or static aspects of systems, and

uses high-level Petri nets to describe their dynamic

behavioral aspects.

As this paper only focusses on the process and the benefits

of generating specific user interface while the system in

under use, next section will not present detailed models of

the case study.

CASE STUDY

The example presented in this section belongs to the

category of complex command and control systems from

the space domain. Such interactive systems are less time

constrained than other ones (such as aircraft cockpits).

Beyond that, such systems are less safety critical (the only

possible safety issue would correspond to a spacecraft

falling on earth and injuring people). However, the

potential cost of a failure is far beyond the development

cost of these systems making them belong to the category

of critical systems. This case study aims at highlighting

how to automate the distribution of interface for the

operators, providing a particular focus on the design of

procedures and the generation of interactive means to

control the automation. These concepts as well as the

development process presented above have been applied to

satellite ground segment applications within the context of

the ALDABRA (Architecture and Language for Dynamic

And Behaviorally Rich interactive Application) Research

& Technology project.

PICARD ground segment overview

The PICARD satellite mission is dedicated to solar

activity observation. Operators are in charge of two main

activities: observing periodically the vital parameters of

the satellite and performing maintenance operations when

a failure occurs. They may have to lead concurrent

activities such as monitoring satellite state and parameters,

detecting failures and recovering from them, preparing and

following up TeleCommand plans. To support the task of

failure detection and recovery, the Operation Ground

Systems is made up of two relatively unconnected

components. Amongst the interactive systems used within

the control room of PICARD, synoptic (see Figure 3)

represent an important support to the operators’ activities.

Synoptic gather a set of parameters to propose a general

overview of them, these parameters being used by the

operators to monitor the state of the satellite. The PICARD

operation control centre uses more than fifty synoptic

containing around 10 000 parameters (such as battery

status, communication link status…), and the number of

procedures for possible maintenance operations goes

beyond one hundred. As illustrated in Figure 3, synoptic

may contain graphical representation of parameters, but

most of them represent parameters as text (such as the

central part of Figure 3).

Figure 4. Procedure manager

Another important part of the ground segment system is

the procedure manager. It aims at triggering

TeleCommands, i.e. uploading commands onto the board

system in order to change its current configuration and

makes the parameters evolve (see Figure 4).

When operating a satellite (for instance when executing a

particular procedure), such a quantity of screens and

density of information makes it difficult for the operators

to find a particular parameter navigating amongst the

synoptic. This activity may be critical when the operator

tries to solve a satellite failure, where he/she has to

precisely analyse the relevant parameters. The complexity

of a satellite makes it difficult to design a dedicated

synoptic for each kind of failure, so that when an

unexpected event occurs, dedicated procedures must be

redesigned, but not the interactive system itself which

remains the same (and is thus design as generic as

possible).

Operational procedures as partly automated systems

Satellites and spacecraft are monitored and controlled via

ground segment applications in control centres with which

satellite operators implement operational procedures. A

procedure contains instructions such as sending

teleCommands (TC), checking teleMetry (TM), waiting,

providing required values for parameters, etc. The

definition of operational procedures may be found in the

ECSS-E-70-32A standard [8] and defines the elements

that an operational procedure must contain (declaration of

the local events raised within the procedure, preconditions,

instructions…). Procedures are the main mechanism used

in control rooms to manage the spacecraft during both test

and operations phases.

Software environment and modelling tools associated
to the generation and distribution process

The targeted platform (due to the project requirements) is

Java and more specifically the Java technology called

JavaFX (http://javafx.com) which allows the description

of the graphical part of an interactive application with an

XML file (called FXML) and which allows customisation

of the graphical rendering using CSS styling

(http://www.w3.org/Style/CSS/).

Figure 5. Generation process for interactive synoptics

HAMSTERS and ICO notations, presented in previous

section, have associated CASE (Computer Aided Software

Environment) tools. HAMSTERS associated software tool

(also called HAMSTERS) enables to edit task models and

simulate their execution. ICO (Interactive Cooperative

Object) is Petri nets based and associated to a supporting

tool, Petshop. It enables to edit application behavioural

models and to connect them to the presentation part of the

user interface (graphical widgets and frames for example).

It also enables to execute the application with the

underlying behavioural models. Additionally, HAMSTERS

task models and Petshop system models can be connected

at edition time as well as at runtime in order to ensure

consistency between operator tasks and system behaviour

[1, 18, 19]. This synergistic use of the two tool-supported

notations also provide support for assessment of function

allocation between operator and system [16].

Application of the process to PICARD ground segment
applications (synoptic and procedure manager)

The main idea we illustrate with this case study is how to

take benefits from the model-based generation process to

support the generation of customizable interactive synoptic,

and to associate them to the original interfaces (synoptic

and procedure manager) that are required to support most of

the activities of the operators. The generic distribution

process (Figure 2) has been instantiated (Figure 5) to reflect

the use of our targeted platform and modelling tools:

· The starting point of the process (top-left part of Figure

5) is the original operational procedure from which we

manually produce an ICO model (and a Hamsters model

that is not represented here due to space constraints).

· The ICO procedure represents the behaviour of the

being generated interactive synoptic and the

modifications performed on it introduces iterations in

the generation process.

· The ICO procedure is automatically analysed with a

Petri net pattern detector (bottom-left part of Figure 5),

associated to a collection of patterns descriptions, which

embed algorithms to detect the basic bricks that

constitute a procedure such as parameter update,

checking of these parameters, messages and choices

proposed to operators. The result of this pattern

extraction is a logical structure of the synoptic in form

of a list of instantiated patterns (with the list of

monitored parameters and a list of elements of the

control flow of the procedure).

· A JavaFX component is then associated to each of this

instantiated patterns, using a predefined mapping. These

components are then integrated within a generic

synoptic canvas, producing a JavaFX application (with

no behaviour, the behaviour being provided by the ICO

model in the next step). The customisation of the

JavaFX components, generic canvas and produced

JavaFX application is additionally supported by the use

of CSS styling to precisely adjust graphical attributes of

the generated synoptic.

· Lastly, the JavaFX synoptic and the ICO procedure are

put together to provide the final interactive synoptic.

Procedure manager

FX

Components

JavaFX synoptic

Mapping

Pattern- FX

Components

UI Generation
ICO specification

finalisation

Interactive

synoptic
Satellite

communication means

Synoptic

generic

models

1

2

3

ICO behavioural

description of

procedure

2

3

1

Partly automated system

Figure 6. Models and interactive synoptic produced during the generation process

Examples of the models and interactive synoptic produced

during this generation process are presented in Figure 6:

· The left part is an excerpt of the ICO model of the

corresponding procedure where two parts are

highlighted, corresponding to two behavioural patterns

corresponding to the two parts on the right side of the

figure.

· The centre part represents the generic graphical canvas.

· The bottom-right part is the resulting interactive

synoptic.

CONCLUSION

This article has presented how model-based approaches can

be used for the automated generation of contextual user

interfaces and how they can provide operators of ground

segments with focus and context information. This

approach exploits a formal behavioural description

technique (the ICO notation [25]) for the description of

both the operational procedures and thus the behaviour of

the generated user interface. The graphical presentation is

produced using an XML dialect called FXML which

belongs to the JavaFX technology. This contribution

presents a unique case study where the generation of user

interfaces provides important benefits for operators of

critical interactive systems. Furthermore, the distribution of

generated user interface across another display guarantees

segregation with the standard command and control system

thus preventing possible fault propagation to the ground

segment.

The current work corresponds to the final contribution of

the research project ALDABRA and is under consideration

for inclusion in the next generation of ground segment

operations. While informal testing with ground segment

operators has received very positive feedback, the critical

system nature of the application domain requires adoption

by regulatory authorities prior to development (by certified

companies) and deployment in operational satellite ground

segment. Such work is being undertaken and lead by CNES

via ISIS (Initiative for Space Innovative Standards)

targeting at standard, generic and innovative ground

segments (http://www.iafastro.net/iac/archive/browse/IAC-

09/B4/7/4801/). This work is part of a more ambitious

research programme aiming at defining processes, methods

and tools for the design and development of safety critical

interactive systems. While function allocation is critical for

most (partly-) autonomous systems, the current paper only

referred to a context of automation where allocation is

previously defined and does not evolve. Future work

intends to extend previous work on automation design [16]

and aims at exploiting the tasks models to identify potential

migrations and to assess the impact of such migrations on

operations’ performance.

ACKNOWLEDGMENTS

This work was partly sponsored by CNES (French National

Space Studies Center) R&T Tortuga R-S08/BS-0003-029

and Aldabra ETS-CT-R&T_TTGA-196-CN as well as

EUROCONTROL research network HALA! on Higher

Automation Levels in Aviation and WPE project SPAD

(System Performance under Automation Degradation).

REFERENCES

1.Barboni, E, Ladry, J-F, Navarre, D, Palanque, P,

Winckler, M. Beyond Modelling: An Integrated

Environment Supporting Co-Execution of Tasks and

Systems Models. ACM SIGCHI conference Engineering

Interactive Computing Systems (EICS 2010), ACM

SIGCHI, p. 143-152, 2010.

2.Barboni, E, Martinie C., Navarre, D, Palanque, P,

Winckler, M. Bridging the Gap between a Behavioural

Formal Description Technique and User Interface

Description Language: Enhancing ICO with a Graphical

User Interface Markup Language. Journal of Science of

Computer Programming Vol. 78, 2013.

3.Bastide R., Sy O. & Palanque P. A formal notation and

tool for the engineering of CORBA systems. Concurrency

- Practice and Experience 12(14): 1379-1403 (2000)

4.Boy G. Cognitive Function Analysis for Human-Centered

Automation of Safety-Critical Systems. Proc. of ACM

SIGCHI conference on Human Factors for Computing

Systems 1998: 265-272

5.Calvary, G., Coutaz, J., Thévenin, D., Limbourg, Q.,

Bouillon, L., & Vanderdonckt, J. (2003). A Unifying

Reference Framework for multi-target user interfaces.

Interacting with computers, 15(3), 1-1.

6.Clerkx, T., Vandervelpen, C., Coninx, K. Task-based

design and runtime support for multimodal user interface

distribution. In Proceedings of Engineering Interactive

Systems 2007, EHCI-HCSE-DSVIS (2007).

7.European Cooperation for Space Standardization, Space

Engineering, Ground Systems and Operations, ECSS-E-

70C, 31 July 2008.

8.European Cooperation for Space Standardization, Space

Engineering,Test and Operations Procedure Language,

ECSS-E70-32A. 2006.

9.Fang Chen, Eric H. C. Choi, Natalie Ruiz, Yu Shi, and

Ronnie Taib. 2005. User interface design and evaluation

for control room. In Proceedings of the 17th Australia

conference on Computer-Human Interaction: Citizens

Online: Considerations for Today and the Future (OZCHI

'05). Computer-Human Interaction Special Interest Group

(CHISIG) of Australia, Narrabundah, Australia, Australia,

1-4.

10.Fröberg, A., Eriksson, H., Berglund, E. Developing a

DUI Based Operator Control Station: A Case Study of the

Marve Framework. . In J.A. Gallud et al. (eds),

Distributed User Interfaces: Designing Interfaces for the

Distributed Ecosystem, Human-Computer Interaction

Series, pages 1-12, 2011, Springer-Verlag, 2011.

11.Harrison, M., Johnson, P., and Wright, P. (2002).

Automating functions in multi-agent control systems:

supporting the decision process. In Redmill, F and

Anderson, T. editors, Proceedings of the Tenth safety-

critical system symposium, Southampton. Springer. pp.

93-106.

12.Hofstede, A. H. M. Ter., YAWL: yet another workflow

language. Information Systems. 2005, Vol. 30, pp. 245-

275.

13.Kjeldsen, R., Levas, A., Pinhanez, C. Dynamically

Reconfigurable Vision-Based User Interfaces. In 3rd

International Conference on Vision Systems (ICVS'03).

Graz, Austria. April 2003.

14.Laprie, J-C., Arlat, J., Béounes, C. & Kanoun, K.,

Definition and Analysis of hardware and software Fault-

Tolerant Architectures, IEEE computer, vol.23, no.7,

pp.39-51, 1990

15.Manca, M., Paterno, F. Extending MARIA to support

Distributed User Interfaces. In J.A. Gallud et al. (eds),

Distributed User Interfaces: Designing Interfaces for the

Distributed Ecosystem, Human-Computer Interaction

Series, pages 1-12, 2011, Springer-Verlag, 2011.

16.Martinie C., Palanque P., Barboni E. & Ragosta M.

Task-model based assessment of automation levels:

Application to space ground segments. IEEE SMC

conference, IEEE explore, 2011: 3267-3273

17.Martinie C., Palanque P., and Winckler M. Structuring

and composition mechanisms to address scalability issues

in task models. IFIP TC 13 int. conf. on Human-computer

interaction - Volume Part III (INTERACT'11), Vol. Part

III. Springer-Verlag, Berlin, Heidelberg, 589-609.

18.Martinie, C, Palanque, P, Navarre, D, Barboni, E. A

Tool-Supported Training Framework for Improving

Operators´ Dependability Confronted with Faults and

Errors. Probabilistic Safety Assessment (PSAM11 &

ESREL 2012), Helsinki, Finland, June 25-29 2012,

Taylor & Francis Group.

19.Martinie, C, Palanque, P, Navarre, D, Winckler, M.,

Poupart. Model-based training: an approach supporting

operability of critical interactive systems. ACM SIGCHI

conference Engineering Interactive Computing Systems

(EICS 2011), pp.53-62, ACM press.

20.Martinie C., Palanque P., Navarre D. and Barboni E. A

Development Process for Usable Large Scale Interactive

Critical Systems: Application to Satellite Ground

Segments. 4th IFIP International Conference on Human-

Centred Software Engineering (HCSE 2012), Springer

Verlag, LNCS

21.Melchior, J., Grolaux, D., Vanderdonckt, J., Van Roy, P.

A toolkit for peer-to-peer distributed user interfaces:

concepts, implementation, and applications. In

Proceedings of the 1st ACM SIGCHI symposium on

Engineering Interactive Computing Systems (EICS 2009),

pp. 69-78, ACM New York, 2009.

22.Melchior, J., Vanderdonckt, J., Van Roy, P. A Model-

Based Approach for Distributed User Interfaces. ACM

SIGCHI symp. on Engineering Interactive Computing

Systems (EICS 2011), p. 11-20, ACM New York, 2011.

23.Navarre, D., Palanque, P., Basnyat, S., (2008) Usability

Service Continuation through Reconfiguration of Input

and Output Devices in Safety Critical Interactive Systems.

27th Int. Conf. on Computer Safety, Reliability and

Security (SAFECOMP 2008), LNCS 5219, pp. 373–386,

2008. © Springer-Verlag Berlin Heidelberg 2008.

24.Navarre, D., Palanque, P., Ladry, J.F., Basnyat, S.

Architecture and a Formal Description Technique for the

Design and Implementation of Reconfigurable User

Interfaces. In Proceedings of the 15th International

Workshop on Interactive Systems. Design, Specification,

and Verification (DSV-IS 2008), LNCS 5136, pages 208-

224, Springer-Verlag Berlin Heidelberg 2008.

25.Navarre D., Palanque P., Ladry J-F & Barboni E: ICOs:

A model-based user interface description technique

dedicated to interactive systems addressing usability,

reliability and scalability. ACM Trans. Comput.-Hum.

Interact. 16(4): (2009)

26.Nichols J., Duen Horng Chau, and Brad A. Myers. 2007.

Demonstrating the viability of automatically generated

user interfaces. In Proceedings of the SIGCHI conference

on Human factors in computing systems (CHI '07). ACM,

New York, NY, USA, 1283-1292.

27.Norman D. (1998). The design of everyday things. MIT

press 1998.

28.Palmer, E. "Oops, it didn't arm." - A Case Study of Two

Automation Surprises. 8th International Symposium on

Aviation Psychology, Ohio State University, (1995).

29.Parasuraman, R.; Sheridan, T.B.; Wickens, C.D. "A

model for types and levels of human interaction with

automation" Systems, Man and Cybernetics, Part A:

Systems and Humans, IEEE Trans. on, vol.30, no.3,

pp.286-297, May 2000.

30.Reason, J. (1990). Human Error, Cambridge University

Press.

31.Rohn J. Petersen, William W. Banks, and David I.

Gertman. 1982. Performance-based evaluation of graphic

displays for nuclear power plant control rooms. In

Proceedings of the 1982 conference on Human factors in

computing systems (CHI '82). ACM, New York, NY,

USA, 182-189.

32.Seminara, J. L., Gonzalez, W. R., & Parsons, S. 0.

(1977). Human factor review of nuclear power plant

control room design (NP-309). Palo Alto, CA: Electric

Power Research Institute.

33.Tankeu-Choitat A., Fabre J-C., Palanque P., Navarre D.,

Deleris Y., Fayolas C. Self-Checking Components for

Dependable Interactive Cockpits using Formal

Description Techniques. 17th Pacific Rim Dependable

Computing Conference (PRDC 2011), Pasadena, US,

IEEE, 12-15th December 2011.

34.Vanderdonckt Jean, Automatic Generation of a User

Interface for Highly Interactive Business-Oriented

Applications, San Francisco: Morgan Kaufmann, 1998, p.

516-520.

35.Vanderdonckt, J. Distributed User Interfaces: How to

Distribute User Interface Elements across Users,

Platforms, and Environments. In Proceedings of XIth

Congreso Internacional de Interacción Persona-Ordenador

Interacción’2010, AIPO, Valencia, 2010, pp. 3-14,

Keynote address.

