Towards an Abstraction for Remote Evaluation in
Erlang

Adrian Francalanza' and Tyron Zerafa'

Department of Computer Science, University of Malta
{adrian.francalanza | tzer0001}@Qum.edu.mt

1 Introduction

Erlang is an industry-standard cross-platform functional programming language
and runtime system (ERTS) intended for the development of concurrent and
distributed systems[1]. An Erlang system consists of a number of processes [2]
(actors) executing concurrently across a number of nodes/ locations. These pro-
cesses interact with each other (mainly) through asynchronous messaging and
are capable of creating (spawning) further processes, either locally or at remote
locations.

2 Process Creation

In Erlang, a functional object (variable/ value of type function) is a data type
consisting of a set of attributes along a pointer to the function’s executable code.
An Erlang process, which can only execute functional objects, starts by looking
for the referenced executable code inside the underlying node’s directories and
loads it into the code server. In a distributed setting, a process may request the
execution of a functional object on a remote node; however, the executing (re-
mote) location is not allowed to retrieve code from the original (requesting) node.
Erlang assumes that during remote process creation the required code would be
present on the executing node prior to execution initialization. A process would
fail if it attempts to execute a function whose code is not defined on its (execut-
ing) node; alternatively, the end result would be different if the executing node
holds executable code that differs from that residing at the functional object
declaration location [1, 5].

Erlang’s remote process creation resembles the remote evaluation paradigm in
which nodes demand the execution of code on remote locations through requests
that contain the required code. We propose a solution that facilitates remote
evaluation, i.e., transfers the (missing) required code during a remote process
creation, while adhering to Erlang’s semantics and best practices. In the rest
of this document, § 3 explains why existing Erlang support is not adequate to
attain code migration while § 4 discusses considerations that arise in the design
of our remote evaluation mechanism. § 5 concludes this document.

CSAW'13 pg 14



2 A. Francalaza and T. Zerafa
3 Inadequacies of the Existing Support

Erlang’s standard serialisation mechanism encodes data/ values that needs to
be transmitted over a network into an intermediate representation known as
the External Term Format (ETF). The intermediary representation of Erlang
functions is composed of a number of attributes which include a symbolic link to
the respective module’s binary file (called a BEAM file) containing the function’s
code. Upon a remote execution request, the respective function ETF (with its
symbolic references to the BEAM file) is sent to the remote node, assuming that
the referenced BEAM file is present.

In order to overcome this limitation attributed to the serialization mecha-
nism, Erlang provides two mechanisms that facilitate the dynamic linking/ load-
ing of code modules/ binaries inside remote ERTSs. The simplest mechanism
broadcasts whole modules onto entire Erlang clusters (a set of connected nodes)
resulting in huge bandwidth usage spikes and superfluous memory overheads.
On the other hand, the second mechanism transmits portable code resulting in
a less-expensive finer-grained control over what’s loaded where.

At first these approaches may seem attractive, however, after a deeper anal-
ysis it becomes evident that these are far from complete. For starters, they lack
any form of dependency analysis which has to be handled explicitly by end de-
velopers to ensure that all the required code is transferred. Furthermore, these
mechanisms do not take into consideration the possibility of different code ver-
sions which are so critical in real life development environments. All these prob-
lems, coupled with the possibility to remotely execute higher-order functions
(functions that accepts other functions as argument) over remote nodes require
a huge development effort from the end developers and necessitates a proper
framework that manages Erlang code in such a heterogeneous distributed envi-
ronment.

4 Considerations for Proposed Solutions

A solution to handle code management during remote evaluation can be pro-
grammed; however, as described in the previous section increases the responsi-
bility and effort on the part of application developers, who would need to contend
with the difficulties discussed. We propose a solution that abstracts over these
difficulties and automates the functionality for code-dependency analysis, code
correspondence and code migration, in line with other proposed fine-grained
code mobility approaches [3, 4]. This automation should aspire to mimic the be-
haviour of a local process execution in the presence of missing code using the
least possible bandwidth and storage overheads.

The solution would need to determine a feasible unit of code migration to
adopt. More specifically, whereas the unit of process creation is a functional
object, the ERTS standard unit of code loading is the Erlang module. Issues
may arise when, in order to remote execute a particular function whose code is
not present at the destination node, an arbitrarily large module (containing the

CSAW'13 pg 15



Towards an Abstraction for Remote Evaluation in Erlang 3

required function) would need to be migrated and loaded; the problem could be
more acute in the case of transitive function dependencies.

Conventions for how to migrate code would also need to be established. At
one extreme, the solution may decide to migrate the missing code eagerly in one
phase, once the missing dependencies are statically determined. Alternatively,
code migration may happen incrementally in lazy fashion, whereby only the
immediately execution functions are sent. The latter approach is in general more
complex and may incur more bandwidth overhead. However it is able to use
runtime information relating to code dependencies, e.g., code branches taken by
the spawned remote actor, so as to minimise the code that is migrated—the
function dependencies in branches that are not taken need not be migrated. The
proposed solution may even decide to adopt a hybrid model of code migration,
that adapts according to the requirements of the nodes and that of the underlying
network.

Ideally, the solution should also embrace the realities of distributed comput-
ing and adhere to the philosophy of the host language, i.e., Erlang. Failures such
as nodes crashing and flaky node connections should not be ruled out by the
proposed solution, which should in turn affect the underlying architecture and
operations. For instance, in order to withstand a degree of failure, the proposed
solution should be as decentralised as possible. Moreover, once the missing code
dependencies are determined, the code need not be migrated from the source
node; instead it may be obtained from another node having a faster or more
reliable connection to the remote node where the processes is to be created.

5 Conclusion

We have argued why that the existing mechanisms for remote evaluations in
Erlang is inadequate for a distributed setting with heterogeneous codebases. We
then outlined possible requirements to consider for a language extension that
addresses these shortcomings. We are currently working on a prototype that
takes these suggestions into account.

References

1. Cesarini, F., Thompson, S.: Erlang Programming. O’Reilly (2009)

2. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artificial
intelligence. In: IJCAL pp. 235-245. Morgan Kaufmann (1973)

3. Jul, E., Levy, H., Hutchinson, N., Black, A.: Fine-grained Mobility in the Emerald
System. ACM Trans. Comput. Syst. 6(1), 109-133 (Feb 1988)

4. Mascolo, C., Picco, G.P., Roman, G.C.: A fine-grained model for code mobility.
SIGSOFT Softw. Eng. Notes 24(6), 39-56 (Oct 1999)

5. Wikstrom, C.: Distributed Programming in Erlang. In: Symp. on Parallel Symbolic
Computation. pp. 412-421 (1994)

CSAW'13 pg 16



