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Abstract. We present a simple method to solve spherical harmonics moment systems,
such as the the time-dependent PN and SPN equations, of radiative transfer. The method,
which works for arbitrary moment order N , makes use of the specific coupling between the
moments in the PN equations. This coupling naturally induces staggered grids in space and
time, which in turn give rise to a canonical, second-order accurate finite difference scheme.
While the scheme does not possess TVD or realizability limiters, its simplicity allows for
a very efficient implementation in Matlab. We present several test cases, some of which
demonstrate that the code solves problems with ten million degrees of freedom in space,
angle, and time within a few seconds. The code for the numerical scheme, called StaRMAP
(Staggered grid Radiation Moment Approximation), along with files for all presented test
cases, can be downloaded so that all results can be reproduced by the reader.

1. Introduction

The purpose of this paper is to present a simple, yet accurate solution method for the PN
equations of radiative transfer, and its efficient implementation in Matlab. The key idea is
to make use of the specific coupling of unknowns that is induced by the spherical harmonics
being a family of orthogonal polynomials. This leads to a natural staggered grid on which
the equations are discretized.

The PN method (cf. [1]) is one of several ways to discretize the equation of radiative
transfer. It is often introduced as an approximate method (method of moments) to reduce
the high dimensionality when the kinetic equation of radiative transfer, which is formulated
on a six-dimensional domain (one time, two angle, three space), is discretized. Another way
of interpreting the PN equations is to view them as a spectral discretization in the angular
variable.

The efficient numerical solution of the PN equations has become a recent subject of interest
[22, 19, 17, 1]. The PN equations have several advantages over other more direct discretiza-
tions, such as discrete ordinates, most prominently rotational invariance. The lack of this
property leads to the so-called ray effect in discrete ordinates approximations (cf. [20]). The
key property that the numerical method presented in this work is based upon, is also exclusive
to spherical harmonics moment methods, namely a specific coupling structure between the
moments. The main drawback of the PN equations is that they, being a spectral method,
can exhibit Gibbs phenomena, i.e., oscillatory behavior that is not present in the solution
of the original kinetic equation. In the context of radiative transfer, this can yield negative
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2 B. SEIBOLD AND M. FRANK

and therefore unphysical particle densities. In many cases, the Gibbs phenomenon is not a
major problem (given the oscillations are small in amplitude), since the PN equations remain
always well-defined. However, sometimes the unphysical particle densities are unacceptable,
and several recent works have addressed this fact [7, 18].

The numerical method presented here does not possess limiters in the hyperbolic solver
nor does it overcome the Gibbs phenomenon. However, its simplicity allows for fast and very
highly resolved computations, so that one can often reduce the spurious oscillations to an
acceptable magnitude by choosing the moment order N sufficiently large.

This paper is organized as follows. In Sect. 2 we introduce the PN equations in slab
geometry and point out their structure. This is done for didactical reasons, because the
notation for the PN equations in two space dimensions (derived in Sect. 3) becomes quite
tedious. The staggered grid method is presented and analyzed in Sect. 4, and in Sect. 5 the
efficient implementation of the numerical scheme in Matlab is outlined. Numerical examples
are presented in Sect. 6. We attempt to meet the standards of reproducible research in the
computational sciences, laid out by LeVeque [12]. The source code of our package StaRMAP
(Staggered grid Radiation Moment Approximation), along with files to generate all this paper’s
figures, as well as additional examples, are available to the reader online [25].

2. The Slab Geometry PN Equations

We consider the radiative transfer equation in the form [2]

∂tψ(t, x,Ω) + Ω · ∇xψ(t, x,Ω) + Σt(t, x)ψ(t, x,Ω)

=

∫
S2

Σs(t, x,Ω · Ω′)ψ(t, x,Ω′) dΩ′ + q(t, x,Ω) .
(1)

The quantity ψ, which is defined for time t > 0, space coordinate x ∈ R3, and direction
Ω ∈ S2, is the density of photons that undergo scattering and absorption in a medium. The
medium is characterized by the absorption cross section Σa, the scattering kernel Σs and the
total cross section Σt = Σs0 + Σa (Σs0 is defined below). In addition, there is a source q.
Note that normally in (1), a factor of 1

c appears in front of the time derivative, where c is
the speed of light. Here we have set c = 1, i.e., we measure time in units of the space scale
divided by c. Throughout the paper, to return to physical units, time variables have to be
multiplied by c.

The slab geometry radiative transfer equation is obtained by considering a slab between
two infinite parallel plates. Assume for instance that the z-axis is perpendicular to the plates.
If the setting is invariant under translations perpendicular to, and rotations around, the z-
axis, then the unknown ψ depends only on the z-component of the spatial variable, and one
angular variable µ (cosine of the angle between direction and z-axis).

To obtain the PN equations, we express the angular dependence of the distribution function
in terms of a Fourier series,

ψ(t, z, µ) =

∞∑
`=0

ψ`(t, z)
2`+1

2 P`(µ) , (2)

where P` are the Legendre polynomials. These form an orthogonal basis of the space of
polynomials with respect to the standard scalar product on [−1, 1].
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One can obtain equations for the Fourier coefficients

ψ` =

∫ 1

−1
ψP` dµ (3)

by testing the radiative transfer equation (1) with P` and then integrating. Thus we obtain
(suppressing the arguments)

∂tψ` + ∂z

∫ 1

−1
µP`ψ dµ+ Σt`ψ` = q`

for ` = 0, 1, . . . , where

Σt` = Σt − Σs` = Σa + Σs0 − Σs` and Σs` = 2π

∫ 1

−1
P`(µ)Σs(µ) dµ .

Two properties of the spherical harmonics are crucial for our method. These appear here
as properties of the Legendre polynomials. First, we observe that by the procedure above we
have diagonalized the scattering operator on the right hand side (the Legendre polynomials
are eigenfunctions of the scattering operator). Second, a general property of orthogonal
polynomials is that they satisfy a recursion relation. In particular, the Legendre polynomials
P` satisfy

µP`(µ) = `
2`+1P`−1(µ) + `+1

2`+1P`+1(µ) .

Using this fact and truncating the expansion at ` = N we arrive at the slab-geometry PN
equations

∂tψ` + ∂z

(
`+1
2`+1ψ`+1 + `

2`+1ψ`−1

)
+ Σt`ψ` = q` . (4)

This system can be written as

∂t~u+M · ∂z~u+ C · ~u = ~q ,

where

M =


0 1
1
3 0 2

3
2
5 0 3

5

3
7 0

. . .
. . .

. . .

 and C =


Σt0

Σt1

. . .

 .

The two properties mentioned above lead to

Lemma 1. The time derivative of ψ` for even (odd) ` depends only on the spatial derivative
of ψk for odd (even) k, and on the value of ψ` itself.

Lemma 1 creates an analogy to the wave equation (with decay), and thus motivates a
discretization of the slab geometry PN equation (4) on staggered grids, i.e., all the components
with odd ` are placed in the middle between the components with even `, and the spatial
derivative is approximated by central differences. The numerical scheme presented in Sect. 4
generalizes this analogy in the two-dimensional case.
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3. The Two-Dimensional PN Equations

In this section, we adopt the notation and the form of the PN equations as in [1]. The
complex-valued spherical harmonics are defined as

Y m
` (µ, φ) = (−1)m

√
2`+1
4π

(`−m)!
(`+m)! e

imφPm` (µ) ,

where ` ≥ 0 and −` ≤ m ≤ `. Here, Pm` are the associated Legendre polynomials. The
spherical harmonics form an orthonormal family on the unit sphere. They satisfy a recursion
relation of the form

ΩY m
` = 1

2

 −c
m−1
`−1 Y

m−1
`−1 + dm−1

`+1 Y
m−1
`+1 + em+1

`−1 Y
m+1
`−1 − f

m+1
`+1 Y m+1

`+1

i
(
cm−1
`−1 Y

m−1
`−1 − d

m−1
`+1 Y

m−1
`+1 + em+1

`−1 Y
m+1
`−1 − f

m+1
`+1 Y m+1

`+1

)
2(am`−1Y

m
`−1 + bm`+1Y

m
`+1)

 ,

with the coefficients [1]

am` =
√

(`−m+1)(`+m+1)
(2`+3)(2`+1) , bm` =

√
(`−m)(`+m)
(2`+1)(2`−1) , cm` =

√
(`+m+1)(`+m+2)

(2`+3)(2`+1) ,

dm` =
√

(`−m)(`−m−1)
(2`+1)(2`−1) , em` =

√
(`−m+1)(`−m+2)

(2`+3)(2`+1) , fm` =
√

(`+m)(`+m−1)
(2`+1)(2`−1) .

This form already shows a pattern in the coupling of the different moments, that is similar
to the slab geometry case.

We multiply (1) by Y m
l , integrate over Ω, and define the expansion coefficients

ψm` (t, x) =

∫
S2

Y m
` (Ω)ψ(t, x,Ω) dΩ .

As in the slab geometry case, the scattering term becomes diagonal∫
S2

Y m
` (Ω)

∫
S2

Σs(Ω · Ω′)ψ(t, x,Ω′) dΩ′ dΩ = Σs`ψ
m
` (t, x),

where as before Σs` = 2π
∫ 1
−1 P`(µ)Σs(µ) dµ.

Altogether, we obtain the well-known complex-valued PN equations

∂tψ
m
` + 1

2∂x
(
−cm−1

`−1 ψ
m−1
`−1 + dm−1

`+1 ψ
m−1
`+1 + em+1

`−1 ψ
m+1
`−1 − f

m+1
`+1 ψm+1

`+1

)
+ i

2∂y
(
cm−1
`−1 ψ

m−1
`−1 − d

m−1
`+1 ψ

m−1
`+1 + em+1

`−1 ψ
m+1
`−1 − f

m+1
`+1 ψm+1

`+1

)
+ ∂z

(
am`−1ψ

m
`−1 + bm`+1

)
+ Σt`ψ

m
` = qm`

(5)

for 0 ≤ ` <∞ and −` ≤ m ≤ `.
In this work we consider the two-dimensional real-valued PN equations, which we now

derive. There is, however, no conceptual difference to the three-dimensional equations. The
reduction is again done via symmetry. This means that we actually solve three-dimensional
radiative transfer, but in a geometry that reduces the number of unknowns. For a two-
dimensional domain D, consider the infinite cylinder D × R ⊂ R3. We take the angular
variable to be aligned with the z-direction,

Ω = (
√

1− µ2 cosφ,
√

1− µ2 sinφ, µ)T .

If we assume that all data (coefficients, initial and boundary conditions) are z-independent,
then the solution ψ is z-independent and additionally an even function in µ. Therefore, if
` + m is odd, the associated Legendre polynomial Pm` is an odd function in µ, and as a
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consequence the moments for which ` + m is odd have to vanish. Thus we are left with the
(still complex) moments

ψ0
0, ψ

−1
1 , ψ1

1, ψ
−2
2 , ψ0

2, ψ
2
2, . . .

We thus obtain the following matrix formulation of the PN equations

∂t



ψ0
0

ψ−1
1
ψ1

1

ψ−2
2
ψ0

2

ψ2
2
...


+ ∂x

1
2



d−1
1 −f1

1 ∗
e0

0 d−2
2 −f0

2 0
−c0

0 0 d0
2 −f2

2

e−1
1 0 ∗
−c−1

1 e1
1 ∗

0 −c1
1 ∗
∗ ∗ ∗


·



ψ0
0

ψ−1
1
ψ1

1

ψ−2
2
ψ0

2

ψ2
2
...



+ ∂y
i
2



−d−1
1 −f1

1 ∗
e0

0 −d−2
2 −f0

2 0
c0

0 0 −d0
2 −f2

2

e−1
1 0 ∗
c−1

1 e1
1 ∗

0 c1
1 ∗

∗ ∗ ∗


·



ψ0
0

ψ−1
1
ψ1

1

ψ−2
2
ψ0

2

ψ2
2
...



+



Σt0

Σt1

Σt1

Σt2

Σt2

Σt2

. . .


·



ψ0
0

ψ−1
1
ψ1

1

ψ−2
2
ψ0

2

ψ2
2
...


=



q0
0

q−1
1
q1

1

q−2
2
q0

2

q2
2
...


.

We call the matrix behind the x-derivative (including the 1
2) M complex

x , and respectively the

matrix behind the y-derivative (including the i
2) M complex

y . We denote the matrix containing
the Σt` by C.

The last step is to transform this system to real variables. Note that

ψm` = (−1)mψ−m` .

Real variables Rm` (for 0 ≤ m ≤ `) and Im` (for 0 < m ≤ `) can be obtained by setting

R0
` = ψ0

`

and for m 6= 0

Rm` = (−1)m√
2

(ψm` + (−1)mψ−m` ) ,

Im` = (−1)mi√
2

(ψm` − (−1)mψ−m` ) .
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The factor (−1)m is chosen so that the coefficients can be compared more easily to well-known
moments. For example,

R0
0 = 1√

4π

∫
4π
ψ(Ω) dΩ = 1√

4π

∫ 1

−1

∫ 2π

0
ψ(µ, φ) dφ dµ ,

R1
1 =

√
3

4π

∫
4π

Ωxψ(Ω) dΩ =
√

3
4π

∫ 1

−1

∫ 2π

0

√
1− µ2 cosφψ(µ, φ) dφ dµ ,

I1
1 =

√
3

4π

∫
4π

Ωyψ(Ω) dΩ =
√

3
4π

∫ 1

−1

∫ 2π

0

√
1− µ2 sinφψ(µ, φ) dφ dµ .

The factor
√

2 is chosen to make the transformation from ψm` to Rm` , Im` unitary. If we encode
this linear relationship into a matrix S, so that

~u :=



R0
0

R1
1

I1
1

R2
2

I2
2

R0
2

...


= S ·



ψ0
0

ψ−1
1
ψ1

1

ψ−2
2
ψ0

2

ψ2
2
...


, (6)

then we obtain the real-valued system matrices for the PN equations as

M real
x = SM complex

x S−1 and M real
y = SM complex

y S−1 .

For example, the P3 matrices are

M real
x = 1

2



√
2d−1

1 0√
2d−1

1 d−2
2 0 −

√
2f0

2

0 0 d−2
2 0

d−2
2 0 d−3

3 0 −f−1
3 0

0 d−2
2 0 d−3

3 0 −f−1
3

−
√

2f0
2 0 0 0

√
2d−1

3 0
d−3

3 0 0
0 d−3

3 0

−f−1
3 0

√
2d−1

3

0 −f−1
3 0


and

M real
y = 1

2



0
√

2d−1
1

0 0 d−2
2 0√

2d−1
1 −d−2

2 0 −
√

2f0
2

0 −d−2
2 0 d−3

3 0 f−1
3

d−2
2 0 −d−3

3 0 −f−1
3 0

0 −
√

2f0
2 0 0 0

√
2d−1

3

0 −d−3
3 0

d−3
3 0 0
0 −f−1

3 0

f−1
3 0

√
2d−1

3


.
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From the previous calculation it can be seen that the matrices M real
x and M real

y couple the
variables Rm` and Im` in a specific way, as follows.

Lemma 2. The following variables are coupled, provided that they are defined (i.e., for Rm`
we must have ` ≥ 0, 0 ≤ m ≤ `, for Im` we must have ` ≥ 0, 0 < m ≤ `):

• The time-derivative of Rm` depends only on the x-derivatives of Rm±1
`±1 , on the y-

derivatives of Im±1
`±1 , and on Rm` itself.

• The time-derivative of Im` depends only on the x-derivatives of Im±1
`±1 , on the y-

derivatives of Rm±1
`±1 , and on Im` itself.

The scattering matrix C is diagonal and block-wise constant, and therefore invariant under
the transformation (6). Consequently, the real-valued PN equations read

∂t~u+M real
x · ∂x~u+M real

y · ∂y~u+ C · ~u = S · ~q , (7)

where S · ~q contains the real-valued moments of the source ~q. We also note that M real
x and

M real
y are both symmetric.

Lemma 3. In the absence of C, q, and boundaries, equation (7) conserves the global L2 norm
of the solution

P [~u](t) =

(∫ ∫
~u(t, x, y)T~u(t, x, y) dx dy

) 1
2

(8)

over time.

Proof. We calculate

d

dt
P [~u] =

d

dt

∫∫
~uT~udx dy = 2

∫∫
~uT∂t~udx dy

= −2

∫∫
(~uTMx∂x~u+ ~uTMy∂y~u) dx dy

= −
∫∫

∂x(~uTMx~u) + ∂y(~u
TMy~u) dx dy = 0 ,

where the last equality is due to the fact that Mx and My are symmetric. �

Remark 1. The simplified PN (SPN ) equations derived in [21] have the same coupling pattern
and can thus be solved with the same numerical scheme, presented in Sect. 4, as the PN
equations.

Remark 2. The question of proper boundary conditions for the PN equations (and in fact
moment models in general) is unsolved. In one space dimension various approaches exist, most
prominently Marshak [15] or Mark [13, 14] boundary conditions. For a further discussion and
review, we refer the reader to [11], where asymptotically correct boundary conditions are
derived. However, in two and three space dimensions, there is no agreement on the best
choice of boundary conditions. Therefore, in this paper we confine ourselves to two types of
boundary conditions that are simple to implement: periodic and extrapolation, as described
in Sect. 4.2. It should be pointed out that in many model problems, very little radiation
reaches the boundary of the computational domain, thus rendering the choice of boundary
conditions irrelevant.
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4. Numerical Method

We now develop a numerical scheme for linear systems of hyperbolic balance laws of the
form

∂t~u+Mx · ∂x~u+My · ∂y~u+ C · ~u = ~q , (9)

where the matrices Mx, My, and C possess very specific patterns of their nonzero entries
that admit the systematic placement of the components of the solution vector ~u(x, y, t) on
staggered grids. Specifically, let the solution of (9) have N components, i.e., ~u(x, y, t) ∈ RN,
and the source ~q(x, y, t) ∈ RN and the matrices Mx,My ∈ RN×N and C(x, y, t) ∈ RN×N are
of appropriate sizes. Moreover, the matrix C(x, y, t) is diagonal, and the matrices Mx and
My are constant-coefficient, and possess patterns of their nonzero entries, as described in
Lemma 2. Hence, the real-valued PN equations (7) are covered, as are the SPN equations
[21].

4.1. Spatial Approximation on Staggered Grids. We consider the partial differential
equation (9) to hold in the interior of a rectangular computational domain Ω = (0, Lx) ×
(0, Ly), and on each of the two boundary directions (horizontal and vertical), we allow for
one of two types of boundary conditions: periodic or extrapolation, as described in more
detail below. The domain Ω is divided into nx × ny rectangular cells of size ∆x×∆y, where
∆x = Lx/nx and ∆y = Ly/ny. The center points of these cells then lie on the grid

G11 = {((i− 1
2)∆x, (j − 1

2)∆y) | i ∈ {1, . . . , nx}, j ∈ {1, . . . , ny}} . (10)

We always place the first component of the solution vector, i.e. the scalar flux R0
0, on this

cell-centered grid G11. As an example, Figure 1 shows the division of the rectangular domain
(light gray) into a 5 × 3 arrangement of cells. The grid G11 is depicted by gray circles. The
key principle of the numerical scheme is to place the remaining solution components on grids
that are staggered with G11.

To reiterate, the condition on the nonzero entry patterns of Mx, My, and C, given in
Lemma 2, can be reformulated as follows: the components of ~u can be distributed into
four disjoint sets, according to {1, 2, . . . ,N} = I11 ∪ I21 ∪ I12 ∪ I22, such that the following
properties hold:

(Mx)i,j = 0 ∀ (i, j) /∈ ((I11 × I21) ∪ (I21 × I11) ∪ (I12 × I22) ∪ (I22 × I12)) ,

(My)i,j = 0 ∀ (i, j) /∈ ((I11 × I12) ∪ (I12 × I11) ∪ (I21 × I22) ∪ (I22 × I21)) ,

Ci,j = 0 ∀ (i, j) /∈ ((I11 × I11) ∪ (I21 × I21) ∪ (I12 × I12) ∪ (I22 × I22)) .

(11)

With this distribution of the indices of the solution components, we consider four fully stag-
gered grids: G11, defined above, and in addition

G21 = {(i∆x, (j − 1
2)∆y) | i ∈ {px, . . . , nx}, j ∈ {1, . . . , ny}} ,

G12 = {((i− 1
2)∆x, j∆y) | i ∈ {1, . . . , nx}, j ∈ {py, . . . , ny}} ,

G22 = {(i∆x, j∆y) | i ∈ {px, . . . , nx}, j ∈ {py, . . . , ny}} ,
(12)

where

px =

{
0 extrapolation b.c. in x

1 periodic b.c. in x
and py =

{
0 extrapolation b.c. in y

1 periodic b.c. in y
. (13)

In Fig. 1, the grid G21 is depicted by gray top-pointing triangles, the grid G12 by gray right-
pointing triangles, and the grid G22 by gray squares.
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grid 11

grid 21

grid 12

grid 22

perio−

dic

exten−

sion

extra−

polation

Figure 1. Staggered grid of 5× 3 grid cells, with periodic b.c. in the x-direction, and extrapolation
b.c. in the y-direction. Shown are solution grid points (black boundaries), periodic extension points
(light blue), and extrapolation ghost points (light red).

Having defined these fully staggered grids, the solution components with indices in Ik`
are assigned to the corresponding grid Gk`, where k, ` ∈ {1, 2}. On these staggered grids,
spatial derivatives of a function w can be approximated by the half-grid central difference
approximations

∂xw(i∆x, j∆y) ≈ 1
∆x

(
w((i+ 1

2)∆x, j∆y)− w((i− 1
2)∆x, j∆y)

)
∀ i, j ∈ 1

2Z ,

∂yw(i∆x, j∆y) ≈ 1
∆y

(
w(i∆x, (j + 1

2)∆y)− w(i∆x, (j − 1
2)∆y)

)
∀ i, j ∈ 1

2Z ,
(14)

and we denote the resulting finite difference operators Dx and Dy, respectively. With these
finite difference approximations, x-derivatives of components on the grid Gk` are associated
with the grid G3−k,`, and y-derivatives of components on the grid Gk` are placed on the grid
Gk,3−`, where k, ` ∈ {1, 2}. The nonzero entry patterns (11) guarantee that the distribution
of the indices of ~u into the sets I11, I21, I12, and I22 is exactly reproduced by the distribution
of the indices of Mx ·Dx~u+My ·Dy~u+C · ~u. Moreover, the components of the source vector
~q in (9) are placed on the same grids as the corresponding components of the solution vector.

4.2. Boundary Conditions. In each of the two coordinate directions, we prescribe one
of two types of boundary conditions. In the x-axis direction these conditions, and their
implementation, are as follows:

• Periodic: The solution satisfies ~u(x + Lx, y, t) = ~u(x, y, t). On the staggered grids,
periodicity is implemented by “wrapping around” the grid data, by defining: for
all components k ∈ G21 ∪ G22 set uk(0, j∆y) := uk(Lx, j∆y) ∀ j ∈ Iy, and for all
components k ∈ G11 ∪ G12 set uk(Lx + 1

2∆x, j∆y) := uk(
1
2∆x, j∆y) ∀ j ∈ Iy, where

Iy = {1
2py,

1
2py + 1

2 , . . . , ny −
1
2 , ny}.

• Extrapolation: All solution components with k ∈ G11 ∪G12 satisfy ∂xuk = 0 at the
left and the right boundary. On the staggered grids, this condition is implemented by
constant extrapolation, i.e., by “copying” grid data onto ghost points, by defining:
uk(−1

2∆x, j∆y) := uk(
1
2∆x, j∆y) ∀ j ∈ Iy, and uk(Lx + 1

2∆x, j∆y) := uk(Lx −
1
2∆x, j∆y) ∀ j ∈ Iy, where Iy = {1

2py,
1
2py + 1

2 , . . . , ny −
1
2 , ny}.
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The definition and implementation of boundary conditions in the y-axis direction works anal-
ogously. Figure 1 shows an example with periodic b.c. in the x-direction (grid data that is
wrapped around is depicted in blue) and extrapolation b.c. in the y-direction (ghost points
are depicted in red).

4.3. Time Stepping. The time-derivative in (9) is resolved by bootstrapping, i.e., data
on the grids G11 ∪ G22 is updated alternatingly with data on the grids G21 ∪ G12. This
approach is natural, since in the approximate advective part of (9), i.e., Mx ·Dx~u+My ·Dy~u,
the solution components in I11 ∪ I22 (called the “even components”) depend solely on the
components in I21 ∪ I12 (called the “odd components”), and vice versa. One possibility to
perform bootstrapping is by staggering the data in time, i.e., when using a time step ∆t, the
even components would be defined at times n∆t, while the odd components would be defined
at times (n + 1

2)∆t. While such a space-time-staggered approach yields very elegant update
rules, the placement of different solution components at different times causes inconveniences
in the implementation of initial conditions, as well as the evaluation of the full solution at a
fixed time. Here, we circumvent these problems by defining all solution components on the
same time-grid n∆t, and conducing a time step from t to t+ ∆t via a Strang splitting [26] of
sub-steps, as follows.

For the purpose of the presentation in this section, consider the solution vector be written
in block form

~u =

[
~ue

~uo

]
,

where ~ue is the vector of the even components, and ~uo is the vector of the odd components.
Moreover, let the same block form apply to the source vector ~q and the matrices Mx, My,
and C. Then, with the central difference approximations (14), equation (9) turns into

∂t

[
~ue

~uo

]
+

[
0 M eo

x

Moe
x 0

]
·Dx

[
~ue

~uo

]
+

[
0 M eo

y

Moe
y 0

]
·Dy

[
~ue

~uo

]
+

[
Ce 0
0 Co

]
·
[
~ue

~uo

]
=

[
~q e

~q o

]
. (15)

We now define two evolution operators: one that updates the even components only, while
“freezing” the odd components; and one that updates the odd components only, while “freez-
ing” the even components. To advance the even (odd) components from t to t + ∆t, we
consider the odd (even) components to be constant on the interval [t, t+∆t]. The same holds
true for the matrix C and the source vector ~q. Any quantity that is “frozen” during an update
from t to t+ ∆t is associated with the intermediate time t+ 1

2∆t. Specifically, the matrix C

and the vector ~q are evaluated at t+ 1
2∆t.

With these assumptions, the block system (15) decouples into two ODEs{
∂t~u

e + Ce · ~ue = ~r e

∂t~u
o + Co · ~uo = ~r o

with

{
~r e = ~q e −M eo

x ·Dx~u
o −M eo

y ·Dy~u
o

~r o = ~q o −Moe
x ·Dx~u

e −Moe
y ·Dy~u

e
, (16)

where Ce, Co, ~r e, and ~r o are time-independent. Moreover, since the matrix C =
diag(c1, . . . , cN) is diagonal, the equations in (16) decouple into scalar equations of the form

∂τuk(x, y, τ) + c̄k(x, y)uk(x, y, τ) = r̄k(x, y) (17)
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that need to be solved from τ = t until τ = t+∆t. In (17), we have c̄k(x, y) = ck(x, y, t+
1
2∆t)

and r̄k(x, y) = rk(x, y, t+ 1
2∆t). The exact solution of (17) is

uk(x, y, t+ ∆t) = exp(−c̄k(x, y)∆t)uk(x, y, t)− 1
c̄k(x,y)(1− exp(−c̄k(x, y)∆t))r̄k(x, y) (18)

= uk(x, y, t) + ∆t (r̄k(x, y)− c̄k(x, y)uk(x, y, t))E(−c̄k(x, y)∆t) , (19)

where E(c) = exp(c)−1
c . Note that, given a robust implementation of this function E (see

Sect. 5), the representation (19) has an important advantage over formula (18), namely it is
defined in voids, where ck(x, y) = 0.

Returning to the block form of the solution, we now let C̄e and C̄o denote the diagonal
matrices containing the c̄k of the even and odd components, respectively. Moreover, the
matrices E(−C̄e∆t) and E(−C̄o∆t) are the diagonal matrices containing E(−c̄k∆t) of the
even and odd components, respectively. Using these notations, formula (19) gives rise to the
even evolution operator

Se
t+∆t,t

[
~ue

~uo

]
=

[
~ue

~uo

]
+ ∆t

[
E(−C̄e∆t)(~r e − C̄e · ~ue)

0

]
(20)

as the one that advances the even components according to (19), and the odd evolution
operator

So
t+∆t,t

[
~ue

~uo

]
=

[
~ue

~uo

]
+ ∆t

[
0

E(−C̄o∆t)(~r o − C̄o · ~uo)

]
(21)

as the one that advances the odd components according to (19). A full solution step from t
to t+ ∆t is then achieved via four sub-half-steps

St+∆t,t = So
t+ 1

2
∆t,t
◦ Se

t+ 1
2

∆t,t
◦ Se

t+ 1
2

∆t,t
◦ So

t+ 1
2

∆t,t
. (22)

Note that in general Se
t+ 1

2
∆t,t
◦ Se

t+ 1
2

∆t,t
6= Se

t+∆t,t, as one can see from the solution formula

(19).

4.4. Accuracy. Due to the proper setup of the solution components on staggered grids, all
spatial differential operators are approximated in a central fashion, and thus with second order
accuracy, i.e., the spatial truncation error is O(h2), where h = max{∆x,∆y}. Moreover, due
to the symmetry in the arrangement of the sub-half-steps in (22), the splitting error in a
single time step is O(∆t3), and henceforth the global temporal truncation error due to the
fractional steps is O(∆t2) [26]. This second order accuracy in time is preserved because all
temporal evaluations are done in a symmetric fashion (at the half-step time t + 1

2∆t). The

overall second order accuracy (i.e., the truncation error is O(∆t2) + O(h2)) is confirmed by
the numerical results in Sect. 6.1.

4.5. Stability. Here, we show the L2 stability at the heart of the approach, namely the
combination of staggered spatial grids with the temporal splitting (22). We conduct the
analysis in a simplified case, namely: the P1 system (with advection coefficients set to 1), in
one space dimension, with constant coefficients, and without a source (i.e., ~q = 0). In this case

our solution vector consists of two scalar fields ~u =
[
ue uo

]T
, which satisfy the equations{

∂tu
e + ∂xu

o + ceue = 0

∂tu
o + ∂xu

e + couo = 0 .
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We now conduct a Von Neumann stability analysis of the numerical scheme presented above.
To that end, let the numerical solution at time t be represented in terms of its Fourier
coefficients

ue(x, t) =
∑
k

ae
k(t)e

ikx and uo(x, t) =
∑
k

ao
k(t)e

ikx .

Note that this particular form of the Fourier representation holds for a periodic domain of
length 2π. However, the arguments below transfer to any periodic domain, as well as to an
infinite domain (Cauchy problem, for which the sums would turn into integrals).

A step of the numerical scheme (22) in general affects all the Fourier coefficients ae
k and ao

k.
However, due to the linearity of the update rule, no mixing occurs between Fourier modes
of different frequency, i.e., the coefficients ae

k(t + ∆t) and ao
k(t + ∆t) depend only on the

coefficients ae
k(t) and ao

k(t) for this particular k. Consequently, it suffices to investigate the
growth factor for basic wave solutions

ue(x, t) = ae
k(t)e

ikx and uo(x, t) = ao
k(t)e

ikx . (23)

Let ue be defined on the grid hj, j ∈ Z and uo be defined on the grid h (j + 1
2), j ∈ Z. Then

the (staggered) grid solution values are

ue(hj, t) = ae
k(t)e

ikhj and uo(h (j + 1
2), t) = ao

k(t)e
ikh (j+ 1

2
) ,

and consequently the staggered grid derivatives are

(Dxu
e)(h (j + 1

2), t) = ae
k(t)

eikh (j+1) − eikhj

h
= 2

i

h
sin(kh/2)eikh (j+ 1

2
)ae
k(t)

and

(Dxu
o)(hj, t) = ao

k(t)
eikh (j+ 1

2
) − eikh (j− 1

2
)

h
= 2

i

h
sin(kh/2)eikhjao

k(t) .

Hence, for the basic waves (23) on the staggered grids, the even half-step solution operator
(20) updates the Fourier coefficients by the linear operation[

ae
k
ao
k

]
(t+ 1

2∆t) =

[
de f e

0 1

]
︸ ︷︷ ︸

=Ge
1
2 ∆t

·
[
ae
k
ao
k

]
(t) ,

where de = exp(−1
2c

e∆t) and f e = −i∆t
h E(−1

2c
e∆t) sin(kh/2). Similarly, the odd half-step

solution operator (21) acts on the Fourier coefficients as[
ae
k
ao
k

]
(t+ 1

2∆t) =

[
1 0
fo do

]
︸ ︷︷ ︸

=Go
1
2 ∆t

·
[
ae
k
ao
k

]
(t) ,

where do = exp(−1
2c

o∆t) and fo = −i∆t
h E(−1

2c
o∆t) sin(kh/2). Consequently, a full solution

time step (22) acts on the Fourier coefficients as[
ae
k
ao
k

]
(t+ ∆t) = Go

1
2

∆t
·Ge

1
2

∆t
·Ge

1
2

∆t
·Go

1
2

∆t
·
[
ae
k
ao
k

]
(t)

=

[
(de)2 + (de + 1)f efo do(de + 1)f e

(do + (de)2)fo + (de + 1)f e(fo)2 (do)2 + do(de + 1)f efo

]
︸ ︷︷ ︸

=G

·
[
ae
k
ao
k

]
(t) . (24)



STARMAP — STAGGERED GRID METHOD FOR MOMENT METHODS OF RADIATIVE TRANSFER 13

The eigenvalues of the growth factor matrix G are

λ1,2 = g ±
√
g2 − (dedo)2 ,

where g = 1
2

(
(de)2 + (do)2 + (de + 1)(do + 1)f efo

)
is half the trace of G. Since de and do are

real, and f e and fo are purely imaginary, the half-trace g is real.

Theorem 4. If ∆t < h, the time stepping (22) yields a stable scheme.

Proof. We consider four cases.

Case |g| = dedo. In this case both eigenvalues coincide, i.e., λ1 = λ2 = g. If a decay
is present in the governing equations (i.e., ce > 0 or co > 0), then |g| < 1, and the scheme
is absolutely stable. In turn, if no decay is present, one must check that the growth factor
matrix G cannot develop a Jordan block. The case g = 1 is equivalent to G being the identity
matrix, which represents the constant modes that remain unchanged; and the case g = −1
cannot occur, because ∆t

h < 1, and thus |f efo| < 1. Having covered the case of coinciding
eigenvalues, in the remaining cases it suffices to show that |λ1,2| ≤ 1.

Case |g| < dedo. One can observe that both eigenvalues λ1,2 are complex, with real

part g, and imaginary part ±
√

(dedo)2 − g2. Therefore, their magnitude satisfies

|λ1,2|2 = g2 +
(
(dedo)2 − g2

)
= (dedo)2 ≤ 1 ,

i.e., the stability condition is satisfied.

Case g > dedo ≥ 0. By directly estimating g we have

g2 − (dedo)2 = (g − dedo)(g + dedo) ≤ 1
2

(
(de)2 + (do)2 − 2dedo

)
1
2

(
(de)2 + (do)2 + 2dedo

)
= 1

4(de − do)2(de + do)2 ,

and therefore

λ2 = g +
√
g2 − (dedo)2 ≤ 1

2

(
(de)2 + (do)2 + |de − do| (de + do)

)
= max

{
(de)2, (do)2

}
≤ 1 .

Moreover, since g ≥ 0, we have that λ1 ≥ g− g = 0, hence the stability condition is satisfied.

Case g < −dedo ≤ 0. Clearly, λ2 ≤ g + |g| = 0, thus stability is satisfied if λ1 ≥ −1,
which is equivalent to the condition 1 + (dedo)2 + 2g ≥ 0. The half-trace g depends on the
wave number k. It achieves its smallest value if sin(kh/2)2 = 1, thus we can estimate (using
the CFL condition ∆t/h ≤ 1)

2g ≥ (de)2 + (do)2 − (1 + de)E(−1
2c

e∆t) (1 + do)E(−1
2c

o∆t)

= (de)2 + (do)2 − 1− (de)2

1
2c

e∆t

1− (do)2

1
2c

o∆t

= exp(−ce∆t) + exp(−co∆t)− 4
1− exp(−ce∆t)

ce∆t

1− exp(−co∆t)

co∆t
= 2− (ce∆tE(−ce∆t) + co∆tE(−co∆t) + 4E(−ce∆t)E(−co∆t)) ,

and therefore (using the notation te = ce∆t and to = co∆t) we obtain

1 + (dedo)2 + 2g ≥ 4− 2teE(−te)− 2toE(−to) + (teto − 4)E(−te)E(−to) ≥ 0 ,

where this last inequality can be verified by expanding the power series of the function E.
This shows that the presented scheme is conditionally stable, under the condition ∆t < h. �
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Remark 3. As the proof of Thm. 4 shows, in the presence of decay terms the scheme is stable
under the usual CFL condition ∆t ≤ h. However, if no decay is present (i.e., one has plain
wave propagation), the choice ∆t = h would lead to the amplification of waves with wave
number k = π

h , i.e., oscillations of a period of two grid cells.

Remark 4. It should be stressed that in the absence of decay terms, the preceding proof of
stability does not imply that the discrete L2 norm of the approximate solution,

P̂ [~u] =

∑
j

ue(hj)2 +
∑
j

uo(h(j + 1
2))2

 1
2

, (25)

is conserved in time (even though the true solution conserves the L2 norm, see Lemma 3).
The reason is that the growth factor matrix G, given in (24), is not Hermitian. Since it is
diagonalizable (for ∆t < h) with both eigenvalues of magnitude 1, it is power-bounded, i.e.,
‖Gk‖2 ≤ C, where the constant C is independent of k. However, ‖G‖2 > 1, and therefore the
discrete L2 norm will generally (25) oscillate in time, with a small amplitude (see the test
case in Sect. 6.2).

In analogy with similar types of problems and numerical approaches, one can expect that
the stability results of Thm. 4 carry over to the general case, albeit with the following modi-
fications:

• By Duhamel’s principle, problems with source terms can be interpreted as a super-
position of many homogeneous problems with new initial values. Hence, the stability
results carry over to equations with sources.
• For systems with more than two components that pre-multiply the spatial derivative

by a matrix M , the maximum admissible time step has to be scaled by the inverse of
the largest (in magnitude) eigenvalue of M .
• In two space dimensions, an extra factor of 1

2 in front of the time step will account
for the presence of growth rates in each of the two spatial dimensions.
• The case of variable coefficients is not covered by von-Neumann analysis. However,

as the proof of stability shows, larger decay terms relax the requirements for stability.
Hence, it is plausible that the variable coefficient case does not exhibit worse stability
properties than a constant coefficient case with the same minimal decay rates.

The numerical results in Sect. 6 confirm the stability of the method in the general case.

4.6. Important Advantages of the Methodology. Besides its aforementioned second
order accuracy (in space and time), an important advantage of the presented approach is
its structural simplicity and regularity: in each time step and at every grid point, exactly
the same operations are performed (albeit with different coefficients), thus giving rise to
an efficient vectorization (see Sect. 5), and possibly parallelization (see Outlook). Another
advantage of the approach is its stable treatment of large decay coefficients (i.e., problems
with large absorption and/or scattering): due to the exact solution (19) of the sub-step ODE
(17), large values of the decay coefficients ck do not impose restrictions on the time step. This
is in contrast to explicit time-stepping rules (such as Runge-Kutta methods), which would
incur severe time step restrictions for such stiff problems.
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4.7. Limitations of the Methodology. The simplicity of the approach incurs a few fun-
damental limitations, and the user of StaRMAP should be aware of these limitations when
using the code. Most prominently, the use of the PN closure (or SPN ) gives rise to the Gibbs
phenomenon (see Sect. 1), i.e., the exact solution of the moment system may develop oscil-
lations that are absent in the solution of the original radiative transfer equation (1). As one
consequence, the vector of moments may not be realizable, i.e., the moments cannot stem
from a non-negative density. This phenomenon is well-known to users of spherical harmonics
moment equations, and it is particularly demonstrated in the line source test case in Sect. 6.4.

There is also a Gibbs phenomenon due to having a linear second order numerical scheme,
which due to Godunov’s limitation theorem [6] cannot be monotone, and thus spurious oscil-
lations tend to occur near strong gradients of the solution. These overshoots could be avoided
through limiters. However, the addition of limiters would go at the expense of the structural
simplicity and efficiency of the method, and they are therefore not included in StaRMAP.

Another limitation of the approach is that its simplicity stems from the regularity in the
geometry. Hence, a generalization of the method to irregular or locally refined meshes is
not possible without sacrificing some fundamental structural advantages. Similarly, since the
method’s overall second order accuracy is based on exploiting local symmetries, a generaliza-
tion to higher orders is impossible without introducing major modifications.

Finally, the temporal splitting could generate spurious oscillations in the case of strong
spatial gradients in the material parameters. While the exact treatment of the sub-step ODE
(17) successfully deals with uniformly large decay rates, extreme gradients in the absorption
and/or scattering coefficients could trigger O(1) spurious waves, if the time step is not suitably
reduced. Again, it is important that the user of StaRMAP be aware of this possibility when
attempting to solve problems with large material parameters that in addition exhibit strong
gradients or jumps.

5. Implementation in Matlab

The StaRMAP project consists of four types of m-files:

• the solver file starmap solver.m;
• files that create moment matrices, such as starmap closure pn.m;
• example files, such as starmap ex checkerboard.m; and
• example creation files, such as starmap create mms.m.

The philosophy is that in all “usual” cases, the solver file does not require any modification.
Similarly, the files that create moment matrices remain unchanged (the user could add ad-
ditional types of moment closures via new starmap closure *.m files, though). What the
user provides and modifies are the example files (in which a problem is defined), and/or the
example creation files (which create example files). The example files then call the solver file
to run the computation. Below, we describe the various components of the implementation
in detail.

5.1. Definition of a Test Case. Each test case is encoded in an example file (such as
starmap ex checkerboard.m), which defines the problem and then calls the solver file. The
communication is achieved via the Matlab struct par, which is created in the example file
and then passed to the solver file. This problem parameter can contain the problem name
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(par.name), the moment matrices (par.Mx and par.My), the moment order index vector
(par.mom order), the coordinates of the computational domain (par.ax), the numbers of
grid cells in each coordinate direction (par.n), the type of boundary conditions (par.bc), the
times of plotting (par.t plot), the final time (par.tfinal), the CFL number (par.cn),
the list of moments sent to the plotting routine (par.mom output), as well as function
handles for absorption (par.sigma a), scattering (par.sigma s0 and par.sigma sm), the
source (par.source), initial conditions (par.ic), and a problem-specific plotting routine
(par.output). Any of these parameters that is not provided is set to a default value by the
solver file.

A typical StaRMAP example file consists of three parts: (i) the definition of the problem
parameters that differ from the default, including function handles; (ii) the creation of the
moment matrices (by calling starmap closure pn.m for PN and starmap closure spn.m for
SPN ) and the call of the solver; and (iii) the definition of the problem-specific functions.

5.2. Data Structures for Staggered Grids. At the core of the Matlab implementation
of the method developed in Sect. 4 is the fact that the differential and evolution operators
perform the same type of operation at each grid point. We therefore store each field quantity
and each component of the solution vector as a two-dimensional array (which is identical to
a matrix in Matlab), in which the first component represents the x-index and the second
component the y-index of the respective grid. Hence, in line with the staggered grids (10) and
(12), every component in the set I11 is a matrix of size nx × ny, and the components in I21,
I12, and I22 are of sizes (nx+1−px)×ny, nx× (ny +1−py), and (nx+1−px)× (ny +1−py),
respectively, where px and py are the periodicity flags defined in (13).

5.3. Initialization. A significant part of the StaRMAP code is devoted to the initialization of
the data structures. While many of these steps are technical (mostly to ensure that Matlab
handles the memory in an efficient fashion), some steps are of conceptual importance:

• The staggered grid index sets c11, c22, c21, and c12 (representing the respective
sets I11, I21, I12, and I22 are created automatically from the structure of the moment
matrices par.Mx and par.My. This is done by first placing the first solution component
in c11, and then continuing to place components in appropriate sets, whenever a
nonzero entry in the matrices par.Mx and par.My requires this, until all components
are distributed into the index sets.
• The maximal admissible time step is determined by computing the largest (in mag-

nitude) eigenvalue of the moment matrix Mx via the expression

abs(eigs(par.Mx,1,’lm’))

Note that it is assumed that the moment system preserves rotational symmetry, and
thus the eigenvalues of Mx are identical to the eigenvalues of nxMx + nyMy for all
n2
x + n2

y = 1.
• The code segment

extendx = {[1:par.bc(1),1:n1(1),par.bc(1)*(n1(1)-1)+1],...

[n2(1)*(1:1-par.bc(1)),1:n2(1)]};

extendy = {[1:par.bc(2),1:n1(2),par.bc(2)*(n1(2)-1)+1],...

[n2(2)*(1:1-par.bc(2)),1:n2(2)]};
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creates the index vectors (two cell components each) that encode the boundary con-
ditions. The definition of these four index vectors is the only place in the code where
the boundary conditions enter.
• In the case of isotropic scattering, the vector par.mom order is modified to point

at the first moment order only, resulting in the three-dimensional cell array of the
material parameters to be of length 1 in the third component.

5.4. Spatial Derivatives. In the StaRMAP code, the moments are assembled in a cell struc-
ture U, where the jth component is U{j}. Note that components that are defined on different
grids may be of different sizes. The half-grid central difference formulas (14) applied to the
component U{j} are therefore computed as

dxU{j} = diff(U{j}(extendx{1},:),[],1)/h(1);

dyU{j} = diff(U{j}(:,extendy{1}),[],2)/h(2);

where the vector h contains the grid spacing ∆x and ∆y as components. As described in
Sect. 4.1, if the component U{j} is defined on the grid Gk`, then dxU{j} is defined on G3−k,`
and dyU{j} is defined on Gk,3−`. Since the diff function reduces one of the array’s dimension
by 1, the array U{j} may need to be extended, before finite differencing is applied. This is
encoded in the index vectors extendx{1}, extendx{2}, extendy{1}, and extendy{2}, as
explained above.

5.5. Update of Even and Odd Components. Each time step consists of four half steps.
The even solution operator (20) updates the components on the even grids G11 and G22, by
using spatial derivatives of quantities on the odd grids G21 and G21; and vice versa for the
odd solution operator (21). One step with the even (odd) solution operator consists therefore
of two parts: first, spatial differences of the odd (even) components are computed (see above);
second, the even (odd) components are updated, via the code segment

W = -sumcell([dxU(Ix{j}),dyU(Iy{j})],...

[par.Mx(j,Ix{j}),par.My(j,Iy{j})]);

U{j} = U{j}+dt/2*(W+Q{j}-...

sT{gtx(j),gty(j),par.mom_order(j)}.*U{j}).*...

ET{gtx(j),gty(j),par.mom_order(j)};

Here the array W contains all Dx and Dy finite differences that influence a certain component,
weighted by the negative moment matrices Mx and My. The call of the function sumcell

achieves this task efficiently by only considering derivatives that correspond to actual nonzero
entries in the matrices Mx and My. Since the moment matrices derived in Sect. 3 have an
O(1) number of nonzero entries per row, this guarantees that the computational effort of the
code grows linearly with the number of moments.

The update rule for the jth moment is an immediate implementation of the update for-
mula (19). The array Q{j} represents the jth moment of the source term, and the arrays
sT{gtx(j),gty(j),par.mom order(j)} and ET{gtx(j),gty(j),par.mom order(j)} encode
the decay quantity cj(x, y) and E(−cj(x, y)∆t

2 ), respectively. Here, sT stands for Σt, and ET

denotes the function E being applied to Σt. There is a small modification to this update rule
for j = 1: since the zeroth moment is unaffected by scattering, the update is conducted with
the fields sA (which stands for Σa) and EA (which is the function E applied to Σa).
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Structurally, the decay terms sT and ET are arranged in three dimensional cell arrays.
The first two components encode the grid index in each coordinate direction (1 for odd, and
2 for even). The third component encodes the moment order index `, given in the index
vector par.mom order, which encodes a mapping from the system component index to the
moment order `. Since different moments of the same moment order ` possess the same decay
parameters, this structure guarantees that the number of decay quantities grows only linearly
in the moment order N .

5.6. expm1div. The function E(c) = exp(c)−1
c , used in the solution formula (19), requires a

careful implementation. For values of c away from zero, this formula can be implemented as
given. However, for |c| � 1 the difference and division may lead to severely amplified round-
off errors, which to leading order equal δ

c , where δ is the machine accuracy. In the StaRMAP
code (function expm1div), the exponential formula is therefore replaced by the Taylor series
approximation E(c) = 1− 1

2c+ 1
6c

2 for |c| ≤ 2× 10−4. While this series approximation does
not yield any amplified round-off errors, it possesses an approximation error that to leading
order equals 1

24c
3. For double-precision arithmetics, the total errors incurred with these two

evaluation formulas match for |c| ≈ 2× 10−4, at a value of less than 10−12.

5.7. Evaluation of Material Parameters and Source. In order for the aforementioned
update step to have the decay quantities sA and sT, as well as the source Q, available, these
quantities must be evaluated before the update. While the StaRMAP code can treat rather
general problem setups (anisotropic and/or time-dependent parameters), an important focus
lies on its efficiency in special situations, and a significant part of the code is devoted to
properly addressing this demand, as follows:

• Scattering, absorption, and the source term are each evaluated once in the beginning
of each time step, at time t + 1

2∆t. However, if any of these quantities is actually
time-independent, then its evaluation occurs in the first time step only.
• The scattering is divided into its isotropic component (encoded in par.sigma s0)

and the anisotropic component (encoded in par.sigma sm), where m stands for the
moment order (see above). For a problem with isotropic scattering, one simply does
not provide the function par.sigma sm. In turn, if this function is provided, then it
is evaluated for all moment orders 1, . . . , N . Note that the function par.sigma sm is
never evaluated for m = 0; scattering never influences the zeroth moment.
• The source function par.source allows for a component for each moment. However,

since in many applications sources are acting on only a few moments, one can encode
the indices of these moments in the vector par.source ind. Specifically, an isotropic
source would apply only to the zeroth moment, in which case par.source ind = 1.

5.8. Time Stepping. Each time step consists of three parts: (i) the evaluation of mate-
rial parameters and sources, if applicable; (ii) the application of the four half-step solution
operators, given in (22); and (iii) the plotting of the solution, if applicable.

In the application of the half-step operators, the even solution operator Se
t+ 1

2
∆t,t

is applied

twice in succession. While one cannot replace these two half-steps by one full step (if one
did, one would lose the second order in time), the finite differences need to be evaluated only
once. This is done in the StaRMAP code, thus reducing the number of operations. Note that
in the special case of a fully time-independent problem, one could apply the same trick to
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the odd solution operator (combined over two successive time steps). Since this case is quite
rare, this trick is not implemented.

The solution (or, in most cases, the zeroth moment of the solution) is plotted at all times
given in the vector par.t plot. At the end of each time step, for all times in par.t plot

that lie in the interval (t, t + ∆t], the solution is computed via linear interpolation in time

u(tplot) = (1−λ)u(t)+λu(t+∆t), where λ =
tplot−t

∆t . This preserves the second order accuracy
of the solution. With this approach, the computation is completely unaffected by the output
of the solution.

6. Numerical Results

6.1. Verification via Manufactured Solutions. We use the method of manufactured so-
lutions [23] to verify our implementation and to validate the accuracy predictions about the
numerical approach made in Sect. 4.4. To that end, a routine is implemented that uses Mat-
lab’s symbolic toolbox to automatically compute the source vector ~q(x, y, t) that generates a
prescribed solution under prescribed material coefficients. We select a smooth, but spatially
and temporally varying, solution and smooth, but non-constant, coefficients. Moreover, the
solution and the coefficients (and consequently the sources) are periodic on the rectangular
computational domain.

As an example, we consider the P3 model for t ∈ [0, 0.5] on the domain (x, y) ∈ [0, 1] ×
[0, 1]. We use a time- and space-dependent absorption coefficient Σa(t, x) = t cos(2πx2), and
anisotropic Henyey-Greenstein scattering [8] with Σs` = 0.9`. The manufactured solution is

R0
0(t, x) = e−t sin2(2πx1)

with all other moments being zero.

The problem is computed for 4 different grid resolutions, and at the final time the difference
between the approximate and the true solution for the 10 moments is evaluated. Figure 2
displays the spatial L1, L2, and L∞ errors as functions of the grid resolution. The four panels
show the errors in the scalar flux R0

0 (top left), the first order moments R1
1, I1

1 (top right),
the second order moments R2

2, I2
2 , R0

2 (bottom left), and the third order moments R3
3, I3

3 , R1
3,

I1
3 (bottom right). All moments exhibit the expected second order convergence.

In the StaRMAP project, the “manufacturing” of a solution, i.e., the computation of a
source term that generates a prescribed solution, in done via the file starmap create mms.m.
This m-file generates the actual example file starmap ex mms auto.m, which then can be
executed to produce the plot shown in Fig. 2.

6.2. Variations in the Discrete L2 Norm. In the absence of absorption, scattering,
sources, and boundary conditions, the true solution of the PN equations conserves the L2

norm (8) exactly (see Lemma 3). In contrast, as pointed out in Remark 4, the numerical
scheme does not conserve the discrete L2 norm (25) of the approximate solution exactly.

In this test we study the magnitude of temporal variations of the discrete L2 norm of the
numerical solution. We consider the P5 equations in the domain [−1, 1]× [−1, 1] with periodic
boundary conditions, and the following initial conditions. The scalar flux R0

0 is a Gaussian
(26) with σ = 10−2, and all other moments are zero initially. The waves propagate in a void
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Figure 2. Convergence study with manufactured solution. Errors (in L1, L2, and L∞) as functions
of the grid resolution h. Top left: zeroth moment; top right: first order moments; bottom left: second
order moments; bottom right: third order moments.

without any sources. The problem is computed on three different resolutions: a 50× 50 grid,
a 100× 100 grid, and a 200× 200 grid.

Figure 3 displays the results of this test. The scalar flux at the final time (t = 0.5) is
shown in the left panel, and the temporal evolution of the discrete L2 norm is shown in the
right panel (normalized to the value 1 at t = 0). The results confirm that the discrete L2

norm is not conserved exactly. However, they also demonstrate that its variations are very
small: less than 0.02% on a 100× 100 grid. Moreover, the amount of variation decays to zero
as the grid is refined. In the StaRMAP project, this test is implemented in the example file
starmap ex l2norm.m.

6.3. Checkerboard. We consider the checkerboard problem described in [1]. The compu-
tational domain is a square of size [0, 7] × [0, 7] where the majority of the region is purely
scattering. In the middle of the lattice system, in the square [3, 4]× [3, 4], an isotropic source
q = 1 is continuously generating particles. Additionally, there are eleven small squares of side
length 1 of purely absorbing spots in which Σa = 10 = Σt. In the rest of the domain, Σa = 0,
Σt = 1. Figure 4 illustrates the problem setting more precisely.
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Expanding Gaussian Test with P5 at t = 0.50
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Figure 3. Investigation of the temporal variations in the discrete L2 norm of the numerical solution.
An initial Gaussian spreading in a void (left panel) is computed with the P5 moment system. For
three different mesh resolutions, the temporal evolution of the L2 norm is recorded (right panel). One
can observe that (a) the variations in the discrete L2 norm are small (less than 0.02% on a 100× 100
grid); and (b) the variations diminish as the grid is refined.
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Figure 4. Checkerboard problem, material coefficients: isotropic source (white), purely scattering
Σs0 = 1 = Σt (orange and white), purely absorbing Σa = 10 = Σt (black).

In the StaRMAP project, the checkerboard test case is implemented in the example file
starmap ex checkerboard.m. Extrapolation boundary conditions1 are enforced. At the ini-
tial time t = 0, all quantities are zero. The spatial grid is 250× 250 for all cases.

We compare the scalar flux using different orders of PN approximations, with the scalar
flux R0

0 at t = 3.2 shown in Fig. 5. The case N = 3 corresponds to 10 angular degrees of
freedom, while the case N = 39 possesses 820 angular degrees of freedom. For increasing N ,

1Most frequently, this test is equipped with vacuum boundary conditions, which are not implemented in
the StaRMAP routines. The easiest way to “emulate” vacuum in StaRMAP for this test would be to extend
the computational domain.
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Checkerboard Test with P3 at t = 3.20
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Figure 5. Checkerboard problem. Scalar flux R0
0 at t = 3.2 for several moment approximations (P3,

P5, P15, and P39), computed with 250× 250 grid points. The values are plotted in a logarithmic scale
and limited to seven orders of magnitude. The left panel shows the solution in a color plot, where
negative values of R0

0 are depicted in gray. The right panel shows the solution evaluated along the
vertical line x = 3.5.

several well-known properties of the PN approximation can be observed. First, the maximum
propagation speed of information approaches the correct limit of 1 which can be seen at the
upper front. Second, the Gibbs phenomena in the solution (left, right, bottom) are diminished.
The P39 solution can be seen as a fully converged transport solution that in particular does
not possess any negative scalar flux values.

To get an impression about the computational cost and efficiency of the StaRMAP solver:
the computation of a P5 solution on a 100 × 100 spatial grid corresponds to 18.3 million
degrees of freedom in space, angle, and time, and it takes about 1.5 seconds to compute on a
2008 Lenovo W500 laptop.

6.4. Line Source. The line source problem has been investigated for the PN equations in
[1]. Essentially one is trying to compute the Green’s function for an initial isotropic Dirac
mass at the origin, i.e.

ψ(t = 0, x,Ω) =
1

4π
δ(x) .

One can also imagine an infinite line emitting particles isotropically (hence the name). There
exists a semi-analytical solution to the full transport equation (1) for this problem due to
Ganapol et al. [5]. The exact solution consists of a circular front moving away from the origin
as well as a tail of particles which have been scattered or not emitted perpendicularly from
the line.
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Line Source Test with SP19 at t = 0.50
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Figure 6. Results of the line source problem at t = 0.5, computed with SP19 (top) and SP39 (bottom).
The left sub-figures show the 2d solution profile. The right sub-figures show the solution on a cut along
the positive radial axis (red), together with Ganapol’s semi-analytic solution (blue). Note that SPN

and PN are equivalent in this case.

When setting up this test case, some care is in order. Although Ganapol’s semi-analytical
benchmark solution does not consist of Diracs, it has a singularity at the edge. More precisely,
the solution R0

0 approaches infinity as 1
r0−r (where r is the distance from origin and r0 is the

front). On the other hand, Brunner & Holloway [1] have shown that the analytical solution
of the P1 equations for an initial Dirac consists of traveling Diracs at the front. This is also
true for higher-order PN solutions. With a grid-based method as simple as ours, one cannot
expect to capture either the Diracs or the singularities.

Instead, we realize the initial condition as a narrow Gaussian in space

R0
0 =

1

4πσ
exp

(
−x

2 + y2

4σ

)
(26)
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with σ = 3.2 × 10−4. This way, the integral of R0
0 over the whole space is one, so it can be

compared to the scalar flux of the benchmark solution.

We choose Σa = 0 and Σs = 1
4π , so that Σs0 = 1. The computational domain is

[−0.6, 0.6]× [−0.6, 0.6]. In the StaRMAP project, the line source test case is implemented in
the example file starmap ex linesource.m. This m-file also approximates Ganapol’s semi-
analytic solution with an accuracy that makes the resulting function indistinguishable from
the exact solution when plotted.

At this point, two aspects should be stressed. A piece of good news is that the line source
test case satisfies the conditions under which the SPN and the PN equations are equivalent
(see [16]). We therefore can compute the numerical solution using the SPN equations, and
thus obtain the same result as with the PN equations, but much faster. A note of caution
must be given regarding the width of the initial Gaussian. The pseudo-time σ must be chosen
large enough so that the Gaussian is well resolved by the grid. If one fails to do so, spurious
oscillations will arise (due to the absence of limiters in the numerical scheme) that can be
quite detrimental to the quality of the numerical approximation.

The computational results for SP19 and SP39, both computed on a 150× 150 spatial grid,
are shown in Figure 6. These results are in line with the observations from [1] and the previous
test case. While in theory the PN equations have a rotationally symmetric solution, it has been
observed in [1] that a higher-order scheme is necessary to observe the rotational invariance
numerically. In our case, both the SP19 and the SP39 solutions exhibit this behavior. For the
lower-order SP19 model, the Gibbs phenomenon is very clearly visible. The SP39 solution, on
the other hand, shows only very tiny oscillations. Of course, it cannot capture the singular
behavior of the solution, but it does a good job at capturing the radiation front. These two
examples are shown because the StaRMAP code solves them within a few minutes. However,
if one is willing to accept longer computation times, then suitable grid refinement and a more
narrowly focused initial condition would yield an even better approximation.

6.5. Beam in Void and Medium. In this problem we study the advection of a packet of
particles that are emanating from a source (essentially compactly supported in space) and all
move in the same direction in empty space, before they hit a material. This test investigates
how well the method performs in a void, at material interfaces, and with anisotropic scattering.

The source can be written as

q(t, x,Ω) = q̄(x)δ(Ω− Ω0) ,

where q̄ is a spatial distribution and Ω0 is a direction in the plane. Here we choose Ω0 to
have an angle of π/6 with respect to the x-axis and q̄ is the same spatial Gaussian as for
the line source problem. The proper solution of this beam problem involves the challenge of
calculating the correct moments of the source for all components of the PN solution vector.
We do so by following the definitions and transformations given in Sect. 3.

The domain for this test is [−0.6, 0.6]× [−0.6, 0.6] with extrapolation boundary conditions
on all sides. The region with x < 0.3 contains no material, i.e. Σt = 0, whereas the region
x ≥ 0.3 is a material with no absorption (Σa = 0) but anisotropic Henyey-Greenstein [8]
scattering Σs` = 100g` with g = 0.85.

In the StaRMAP project, this test case is realized similarly to the manufactured solution
example, namely the file starmap create beam.m performs the computation of the beam
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Beam Test with P9 at t = 0.30
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Figure 7. Beam problem, computed with P9 (top row) and P39 (bottom row). Shown is the scalar
flux R0

0 at times t = 0.3 (left column) and t = 0.6 (right column). A spatially Gaussian source
propagates into the direction with angle π/6 with respect to x-axis, and hits a medium at x = 0.3.

initial conditions, and then generates an example file starmap ex beam auto.m that can then
be executed to produce the plots shown in Fig. 7.

Figure 7 shows the scalar flux R0
0 at two times (t ∈ {0.3, 0.6}) for a beam computation

on a spatial grid of 150 × 150 cells, using two moment models: P9 (top two figures) and
P39 (bottom two figures). The full transport equation (1) would initially (i.e., before the
beam hits the medium) just advect the source with unit speed into direction Ω0. Due to the
truncation in the PN approximation, the beam smears out, and Gibbs artifacts appear during
the evolution. These are clearly visible in the P9 solution (top left figure), in which the beam
spreads out and oscillations occur. In contrast, the P39 solution at t = 0.3 (bottom left figure)
is very close to a fully converged transport solution; no truncation artifacts are visible.

At the material interface, particles start to scatter strongly, albeit in a forward direction.
As a consequence, the propagation of the beam effectively slows down and it is smeared out.
The P39 solution at t = 0.6 (bottom right figure) shows the correct beam profile (including a
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reflected beam at the interface between medium and void), albeit a small amount of Gibbs
artifacts that are visible. The corresponding P9 solution (top right figure) is of significantly
lower accuracy: while the general direction of the radiative flux is represented correctly, the
precise shape of the radiation profile (e.g., beam thickness, reflections, maxima) is not well-
captured.

When considering this test, it must be remarked that beams are not the type of phenomena
that one would usually consider using moment methods for. In addition, moment approxima-
tions to problems with voids in general do not converge to the correct steady state solution
as t → ∞ (the Gibbs oscillations would amplify in time). Nevertheless, as the results in
Fig. 7 show, and as one can verify with the StaRMAP project files, beams can be reasonably
well approximated. Thus, with the moment order N chosen suitably large and for sufficiently
short times, challenging problems, such as beams moving from a void into a highly scattering
medium, can be computed accurately with StaRMAP.

6.6. Further Test Cases. The StaRMAP code has also been applied to several other exam-
ples. Among them are:

• The “boxes” test, implemented in the example file starmap ex boxes.m, is a test case
that was proposed by McClarren [16] to demonstrate the equivalence of the SPN and
the PN equations under certain assumptions.
• The “control rod” test was devised by Olbrant [21] as an example for time-dependent

material coefficients. The setup can be interpreted as a simple model for the evolution
of the neutron density in a nuclear reactor, when an absorbing rod is moved into and
out of the domain. In the StaRMAP project, it is implemented in the example file
starmap ex controlrod.m.

Further details and numerical results for both tests are given in [21].

7. Conclusions and Outlook

The presented numerical approach to solve the spherical harmonics PN equations (and
variants thereof) of radiative transfer has been demonstrated to be highly flexible, and to
be applicable to a wide variety of radiative transfer problems in two space dimensions. The
method is implemented in the Matlab project StaRMAP, that can be downloaded [25], and
all examples presented in this paper can be reproduced by the user.

As shown in this paper, the staggered grid finite difference approach employed in StaRMAP
is second order accurate, and stable independent of the magnitude of the material scattering
and absorption coefficients (with the CFL condition that is commonly incurred for advection
problems). Further advantages and drawbacks of the method have been discussed in detail.

The availability of the complete Matlab code serves another purpose besides the repro-
ducibility of the results presented in this paper: we encourage users to create their own
StaRMAP example files for test cases that arise in their own work. The modular structure of
the code facilitates this goal: in general, users should not be required to modify the solver
file starmap solver.m, but instead they can simply build on the existing example files.

While the current StaRMAP code is quite general in that it allows for arbitrary moment
order and for various types of moment systems, it has a number of crucial limitations. Some
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cannot be overcome easily, such as the occurrence of Gibbs phenomena or the regularity of
the grid structures (see Sect. 4.7 for more details). In turn, some limitations can (and shall)
be addressed in the future, as follows.

In principle, the presented methodology applies to the full 3D case as well. We have
decided against generalizing the current StaRMAP code to 3D, mainly for the simple reason of
computational cost and memory requirements. While 2D problems can be solved in Matlab
with a good accuracy, in reasonable compute times, and with a reasonable amount of memory
consumption, we do not perceive things as quite mature enough yet for a 3D Matlab version
of StaRMAP.

The StaRMAP code can be extended to other moment models that exhibit a similar coupling
structure between the moments as the PN and the SPN equations. Specifically, the filtered PN
(FPN ) method [18] falls into this category, as do the diffusion-corrected PN (DN ) equations,
which contain an additional diffusion term in the highest order moments. These last types of
models can be rationalized via asymptotic analysis [24] or by the Mori-Zwanzig formalism of
statistical mechanics [3]. The splitting procedure employed in the StaRMAP code allows for
the addition of a diffusion step applied to the moments of the highest order. Finally, it must
be verified that the method presented here satisfies an important property for numerical
approaches for radiative transfer, namely whether it is asymptotic-preserving (AP) [9]. It
can be quite easily shown that the scheme proposed in this paper is at least formally AP.
Moreover, as has been suggested in [10], because of the staggered grid we obtain a compact
stencil in the diffusive limit. In addition, due to the explicit integration in time, the time step
does not depend on the possibly stiff right hand side. The AP property will be investigated
in detail in a companion paper [4].
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