
A

Random Slicing: Efficient and Scalable Data Placement for
Large-scale Storage Systems

ALBERTO MIRANDA, Barcelona Supercomputing Center, Barcelona
SASCHA EFFERT, Christmann Informationstechnik + Medien, Ilsede
YANGWOOK KANG and ETHAN L. MILLER, University of California, Santa Cruz
IVAN POPOV and ANDRE BRINKMANN, Johannes Gutenberg-University, Mainz
TOM FRIEDETZKY, Durham University, Durham
TONI CORTES, Barcelona Supercomputing Center and Technical University of Catalonia, Barcelona

The ever-growing amount of data requires highly scalable storage solutions. The most flexible approach is

to use storage pools that can be expanded and scaled down by adding or removing storage devices. To
make this approach usable, it is necessary to provide a solution to locate data items in such a dynamic

environment. This paper presents and evaluates the Random Slicing strategy, which incorporates lessons

learned from table-based, rule-based, and pseudo-randomized hashing strategies and is able to provide a
simple and efficient strategy that scales up to handle exascale data. Random Slicing keeps a small table with

information about previous storage system insert and remove operations, drastically reducing the required

amount of randomness while delivering a perfect load distribution.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—Alloca-
tion/deallocation strategies

General Terms: Design, Experimentation, Performance, Reliability, Scalability

Additional Key Words and Phrases: PRNG, Randomized data distribution, Storage management

ACM Reference Format:
Miranda, A., Effert, S., Kang Y., Miller, E. L., Popov, I., Brinkmann, A., Friedetzky, T. and Cortes, T. 2012.
Random Slicing: Efficient and Scalable Data Placement for Large-scale Storage Systems. ACM Trans. Stor-
age V, N, Article A (January YYYY), 28 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

An earlier version of this article appeared in Proceedings of the 18th International Conference on High Per-
formance Computing (HiPC) [Miranda et al. 2011].
This work was partially supported by the Spanish Ministry of Science and Technology under the TIN2007-
60625 grant, the Catalan Government under the 2009-SGR-980 grant, the EU Marie Curie Initial Training
Network SCALUS under grant agreement no. 238808, the National Science Foundation under grants CCF-
0937938 and IIP-0934401, and by the industrial sponsors of the Storage Systems Research Center at the
University of California, Santa Cruz.
Authors’ addresses: A. Miranda and T. Cortes, Barcelona Supercomputing Center, 31 Jordi Girona,
Barcelona, 08034, Spain; email: alberto.miranda@bsc.es, toni.cortes@bsc.es; S. Effert, Christmann Infor-
mationstechnik + Medien, 10 Ilseder Htte, 31241, Ilsede, Germany; email: sascha.effert@christmann.info;
Y. Kang and E. L. Miller, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064,
USA; email: ywkang@ucsc.edu, elm@ucsc.edu; I. Popov and A. Brinkmann, Johannes Gutenberg-Universitt
Mainz, Zentrum für Datenverarbeitung (ZDV), Anselm-Franz-von-Bentzel-Weg 12, D 55099 Mainz, Ger-
many; email: ipopov@uni-mainz.de, brinkman@uni-mainz.de; T. Friedetzky, Durham University, Science
Labs, South Road, Durham, DH1 3LE, England, U.K.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1553-3077/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 A. Miranda et al.

1. INTRODUCTION
The ever-growing creation of, and demand for, massive amounts of data requires highly
scalable storage solutions. The most flexible approach is to use a pool of storage devices
that can be expanded and scaled down as needed by adding new storage devices or
removing older ones; this approach necessitates a scalable solution for locating data
items in such a dynamic environment.

Table-based strategies can provide an optimal mapping between data blocks and
storage systems, but obviously do not scale to large systems because tables grow lin-
early in the number of data blocks. Rule-based methods, on the other hand, run into
fragmentation problems, so defragmentation must be performed periodically to pre-
serve scalability.

Hashing-based strategies use a compact function h in order to map balls with unique
identifiers out of some large universe U into a set of bins called S so that the balls
are evenly distributed among the bins. In our case, balls are data items and bins are
storage devices. Given a static set of devices, it is possible to construct a hash function
so that every device gets a fair share of the data load. However, standard hashing
techniques do not adapt well to a changing set of devices.

Consider, for example, the hash function h(x) = (a ·x+ b) mod n, where S represents
the set of storage devices and is defined as S = {0, . . . , n− 1}. If a new device is added,
we are left with two choices: either replace n by n + 1, which would require virtually
all the data to be relocated; or add additional rules to h(x) to force a certain set of
data blocks to be relocated on the new device in order to get back to a fair distribution,
which, in the long run, destroys the compactness of the hashing scheme.

Pseudo-randomized hashing schemes that can adapt to a changing set of devices
have been proposed and theoretically analyzed. The most popular is probably Consis-
tent Hashing [Karger et al. 1997], which is able to evenly distribute single copies of
each data block among a set of storage devices and to adapt to a changing number of
disks. We will show that these pure randomized data distribution strategies have, de-
spite their theoretical perfectness, serious drawbacks when used in very large systems.
Especially, many of their properties are only achieved if enough random experiments
can be performed. This has, as we will show in this paper, a serious influence on the
necessary amount of memory, rendering them infeasible in large scale environments.

Besides adaptivity and fairness, redundancy is important as well. Storing just a
single copy of a data item in real systems is dangerous because, if a storage device
fails, all of the blocks stored in it are lost. It has been shown that simple extensions
of standard randomized data distribution strategies to store more than a single data
copy are not always capacity efficient [Brinkmann et al. 2007].

The main contributions of this paper are:

— First comparison of different hashing-based data distribution strategies
that are able to replicate data in a heterogeneous and dynamic environment.
This comparison shows the strengths and drawbacks of the different strategies as well
as their constraints. Such comparison is novel because hashing-based data distribution
strategies have been mostly analytically discussed, with only a few implementations
available, and in the context of peer-to-peer networks with limited concern for the
fairness of the data distribution [Stoica et al. 2003]. Only a few of these strategies
have been implemented in storage systems, where limited fairness immediately leads
to a strong increase in costs [Brinkmann et al. 2004][Weil et al. 2006a].

— The introduction of Random Slicing, which overcomes the drawbacks of
randomized data distribution strategies by incorporating lessons learned from
table-based, rule-based and pseudo-randomized hashing strategies. Random Slicing
keeps a small table with information about previous storage system insertions and

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Random Slicing: Efficient, Scalable Data Placement A:3

removals. This table helps to drastically reduce the required amount of randomness in
the system and thus reduces the amount of necessary main memory by several orders
of magnitude.

— An analysis of the influence (or lack thereof) of eighteen different pseudo-
random number generators (PRNGs) in all the strategies studied. We evalu-
ate each generator in terms of quality of distribution and performance provided. We
believe that the results of this analysis may help other researchers choose an appro-
priate PRNG when designing and implementing new randomized data distribution
strategies.

It is important to note that all randomized strategies map (virtual) addresses to a set
of disks, but do not define the placement of the corresponding block on the disk surface.
This placement on the block devices has to be resolved by additional software running
on the disk itself. Therefore, we will assume inside the remainder of the paper that
the presented strategies work in an environment that uses object-based storage. Un-
like conventional block-based hard drives, object-based storage devices (OSDs) manage
disk block allocation internally, exposing an interface that allows others to read and
write to variably-sized, arbitrarily-named objects [Azagury et al. 2003][Devulapalli
et al. 2008].

1.1. The Model
Our research is based on an extension of the standard “balls into bins” model [Johnson
and Kotz 1977][Mitzenmacher 1996]. Let {0, . . . ,M − 1} be the set of all identifiers for
the balls and {0, . . . , N − 1} be the set of all identifiers for the bins. Suppose that the
current number of balls in the system is m ≤ M and that the current number of bins
in the system is n ≤ N . We will often assume for simplicity that the balls and bins are
numbered in a consecutive way starting with 0, but any numbering that gives unique
numbers to each ball and bin would work for our strategies.

Suppose that bin i can store up to bi (copies of) balls. Then we define its relative
capacity as ci = bi/

∑n−1
j=0 bj . We require that, for every ball, k copies must be stored

in different bins for some fixed k. In this case, a trivial upper bound for the number
of balls the system can store while preserving fairness and redundancy is

∑n−1
j=0 bj/k,

but it can be much less than that in certain cases. We term the k copies of a ball a
redundancy group.

Placement schemes for storing redundant information can be compared based on the
following criteria (see also [Brinkmann et al. 2002]):

— Capacity Efficiency and Fairness. A scheme is called capacity efficient if it allows
us to store a near-maximum number of data blocks. We will see in the following that
the fairness property is closely related to capacity efficiency, where fairness describes
the property that the number of balls and requests received by a bin are proportional
to its capacity.

— Time Efficiency. A scheme is called time efficient if it allows a fast computation of
the position of any copy of a data block without the need to refer to centralized tables.
Schemes often use smaller tables that are distributed to each node that must locate
blocks.

— Compactness. We call a scheme compact if the amount of information the scheme
requires to compute the position of any copy of a data block is small (in particular, it
should only depend on n—the number of bins).

— Adaptivity. We call a scheme adaptive if it only redistributes a near-minimum
amount of copies when new storage is added in order to get back into a state of fairness.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 A. Miranda et al.

We therefore compare the different strategies in Section 6 with the minimum amount
of movements, which is required to keep the fairness property.

Our goal is to find strategies that perform well under all of these criteria.

1.2. Previous Results
Data reliability and support for scalability as well as the dynamic addition and re-
moval of storage systems is one of the most important issues in designing storage
environments. Nevertheless, up to now only a limited number of strategies has been
published for which it has formally been shown that they can perform well under these
requirements.

Data reliability is achieved by using RAID encoding schemes, which divide data
blocks into specially encoded sub-blocks that are placed on different disks to make
sure that a certain number of disk failures can be tolerated without losing any infor-
mation [Patterson et al. 1988]. RAID encoding schemes are normally implemented by
striping data blocks according to a pre-calculated pattern across all the available stor-
age devices. Even though deterministic extensions for the support of heterogeneous
disks have been developed [Cortes and Labarta 2001][Gonzalez and Cortes 2008],
adapting the placement to a changing number of disks is cumbersome under RAID
as all of the data may have to be reorganized.

In the following, we just focus on data placement strategies that are able to cope
with dynamic changes of the capacities or the set of storage devices in the system.
Karger, et al. present an adaptive hashing strategy for homogeneous settings that sat-
isfies fairness and is 1-competitive w.r.t. adaptivity [Karger et al. 1997]. In addition,
the computation of the position of a ball takes only an expected number of O(1) steps.
However, their data structures need at least n log2 n bits to ensure a good data distri-
bution.

Brinkmann, et al. presented the cut-and-paste strategy as alternative placement
strategy for uniform capacities [Brinkmann et al. 2000]. Their scheme requires
O(n log n) bits and O(log n) steps to evaluate the position of a ball. Furthermore, it
keeps the deviation from a fair distribution of the balls extremely small with high
probability. Interestingly, the theoretical analysis of this strategy has been experimen-
tally re-evaluated in a recent paper by Zheng et al. [Zheng and Zhang 2011].

Sanders considers the case that bins fail and suggests to use a set of forwarding
hash functions h1, h2, . . . , hk, where at the time hi is set up, only bins that are intact at
that time are included in its range [Sanders 2001].

Adaptive data placement schemes that are able to cope with arbitrary heterogeneous
capacities have been introduced in [Brinkmann et al. 2002]. The presented strategies
Share and Sieve are compact, fair, and (amortized) (1 + ε)-competitive for arbitrary
changes from one capacity distribution to another, where ε > 0 can be made arbitrarily
small. Other data placement schemes for heterogeneous capacities are based on geo-
metrical constructions [Schindelhauer and Schomaker 2005]; the linear method used
combines the standard consistent hashing approach [Karger et al. 1997] with a linear
weighted distance measure. By using bin copies and different partitions of the hash
space, the scheme can get close to a fair distribution with high probability. A second
method, called logarithmic method, uses a logarithmic distance measure between the
bins and the data to find the corresponding bin.

All previously mentioned work is only applicable for environments where no replica-
tion is required. Certainly, it is easy to come up with proper extensions of the schemes
so that no two copies of a ball are placed in the same bin. A simple approach feasible
for all randomized strategies to replicate a ball k times is to perform the experiment k
times and to remove after each experiment the selected bin. Nevertheless, it has been

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Random Slicing: Efficient, Scalable Data Placement A:5

shown that the fairness condition cannot be guaranteed for these simple strategies and
that capacity will be wasted [Brinkmann et al. 2007]. This paper will also evaluate the
influence of this capacity wasting in realistic settings.

The first methods with dedicated support for replication were proposed by Honicky
and Miller [Honicky and Miller 2003][Honicky and Miller 2004]. RUSH (Replication
Under Scalable Hashing) maps replicated objects to a scalable collection of storage
servers according to user-specified server weighting. When the number of servers
changes, RUSH tries to redistribute as few objects as possible to restore a balanced
data distribution while ensuring that no two replicas of an object are ever placed on
the same server.

A drawback of the RUSH-variants is that they require that new capacity is added
in chunks, where each chunk is based on servers of the same type and the number of
disks inside a chunk has to be sufficient to store a complete redundancy group without
violating fairness and redundancy. The use of sub-clusters is required to overcome the
problem if more than a single block of a redundancy group is accidentally mapped to
the same hash-value. This property leads to restrictions for bigger numbers of sub-
blocks. In this case, prime numbers can be used to guarantee a unique mapping be-
tween blocks of a redundancy group and the servers inside a chunk.

CRUSH is derived from RUSH and supports different hierarchy levels that pro-
vide the administrator finer control over the data placement in the storage environ-
ment [Weil et al. 2006b]. The algorithm accommodates a wide variety of data replica-
tion and reliability mechanisms and distributes data in terms of user-defined policies.

Amazon’s Dynamo [DeCandia et al. 2007] uses a variant of Consistent Hashing with
support for replication where each node is assigned multiple tokens chosen at random
that are used to partition the hash space. This variant has given good results concern-
ing performance and fairness, though the authors claim that it might have problems
scaling up to thousands of nodes.

Brinkmann et al. have shown that a huge class of placement strategies cannot pre-
serve fairness and redundancy at the same time and have presented a placement
strategy for an arbitrary fixed number k of copies for each data block, which is able
to run in O(k). The strategies have a competitiveness of log n for the number of re-
placements in case of a change of the infrastructure [Brinkmann et al. 2007]. This
competitiveness has been reduced to O(1) by breaking the heterogeneity of the storage
systems [Brinkmann and Effert 2008]. Besides the strategies presented inside this pa-
per, it is worth mentioning the Spread strategy, which has similar properties to those
of Redundant Share [Mense and Scheideler 2008].

To the best of our knowledge there is only one structured analysis of the influence
of pseudo-random number generators in data distribution strategies. Popov et al. re-
place the internal hash function of Consistent Hashing and Redundant Share with
several pseudo-random number generators and evaluate the strategies both in terms
of performance and quality of distribution [Popov et al. 2012]. We decided to extend
this evaluation to all the strategies that we considered in the paper.

2. RANDOMIZED DATA DISTRIBUTION
We present in this section a short description of the applied data distribution strate-
gies. We start with Consistent Hashing and Share, which can, in their original form,
only be applied for k = 1 (i.e. only one copy of each data block) and therefore lack
support for redundancy. Both strategies are used as sub-strategies inside some of the
investigated data distribution strategies. Besides their usage as sub-strategies, we will
also present a simple replication strategy, which can be based on any of these simple
strategies. Afterwards, we present Redundant Share and RUSH, which directly sup-
port data replication.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 A. Miranda et al.

2.1. Consistent Hashing
We start with the description of the Consistent Hashing strategy, which solves the
problem of (re-)distributing data items in homogeneous systems [Karger et al. 1997].
In Consistent Hashing, both data blocks and storage devices are hashed to random
points in a [0, 1)-interval, and the storage device closest to a data block in this space is
responsible for that data block. Consistent Hashing ensures that adding or removing a
storage device only requires a near minimal amount of data replacements to get back
to an even distribution of the load. However, the consistent hashing technique cannot
be applied well if the storage devices can have arbitrary non-uniform capacities since
in this case the load distribution has to be adapted to the capacity distribution of
the devices. The memory consumption of Consistent Hashing heavily depends on the
required fairness. Using only a single point for each storage devices leads to a load
deviation of n · log n between the least and heaviest loaded storage devices. Instead it
is necessary to use log n virtual devices to simulate each physical device, respectively
to throw log n points for each device to achieve a constant load deviation.

2.2. Share-strategy
Share supports heterogeneous environments by introducing a two stage pro-
cess [Brinkmann et al. 2002]. In the first stage, the strategy randomly maps one in-
terval for each storage system to the [0, 1)-interval. The length of these intervals is
proportional to the size of the corresponding storage systems and some stretch factor
s and can cover the [0, 1)-interval many times. In this case, the interval is represented
by several virtual intervals. The data items are also randomly mapped to a point in
the [0, 1)-interval. Share now uses an adaptive strategy for homogeneous storage sys-
tems, like Consistent Hashing, to get the responsible storage systems from all storage
systems for which the corresponding interval includes this point.

The analysis of the Share-strategy shows that it is sufficient to have a stretch fac-
tor s = O(logN) to ensure correct functioning and that Share can be implemented in
expected time O(1) using a space of O(s · k · (n + 1/δ)) words (without considering the
hash functions), where δ characterizes the required fairness. Share has an amortized
competitive ratio of at most 1 + ε for any ε > 0. Nevertheless, we will show that, simi-
lar to Consistent Hashing, the memory consumption heavily depends on the expected
fairness.

2.3. Trivial data replication
Consistent Hashing and Share are, in their original setting, unable to support data
replication or erasure codes, since it is always possible that multiple strips belonging
to the same stripe set are mapped to the same storage system and that data recovery
in case of failures becomes impossible. Nevertheless, it is easy to imagine strategies to
overcome this drawback and to support replication strategies by, e.g., simply removing
all previously selected storage systems for the next random experiment for a stripe
set. Another approach, used inside the experiments in this paper, is to simply perform
as many experiments as are necessary to get enough independent storage systems
for the stripe set. It has been shown that this trivial approach wastes some capac-
ity [Brinkmann et al. 2007], but we will show in this paper that this amount can often
be neglected.

2.4. Redundant Share
Redundant Share has been developed to support the replication of data in heteroge-
neous environments. The strategy orders the bins according to their weights ci and
sequentially iterates over the bins [Brinkmann et al. 2007]. The basic idea is that the

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Random Slicing: Efficient, Scalable Data Placement A:7

weights are calculated in a way that ensures perfect fairness for the first copy and
to use a recursive descent to select additional copies. Therefore, the strategy needs
O(n) rounds for each selection process. The algorithm is log n-competitive concerning
the number of replacements if storage systems enter or leave the system. The authors
of the original strategy have also presented extensions of Redundant Share, which are
O(1)-competitive concerning the number of replacements [Brinkmann and Effert 2008]
as well as strategies, which have O(k)-runtime. Both strategies rely on Share and we
will discuss in the evaluation section why they are not feasible in realistic settings.

2.5. RUSH
The RUSH algorithms all proceed in two stages, first identifying the appropriate clus-
ter in which to place an object, and then identifying the disk within a cluster [Honicky
and Miller 2003][Honicky and Miller 2004]. Within a cluster, replicas assigned to the
cluster are mapped to disks using prime number arithmetic that guarantees that no
two replicas of a single object can be mapped to the same disk. The selection of clusters
is a bit more complex and differs between the three RUSH variants: RUSH P , RUSHR,
and RUSH T . RUSH P considers clusters in the reverse of the order they were added,
and determines whether an object would have been moved to the cluster when it was
added; if so, the search terminates and the object is placed. RUSHR works in a similar
way, but it determines the number of objects in each cluster simultaneously, rather
than requiring a draw for each object. RUSH T improves the scalability of the system
by descending a tree to assign objects to clusters; this reduces computation time to
log c, where c is the number of clusters added.

3. RANDOM SLICING
In this section we describe our proposal for a new data distribution strategy called Ran-
dom Slicing. This strategy tries to overcome the drawbacks of current randomized data
distribution strategies by incorporating lessons learned from table-based and pseudo-
randomized hashing strategies. In particular, it tries to reduce the required amount of
randomness necessary to keep a uniform distribution, which can cause memory con-
sumption problems.

3.1. Description
Random Slicing is designed to be fair and efficient both in homogeneous and heteroge-
neous environments and to adapt gracefully to changes in the number of bins. Suppose
that we have a random function h : {1, . . . ,M} → [0, 1) that maps balls uniformly at
random to real numbers in the interval [0, 1). Also, suppose that the relative capacities
for the n given bins are (c0, . . . , cn−1) ∈ [0, 1)n and that

∑n−1
i=0 ci = 1.

The strategy works by dividing the [0, 1) range into intervals and assigning them to
the bins currently in the system (see Figure 1). Notice that the intervals created do not
overlap and completely cover the [0, 1) range. Also note that bin i can be responsible
for several non-contiguous intervals Pi = (I0, . . . , Ik), where k < n, which will form
the partition of that bin. To ensure fairness, Random Slicing will always enforce that∑k−1
j=0 |Ij | = ci.
In an initial phase, i.e. when the first set of bins enters the system, each bin i is

given only one interval of length ci, since this suffices to maintain fairness. Whenever
new bins enter the system, however, relative capacities for old bins change due to the
increased overall capacity. To maintain fairness, Random Slicing shrinks existing par-
titions by splitting the intervals that compose them until their new relative capacities
are reached. The new intervals generated are used to create partitions for the new
bins.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 A. Miranda et al.

da
ta

 s
pa

ce

1

0

hash function h
distributes blocks
into intervals

intervals

a partition is composed
by all intervals assigned
to the same disk

disks

Fig. 1. Overview of Random Slicing’s data distribution. The data space is divided into intervals that are as-
signed to storage devices. A storage device can be responsible of several intervals that configure the device’s
partition of the data space. The size of each partition is computed so that the amount of data contained in it
matches the capacity of the device relative to the overall storage capacity. Blocks are assigned to intervals
using a pseudo-randomized hash function that guarantees uniformity of distribution.

First, the strategy computes by how much partitions should be reduced in order
to keep the fairness of the distribution. Since the global capacity has increased, each
partition Pi must be reduced by ri = ci − c′i, where c′i corresponds to the new relative
capacity of bin i.

Partitions become smaller by releasing or splitting some of their intervals, thus gen-
erating gaps, which can be used for new intervals. This way, the partition lengths for
the old bins already represent their corresponding relative capacities and it is only
necessary to use these gaps to create new partitions for the newly added bins.

The time efficiency and the memory consumption of the strategy, of course, crucially
depend on the maximum number of intervals being managed. In the following theo-
rems we show that this number is low.

THEOREM 3.1. Assume an environment where storage systems can only be added.
In this case, adding n storage systems leads to at most 1/2n · (n+ 1) intervals.

PROOF. We use an induction technique to proof the theorem. For the base case it
holds that adding the first storage system leads to 1 interval and it holds that 1/2·1·2 =
1. In the following we show the inductive step from change n to change (n+1). We show
that adding a new storage system leads to at most n new intervals and that therefore
the number of intervals after the insertion is at most 1/2n · (n+1)+n = 1/2(n2+3n) ≤
1/2(n2 + 3n+ 2) = 1/2(n+ 1)(n+ 2), which is the inductive step.

The number of intervals is smaller than n before a new storage system is added.
Then, a part of the intervals of each storage system already within the system has to
be assigned to the new storage system. Assume now for each existing storage system
that we pick an arbitrary interval first. If the size of this interval is smaller than the
interval length, which has to be assigned to the new storage system, we assign the
complete interval to the new storage system. The number of intervals does not change
in this case and we continue with the next intervals until we reach one interval which
cannot be completely assigned to the new storage system. In this case, we split this
interval and assign one part to the new storage system and keep the other for the

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Random Slicing: Efficient, Scalable Data Placement A:9

previously existing one. Therefore, the number of interval increases by at most one for
each previously existing storage system (or stays constant if the last assigned interval
will be completely assigned to the new storage system)1.

In the following we investigate an environment where storage systems can also be
removed. We assume in the following that the number of storage systems is not de-
creasing for a long time in a typical storage environment and that new storage systems
are always bigger than storage systems which have been removed. We call a situation,
where at most as many storage systems, as have been previously removed, have been
added to the environment steady state.

THEOREM 3.2. Assume that there have been at most n storage systems in the envi-
ronment. Then the number of intervals will be small 1/2n · (n+ 1) in the steady state.

PROOF. Assume that k storage system have been removed and no new storage sys-
tems have been added. In this case it can occur that the number of intervals becomes
bigger than 1/2n · (n+1). Now assume that at k new storage systems have been added
to the environment and the system is back in a steady state. We will show in this case
that the number of intervals is at most 1/2n · (n + 1), where n is the number of all
storage systems, which have been previously been part of the environment. We use
a technique inspired by the zero-height-strategy proposed in [Brinkmann et al. 2000]
and assign first all intervals, which have been previously assigned to the removed stor-
age system, to the new storage systems. This is possible as the new storage systems
are at least as big as the removed storage systems. If the new storage systems are big-
ger than the removed ones, additional intervals lengths have to be assigned to them.
In this case, we just assign the remaining capacity in the same way as performed in
Theorem 3.1.

3.2. Interval Creation Algorithm
The goal of the interval creation algorithm is to split existing intervals in a way that
allows new intervals to be created while maintaining the relative capacities of the
system. Note that the strategy’s memory consumption directly depends on the number
of intervals used and, therefore, the number of new intervals created in each addition
phase can hamper scalability. We briefly explain two interval creation strategies and
two variants.

— Greedy: This algorithm tries to collect as many complete intervals as possible
and will only split an existing interval as a last resort. Furthermore, when splitting
an interval is the only option, the algorithm tries to expand any adjacent gap instead
of creating a new one. Once enough gaps are collected to produce an even distribution,
they are assigned sequentially to new partitions.

— CutShift: This algorithm also tries to collect as many complete intervals as pos-
sible, but, when it is necessary to split an interval, alternates between splitting it by
the beginning or by the end in an attempt to maximize gap length. Once enough gaps
are collected to produce an even distribution, they are assigned sequentially to new
partitions.

— Greedy+Sorted: A variant of Greedy where the largest partitions are assigned
greedily to the largest gaps available.

— CutShift+Sorted: A variant of CutShift where the largest partitions are as-
signed greedily to the largest gaps available.

1Notice, however, that the theorem assumes a worst-case scenario where storage systems are added one
by one and that, as we will see in Section 5, an appropriate algorithm can further reduce the number of
intervals if several storage systems are added in bulk.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 A. Miranda et al.

c0=0.2 c1=0.3 c2=0.5 c0'=0.14 c1'=0.19 c2'=0.34

0.0
0.36

0.6 0.7 0.9 1.0

gap

c3=0.14 c4=0.19

new bins

(a) Initial configuration

0.0 0.1 0.2 0.6 0.7 0.9 1.0

(b) Gap collection

c0'=0.14 c1'=0.19 c2'=0.34 c3=0.14 c4=0.19

(c) Final configuration

gap gap gap

0.04 0.71

0.0
0.36

0.6 0.7 0.9
0.04 0.71

1.0
0.23

Fig. 2. Example of the CutShift+Sorted algorithm. Two new devices B3 and B4 are added to the system,
representing a capacity increase of 14% and 19%, respectively. The algorithm computes the new relative ca-
pacities (ci) of each partition and proceeds to create gaps by either assimilating or slicing intervals. Interval
[0.1, 0.2) is completely assimilated, while intervals [0.0, 0.1) and [0.2, 0.6) are cut. Note how the algorithm
shifts the cutting point to the beginning or the end of the interval to increase the length of the gap. When
all gaps are created the largest partitions are assigned to the largest intervals.

Note that these strategies are intentionally simple since our intention is that inter-
val reorganizations can be computed as fast as possible in order to reduce the recon-
figuration time of the storage system.

An example of the CutShift+Sorted reorganization is shown in Figure 2, where two
new bins B3 and B4, representing a 33% capacity increase, are added to the bins B0,
B1, and B2. Figure 2(a) shows the initial configuration and the relative capacities for
the initial bins. Figure 2(b) shows that the partition of B0 must be reduced by 0.06,
the partition of B1 by 0.11, and the one of B2 by 0.16, whereas two new partitions
with a size of 0.14 and 0.19 must be created for B3 and B4. The interval [0.1, 0.2) ∈ B1

can be completely cannibalized, whereas the intervals [0.0, 0.1) ∈ B0, [0.2, 0.6) ∈ B2

and [0.7, 0.9) ∈ B1 are split while trying to maximize gap lengths. Figure 2(c) shows
that the partition for B3 is composed of intervals [0.23, 0.36) and [0.7, 0.71), while the
partition for B4 consists only of interval [0.04, 0.23).

3.3. Data Lookup
Once all partitions are created, the location of a data item/ball b can be easily de-
termined by calculating x = h(b) and retrieving the bin associated with it. Notice
that some balls will change partition after the reorganization, but as partitions always
match their ideal capacity, only a near minimal amount of balls will need to be reallo-
cated. Furthermore, if h(b) is uniform enough and the number of balls in the system
significantly larger than the number of intervals (both conditions easily feasible), the
fairness of the strategy is guaranteed.

4. METHODOLOGY
Most previous evaluations of data distribution strategies are based on an analytical
investigation of their properties. In contrast, we will use a simulation environment
to examine the real-world properties of the investigated protocols. The simulation en-
vironment has been developed by the authors of this paper and is available online2.

2http://dadisi.sourceforge.net

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Random Slicing: Efficient, Scalable Data Placement A:11

This collection also includes the parameter settings for the individual experiments de-
scribed in the paper.

First, we evaluate the scalability of Random Slicing with the different interval cre-
ation algorithms proposed in Section 3.2. This way, we will determine how well does
the strategy scale and we will select the best algorithm for the rest of the simulations.

Second, we run experiments for all distribution strategies described in Section 2 in
an environment that scales from a few storage systems up to thousands of devices. We
evaluate these strategies in terms of fairness, adaptivity, performance and memory
consumption and compare the results with those of Random Slicing.

Third, we measure the impact of the randomization function in distribution quality
and performance. We run several simulations where we change the pseudo-random
number generator used by each strategy. Each experiment measures the changes in
fairness and performance of each strategy.

All experiments assume that each storage node (also called storage system in the
following) consists of 16 hard disks (plus potential disks to add additional intra-shelf
redundancy). Besides, most experiments distinguish between an homogeneous setting
(all devices have the same capacity) and an heterogeneous settings (the capacity of
devices varies).

In all experiments described but those of Section 7, the implementations of Consis-
tent Hashing, Share and Redundant Share use a custom implementation of the SHA1
pseudo-random number generator [Eastlake and Jones 2001]. The RUSH ∗ variants use
the William-Hill generator, while the implementation of Random Slicing uses Thomas
Wang’s 64 bit mixing function [Wang 2007].

5. SCALABILITY OF RANDOM SLICING
Random Slicing’s performance and memory consumption largely depends on how well
the number of intervals scales when there are changes in the storage system. An ex-
cessive amount of new intervals can render the strategy useless due to memory or
performance constraints. In this section we evaluate the different interval creation
algorithms proposed in Section 3.2 and measure how well they scale.

Figure 3 plots the percentage of new intervals created when adding devices to the
storage systems. The evaluation begins with 50 devices and adds, in each step, as
much new devices as needed to increase capacity by 10%, 50% or 80%. We evaluate a
homogeneous setting where all the devices added have the same capacity, as well as a
heterogeneous setting where the capacity of new devices increases by a factor of 1.5 in
each step. In order to test long-term scalability, we continuously add devices until we
surpass 25,000 devices.

Figures 3(a), 3(c) and 3(e) depict the evaluation results for the homogeneous setting,
while Figures 3(b), 3(d) and 3(f) show the results for the heterogeneous setting. All
four algorithms behave similarly in all experiments, which is to be expected as the
number of intervals is not directly related with the capacity of the devices. All show
an initial phase where adding devices leads to a high percentage of new intervals,
with the Greedy algorithm even doubling the number of intervals in the first addition
phase. This is not surprising since initially the number of intervals to work with is
small, which limits the capability of the algorithms to create large gaps and increases
the number of new intervals. This also explains why CutShift is more successful at
reducing the number of new intervals than Greedy, since it’s able to create larger gaps.

Assigning the largest partitions to the largest gaps also has some influence in reduc-
ing the number of new intervals, as the results for Greedy+Sorted and CutShift+Sorted
show when comparing them against the non-sorted variants.

Note that once the algorithms have enough intervals to work with, they are signif-
icantly more effective: depending on the target increase in capacity, all strategies are

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 A. Miranda et al.

50 68 9212
2
16

2
21

5
28

5
37

8
50

2
66

7
88

6
11

76
15

62
20

76
27

58
36

66
48

73
64

80
86

19
11

46
5

15
25

3
20

29
4

27
00

2

Storage Systems

0
20
40
60
80

100
120

ne
w

 in
te

rv
al

s
(%

) Greedy
CutShift
Greedy+Sorted
CutShift+Sorted

(a) 10% additional capacity, homogeneous

50 68 9212
2
16

2
21

5
28

5
37

8
50

2
66

7
88

6
11

76
15

62
20

76
27

58
36

66
48

73
64

80
86

19
11

46
5

15
25

3
20

29
4

27
00

2

Storage Systems

0
20
40
60
80

100
120

ne
w

 in
te

rv
al

s
(%

) Greedy
CutShift
Greedy+Sorted
CutShift+Sorted

(b) 10% additional capacity, heterogeneous

50 75 11
3

17
0

25
5

38
2

57
2

85
7
12

85
19

26
28

88
43

30
64

93
97

37
14

60
3
21

90
2
32

85
0

Storage Systems

0
20
40
60
80

100
120
140
160

ne
w

 in
te

rv
al

s
(%

) Greedy
CutShift
Greedy+Sorted
CutShift+Sorted

(c) 50% additional capacity, homogeneous

50 75 11
3

17
0

25
5

38
2

57
2

85
7
12

85
19

26
28

88
43

30
64

93
97

37
14

60
3
21

90
2
32

85
0

Storage Systems

0
20
40
60
80

100
120
140
160

ne
w

 in
te

rv
al

s
(%

) Greedy
CutShift
Greedy+Sorted
CutShift+Sorted

(d) 50% additional capacity, heterogeneous

50 90 16
2

29
2

52
6

94
6

17
02

30
63

55
12

99
20

17
85

5
32

13
7

Storage Systems

0

50

100

150

200

ne
w

 in
te

rv
al

s
(%

) Greedy
CutShift
Greedy+Sorted
CutShift+Sorted

(e) 80% additional capacity, homogeneous

50 90 16
2

29
2

52
6

94
6

17
02

30
63

55
12

99
20

17
85

5
32

13
7

Storage Systems

0

50

100

150

200

ne
w

 in
te

rv
al

s
(%

) Greedy
CutShift
Greedy+Sorted
CutShift+Sorted

(f) 80% additional capacity, heterogeneous

Fig. 3. Percentage of new intervals created. Each step adds as many homogeneous or heterogeneous devices
as necessary to reach the target capacity increase (i.e. 10%, 50%, and 80%). In the case of heterogeneous
devices, the capacity of each device is increased by 1.5.

able to reduce the number of new intervals to around 10%, 50% or 80% per step, re-
spectively, and keep it steady even after more than 10 reorganizations. Interestingly
enough, the number of new intervals created roughly corresponds to the increase in
capacity, regardless of the number of devices added.

Based on the above evaluation, we select the CutShift+Sorted as our management
algorithm, which gives good results both in the initial and the stable phase. From
now on, every evaluation of Random Slicing will use this algorithm. For the sake of
completion, Algorithm 1 shows the pseudo-code for this mechanism.

6. EVALUATION OF RANDOMIZED STRATEGIES
The following section evaluates the impact of the different distribution strategies on
the data distribution quality, the memory consumption of the different strategies, their
adaptivity and performance. All graphs presented in the section contain four bars for
each number of storage systems, which represent the experimental results for one,
two, four, and eight copies (please see Figure 4 for the color codes in the legend). The

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Random Slicing: Efficient, Scalable Data Placement A:13

Algorithm 1 CutShift Gap Collection Algorithm
Input: {b0, . . . , bn−1}, {bn, . . . , bp−1}, {I0, . . . , Iq−1}
Output: gaps : {G0, . . . , Gm−1}
Require: (p > n) ∧ (q ≥ n)

1: ∀i ∈ {0, . . . , p− 1} : c′i ← bi/
∑p−1

j=1 bj
2: ∀i ∈ {0, . . . , n− 1} : ri ← ci − c′i
3: gaps← {}
4: for i← 0 to q − 1 do
5: j ← get bin assigned to Ii
6: G← get last gap from gaps
7: if rj > 0 then
8: if length(Ii) < rj then
9: if adjacent(G, Ii) then
10: G← G+ length(Ii)
11: else
12: gaps← gaps+ Ii
13: end if
14: ri ← ri − length(Ii)
15: if last interval was assimilated completely then
16: cut interval end← false
17: end if
18: else
19: if adjacent(G, Ii) then
20: G← G+ length(Ii)
21: else
22: if cut interval end then
23: gaps← gaps+ {Ii.end− rj , Ii.end}
24: else
25: gaps← gaps+ {Ii.start, Ii.start+ rj}
26: end if
27: end if
28: ri ← ri − rj
29: cut interval end← ¬cut interval end
30: end if
31: end if
32: end for
33: return gaps

white boxes in each bar represent the range of results, e.g., between the minimum
and the maximum usage. Also, the white boxes include the standard deviation for
the experiments. Small or non-existing white boxes indicate a very small deviation
between the different experiments.

We assume that each storage systems in the homogeneous setting can hold up to k ·
500, 000 data items, where k is the number of copies of each block. Assuming a hard disk
capacity of 1 TByte and putting 16 hard disks in each shelf means that each data item
has a size of 2 MByte. The number of placed data items is k ·250, 000 times the number
of storage systems. In all cases, we compare the fairness, the memory consumption, as
well as the performance of the different strategies for a different number of storage
systems.

In the heterogeneous setting we begin with 128 storage systems and we add 128 new
systems in each step, each with 3/2 times the size of the previously added system. We
are placing again half the number of items, which saturates all disks.

For each of the homogeneous and heterogeneous tests, we also count the number
of data items, which have to be moved in case we are adding disks, so that the data

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 A. Miranda et al.

distribution delivers the correct location for a data item after the redistribution phase.
The number of moved items has to be as small as possible to support dynamic environ-
ments, as the systems typically tend to a slower performance during the reconfigura-
tion process.

We will show that the dynamic behavior can be different if the order of the k copies
is important, e.g. in case of parity RAID, Reed-Solomon codes, or EvenOdd-Codes, or
if this order can be neglected in case of pure replication strategies [Patterson et al.
1988][Blaum et al. 1994][Corbett et al. 2004].

6.1. Fairness
The first simulations evaluate the fairness of the strategies for different sets of ho-
mogeneous disks, ranging from 8 storage systems up to 8,192 storage systems (see
Figure 4). Notice that there are some missing results for Consistent Hashing, Share
and Redundant Share. These correspond to configurations that took too much time to
evaluate or used more resources than available.

Consistent Hashing has been developed to evenly distribute one copy over a set of
homogeneous disks of the same size. Figure 4(a) shows that the strategy is able to
fulfill these demands for the test case, in which all disks have the same size. The
difference between the maximum and the average usage is always below 7% and the
difference between the minimum and average usage is always below 6%. The deviation
is nearly independent from the number of copies as well as from the number of disks
in the system, so that the strategy can be reasonably well applied. We have thrown
400 · log n points for each storage system (please see Section 2.1 for the meaning of
points in Consistent Hashing).

The fairness of Consistent Hashing can be improved by throwing more points for
each storage system (see Figure 5 for an evaluation with 64 storage systems). The
evaluation shows that initial quality improvements can be achieved with very few
additional points, while further small improvements require a high number of extra
points per storage system. 400 · log n points are 2400 points for 64 storage systems,
meaning that we are already using a high number of points, where further quality
improvement becomes very costly.

Share has been developed to overcome the drawbacks of Consistent Hashing for het-
erogeneous disks. Its main idea is to (randomly) partition the disks into intervals and
assign a set of disks to each interval. Inside an interval, each disk is treated as homo-
geneous and strategies like Consistent Hashing can be applied to finally distribute the
data items.

The basic idea implies that Share has to compute and keep the data structures for
each interval. 1,000 disks lead to a maximum of 2,000 intervals, implying 2,000 times
the memory consumption of the applied uniform strategy. On the other hand, the num-
ber of disks inside each interval is smaller than n, which is the number of disks in the
environment. The analysis of Share shows that on average c · log n disks participate in
each interval (see Section 2.2, without loss of generality we will neglect the additional
1
δ to keep the argumentation simple). Applying Consistent Hashing as homogeneous
strategy therefore leads to a memory consumption, which is in O(n · log2 n · log2(log n))
and therefore only by a factor of log2(log n) bigger than the memory consumption of
Consistent Hashing.

Unfortunately, it is not possible to neglect the constants in a real implementation.
Figure 4(b) shows the fairness of Share for a stretch factor of 3 · log n, which shows
huge deviations even for homogeneous disks. A deeper analysis of the Chernoff-bounds
used in [Brinkmann et al. 2002] shows that it would have been necessary to have a

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Random Slicing: Efficient, Scalable Data Placement A:15

8 16 32 64 128256 5121024204840968192
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

us
ag

e

(a) Consistent Hashing

8 16 32 64 128256 5121024204840968192
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

us
ag

e

(b) Share

8 16 32 64 128256 5121024204840968192
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

us
ag

e

(c) Redundant Share in O(k)

8 16 32 64 128256 5121024204840968192
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

us
ag

e

(d) Redundant Share

8 16 32 64 128256 5121024204840968192
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

us
ag

e

(e) RUSHP

8 16 32 64 128256 5121024204840968192
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

us
ag

e

(f) RUSHR

8 16 32 64 128256 5121024204840968192
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

us
ag

e

(g) RUSHT

8 16 32 64 128256 5121024204840968192
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

us
ag

e

(h) Random Slicing

1 copy 2 copies 4 copies 8 copies min/max usage

Fig. 4. Fairness of the data distribution strategies (homogeneous setting).

stretch factor of 2,146 to keep fairness in the same order as the fairness achieved with
Consistent Hashing, which is infeasible in scale-out environments.

Simulations including different stretch factors for 64 storage systems for Share are
shown in Figure 6, where the x-axis depicts the stretch factor divided by lnn. The
fairness can be significantly improved by increasing the stretch factor. Unfortunately,
a stretch factor of 32 already requires in our simulation environment more than 50
GByte main memory for 64 storage systems, making Share impractical in bigger envi-
ronments. In the following, we will therefore skip this strategy in our evaluations.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 A. Miranda et al.

10
0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

Points for each Storage System

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

us
ag

e

Fig. 5. Influence of point number on Consistent Hashing.

1 2 4 8 16 32
Stretch Factor

0.0

0.5

1.0

1.5

2.0
us

ag
e

Fig. 6. Fairness of Share depending on stretch factor.

Redundant Share uses precomputed intervals for each disk and therefore does not
rely too much on randomization properties. The intervals exactly represent the share
of each disk on the total disk capacity, leading to a very even distribution of the data
items (see Figure 4(d)). The drawback of this version of Redundant Share is that it
has linear runtime, possibly leading to high delays in case of huge environments.
Brinkmann et al. have presented enhancements, which enable Redundant Share to
have a runtime in O(k), where k is the number of copies [Brinkmann and Effert 2008].
Redundant Share in O(k) requires a huge number of Share instances as sub-routines,
making it impractical to support a huge number of disks and a good fairness at the
same time. Figure 4(c) shows that it is even difficult to support multiple copies for
more than 64 disks, even if the required fairness is low, as 64 GByte main memory
have not been sufficient to calculate these distributions. Therefore, we will also ne-
glect Redundant Share with runtime in O(k) in the following measurements.
RUSH P , RUSH T and RUSHR place objects almost ideally according to the appropri-

ate weights, though the distribution begins to degrade as the number of disks grows
(see Figures 4(e), 4(f) and 4(g)). Interestingly, however, this deviation from the ideal
load decreases when the number of copies increases, which might imply that the hash
function is not as uniform as expected and needs more samples to provide an even
distribution.

In Random Slicing, precomputed partitions are used to represent a disk’s share of
the total system capacity, in a similar way to Redundant Share’s use of intervals. This
property, in addition to the hash function used, enforces an almost optimal distribution
of the data items, as shown in Figure 4(h).

The fairness of the different strategies for a set of heterogeneous storage systems
is depicted in Figure 7. As described in Section 4, we start with 128 storage systems
and add every time 128 additional systems having 3/2-times the capacity of the previ-
ously added. Once again, missing results in Redundant Share and RUSH ∗ are due to
configurations too expensive in terms of the computing power available.

The fairness of Consistent Hashing in its original version is obviously very poor (see
Figure 7(a)). Assigning the same number of points in the [0, 1)-interval for each storage

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Random Slicing: Efficient, Scalable Data Placement A:17

128 256 384 512 640 768 896 102411521280
Storage Systems

0
2
4
6
8

10
12

us
ag

e

(a) Consistent Hashing (fixed)

128 256 384 512 640 768 896 102411521280
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

us
ag

e

(b) Consistent Hashing (adaptive)

128 256 384 512 640 768 896 102411521280
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

us
ag

e

(c) Redundant Share

128 256 384 512 640 768 896 102411521280
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

us
ag

e
(d) RUSHP

128 256 384 512 640 768 896 102411521280
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

us
ag

e

(e) RUSHR

128 256 384 512 640 768 896 102411521280
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

us
ag

e

(f) RUSHT

128 256 384 512 640 768 896 102411521280
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

us
ag

e

(g) Random Slicing

1 copy 2 copies 4 copies 8 copies min/max usage

Fig. 7. Fairness of the data distribution strategies (heterogeneous setting).

system, independent of its size, leads to huge variations. Simply adapting the number
of points based on the capacities leads to much better deviations (see Figure 7(b)).
The difference between the maximum, respectively minimum and the average usage
is around 10% and increases slightly with the number of copies. In the following, we
will always use Consistent Hashing with an adaptive number of copies, depending on
the capacities of the storage systems.

Both Redundant Share and Random Slicing show again a nearly perfect distribution
of data items over the storage systems, due to their precise modeling of disk capacities

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 A. Miranda et al.

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

storage systems

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

m
em

or
y

(M
B

)

0

20

40

60

80

100

120

tim
e

(µ
s)

(a) Consistent Hashing (adaptive)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

storage systems

0

1

2

3

4

5

6

m
em

or
y

(M
B

)

0

500

1000

1500

2000

2500

tim
e

(µ
s)

(b) Redundant Share

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

storage systems

0

2

4

6

8

10

m
em

or
y

(M
B

)

0

100

200

300

400

500

600

tim
e

(µ
s)

(c) RUSHP

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

storage systems

0

2

4

6

8

10

m
em

or
y

(M
B

)

0

10

20

30

40

50

60

tim
e

(µ
s)

(d) RUSHR

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

storage systems

0

2

4

6

8

10

m
em

or
y

(M
B

)

0

100

200

300

400

500

tim
e

(µ
s)

(e) RUSHT

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

storage systems

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

m
em

or
y

(M
B

)

0
2
4
6
8
10
12
14
16

tim
e

(µ
s)

(f) Random Slicing

1 copy 2 copies mem 4 copies mem 8 copies mem used time

Fig. 8. Memory consumption and performance of the data distribution strategies (heterogeneous setting).

and the uniformity of the distribution functions (see Figures 7(c) and 7(g), respec-
tively).

The fairness provided by RUSH P degrades steadily after the fourth reconfiguration.
In contrast, RUSHT delivers a perfect data distribution, even when it was unable to
do so in a homogeneous setting (see Figures 7(d) and 7(f), respectively). Figure 7(e),
however, shows that RUSHR does a good distribution job for 1, 2, and 4 copies but
degrades with 8 copies showing important deviations from the optimal distribution.

6.2. Memory consumption and compute time
The memory consumption as well as the performance of the different data distribu-
tion strategies have a strong impact on the applicability of the different strategies. We
assume that scale-out storage systems mostly occur in combination with huge cluster
environments, where the different cores of a cluster node can share the necessary data
structures for storage management. Assuming memory capacities of 192 GByte per
node in 2015 [Amarasinghe et al. 2010], we do not want to waste more than 10% or ap-
proximately 20 GByte of this capacity for the metadata information of the underlying
storage system. Furthermore, we assume access latencies of 5 ms for magnetic storage

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Random Slicing: Efficient, Scalable Data Placement A:19

systems and access latencies of 50 µs for solid state disks. These access latencies set an
upper limit on the time allowed for calculating the translation from a virtual address
to a physical storage system.

The bars in Figure 8 represent the average allocated memory, the white bars on
top the peak consumption of virtual memory over the different tests. The points in
that figure represent the average time required for a single request. These latencies
include confidence intervals.

The memory consumption of Consistent Hashing only depends on the number and
kind of disks in the system, while the number of copies k has no influence on it (see
Figure 8(a)). We are throwing 400 · log n points for the smallest disk, the number of
points for bigger disks grows proportional to their capacity, which is necessary to keep
fairness in heterogeneous environments. Using 1,280 heterogeneous storage systems
requires a memory capacity of nearly 9 GByte, which is still below our limit of 20
GByte.

The time to calculate the location of a data item only depends on the number of
copies, as Consistent Hashing is implemented as a O(1)-strategy for a single copy. The
number of copies has only an influence for a small number of storage systems, e.g.,
it needs significant more time to place 8 copies if it only uses 8 storage systems. The
reason for this is how we chose to implement redundancy: we generate new random
values into the [0, 1) ring until we find k different disks, which can take quite long
in case of hash collisions. Therefore, this proves that it is possible to use Consistent
Hashing in scale-out environments based on solid state drives, as the average latency
for the calculation of a single data item stays below 10 µs.

Redundant Share has very good properties concerning memory usage, but the com-
putation time grows linearly in the number of storage systems. Even the calculation of
a single item for 128 storage systems takes 145 µs. Using 8 copies increases the aver-
age access time for all copies to 258 µs, which is 50 µs for each copy, making it suitable
for mid sized environments, that are based on SSDs. Increasing the environment to
1280 storage systems raised the calculation time almost linearly for a single copy to
669 µs, which is reasonable in magnetic disk based environments.

All RUSH variants show good results both in memory consumption and in computa-
tion time (see Figures 8(c), 8(d) and 8(e)), being RUSHR the strategy with the lowest
computation time. The reduced memory consumption is explained because the strate-
gies do not need a great deal of in-memory structures in order to maintain the infor-
mation about clusters and storage nodes. Lookup times depend only on the number of
clusters in the system, which can be kept comparatively small for large systems.

Random Slicing shows very good behavior concerning memory consumption and
computation time, as both depend only on the number of intervals I currently man-
aged by the algorithm (see Figure 8(f)). In order to compute the position of a data item
x, the strategy only needs to locate the interval containing fB(x), which can be done
in O(log I) using an appropriate tree structure. Furthermore, the algorithm strives to
reduce the number of intervals created in each step in order to minimize memory con-
sumption as much as possible. In practice, this yields an average access time of 5 µs
for a single data item and 13 µs for 8 copies, while keeping a memory footprint similar
to that of Redundant Share.

6.3. Adaptivity
Adaptivity to changing environments is an important requirement for data distribu-
tion strategies and one of the main drawbacks of standard RAID approaches. Adding a
single disk to a RAID system typically either requires the replacement of all data items
in the system or splitting the RAID environment into multiple independent domains.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 A. Miranda et al.

1 2 3 5 7 11 13
added storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

m
ov

ed
 d

at
a

(a) Consistent Hashing (fixed)

1 2 3 5 7 11 13
added storage systems

0
2
4
6
8

10
12
14
16

m
ov

ed
 d

at
a

(b) Consistent Hashing (adaptive)

1 2 3 5 7 11 13
added storage systems

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

m
ov

ed
 d

at
a

(c) Redundant Share

1 2 3 5 7 11 13
added storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

m
ov

ed
 d

at
a

(d) RUSHP

1 2 3 5 7 11 13
added storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

m
ov

ed
 d

at
a

(e) RUSHR

1 2 3 5 7 11 13
added storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

m
ov

ed
 d

at
a

(f) RUSHT

1 2 3 5 7 11 13
added storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

m
ov

ed
 d

at
a

(g) Random Slicing

1 copy 2 copies 4 copies 8 copies moved changing order moved keeping order

Fig. 9. Adaptivity of the data distribution strategies in a heterogeneous setting.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Random Slicing: Efficient, Scalable Data Placement A:21

128 256 384 512 640 768 896 102411521280
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

us
ag

e

Fig. 10. Fairness of Consistent Hashing for fixed number of points in a heterogeneous setting.

The theory behind randomized data distribution strategies claims that these strate-
gies are able to compete with a best possible strategy in an adaptive setting. This
means that the number of data movements to keep the properties of the strategy after
a storage system has been inserted or deleted can be bounded against the best possible
strategy. We assume in the following that a best possible algorithm just moves as much
data from old disks to new disks, respectively from removed disks to remaining disks,
as necessary to have the same usage on all storage systems. All bars in Figure 9 have
been normalized to this definition of an optimal algorithm.

Furthermore, we distinguish between placements, where the ordering of the data
items is relevant and where it is not. The first case occurs, e.g., for standard parity
codes, where each data item has a different meaning (labeled “moved keeping order”
in Figure 9). If a client accesses the third block of a parity set, then it is necessary to
receive exactly that block. In contrast, the second case occurs for RAID 1 sets, where
each copy has the same content and receiving any of this blocks is sufficient (labeled
“moved changing order”). We will see in the following that not having to keep the order
strongly simplifies the rebalancing process.

We start our tests in all cases with 128 storage systems and increase the number of
storage systems by 1, 2, 3, 5, 7, 11, or 13 storage systems. The new storage systems
have 1,5-times the capacity of the original system.

The original Consistent Hashing paper shows that the number of replacements is
optimal for Consistent Hashing by showing that data is only moved from old disks
to new disks in case of the insertion of a storage system or from a removed disk to
old disks in the homogeneous setting [Karger et al. 1997]. Figure 9(b) shows a very
different behavior, the number of data movements is sometimes more than 20-times
higher than necessary. The reason is that we are placing 400 · dlog ne points for each
storage system and dlog ne increases from 7 to 8 when adding storage system number
129. This leads to a large number of data movements between already existing storage
systems. Furthermore, the competitiveness strongly depends on whether the ordering
of the different copies has to be maintained or not.

Figure 9(a) shows the adaptivity of Consistent Hashing in case that the number of
points is fixed for each individual storage system and only depends on its own capac-
ity. We use 2, 400 points for the smallest storage system and use a proportional higher
number of points for bigger storage systems. In this case the insertion of new storage
systems only leads to data movements from old systems to the new ones and not be-
tween old ones and therefore the adaptivity is very good in all cases. Figure 10 shows
that the fairness in this case is still acceptable even in a heterogeneous setting.

The adaptivity of Redundant Share for adding new storage systems is nearly op-
timal, which is in line with the proofs presented in [Brinkmann et al. 2007]. Never-
theless, Redundant Share is only able to achieve an optimal competitiveness if a new
storage system is inserted that is at least as big as the previous ones. Otherwise it can
happen that Redundant Share is only log n-competitive (see Figure 9(c)).

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 A. Miranda et al.

Table I. Properties of the examined strategies in heterogeneous environments

Strategy Fairness Memory Usage Lookup Time Adaptivity

Consistent Hashing (fixed) Poor
(δ ↑ with n)

N/A N/A Good
(α ≈ 7%)

Consistent Hashing (adapt.) Moderate
(δ ≈ 10%)

High
(µ ≈ 8GB)

High
(τ ≈ 98µs)

Poor
(α ≈ 1172%)

Redundant Share Good
(δ ≈ 0.36%)

Low
(µ ≈ 5MB)

Very High
(τ ≈ 1800µs)

Good
(α ≈ 0.08%)

RUSHP Poor
(δ ↑ with n)

Low
(µ ≈ 9MB)

Very High
(τ ≈ 400 µs)

Very Good1

(α ≈ 0.001%)

RUSHR Good, if k < 8
(δ ≈ 0.22%)
Poor, if k = 8
(δ ↑ with n)

Low
(µ ≈ 9MB)

Low
(τ ≈ 14 µs)

Very Good1

(α ≈ 0.001%)

RUSHT Good
(δ ≈ 0.36%)

Low
(µ ≈ 9MB)

Very High
(τ ≈ 300 µs)

Very Good1

(α ≈ 0.05%)

Random Slicing Good
(δ ≈ 0.4%)

Low
(µ ≈ 4.5MB)

Low
(τ ≈ 14 µs)

Good
(α ≈ 1.63%)

Definitions used: n, number of devices; k, number of copies; δ, average deviation from ideal load; µ, worst case
memory consumption; τ , worst case lookup time; α, worst case deviation from ideal number of movements.
1The implementation evaluated doesn’t support replicas as distinct entities.

Figure 9 shows that RUSH variants adapt nearly optimally when storage nodes
are added. Note, however, that we did not evaluate the effect on replica ordering be-
cause the current implementations do not support replicas as distinct entities. Instead,
RUSH variants distribute all replicas within one cluster. Note also that the missing
columns in the results correspond to configurations not accepted in the current imple-
mentation.

Figure 9(g) shows that the adaptivity of Random Slicing is very good in all cases.
This is explained because intervals for new storage systems are always created from
fragments of old intervals, thus forcing data items to migrate only to new storage
systems.

6.4. Summary
We conclude this section with a brief qualitative overview of the results collected. Ta-
ble I summarizes our observations on the evaluated strategies, for all the properties
examined. Where available, we provide either average or worst case values of every
parameter examined in order to give a general view of each strategy’s strong points
and weaknesses.

7. INFLUENCE OF THE RANDOMIZATION FUNCTION
As we have seen, one of the most efficient ways to achieve a balanced load is using
hashing techniques to distribute data. This relies on the intrinsic connection that ex-
ists between randomness and evenness of distribution [Azar et al. 1999] [Raab and
Steger 1998]).

In practice, however, real randomness cannot be (easily) achieved, which forces us
to rely on pseudo-random number generators (PRNGs) in order to implement the re-
quired hashing functions. There are two main requirements which have to be fulfilled
by these pseudo-random hash functions:

(1) The computation time for each data value should be as small as possible.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Random Slicing: Efficient, Scalable Data Placement A:23

Table II. List of Evaluated PRNGs

PRNG Type
minstd rand LC
minstd rand0 LC
hellekalek1995 inversive LC
rand48 LC (c != 0)
ecuyer1988 additive combine (LC + LC)
kreutzer1986 shuffle (LC improved)
taus88 XOR LFS
ranlux3 SWC + discard block
ranlux64 3 SWC + discard block
ranlux3 01 SWC + discard block
ranlux64 3 01 SWC + discard block
mt11213b twisted GFSR
mt19937 twisted GFSR
lagged fibonacci607 lagged Fibonacci
unix rand MC
sha1 SHA-1
md5 MD-5
tiger Tiger

Algorithm types: Linear congruential (LC), multiplica-
tive congruential (MC), linear feedback shift (LFS), sub-
tract with carry (SWC), general feedback shift register
(GFSR).

(2) The pseudo-random hash functions should distribute input data as evenly as pos-
sible.

In this section we evaluate how different PRNGs affect the overall performance and
fairness of the data distribution strategies examined in this paper.

7.1. Experimental Results
Table II lists the set of pseudo-random number generators that we have
evaluated. We used implementations from Boost (www.boost.org) and Gcrypt
(www.gnu.org/s/libgcrypt), both well-known and extensively used C++ libraries, and
we attempted to cover a diverse set of PRNGs when selecting the algorithms.

These pseudo-random hash functions have been integrated in all of the proposed
data distribution strategies. We simulated each strategy with all the aforementioned
PRNGs and we measured performance and distribution quality in the same way as the
experiments presented in Section 6. In each experiment we distributed m = 1, 000 ∗ n
balls, with n being the number of configured storage systems. All experiments have
been run for 10, 100 and 1,000 homogeneous storage systems.

Figure 11 shows the results obtained when evaluating the fairness provided by each
combination of PRNG and strategy. The white boxes in each bar represent the range of
results between the minimum and maximum usage per disk. As before, small or non-
existing white boxes indicate a very small deviation from an ideal data distribution.
Note that for some strategies we needed to split the y-axis to show all the relevant re-
sults, due to the huge variability of the measurements obtained with every algorithm.

Interestingly, the results are very different from those presented in Section 6.1. Con-
sistent Hashing, for instance, which showed a distribution that was close to the ideal
distribution in the previous experiments, now shows a less-than-ideal data distribution

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 A. Miranda et al.

10 100 1000
Storage Systems

0
5

10
15
20

50
100
150
200
250

us
ag

e

(a) Consistent Hashing

10 100 1000
Storage Systems

0
5

10
15
20
25
30
35

390
392
394
396
398
400
402
404

us
ag

e

(b) Redundant Share

10 100 1000
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

us
ag

e

(c) RUSHP

10 100 1000
Storage Systems

0
1
2
3
4

11

12

13

us
ag

e

(d) RUSHR

10 100 1000
Storage Systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

us
ag

e

(e) RUSHT

10 100 1000
Storage Systems

0
1
2
3
4

10
11
12
13
14

us
ag

e

(f) Random Slicing

minstd_rand
minstd_rand0
hellekalek1995

rand48
ecuyer1988
kreutzer1986

taus88
ranlux3
ranlux64_3

ranlux3_01
ranlux64_3_01
mt11213b

mt19937
lagged_fibonacci607
Unix_rand

SHA1
MD5
Tiger

Fig. 11. Influence of PRNGs on fairness.

with some storage systems even receiving more than 250 times the expected amount
of balls in some cases (see Figure 11(a)).

Other strategies seem to be less affected by the change of PRNG, though in gen-
eral the evaluations show worse results than those obtained with the original hash
functions, even for those strategies that previously showed a quasi-ideal distribution
like Redundant Share, RUSHR and Random Slicing (Figures 11(b), 11(d) and 11(f),
respectively).

If we consider the generators individually, the results for all the PRNGS evaluated
but the last three (SHA1, MD5 and Tiger) degrade when increasing the number of
storage systems from 100 to 1,000. This effect is less noticeable in Redundant Share
(Figure 11(b)), probably because it uses O(n) calls to a PRNG for each ball, which
results in a more realistic random distribution.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Random Slicing: Efficient, Scalable Data Placement A:25

10 100 1000
Storage Systems

0
10
20
30
40
50
60

tim
e

(µ
s)

(a) Consistent Hashing

10 100 1000
Storage Systems

0
1000
2000
3000
4000
5000

10000
15000
20000
25000
30000
35000

tim
e

(µ
s)

(b) Redundant Share

10 100 1000
Storage Systems

0
20
40
60
80

100
120

tim
e

(µ
s)

(c) RUSHP

10 100 1000
Storage Systems

0
10
20
30
40
50
60

tim
e

(µ
s)

(d) RUSHR

10 100 1000
Storage Systems

0

20

40

60

80

100

tim
e

(µ
s)

(e) RUSHT

10 100 1000
Storage Systems

0
20
40
60
80

100
120
140
160
180

tim
e

(µ
s)

(f) Random Slicing

minstd_rand
minstd_rand0
hellekalek1995

rand48
ecuyer1988
kreutzer1986

taus88
ranlux3
ranlux64_3

ranlux3_01
ranlux64_3_01
mt11213b

mt19937
lagged_fibonacci607
Unix_rand

SHA1
MD5
Tiger

Fig. 12. Influence of PRNGs on performance.

Most interestingly, the taus88 PRNG shows really bad results in all experiments,
significantly degrading the fairness of all strategies when compared against the other
PRNGs. This proves that choosing a wrong PRNG can have disastrous results for ran-
domized data distribution strategies, as it can invalidate all the benefits provided by
the strategy.

Figure 12 shows the results obtained in the performance experiments for each com-
bination of PRNG and strategy. Each bar shows the average time required for a single
request. These times include confidence intervals, which are represented as a white
segment in the bar.

Similarly to the results obtained in the previous evaluation, there is a lot of vari-
ability in the results obtained. This time, however, the taus88 PRNG is the one pro-
viding the best performance on average for all strategies but Consistent Hashing (see
Figure 12(a)), where rand48 is slightly faster). Notice that in these experiments the

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 A. Miranda et al.

lagged fibonacci607 generator consistently shows the worst performance results, even
though it was able to provide an acceptable fairness.

Notice that all the PRNGs examined tend to behave similarly with 10, 100, or 1,000
storage systems, which is to be expected since the generators are not influenced by
the number of devices in the systems. There is one significant exception, however,
with the Redundant Share strategy (Figure 12(b)), which shows increased response
times in each successive setting. Once again, this can be explained because Redundant
Share performs O(n) calls to the selected generator for each data block, which can
significantly increase the computation time if n is large.

Most interestingly, notice that PRNGS that provided similar levels of fairness in the
previous experiment (e.g., SHA1, MD5, or Tiger), differ significantly when considering
average response time. This means that, when designing a randomized distribution
strategy, a careful consideration of the selected PRNG is necessary in order to avoid
performance or distribution pitfalls.

8. CONCLUSIONS
This paper shows that many randomized data distribution strategies are unable to
scale to Exascale environments, as either their memory consumption, their load devi-
ation, or their processing overhead is too high. Nevertheless, they are able to easily
adapt to changing environments, a property which cannot be delivered by table- or
rule-based approaches.

The proposed Random Slicing strategy combines the advantages of all these ap-
proaches by keeping a small table and thereby reducing the amount of necessary ran-
dom experiments. The presented evaluation and comparison with well-known strate-
gies shows that Random Slicing is able to deliver the best fairness in all the cases
studied and to scale up to Exascale data centers.

We have also proven that choosing an appropriate pseudo-random number generator
is of the utmost importance when designing and evaluating a new randomized data
distribution strategy, since there is a significant risk of degrading the quality of the
strategy.

REFERENCES
AMARASINGHE, S., CAMPBELL, D., CARLSON, W., CHIEN, A., DALLY, W., ELNOHAZY, E., HALL, M., ET AL.

2010. ExaScale Software Study: Software Challenges in Extreme Scale Systems. Tech. rep., sponsored
by DARPA IPTO in the context of the ExaScale Computing Study.

AZAGURY, A., DREIZIN, V., FACTOR, M., HENIS, E., NAOR, D., RINETZKY, Y., RODEH, O., SATRAN, J.,
TAVORY, A., AND YERUSHALMI, L. 2003. Towards an object store. In Proceedings of the 20th IEEE
Conference on Mass Storage Systems and Technologies (MSST). 165–176.

AZAR, Y., BRODER, A., KARLIN, A., AND UPFAL, E. 1999. Balanced allocations. SIAM journal on comput-
ing 29, 1, 180–200.

BLAUM, M., BRADY, J., BRUCK, J., AND MENON, J. 1994. EVENODD: an optimal scheme for tolerating
double disk failures in RAID architectures. In Proceedings of the 21st International Symposium on
Computer Architecture (ISCA). 245–254.

BRINKMANN, A. AND EFFERT, S. 2008. Redundant data placement strategies for cluster storage envi-
ronments. In Proceedings of the 12th International Conference On Principles Of DIstributed Systems
(OPODIS).

BRINKMANN, A., EFFERT, S., MEYER AUF DER HEIDE, F., AND SCHEIDELER, C. 2007. Dynamic and Re-
dundant Data Placement. In Proceedings of the 27th IEEE International Conference on Distributed
Computing Systems (ICDCS). Toronto, Canada.

BRINKMANN, A., HEIDEBUER, M., MEYER AUF DER HEIDE, F., RÜCKERT, U., SALZWEDEL, K., AND
VODISEK, M. 2004. V: Drive - costs and benefits of an out-of-band storage virtualization system. In
Proceedings of the 21st IEEE Conference on Mass Storage Systems and Technologies (MSST). 153–157.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Random Slicing: Efficient, Scalable Data Placement A:27

BRINKMANN, A., SALZWEDEL, K., AND SCHEIDELER, C. 2000. Efficient, distributed data placement strate-
gies for storage area networks. In Proceedings of the 12th ACM Symposium on Parallel Algorithms and
Architectures (SPAA). 119–128.

BRINKMANN, A., SALZWEDEL, K., AND SCHEIDELER, C. 2002. Compact, adaptive placement schemes for
non-uniform distribution requirements. In Proceedings of the 14th ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA). Winnipeg, Manitoba, Canada, 53–62.

CORBETT, P., ENGLISH, B., GOEL, A., GRCANAC, T., KLEIMAN, S., LEONG, J., AND SANKAR, S. 2004. Row-
diagonal parity for double disk failure correction. In Proceedings of the 3rd USENIX Conference on File
and Storage Technologies (FAST). San Francisco, CA, 1–14.

CORTES, T. AND LABARTA, J. 2001. Extending heterogeneity to RAID level 5. In Proceedings of the USENIX
Annual Technical Conference. Boston, Massachusetts, 119–132.

DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUB-
RAMANIAN, S., VOSSHALL, P., AND VOGELS, W. 2007. Dynamo: Amazon’s highly available key-value
store. ACM SIGOPS Operating Systems Review 41, 6, 205–220.

DEVULAPALLI, A., DALESSANDRO, D., AND WYCKOFF, P. 2008. Data Structure Consistency Using Atomic
Operations in Storage Devices. In Proceedings of the 5th International Workshop on Storage Network
Architecture and Parallel I/Os (SNAPI). Baltimore, USA, 65 – 73.

EASTLAKE, D. AND JONES, P. 2001. US secure hash algorithm 1 (SHA1).
GONZALEZ, J. AND CORTES, T. 2008. Distributing Orthogonal Redundancy on Adaptive Disk Arrays. In

Proceedings of the International Conference on Grid computing, high-performAnce and Distributed Ap-
plications (GADA). Monterrey, Mexico.

HONICKY, R. J. AND MILLER, E. L. 2003. A fast algorithm for online placement and reorganization of repli-
cated data. In Proceedings of the 17th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). Nice, France.

HONICKY, R. J. AND MILLER, E. L. 2004. Replication Under Scalable Hashing: A Family of Algorithms for
Scalable Decentralized Data Distribution. In Proceedings of the 18th IEEE International Parallel and
Distributed Processing Symposium (IPDPS).

JOHNSON, N. L. AND KOTZ, S. 1977. Urn Models and Their Applications. John Wiley and Sons, New York.
KARGER, D., LEHMAN, E., LEIGHTON, T., LEVINE, M., LEWIN, D., AND PANIGRAHY, R. 1997. Consistent

hashing and random trees: Distributed caching protocols for relieving hot spots on the World Wide Web.
In Proceedings of the 29th ACM Symposium on Theory of Computing (STOC). El Paso, Texas, USA,
654–663.

LUBY, M. 1996. Pseudorandomness and Cryptographic Applications. Princeton University Press.
MENSE, M. AND SCHEIDELER, C. 2008. Spread: An adaptive scheme for redundant and fair storage in

dynamic heterogeneous storage systems. In Proceedings of the 19th ACM-SIAM Symposium on Discrete
Algorithms (SODA). San Francisco, California.

MIRANDA, A., EFFERT, S., KANG, Y., MILLER, E., BRINKMANN, A., AND CORTES, T. 2011. Reliable and
randomized data distribution strategies for large scale storage systems. In High Performance Comput-
ing (HiPC), 2011 18th International Conference on. IEEE, 1–10.

MITZENMACHER, M. 1996. The power of two choices in randomized load balancing. Ph.D. thesis, Computer
Science Department, University of California at Berkeley.

PATTERSON, D. A., GIBSON, G., AND KATZ, R. H. 1988. A Case for Redundant Arrays of Inexpensive Disks
(RAID). In Proceedings of the 1988 ACM Conference on Management of Data (SIGMOD). 109–116.

POPOV, I., BRINKMANN, A., AND FRIEDETZKY, T. 2012. On the Influence of PRNGs on Data Distribution.
In Parallel, Distributed and Network-Based Processing (PDP), 2012 20th Euromicro International Con-
ference on. IEEE, 536–543.

RAAB, M. AND STEGER, A. 1998. balls into binsa simple and tight analysis. Randomization and Approxi-
mation Techniques in Computer Science, 159–170.

SANDERS, P. 2001. Reconciling simplicity and realism in parallel disk models. In Proceedings of the 12th

ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, Philadelphia, PA, 67–76.
SCHINDELHAUER, C. AND SCHOMAKER, G. 2005. Weighted distributed hash tables. In Proceedings of the

17th ACM Symposium on Parallel Algorithms and Architectures (SPAA). Las Vegas, Nevada, USA, 218–
227.

STEVENS, M., LENSTRA, A., AND DE WEGER, B. 2007. Chosen-prefix collisions for md5 and colliding x.509
certificates for different identities. In Proceedings of the 26th Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT). 1–22.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 A. Miranda et al.

STEVENS, M., SOTIROV, A., APPELBAUM, J., LENSTRA, A., MOLNAR, D., OSVIK, D., AND DE WEGER, B.
2009. Short chosen-prefix collisions for md5 and the creation of a rogue ca certificate. In Proceedings of
the 29th Annual International Cryptology Conference (CRYPTO). 55–69.

STOICA, I., MORRIS, R., LIBEN-NOWELL, D., KARGER, D., KAASHOEK, M., DABEK, F., AND BALAKR-
ISHNAN, H. 2003. Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM
Transactions on Networking 11, 1, 17–32.

VIEGA, J. 2003. Practical random number generation in software. In Proceedings of the 19th Annual Com-
puter Security Applications Conference (ACSAC). 129–141.

WANG, T. 2007. Integer hash function. Online: http://www. concentric. net/ ttwang/tech/inthash. htm.
WANG, X., YIN, Y., AND YU, H. 2005. Finding collisions in the full sha-1. In Proceedings of the 25th Annual

International Cryptology Conference (CRYPTO). 17–36.
WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D. E., AND MALTZAHN, C. 2006a. Ceph: A scalable,

high-performance distributed file system. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI). Seattle, WA, USA, 307–320.

WEIL, S. A., BRANDT, S. A., MILLER, E. L., AND MALTZAHN, C. 2006b. CRUSH: Controlled, Scalable And
Decentralized Placement Of Replicated Data. In Proceedings of the ACM/IEEE Conference on Super-
computing. Tampa, FL.

ZHENG, W. AND ZHANG, G. 2011. Fastscale: Accelerate raid scaling by minimizing data migration. In Pro-
ceedings of the 9th USENIX Conference on File and Storage Technologies (FAST).

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

