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Based on the theory of stochastic chemical kinetics, the inherent randomness and stochasticity of biochem-
ical reaction networks can be accurately described by discrete-state continuous-time Markov chains. The
analysis of such processes is, however, computationally expensive and sophisticated numerical methods are
required. Here, we propose an analysis framework in which we integrate a number of moments of the pro-
cess instead of the state probabilities. This results in a very efficient simulation of the time evolution of
the process. In order to regain the state probabilities from the moment representation, we combine the
fast moment-based simulation with a maximum entropy approach for the reconstruction of the underlying
probability distribution. We investigate the usefulness of this combined approach in the setting of stochas-
tic chemical kinetics and present numerical results for three reaction networks showing its efficiency and
accuracy. Besides a simple dimerization system, we study a bistable switch system and a multi-attractor
network with complex dynamics.
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1. INTRODUCTION
During the last two decades discrete stochastic models have become a very popular de-
scription of biochemical reactions that take place in living organisms. They provide an
appropriate representation of the discrete molecular populations in the cell and accu-
rately mimic the inherent randomness and discreteness of molecular interactions [Fe-
doroff and Fontana 2002; McAdams and Arkin 1999; Thattai and van Oudenaarden A.
2001; Elowitz et al. 2002].

The theory of stochastic chemical kinetics gives a rigorously justified stochastic de-
scription in terms of discrete-state continuous-time Markov chains [Gillespie 1977].
The dynamics of the chain is governed by the Chemical Master Equation (CME) which
describes the time evolution of the state probabilities. However, the CME can be solved
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0:2 Andreychenko, Mikeev, Wolf

analytically only in a very limited number of cases. The main difficulty arising in the
numerical solution of the CME is the curse of dimensionality: each chemical species
that is involved in a reaction adds one dimension to the state space of the Markov
chain since the state of the chain is given by a population vector counting the cur-
rent number of molecules for each species. Tight bounds for molecular counts are usu-
ally not known a priori and thus the size of the state space that has to be considered
is extremely large or even infinite rendering the direct numerical integration of the
CME infeasible. Sophisticated truncation approaches have been developed [Munsky
and Khammash 2006; Mateescu et al. 2010a; Andreychenko et al. 2012] which work
well as long as the average population sizes remain small. The main idea is to concen-
trate on those population vectors containing a significant amount of probability mass.
In this way only very rare behavior of the process is neglected. If the reaction network
contains highly abundant chemical species then the underlying probability distribu-
tion of the process becomes very large, even when insignificant parts are truncated. In
such a case it is advantageous to change the representation of the distribution. The
idea of methods of moments or moment closure methods is to replace the distribu-
tion of the Markov chain by its moments up to a certain finite order [Engblom 2006;
Ale et al. 2013]. It is possible to derive differential equations that can be used to ap-
proximate the time evolution of the moments. For instance, if the distribution of the
chain is similar to a multivariate normal distribution, one can obtain a very accurate
approximation of the distribution by tracking the average molecule counts and their
variances and covariances over time. For systems exhibiting more complex behavior
such as oscillations or multi-modality, moments of higher order are necessary for an
accurate description [Ale et al. 2013]. For instance, the moments of order three typi-
cally describe the skewness of the distribution while moments of order four are known
to be a measure of the width of the tails of the distribution.

Often one is interested in the probability of certain events or in likelihoods of obser-
vations of the process. However, usually prior information regarding the properties of
the distribution (e.g. approximately normally distributed) is not given and in such a
case regaining the probability distribution from the moment description is non-trivial.
In fact it turns out that this problem, known as the classical moment problem, has a
long history in other application domains and only recently very efficient methods for
the reconstruction of the distribution became available.

Given a number of moments of a random variable, there is in general no unique so-
lution for the corresponding distribution. However it is possible to define a sequence
of distributions that converges to the true one whenever the number of constraints ap-
proaches infinity [Mnatsakanov and Hakobyan 2009]. Conditions for the existence of
a solution are well-elaborated (such as Krein’s and Carlemann’s conditions) but they
do not provide a direct algorithmic way to create the reconstruction. Therefore, Pade
approximation [Mead and Papanicolaou 1984] and inverse Laplace transform [Chau-
veau et al. 1994] have been considered but turned out to work only in restricted cases
and require a large number of constraints. Similar difficulties are encountered when
lower and upper bounds for the probability distribution are derived [Gavriliadis 2008;
Tari et al. 2005; Kaas and Goovaerts 1986]. Kernel-based approximation methods have
been proposed where one restricts to a particular class of distributions [Gavriliadis and
Athanassoulis 2012; Mnatsakanov and Hakobyan 2009; Chen 2000]. The numerically
most stable methods are, however, based on the maximum entropy principle which has
its roots in statistical mechanics and information theory. The idea is to choose from all
distributions that fulfill the moment constraints the distribution that maximizes the
entropy. The maximum entropy reconstruction is the least biased estimate that fulfills
the moment constraints and it makes no assumptions about the missing information.
No additional knowledge about the shape of the distribution neither a large number of
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moments is necessary. For instance, if only the first moment (mean) is provided the re-
sult of applying the maximum entropy principle is exponential distribution. In case of
two moments (mean and variance) the reconstruction is given by normal distribution.
Additionally, if experimental data (or simulation traces) is available, data-driven max-
imum entropy methods can be applied [Wu 2009; Amos et al. 1996]. Recently, notable
progress has been made in the development of numerical methods for the moment
constrained maximum entropy problem [Abramov 2010; Bandyopadhyay et al. 2005;
Mead and Papanicolaou 1984], where the main effort is put to the transformation of
the problem in order to overcome the numerical difficulties that arise during the opti-
mization procedure.

In this paper we propose a combination of the maximum entropy reconstruction
and the moment closure approach for the solution of the CME. We approximate the
moments over time and for a particular time instant of interest we reconstruct the
underlying distribution with a moment constrained maximum entropy approach. We
do not make any further assumptions about the distribution and study the feasibility,
efficiency and accuracy of this combined approach. To the best of our knowledge, the
maximum entropy approach has not yet been applied to stochastic models of biochem-
ical reaction networks before. We consider three example networks which are small
enough such that we can compare our results with a nearly exact solution obtained via
a direct numerical integration of the CME. The maximum entropy approach has been
applied to chemical reaction networks in [Smadbeck and Kaznessis 2013]. However,
they restrict to finite-state models where the entropy maximization becomes much
easier since the support of the distribution is bounded. Here, we allow for infinite state
space and present two infinite-state case studies. In addition, Smadbeck and Kaznes-
sis compare their results with statistical estimates obtained from Monte-Carlo sim-
ulations while we compare to results obtained via a numerical solution for which the
approximation error is known. Two of the examples that we consider have multi-modal
distributions which makes the reconstruction harder. However, our findings show that
the combination of moment closure and maximum entropy reconstruction is surpris-
ingly accurate also for complex systems and it is very efficient in terms of running
times. In particular, the reconstruction part is very fast so that the main advantage of
the moment closure method - the short running time - remains, even if it is combined
with the maximum entropy approach. Thus, it provides a very useful alternative to
other analysis methods such as Monte Carlo simulations of the CME. In particular,
most methods do not scale in the number of molecules while the efficiency of the mo-
ment closure approach is independent of the population sizes. Short running times are
particularly important if parameters of the process have to be adjusted or if experi-
ments must be designed [Ruess et al. 2013], since for such problems the model has to
be analyzed for many different parameter combinations.

The paper is further organized as follows: we introduce our model in Section 2 and
shortly explain how the CME can be numerically integrated to obtain accurate results
for small systems. In Section 3 we discuss how the moment closure approach is applied
to the CME and in Section 4 we describe the details of the maximum entropy approach
and how it can be used to reconstruct the distribution from a number of moments.
Finally, we present experimental results for the three case studies in Section 5 and
conclude the paper with Section 6.

2. STOCHASTIC CHEMICAL KINETICS
Stochastic chemical kinetics refers to a widely-used modelling framework for the de-
scription of networks of biochemical reactions [McQuarrie 1967]. We consider a bi-
ological compartment (e.g. a living cell) in which molecules of different types un-
dergo chemical reactions. Assuming that this reaction volume is well-stirred and in
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thermal equilibrium, it is possible to physically justify a Markov chain description
of the chemical populations [Gillespie 1977], that is, we consider a random vector
X(t) = (X1(t), . . . , Xn(t)) where Xi(t) is the number of molecules of type i at time t
(i ∈ {1, . . . , n}, t ≥ 0). We assume that the set of possible reactions is given by the
stoichiometric equations

Rj : `j,1S1 + . . .+ `j,nSn
cj−→ ˜̀

j,1S1 + . . .+ ˜̀
j,nSn, 1 ≤ j ≤ m.

Here, `j,i and ˜̀
j,i refer to the number of molecules used up and produced by the re-

action, respectively (`j,i, ˜̀
j,i ∈ N0 and 1 ≤ i ≤ m) and cj is the so-called stochastic

reaction rate constant that determines the probability of the reaction as explained in
the sequel.

EXAMPLE 1. We consider a simple dimerization example [Ale et al. 2013] with the
stoichiometric equations

R1 : 2P
c1−→ P2,

R2 : P2
c2−→ 2P,

(1)

where `1,1 = ˜̀
2,1 = 2, `2,2 = ˜̀

1,2 = 1 and `1,2 = `2,1 = ˜̀
1,1 = ˜̀

2,2 = 0. Note that we omit
terms which are zero and the factors equal to one.

2.1. Transition Rates
Let vj ∈ Zn be the vector that describes the population change of reaction Rj , that
is, vj = (˜̀

j,1 − `j,1, . . . , ˜̀
j,n − `j,n). Transitions of the Markov chain X correspond to

chemical reactions and the transition rate of reaction Rj is given by

lim
h→0

1

h
P (X(t+ h) = x+ vj | X(t) = x) = cj

n∏
i=1

(
xi
`j,i

)
where x = (x1, . . . , xn) ∈ Nn0 is a state and the binomial coefficients describe the num-
ber of possible combinations of reactant molecules. Note that cj depends on the physi-
cal properties of the reactants as well as on the temperature and the size of the reaction
volume. Here we make the usual assumption that cj is constant in time. It is possible
to extend the results presented in the sequel for time-dependent cj . In this case the
underlying Markov chain is time-inhomogeneous and an accurate simulation may be
challenging if the rates strongly vary in time [Andreychenko et al. 2011].

In the sequel we also restrict to chemical reactions that are at most bimolecular,
i.e., we assume that

∑n
i=1 `j,i ∈ {0, 1, 2}, which is a reasonable assumption because

reactions where more than two molecules have to collide can usually be decomposed
into smaller ones where at most two molecules have to collide [Gillespie 1977].

2.2. Chemical Master Equation
The dynamics of X is given by the chemical master equation that describes the time
evolution of the transient distribution π(x, t) = P (X(t) = x) as a linear ordinary differ-
ential equation

∂π(x, t)

∂t
=

m∑
j=1

(αj(x− vj)π(x− vj , t)− αj(x)π(x, t)) . (2)

Here, αj(x) = cj
∏n
i=1

(
xi

`j,i

)
is the transition rate in state x for reaction Rj . If an initial

distribution, say at time t = 0, is given then the equation has a unique solution at all
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finite times t ≥ 0. It is important to note that often the number of states with π(x, t) > 0
is infinite since bounds on the population sizes are not known a priori. Thus, although
in reality the molecule numbers are always finite, theoretically an infinite number of
states can have positive probability. This leads to two complications compared to finite-
state models. First, the limiting distribution of the Markov chain may not exist and
additional conditions are necessary to ensure the existence [Dayar et al. 2011]. And
second, truncation techniques are necessary to numerically simulate (2) since only a
tractable number of states can be considered in each integration step. Only in special
cases an analytic solution of (2) is available [Jahnke and Huisinga 2007].

2.3. Direct Numerical Simulation
In the sequel we shortly explain how the master equation in (2) can be simulated nu-
merically since our goal is to compare a moment closure approximation combined with
a reconstruction of the individual probabilities with such a direct numerical simula-
tion. The latter performs well as long as the average population sizes remain small
and the approximation error can be controlled by a simple threshold criterion. Thus,
we will be able to determine the accuracy of the moment closure approximation as well
as the accuracy of the reconstruction algorithm.

The direct numerical simulation that we consider is based on the dynamic state
space truncation developed for uniformization methods [Mateescu et al. 2010b] and
for integration schemes such as Runge Kutta methods [Andreychenko et al. 2012; Mi-
keev et al. 2011]. The main idea is to exploit the inflow-outflow form of (2) for the
construction of the dynamic state space. The terms αj(x− vj)π(x− vj , t) can be seen as
the inflow to state x for reaction Rj while αj(x, t)π(x, t) is the corresponding outflow.
Let p(x, t) be the approximation of π(x, t) during the numerical integration for all x
and all t ≥ 0. Initially we set p(x, 0) = π(x, 0) and during an integration step for the
interval [t, t + h) we start with a subset S(t) of states that have significant probability
at time t, i.e.,

S(t) := {x | p(x, t) > δ1}
where δ1 > 0 is a small threshold. For all states not in S(t) we let p(x, t) = 0. During
the numerical integration we add new states to S(t) whenever they receive a significant
amount of inflow, i.e. if we use the explicit Euler method, the new state probability at
time t+ h is calculated as

p(x, t+ h) = p(x, t) + h ·
m∑
j=1

(αj(x− vj)p(x− vj , t)− αj(x)p(x, t)) .

For a state x 6∈ S(t) this reduces to

p(x, t+ h) = h ·
m∑
j=1

αj(x− vj)p(x− vj , t).

Hence, we can loop over all states in S(t) and, before integrating their probability,
check whether their successors receive significant inflow. More precisely, we simply
add a state x to the set S(t) if h · αj(x− vj)p(x− vj , t) > δ2 for some j. Here, δ2 is again
a small threshold. We then also compute p(x, t+h) for this new state. It turns out that
for most example networks an accurate approximation is obtained if we work with a
single threshold δ1 = δ2 =: δ and choose δ ∈ {10−10, 10−9 . . . , 10−5}. Note that the new
set S(t+h) will then contain all states x ∈ S(t) whose probability at time t+h is at least
δ as well as all successors x + vj 6∈ S(t) where x ∈ S(t) and there exists a j such that
h ·αj(x− vj)p(x− vj , t) > δ (which implies that their probability at time t+h is at least
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Fig. 1: Probability distribution of the protein counts P1 and P2 conditioned on the
events that the promotor region is (a) free (b) bound to P1, and (c) bound to P2, com-
puted at time instant t = 100 for exclusive switch system.

δ). Obviously, different truncation strategies are possible (e.g. choose δ2 smaller than
δ1). However, we found that simply adding all successors (δ2 = 0) is not efficient since
often we have reversible reactions, i.e., vj = −vk for some j 6= k where one direction is
much more likely then the other, say Rj . In such a case the main part of the probability
mass moves in the direction of vj and the accuracy gain in adding a successor w.r.t. vk
is not worth the effort since during the next construction of S(t) these successors are
anyway removed from S(t).

In order to illustrate the method, we list the size of the truncated state space and
the total loss of probability mass for the following example:

EXAMPLE 2. We consider a gene regulatory network called the exclusive switch
[Loinger et al. 2007]. It describes the dynamics of two genes with an overlapping pro-
motor region, and their products P1 and P2. Molecules of both species P1 and P2 are
produced if no transcription factor is bound to the promotor region (region is free).
However if a molecule of type P1 (P2) is bound to the promotor then it inhibits the ex-
pression of the other product, i.e. only molecules of P2 (P1) can be produced. Only one
molecule can be bound to the promotor region at a time. The model has an infinite state
space and the stoichiometric equations are given by:

DNA
c1−→ DNA+ P1

DNA
c2−→ DNA+ P2

P1
c3−→ ∅

P2
c4−→ ∅

DNA+ P1
c5−→ DNA.P1

DNA+ P2
c6−→ DNA.P2

DNA.P1
c7−→ DNA+ P1

DNA.P2
c8−→ DNA+ P2

DNA.P1
c9−→ DNA.P1 + P1

DNA.P2
c10−→ DNA.P2 + P2

where the reaction rate constants c1, . . . , c10 are given by the entries of the vector
c = (2.0, 5.0, 0.005, 0.005, 0.005, 0.002, 0.02, 0.02, 2.0, 5.0) and the initial conditions are
such that only one DNA molecule is present in the system while the molecular counts
for the rest of species are zero.

In Figure 1 we plot the results of a direct numerical simulation using the dynamical
state space as explained above. The different subfigures show the marginal distribu-
tions of protein counts P1 and P2 when we condition on the three different states of the
promotor region (free, P1 or P2 bound). To investigate the accuracy of the obtained re-
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sults we refer to the Table I, where we list the amount ε of probability mass lost during
the computation and the size |S| of the truncated state space S(t) for different thresholds
δ at time instant t = 100. Note that the probability of all states not in S(t) is approxi-
mated as zero. Thus, ε is equal to the total approximation error (sum of all state-wise
errors) and all computed state probabilities are underapproximations, i.e.∑

x

π(x, t)−
∑
x

p(x, t) ≤ ε (3)

where we have equality at the final time instant of the computation. We find that, for
instance, if we choose δ = 10−15 the total approximation error remains below 10−10.

3. MOMENT CLOSURE APPROXIMATION
As opposed to the method in the previous section, during the moment closure approx-
imation we integrate the first k moments of the distribution π(x, t) over time. For this
we derive a system of differential equations for the moments along the lines of Ale et
al. to show how and where approximations errors occur [Ale et al. 2013]. We restrict
ourselves to the first two moments in order to keep this review of moment closure tech-
niques short and also because the derivation of the equations for the first two moments
are sufficient for illustrating the technique.

Let f : Nn0 → Rn be a function that is independent of t. In the sequel we will exploit
the relationship

d
dtE (f(X(t))) =

∑
x
f(x) · ddtP (X(t) = x)

=
m∑
j=1

E (αj(X(t)) · (f(X(t) + vj)− f(X(t)))) .
(4)

For f(x) = x this yields a system of equations for the population means

d
dtE (X(t)) =

m∑
j=1

vjE (αj(X(t))) . (5)

Note that for bimolecular reactions, E (αj(X(t))) is equal to

cjE (Xi(t) ·Xi′(t)) 6= cjE (Xi(t)) · E (Xi′(t)) if i 6= i′,

0.5cjE (Xi(t) · (Xi′(t)− 1)) 6= 0.5cjE (Xi(t)) · (E (Xi′(t))− 1) if i = i′,

for i, i′ ∈ {1, . . . , n}, which means that the system of ODEs in Eq. (5) is only closed if at
most monomolecular reactions (

∑n
i=1 `j,i ≤ 1) are involved. For most networks the lat-

ter condition is not true but we can approximate the unknown term E (Xi(t) ·Xi′(t)) ei-
ther by assuming that the covariance is zero, which gives E (Xi(t) ·Xi′(t)) = E (Xi(t)) ·
E (Xi′(t)) or by extending the system in (5) with additional equations for the second
moments. The general strategy is to replace αj(X(t)) by a Taylor series about the
mean E (X(t)). Let us write µi(t) for E (Xi(t)) and µ(t) for the vector with entries µi(t),

Table I: Dynamical state space truncation results for the exclusive switch

δ |S| ε time (sec)
10−10 183210 3 · 10−6 154
10−12 203948 2 · 10−8 174
10−15 265497 9 · 10−11 239
10−20 381374 1 · 10−13 1027
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1 ≤ i ≤ n. Then

E (αj(X)) = αj(µ) + 1
1!

∑n
i=1E (Xi − µi) ∂

∂xi
αj(µ)

+ 1
2!

∑n
i=1

∑n
k=1E ((Xi − µi)(Xk − µk)) ∂2

∂xi∂xk
αj(µ) + . . .

where we omitted t in the equation to improve the readability. Note that
E (Xi(t)− µi) = 0 and since we restrict to reactions that are at most bimolecu-
lar, all terms of order three and more disappear. By letting Cik be the covariance
E ((Xi(t)− µi)(Xk(t)− µk)) we get

E (αj(X)) = αj(µ) + 1
2

∑n
i=1

∑n
k=1 Cik

∂2

∂xi∂xk
αj(µ) (6)

Next, we derive an equation for the covariances by first exploiting the relationship

d

dt
Cik =

d

dt
E (XiXk)− d

dt (µiµk) = d
dtE (XiXk)− ( ddtµi)µk − µi(

d
dtµk) (7)

and if we couple this equation with the equations for the means, the only unknown
term that remains is the derivative d

dtE (XiXk) of the second moment. For this we can
use the same strategy as before, i.e., from Eq. (4) we get

d

dt
E (XiXk) =

∑m
j=1 [vj,ivj,kE (αj(X)) + vj,kE (αj(X)Xi) + vj,iE (αj(X)Xk)] (8)

where vj,i and vj,k are the corresponding entries of the vector vj . Clearly, we can use
Eq. (6) for the term E (αj(X)) while the terms E (αj(X)Xi) and E (αj(X)Xk) have to
be replaced by the corresponding Taylor series about the mean. Let fj(x) := αj(x)xi.
Similar to Eq. (6) we get

E (αj(X)Xi) = αj(µ)µi + 1
1!

∑n
i=1E (Xi − µi) ∂

∂xi
fj(µ)

+ 1
2!

∑n
i=1

∑n
k=1E ((Xi − µi)(Xk − µk)) ∂2

∂xi∂xk
fj(µ) + . . . .

(9)

Here, it is important to note that moments of order three come into play since deriva-
tives of order three of fj(x) = αj(x)xi may be nonzero. It is possible to take these terms
into account by deriving additional equations for moments of order three and higher.
Obviously, these equations will then include moments of even higher order such that
theoretically we end up with an infinite system of equations. However, a popular strat-
egy is to close the equations by assuming that all moments of order > M that are
centred around the mean are equal to zero. E.g. if we choose M = 2, then we can
simply use the approximation

E (αj(X)Xi) ≈ αj(µ)µi + 1
2!

∑n
i=1

∑n
k=1E ((Xi − µi)(Xk − µk)) ∂2

∂xi∂xk
fj(µ).

This approximation is then inserted into Eq. (8) and the result replaces the term
d
dtE (XiXk) in Eq. (7). Finally, we can integrate the time evolution of the means and
that of the covariances and variances.

EXAMPLE 3. To illustrate the method we consider again the simple dimerization
reaction system of Example 1. Assuming that all central moments of order three and
higher are equal to zero, we get the following equations for the means, variances and
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the covariance of the species
d
dtµ1 = −c1µ1 (µ1 − 1)− c1C1,2 + 2c2µ2

d
dtµ2 = 1

2c1µ1 (µ1 − 1) + 1
2c1C1,2 − c2µ2

d
dtC1,1 = −2c1µ

3
1 + 4c1µ

2
1 − 2c1µ1 + 4c2µ2 + 4c2µ1µ2

d
dtC1,2 = − 3

2c1C1,1 + µ1

(
−c1(µ1 − 1)− 1

2c1µ1C1,1 + c2µ
2
1

)
+µ2 (−2c2 − c2µ1 + c1C1,1)

d
dtC2,2 = 3

2c1C1,1 + 1
2c1µ1(µ1 − 1) + µ2(c2 − c1C1,1)

where we denote the expectations of species P (P2) by µ1 (µ2), variances are given by
C1,1, C2,2 and the covariance between P and P2 is C1,2. In the equations we omit t to
improve readability.

In Section 5 we study the accuracy of the above example (cf. Table II) and find that
the approximation provided by moment closure method is very accurate even if only
the means and covariances are considered. In general, however, experimental results
show that the approximation tends to become worse if systems that exhibit complex
behavior such as multistability or oscillations. Increasing the number of moments typ-
ically improves the accuracy [Ale et al. 2013] but sometimes the resulting equations
may become very stiff [Engblom 2006].

Grima has investigated the accuracy of the approximation for n = 2 and n = 3 by a
comparison with the system size expansion of the master equation [Grima 2012]. He
found that for monostable systems with large volumes the approximation of the means
µ(t) have a relative error that scale as Ω−n while the relative errors of the variances
and covariances scale as Ω−(n−1), n ∈ {2, 3}. For small volumes or systems with mul-
tiple modes, however, only experimental evaluations of the accuracy are available [Ale
et al. 2013; Engblom 2006], where the approximated moments are compared to statis-
tical estimates based on Monte Carlo simulations of the process. In Section 5 we focus
on experimental results for the reconstructed probability distribution. However, we
also compare the moments approximated using the technique described above to the
moments obtained by the direct numerical simulation. Note that for the reconstructed
probability distributions of the process we have two sources of error: the approxima-
tion error of the moment closure and the error associated with the maximum entropy
reconstruction as explained below. In our experimental results we therefore apply the
reconstruction to both moments obtained from the moment equations as well as the
more accurate approximation obtained from a direct numerical simulation. The lat-
ter, however, is only possible for systems where the average molecule numbers remain
small since otherwise too many states have to be considered during the integration.

4. MAXIMUM ENTROPY RECONSTRUCTION
The moment closure is usually used to approximate the moments of a stochastic dy-
namical system over time. The numerical integration of the correspondent ODE sys-
tem is usually faster than a direct integration of the probability distribution or an
estimation of the moments based on Monte-Carlo simulations of the system. However,
if one is interested in certain events and only the moments of the distribution are
known, the corresponding probabilities are not directly accessible and have to be re-
constructed based on the moments. Here, we shortly review standard approaches to re-
construct one-dimensional marginal probability distributions πi(xi, t) = P (Xi(t) = xi)
of a Markov chain that describes the dynamics of chemical reactions network. The
task of approximating multi-dimensional distributions follows the same line however
for our case these techniques revealed to be not effective due to numerical difficul-
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ties in the optimization procedure. Thus, we have given (an approximation of) the
moments of the i-th population and obviously, the corresponding distribution is in
general not uniquely determined for a finite set of moments. In order to select one
distribution from this set, we apply the maximum entropy principle. In this way we
minimize the amount of prior information about the distribution and avoid any other
latent assumption about the distribution. Taking its roots in statistical mechanics and
thermodynamics [Jaynes 1957], the maximum entropy approach was successfully ap-
plied to solve moment problems in the field of climate prediction [Abramov et al. 2005;
Kleeman 2002; Roulston and Smith 2002], econometrics [Wu 2003], performance anal-
ysis [Tari et al. 2005; Guiasu 1986] the and many others.

4.1. Maximum Entropy Approach
The maximum entropy principle says that among the set of allowed discrete probabil-
ity distributions G we choose the probability distribution q that maximizes the entropy
H(g) over all distributions g ∈ G, i.e.,

q = arg maxg∈G H(g) = arg maxg∈G (−
∑
x g(x) ln g(x)) . (10)

where x ranges over all possible states of the discrete state space. Note that we assume
that all distributions are defined on the same state space. In our case the set G consists
of all discrete probability distributions that satisfy the moment constraints. Given a
sequence of M non-central moments

E
(
Xk
)

= µk, k = 0, 1, . . . ,M,

the following constraints are considered∑
x

xkg(x) = µk, k = 0, 1, . . . ,M. (11)

Here, we choose g to be a non-negative function and add the constraint µ0 = 1 in
order to ensure that g is a distribution. The above problem is a nonlinear constrained
optimization problem, which is usually addressed by the method of Lagrange. Consider
the Lagrangian functional

L(g, λ) = H(g)−
M∑
k=0

λk
(∑

x x
kg(x)− µk

)
,

where λ = (λ0, . . . , λM ) are the corresponding Lagrangian multipliers. It is possible
to show that maximizing the unconstraint Lagrangian L gives a solution to the con-
strained maximum entropy problem The variation of the functional L according to the
unknown distribution provides the general form of g(x)

∂L
∂g(x)

= 0 =⇒ g(x) = exp

(
−1−

M∑
k=0

λkx
k

)
=

1

Z(x)
exp

(
−

M∑
k=1

λkx
k

)
,

where

Z(x) = e1+λ0 =
∑
x

exp

(
−

M∑
k=1

λkx
k

)
is a normalization constant. In the dual approach we insert the above equation for g(x)
into the Lagrangian thus we can transform the problem into an unconstrained convex
minimization problem of the dual function w.r.t to the dual variable λ

Ψ(λ) = lnZ(x) +

M∑
k=1

λkµk,
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According to the Kuhn-Tucker theorem, the solution λ∗ = arg min Ψ(λ) of the mini-
mization problem for the dual function equals the solution q of the original constrained
optimization problem (10).

4.2. Maximum Entropy Numerical Approximation
It is possible to solve the constrained maximization problem (10) for m ≤ 2 analyti-
cally. For m > 2 numerical methods have to be applied to incorporate the knowledge
of moments of order three and more. Possible numerical solution techniques include
the Newton minimization procedure [Mead and Papanicolaou 1984], the iterative min-
imization [Bandyopadhyay et al. 2005] and the application of the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) procedure [Byrd et al. 1995]. For our experimental results,
we used the algorithm proposed by Abramov [Abramov 2010] and the corresponding
software 1. It can be used to reconstruct distributions with up to 4 dimensions. Due
to the difficulties in the numerical optimization procedure here we restrict ourselves
to the the reconstruction of one-dimensional marginal distributions qi(·) that approx-
imate πi(·, t). The essential idea of the algorithm is preconditioning of the original
problem to overcome numerical difficulties. This standardization is conducted through
a sequence of linear transformations of coordinates in phase space. They include shift-
ing of the moments, rescaling its values to shorten the difference between orders of
magnitudes and representing the optimization problem in the generalized orthogonal
polynomial basis to lower the sensitivity of the Lagrange multipliers to high values
of monomials xi. After this sequence of preconditioning steps is completed, the opti-
mization BFGS procedure is used to obtain the Lagrangian multipliers λ∗. Solving the
ODE system for moments we obtain an approximation of the moment values and thus
the distribution with such moments might not exist. This is not a problem in our case
since both the number of points in the Gauss-Hermite quadrature formula used in
integral computation and the tolerance for optimization procedure are controllable in
the implementation we use, so that the optima (if it exists) can be found even using the
approximated values. Theoretical conditions for existence of the solution for moment
problem are elaborated in detail in [Tari et al. 2005; Stoyanov 2000; Lin 1997]. The
similar analysis for the multivariate case is provided in [Kleiber and Stoyanov 2013].

Abramov focuses on continuous state spaces and reconstructs densities instead of
discrete probabilities. However, it turns out that the computed densities can be eas-
ily transformed into discrete distributions (cf. Section 5). The probability distributions
πi(·, t) we are interested in are discrete and in order to approximate the discrete prob-
ability P (Xi = xi) for a molecule count xi of the i-th species we integrate the recon-
structed density qi and set

π̃i(xi, t) =


xi+

1
2∫

xi− 1
2

qi(x) dx, xi > 0

2 ·
xi+

1
2∫

0

qi(x) dx, xi = 0

(12)

Additionally we have to truncate the support R of qi to R+ such that qi(x) = 0 for all
x ∈ (−∞, 0). This can be done by adjusting the normalization constant Z(x) accord-
ingly. The two of three models we are considering have the unbounded state space
which does not allow to simplify the process of moment computation in the maxi-
mum entropy optimization procedure thus they are approximated by Gauss-Hermite
quadrature formula.

1The software is available at http://homepages.math.uic.edu/∼abramov/
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5. NUMERICAL RESULTS
In this section we show experimental results of the maximum entropy approach when
it is applied to the moments of a reaction network. To estimate the quality of the prob-
ability distribution reconstruction, we compare the obtained distributions to those ob-
tained via a direct numerical simulation. Thus, we consider only systems which are
small and where a direct numerical simulation is possible. Clearly, for more complex
systems with high population sizes a direct numerical simulation is not feasible while
the running time of the moment closure approximation is independent of the popula-
tion sizes.

In order to distinguish errors that are introduced by the moment closure approx-
imation from errors introduced by the reconstruction, we also compare the obtained
moments with those computed based on the distributions obtained via direct numer-
ical simulation. Moreover, we applied the maximum entropy approach to the more
accurate approximation of the moments obtained via direct numerical simulation. It
is important to note that in all cases the maximum entropy optimization only takes
less than one second. We therefore only list the running time of the moment closure
method.

5.1. Simple Dimerization system
We first consider Example 1 and investigate the numerical accuracy of the moment
equations for this example. The moment closure approximation only takes less than
one second for this example and Table II compares the moments approximated with
the moment closure with the moments obtained from the direct numerical simulation
(as described in Section 2.3).

The first column refers to the highest order of the moments that was considered
during the computation, i.e., all central moments of higher order are approximated
with zero. In addition we list the relative errors of the means (error ord. 1) and the
moments of higher order k using the error norm

max
i

|m̂(k)
i −m

(k)
i |

m
(k)
i

.

Here m̂
(k)
i and m

(k)
i are the values of moments E(Xk

i ) computed using the moment
closure method and obtained via direct numerical simulation and the maximum is
taken over the chemical species. The second column in tables refers to the number
of equations that were integrated for the moment closure method. The initial protein
numbers are chosen as P = 301 and P2 = 0 and we consider the system at time t =
20 [Ale et al. 2013]. We find that the moment closure approximation provides very
accurate results.

Next, we reconstruct the marginal distributions of the species P and P2 and com-
pare then with those obtained using the direct numerical simulation (where we chose
δ = 10−15 yielding a total approximation error of ε = 5 · 10−15, see also Eq. (3)). For in-
stance, to reconstruct the distribution of P we used the sequence of moments µ0, . . . , µk,
where µj = E(Xj

1(t)) and X1(t) represents the number of molecules of type P at time t.

Table II: Errors of the moment closure approximation for the dimerization network
ord. # equ. error ord. 1 error ord. 2 error ord. 3 error ord. 4 error ord. 5

2 5 0.001754 0.003495 - - -
3 9 0.001752 0.003492 0.005215 - -
4 14 0.001743 0.003465 0.005211 0.006907 -
5 20 0.001721 0.003418 0.005183 0.006901 0.008555
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Fig. 2: Maximum entropy reconstruction of marginal probability distributions of the
protein counts (a) P and (b) P2 at time instant t = 20 for simple dimerization system.

The values of moments µ0, . . . , µk are approximated by the moment closure method. In
Fig. 2 we plot the distribution of P and P2 where we use red bars for the distribution
obtained via direct numerical simulation and blue triangles for the reconstructed dis-
tribution (moment closure approximation and maximum entropy reconstruction). For
the order of the moments that were considered, we used in for both species the order
with which the best approximation was obtained (see below).

In Table III we show how accurate the approximation of individual probabilities
πi(x, t) is by calculating the Chebyshev distance

||εi||∞ = max
x
|πi(x, t)− π̃i(x, t)|,

where πi(x, t) is the ”true” probability of having xmolecules of type i at time t (obtained
via the accurate direct numerical simulation) and π̃i(x, t) is the value obtained from the
combination of moment closure approximation and maximum entropy reconstruction.
The distance is calculated for all non-negative integers x for which πi(x, t) is non-
negative, i.e. for species P we only consider every second integer value. In particular,

Table III: Maximum entropy reconstruction results for the dimerization network
ord. ||εP ||∞ ||ε∗P ||∞ ||εP2

||∞ ||ε∗P2
||∞

2 0.001764 0.000623 0.001764 0.000136
3 0.000860 0.000054 0.001782 0.000623
4 0.001683 0.000136 0.001683 0.000053
5 0.001641 0.000132 0.001691 0.000136
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we approximate the marginal distribution for P by using a modified form of Eq. 12:

π̃i(xi, t) =


xi+1∫
xi−1

qi(x) dx, xi > 0

2 ·
xi+1∫
0

qi(x) dx, xi = 0

In addition, we give the error ||ε∗i ||∞ for the case where the maximum entropy re-
construction was applied to the moments calculated from the results of the direct nu-
merical simulation. We observe that the best maximum entropy method provides the
least error when the moments of order up to 3 (for P ) and up to 4 (for P2) are used
to reconstruct the marginal distribution. However, the reconstruction is very accurate
in all cases and the reason why the Chebyshev distance does not decrease when more
moments are considered might be that the properties of the distribution are already
well captured by the moments of an order up to three.

5.2. Multi-attractor system
Our second case study is the so-called multi-attractor model [Zhou et al. 2011]. It
consists of 23 chemical reactions (listed in Appendix A) and describes the dynamics
of three genes and the corresponding proteins. The proteins PaxProt , MAFAProt and
DeltaProt are able to bind to the promotor regions of the DNA and activate or suppress
the production of other proteins. The model is infinite in three dimensions.

Again, we first consider the accuracy of the moment closure approximation (cf. Ta-
ble IV) in the same way as for the previous example but list the running time in
addition (third column). The values or stochastic reaction constants are chosen as
cp = 5, cd = 0.1, cb = 1.0, cu = 1.0 and we consider the system at time t = 10. As
initial conditions we assumed one molecule for all DNA-like species (#PaxDna = 1,
#MAFADna = 1, #DeltaDna = 1) and the molecular counts for the remaining species
are 0.

We find that the moments obtained via the moment closure approximation are accu-
rately approximated. For instance the average number of MAFADna is approximated
as 19.719 while the result of the direct numerical simulation gives 19.544. Note that
it takes 20634 seconds to finish the numerical simulation (the size of the truncated
state space |S| = 7736339) whereas the moment closure approximation takes only 3649
seconds.

Next we consider the reconstruction of the marginal distribution of PaxProt ,
MAFAProt and DeltaProt . The results are given in Table V and the best obtained recon-
structions are plotted in Figure 3 for all three proteins. We compare the results with
the solution of the direct numerical simulation (where we chose δ = 10−15 yielding a
total approximation error of ε = 6 · 10−10, see also Eq. (3)). We see that the error de-
creases when more moments are considered. In particular, if all moments up to order
5 are considered, the error is about an order of magnitude lower than the state proba-
bilities around the average molecule count. However, the reconstructed distribution of
DeltaProt shows some artifacts, which are due to the bimodal form of the exponential
function where the power is given by the polynomial of degree five. We do not observe

Table IV: Moment closure approximation results for the multi-attractor network
ord. # equ. time (sec) error ord. 1 error ord. 2 error ord. 3 error ord. 4 error ord. 5

2 104 2 0.043987 0.077507 - - -
3 559 40 0.043987 0.067790 0.104288 - -
4 2379 443 0.043987 0.058938 0.082293 0.096345 -
5 8567 3649 0.043987 0.037542 0.066227 0.056258 0.110358
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Fig. 3: Maximum entropy reconstruction of marginal probability distributions for
multi-attractor system at time instant t = 10.

the similar type of artifacts in the reconstructed distribution of PaxProt since there the
reconstructed coefficients corresponding to high powers are close to 0.

5.3. Exclusive switch
Finally, we consider the exclusive switch system. We chose reaction rate constants
and initial conditions as in Example 2. Again, we first consider the accuracy of the
moment closure approximation (cf. Table VI) at time t = 100 in the same way as for the
previous examples. As also noted by Grima, the error of the moments, that have the
highest order considered during the computation, is rather high [Grima 2012]. Thus,
in the moment closure approximation we have to consider at least all moment up to
order five to accurately estimate the moments up to order four.

Next we compare the marginal distributions of proteins P1 and P2 at t = 60 (cf.
Table VII) and at t = 100 (cf. Table VIII) obtained via a direct numerical simulation
(choosing δ = 10−15 yielding ε = 6 ·10−11 at time t = 60 and ε = 8 ·10−11 at time t = 100)
with the distributions obtained from the maximum entropy reconstruction. We see
that the qualitative property of the system, the bimodality, is well-described by the
moments up to an order of at least four. Thus, it is possible to encode such qualitative
properties in the moments. The corresponding plots of the marginal distributions and
their reconstructions are given in Figure 4 for t = 60 (Figure 5 for t = 100). If only the
means and covariances are considered, the distribution is not accurately reconstructed,
||ε∗P1
||∞ is of the same order as the maximal state probabilities. As expected the error

decreases when moments of higher order are taken into account.

6. CONCLUSIONS
We investigated the accuracy and efficiency of a combination of two methods, the mo-
ment closure method and the maximum entropy method, which can be used to analyze

Table V: Maximum entropy reconstruction results for the multi-attractor system
ord. ||εMAFAProt||∞ ||ε∗MAFAProt||∞ ||εDeltaProt||∞ ||ε∗DeltaProt||∞ ||εPaxProt||∞ ||ε∗PaxProt||∞

2 0.016082 0.012322 0.009978 0.009186 0.053345 0.033673
3 0.012075 0.009372 0.009904 0.009728 0.037701 0.031701
4 0.009030 0.008892 0.009541 0.007568 0.033590 0.027062
5 0.006117 0.005308 0.007053 0.005295 0.030783 0.021304
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Table VI: Moment closure approximation results for the exclusive switch
ord. # equ. time (sec) error ord. 1 error ord. 2 error ord. 3 error ord. 4 error ord. 5

2 20 < 1 0.004555 0.194240 - - -
3 55 < 1 0.004555 0.026281 0.060490 - -
4 125 2 0.004555 0.020493 0.028242 0.136965 -
5 251 6 0.004555 0.017774 0.027933 0.026724 0.015461
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Fig. 4: Maximum entropy reconstruction of marginal probability distributions of the
protein counts (a) P1 and (b) P2 at time instant t = 60 for exclusive switch system.

stochastic models of biochemical reaction networks. With the chemical master equa-
tion as a starting point we described how the moments of the corresponding probability
distributions can be integrated efficiently over time and how a distribution can be re-
constructed based on the moments. Our experimental results show that the proposed
combination of methods has many advantages. It is a fast and surprisingly accurate
way of obtaining the distribution of the system at specific points in time and therefore
well suited for computationally expensive tasks such as the approximation of likeli-
hoods or event probabilities.

As future work, we plan to extend the reconstruction procedure in several ways.
First, we want to consider moments of higher order than five. Since in this case the
concrete values become very large it might be advantageous to consider central mo-
ments instead which implies that the reconstruction procedure has to be adapted. Al-

Table VII: Maximum entropy reconstruction results for the exclusive switch at time
t = 60

ord. ||εP1
||∞ ||ε∗P1

||∞ ||εP2
||∞ ||ε∗P2

||∞
2 0.013655 0.013630 0.008134 0.0081149
3 0.013409 0.013206 0.008074 0.007808
4 0.004844 0.003084 0.002154 0.002117
5 0.003837 0.002541 0.001878 0.001757
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Fig. 5: Maximum entropy reconstruction of marginal probability distributions of the
protein counts (a) P1 and (b) P2 at time instant t = 100 for exclusive switch system.

ternatively, we might (instead of algebraic moments) consider other functions of the
random variables such as exponential functions [Mnatsakanov and Sarkisian 2013],
Fup functions [Gotovac and Gotovac 2009], and Chebyshev polynomials [Bandyopad-
hyay et al. 2005]. Another possible extension could address the problem of truncating
the support of the distribution such that the reconstruction is applied to a finite sup-
port. We expect that in this case the reconstruction will become more accurate since
we will not have to rely on the Gauss-Hermite quadrature formula. For instance, the
theory of Christoffel functions [Gavriliadis and Athanassoulis 2012] could be used to
determine the region where the main part of the probability mass is located.

Finally, we want to improve the approximation for species that are present in very
small quantities, since for those species a direct representation of the probabilities is
more appropriate than a moment representation. Therefore we plan to consider the
conditional moments approach [Hasenauer et al. 2013], where we only integrate the
moments of species having large molecular counts but keep the discrete probabilities
for the species with small populations.

Table VIII: Maximum entropy reconstruction results for the exclusive switch at time
t = 100

ord. ||εP1
||∞ ||ε∗P1

||∞ ||εP2
||∞ ||ε∗P2

||∞
2 0.016287 0.016281 0.006732 0.006563
3 0.016270 0.016253 0.006746 0.005158
4 0.007783 0.007277 0.003983 0.003301
5 0.007527 0.007016 0.002733 0.002455
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A. REACTIONS OF THE MULTI-ATTRACTOR MODEL
The multi-attractor model involves the three species MAFAProt , DeltaProt , and
PaxProt that represent the proteins of the three genes and it involves ten species
that represent the state of the genes: PaxDna, MAFADna, DeltaDna, PaxDnaDeltaProt ,
MAFADnaPaxProt , MAFADnaMAFAProt , MAFADnaDeltaProt , DeltaDnaPaxProt ,
DeltaDnaMAFAProt , DeltaDnaDeltaProt . The chemical reactions are as follows:

PaxDna
cp−→ PaxDna + PaxProt

PaxProt
cd−→ ∅

PaxDna + DeltaProt
cb−→ PaxDnaDeltaProt

PaxDnaDeltaProt
cu−→ PaxDna + DeltaProt

MAFADna
cp−→ MAFADna + MAFAProt

MAFAProt
cd−→ ∅

MAFADna + PaxProt
cb−→ MAFADnaPaxProt

MAFADnaPaxProt
cu−→ MAFADna + PaxProt

MAFADnaPaxProt
cp−→ MAFADnaPaxProt + MAFAProt

MAFADna + MAFAProt
cb−→ MAFADnaMAFAProt

MAFADnaMAFAProt
cu−→ MAFADna + MAFAProt

MAFADnaMAFAProt
cp−→ MAFADnaMAFAProt + MAFAProt

MAFADna + DeltaProt
cb−→ MAFADnaDeltaProt

MAFADnaDeltaProt
cu−→ MAFADna + DeltaProt

DeltaDna
cp−→ DeltaDna + DeltaProt

DeltaProt
cd−→ ∅

DeltaDna + PaxProt
cb−→ DeltaDnaPaxProt

DeltaDnaPaxProt
cu−→ DeltaDna + PaxProt

DeltaDnaPaxProt
cp−→ DeltaDnaPaxProt + DeltaProt

DeltaDna + MAFAProt
cb−→ DeltaDnaMAFAProt

DeltaDnaMAFAProt
cu−→ DeltaDna + MAFAProt

DeltaDna + DeltaProt
cb−→ DeltaDnaDeltaProt

DeltaDnaDeltaProt
cu−→ DeltaDna + DeltaProt

DeltaDnaDeltaProt
cp−→ DeltaDnaDeltaProt + DeltaProt

(13)
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