Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2723372.2723736acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Output-sensitive Evaluation of Prioritized Skyline Queries

Published: 27 May 2015 Publication History

Abstract

Skylines assume that all attributes are equally important, as each dimension can always be traded off for another. Prioritized skylines (p-skylines) take into account non-compensatory preferences, where some dimensions are deemed more important than others, and trade-offs are constrained by the relative importance of the attributes involved.
In this paper we show that querying using non-compensatory preferences is computationally efficient. We focus on preferences that are representable with p-expressions, and develop an efficient in-memory divide-and-conquer algorithm for answering p-skyline queries. Our algorithm is output-sensitive; this is very desirable in the context of preference queries, since the output is expected to be, on average, only a small fraction of the input. We prove that our method is well behaved in both the worst- and the average-case scenarios. Additionally, we develop a general framework for benchmarking p-skyline algorithms, showing how to sample prioritized preference relations uniformly, and how to highlight the effect of data correlation on performance. We conclude our study with extensive experimental results.

References

[1]
P. Afshani. Fast computation of output-sensitive maxima in a word RAM. In C. Chekuri, editor, SODA, pages 1414--1423. SIAM, 2014.
[2]
I. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based skyline evaluation. ACM Trans. Database Syst., 33(4):31:1--31:49, Dec. 2008.
[3]
J. L. Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23(4):214--229, 1980.
[4]
J. L. Bentley, K. L. Clarkson, and D. B. Levine. Fast linear expected-time algorithms for computing maxima and convex hulls. In D. S. Johnson, editor, SODA, pages 179--187. SIAM, 1990.
[5]
J. L. Bentley, D. Haken, and J. B. Saxe. A general method for solving divide-and-conquer recurrences. SIGACT News, 12(3):36--44, Sept. 1980.
[6]
J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the average number of maxima in a set of vectors and applications. J. ACM, 25(4):536--543, 1978.
[7]
S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceedings of the 17th International Conference on Data Engineering, pages 421--430, 2001.
[8]
C. Buchta. On the average number of maxima in a set of vectors. Inf. Process. Lett., 33(2):63--65, 1989.
[9]
T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete & Computational Geometry, 16(4):361--368, 1996.
[10]
T. M. Chan, K. G. Larsen, and M. Puatraşcu. Orthogonal range searching on the RAM, revisited. In Proceedings of the Twenty-seventh Annual Symposium on Computational Geometry, SoCG '11, pages 1--10, New York, NY, USA, 2011. ACM.
[11]
J. Chomicki. Querying with intrinsic preferences. In C. S. Jensen, K. G. Jeffery, J. Pokorný, S. Saltenis, E. Bertino, K. Böhm, and M. Jarke, editors, EDBT, volume 2287 of Lecture Notes in Computer Science, pages 34--51. Springer, 2002.
[12]
J. Chomicki. Preference formulas in relational queries. ACM Trans. Database Syst., 28(4):427--466, Dec. 2003.
[13]
J. Chomicki, P. Ciaccia, and N. Meneghetti. Skyline queries, front and back. SIGMOD Record, 42(3):6--18, 2013.
[14]
J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In ICDE, pages 717--719, 2003.
[15]
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.
[16]
S. A. Drakopoulos. Hierarchical choice in economics. Journal of Economic Surveys, 8(2):133--153, 1994.
[17]
P. C. Fishburn. Axioms for lexicographic preferences. The Review of Economic Studies, pages 415--419, 1975.
[18]
H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry problems. In R. A. DeMillo, editor, STOC, pages 135--143. ACM, 1984.
[19]
P. Godfrey. Skyline cardinality for relational processing. In D. Seipel and J. M. T. Torres, editors, FoIKS, volume 2942 of Lecture Notes in Computer Science, pages 78--97. Springer, 2004.
[20]
P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data sets. In K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten, P.-Å. Larson, and B. C. Ooi, editors, VLDB, pages 229--240. ACM, 2005.
[21]
X. Hu, C. Sheng, Y. Tao, Y. Yang, and S. Zhou. Output-sensitive skyline algorithms in external memory. In S. Khanna, editor, SODA, pages 887--900. SIAM, 2013.
[22]
W. Kießling. Foundations of preferences in database systems. In VLDB, pages 311--322. Morgan Kaufmann, 2002.
[23]
W. Kießling, B. Hafenrichter, S. Fischer, and S. Holland. Preference XPATH: A query language for e-commerce. In H. U. Buhl, A. Huther, and B. Reitwiesner, editors, Wirtschaftsinformatik, page 32. Physica Verlag / Springer, 2001.
[24]
W. Kießling and G. Köstler. Preference SQL - design, implementation, experiences. In VLDB, pages 990--1001. Morgan Kaufmann, 2002.
[25]
D. G. Kirkpatrick and R. Seidel. Output-size sensitive algorithms for finding maximal vectors. In Symposium on Computational Geometry, pages 89--96, 1985.
[26]
D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J. Comput., 15(1):287--299, 1986.
[27]
H. T. Kung. On the computational complexity of finding the maxima of a set of vectors. In SWAT (FOCS), pages 117--121, 1974.
[28]
H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors. J. ACM, 22(4):469--476, 1975.
[29]
D. Mindolin and J. Chomicki. Preference elicitation in prioritized skyline queries. In VLDB J., pages 157--182, 2011.
[30]
D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database systems. ACM Trans. Database Syst., 30(1):41--82, 2005.
[31]
A. Scott. Identifying and analysing dominant preferences in discrete choice experiments: an application in health care. Journal of Economic Psychology, 23(3):383--398, 2002.
[32]
C. Sheng and Y. Tao. Worst-case i/o-efficient skyline algorithms. ACM Transactions on Database Systems (TODS), 37(4):26, 2012.
[33]
W. Siberski, J. Z. Pan, and U. Thaden. Querying the semantic web with preferences. In I. F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold, and L. Aroyo, editors, International Semantic Web Conference, volume 4273 of Lecture Notes in Computer Science, pages 612--624. Springer, 2006.
[34]
K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation, composition and application of preferences in database systems. ACM Trans. Database Syst., 36(3):19:1--19:45, Aug. 2011.
[35]
W. Wei, J. Erenrich, and B. Selman. Towards efficient sampling: Exploiting random walk strategies. In D. L. McGuinness and G. Ferguson, editors, AAAI, pages 670--676. AAAI Press / The MIT Press, 2004.

Cited By

View all
  • (2020)Flexible SkylinesACM Transactions on Database Systems10.1145/340611345:4(1-45)Online publication date: 10-Dec-2020
  • (2018)FA + TA Proceedings of the 27th ACM International Conference on Information and Knowledge Management10.1145/3269206.3271753(57-66)Online publication date: 17-Oct-2018
  • (2017)Reconciling skyline and ranking queriesProceedings of the VLDB Endowment10.14778/3137628.313765310:11(1454-1465)Online publication date: 1-Aug-2017
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD '15: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
May 2015
2110 pages
ISBN:9781450327589
DOI:10.1145/2723372
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 May 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. algorithms
  2. experimentation
  3. p-skyline
  4. pareto accumulation
  5. performance
  6. preference
  7. preference query
  8. prioritized accumulation
  9. skyline

Qualifiers

  • Research-article

Conference

SIGMOD/PODS'15
Sponsor:
SIGMOD/PODS'15: International Conference on Management of Data
May 31 - June 4, 2015
Victoria, Melbourne, Australia

Acceptance Rates

SIGMOD '15 Paper Acceptance Rate 106 of 415 submissions, 26%;
Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)1
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2020)Flexible SkylinesACM Transactions on Database Systems10.1145/340611345:4(1-45)Online publication date: 10-Dec-2020
  • (2018)FA + TA Proceedings of the 27th ACM International Conference on Information and Knowledge Management10.1145/3269206.3271753(57-66)Online publication date: 17-Oct-2018
  • (2017)Reconciling skyline and ranking queriesProceedings of the VLDB Endowment10.14778/3137628.313765310:11(1454-1465)Online publication date: 1-Aug-2017
  • (2017)Multimedia, Similarity, and Preferences: Adding Flexibility to Your Information NeedsA Comprehensive Guide Through the Italian Database Research Over the Last 25 Years10.1007/978-3-319-61893-7_8(127-141)Online publication date: 31-May-2017

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media