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Abstract

We consider the design of experiments to evaluate treatments that are administered
by self-interested agents, each seeking to achieve the highest evaluation and win the
experiment. For example, in an advertising experiment, a company wishes to evaluate
two marketing agents in terms of their efficacy in viral marketing, and assign a contract
to the winner agent. Contrary to traditional experimental design, this problem has
two new implications. First, the experiment induces a game among agents, where each
agent can select from multiple versions of the treatment it administers. Second, the
action of one agent – selection of treatment version – may affect the actions of another
agent, with the resulting strategic interference complicating the evaluation of agents.
An incentive-compatible experiment design is one with an equilibrium where each agent
selects its natural action, which is the action that would maximize the performance of
the agent if there was no competition (e.g., expected number of conversions if agent
was assigned the contract).

Under a general formulation of experimental design, we identify sufficient conditions
that guarantee incentive-compatible experiments. These conditions rely on the exis-
tence of statistics that can estimate how agents would perform without competition,
and their use in constructing score functions to evaluate the agents. In the setting with
no strategic interference, we also study the power of the design, i.e., the probability
that the best agent wins, and show how to improve the power of incentive-compatible
designs. From the technical side, our theory uses a range of statistical methods such
as hypothesis testing, variance-stabilizing transformations and the Delta method, all
of which rely on asymptotics.

1 Introduction

Experiments are the gold-standard for evaluating the effects of different treatments. The
design of experiments is crucial in order to avoid systematic biases and to minimize random
errors in the statistical evaluation of treatment effects [6]. There are three fundamental
concepts in any experiment design. The treatment is a well-defined prescription or set of

1

http://arxiv.org/abs/1507.03063v1


rules, e.g., a pharmaceutical drug, a marketing campaign, or a new material. The goal of
the experiment is to evaluate the effects of different treatments. The experimental unit is
the indivisible entity that will receive a treatment within the experiment, e.g., a patient,
a potential customer, or a factory process. Typically, every unit receives only one treat-
ment, but there are important exceptions as well. The treatment is assigned according to a
treatment assignment rule specified by the design and necessarily involves randomization in
order to avoid systematic biases. When a unit receives the treatment it exhibits a measurable
outcome, e.g., a health assessment, a product purchase or not, or a material failure rate.

Statistical analysis of unit outcomes is necessary for the evaluation of treatments because
it accounts for the errors that are inherent to randomization of treatment and the measure-
ment process. A key idea in experimental design is blocking. Background information on
units is almost always available, e.g., age, gender, socioeconomic status, health status, and
so on. If an experimenter believes that units’ outcomes vary systematically with respect to
such covariate information, then it is necessary to block units with respect to the available
covariates. Blocking helps to avoid systematic bias and variability that is not of scientific
interest. The unofficial mantra in experimental design is “block what you can and randomize
what you cannot” Box et. al. [4]).

To illustrate, consider the example of a new flu shot. A pharmaceutical company, the
experimenter, wants to compare between the new flu shot and a baseline that is currently in
the market. The treatments are the two flu shots. The experimenter has a set of volunteer
patients who form the set of experimental units. When a unit receives a treatment the
outcome is whether the unit got flu or not for the three months following the treatment. As
a treatment assignment rule, the experimenter could simply give the new flu shot to half of
the patients at random, and give the baseline to the other half. However, the outcomes could
be confounded with factors such as age (older people are more vulnerable to flu), geography
(urban areas are more crowded and possibly more contagious), occupation, and so on. In a
blocking design, the experimenter could block the population based on age and occupation,
and perform the randomization within blocks.

There are two crucial assumptions in experimental design and the related topic of causal
inference, collectively known as the stable unit treatment value assumption (SUTVA) [10].
First, there are no hidden versions of a treatment. In the previous example, this means that
there are no strong or weak versions of the new flu shot. Otherwise, the outcomes would
be confounded with the hidden version of the treatment. This is an important problem,
especially in social science studies. For example, in an educational study a new treatment
could be a new type of curriculum, however a possible hidden version of the treatment is
the delivery method by each teacher. A second crucial assumption is that of no interference
among experimental units. Interference is present when the treatment assignment on one
unit affects the outcome of another unit. In the flu shot example, a unit that is not vaccinated
is still protected when the friends of the unit are vaccinated. Neither of these assumptions
hold in our setting.

We introduce the idea of incentive-compatible experimental design in the context of viral
marketing.1 Imagine a company that designs a test to determine which of two vendors has

1An early extended abstract of this paper was presented in the Conference on Digital Experimentation
at MIT Toulis et. al.[13].
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the best algorithm for running an advertising campaign. The firm uses randomization to
prevent systematic bias, and defines a criterion for success; e.g., the number of conversions
over a two week period. The winning vendor is promised a one-year contract with the firm
running the test. One challenge in this setting is that the vendors might deviate from how
they would normally run a campaign, trying to win the test. For example, a lower quality
vendor may try to follow a more aggressive strategy, hoping to get lucky. This is a problem for
the firm designing the test, who wants to get an unbiased estimate of the usual performance
of the vendor. Another challenge comes from interference between the participants. In viral
marketing, for example, one vendor may try to free-ride on word-of-mouth effects that come
from another vendor.

1.1 Results

A first contribution of the present paper is to formalize this problem of incentive-compatible
experimental design. The difference with traditional experimental design is that, in our
framework, strategic agents administer the treatments to be evaluated, and each agent can se-
lect from multiple treatment versions. In this way, the experiment induces a non-cooperative
game. The action available to an agent in the resulting treatment selection game is the ver-
sion of the treatment that the agent will administer to its assigned units. The experimenter
has a performance metric to evaluate each treatment version. This is the quantity of interest
to the experimenter. Each agent has a natural action, which is the action that maximizes
its performance, and is assumed to be the way the agent would act if not competing in the
game. The quality of an agent is the maximum value of the performance metric, achieved
when the agent plays the natural action without competition from other agents. The goal
of the experimenter is to design an experiment to estimate the agent of highest quality. An
incentive-compatible experiment design is one with an equilibrium in which each agent’s best
response is to select the treatment version corresponding to its natural action. We will focus
on dominant-strategy equilibrium in this paper.

We show that incentive-compatible designs are possible when an identifying statistic ex-
ists that can estimate the quality difference between agents (Theorem 3.1). Critically, the
variance of such a statistic has to be less sensitive to agent actions than its expected value,
otherwise an agent can take advantage of the variance of the statistic. Under a no inter-
ference assumption, a class of incentive-compatible designs can be constructed through a
variance-stabilizing transformation (Theorem 4.1), which makes the variance of the identify-
ing statistic insensitive to agent actions; a worse agent cannot hope to increase its chances by
being more aggressive. This leads to results that may sound counter-intuitive. For example,
in a viral marketing application where performance is the expected number of conversions,
and where higher expected conversions also correspond to increasingly higher risks, it is not
incentive-compatible to select as the winner the agent with the highest average performance;
rather, it is incentive-compatible to select as the winner the agent with the lowest reciprocal
of average performance (see Example 2(d)).

Identifying statistics and incentive-compatible designs are generally harder to obtain
under strategic interference. However, under specific modeling assumptions about the inter-
ference, better designs can yield more information about the agent performances, and thus
produce identifying statistics. We illustrate this idea in a viral marketing example, which
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we reuse throughout this paper.

2 Preliminaries

In this section we introduce notation for the operational and statistical components of
incentive-compatible experimental design. The operational components include the treat-
ment assignment, the treatment selection game and the experiment outcomes. The statisti-
cal components include the estimand– the quantity of interest to the experimenter –and the
estimators, i.e., the data statistics used to estimate the estimand.

2.1 Treatment assignment

Let U = {1, 2, . . . , m} denote the set of experimental units, indexed by u, and I = {1, 2, . . . , n}
denote the set of agents, indexed by i. Each agent, for example, a marketing firm or a drug
company, represents a treatment to be evaluated. An experimenter needs to design the ex-
periment that will evaluate the agents. Relative to traditional experimental design, the new
aspect is that each agent is associated with a set of treatment versions and each agent has a
strategic choice about which version to administer in the experiment. We make this precise
in Section 2.2.

For each unit u ∈ U there is covariate information that is common knowledge to agents
and the experimenter. We assume the experimenter uses covariates to split units into blocks,
such that units within one block are similar in terms of covariates, e.g., similar age, gender,
income, etc. Without loss of generality, we will assume there is just a single block. In
Appendix A of this paper, we discuss how the theory can be extended to multiple blocks.

A treatment assignment rule ψ assigns each unit to a single agent. Let Z = (Zu) denote
the m × 1 assignment vector, such that Zu = i indicates that unit u is assigned to agent i.
The assignment rule ψ is a probability distribution over all possible assignments Z. Without
loss of generality, we assume that the number of unitsm is a multiple of the number of agents

n. We will also assume complete randomization, such that Zu = i, for exactly k
def
= m/n

units, for each agent i.

2.2 Treatment selection game

The set of actions Ai ⊆ A denotes the feasible action space for agent i, where A is the set
of all possible actions. Subsequent to treatment assignment, every agent i simultaneously
selects an action Ai ∈ Ai, which corresponds to a version of the treatment administered by
agent i. The same version is applied to all units assigned to agent i.2 Let A = (A1, . . . An)
denote the joint action profile, and A−i = (A1, . . . , Ai−1, Ai+1, . . . , An) denote the action
profile without i’s action.

We refer to this stage of the process as the treatment selection game in order to em-
phasize that agents (i.e., the treatments) can be strategic in selecting the treatment version

2In Appendix A, we introduce multiple blocks and allow an agent to pick a different action for each block.
All units within a block receive the same treatment version, but versions might differ across blocks.
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they administer to units. This differentiates our setting from traditional experimental de-
sign, because it allows multiple versions of the same treatment to be available, hidden to
the experimenter, and subject to selection by strategic agents. The traditional setting of
experimental design is recovered if all action spaces of all agents are singletons, i.e., there is
only one treatment version for each agent.3

2.3 Outcomes

Subsequent to the treatment selection game, an outcome is measured on each experimental
unit u. Generally, the potential outcome of unit u, denoted by Yu(Z,A), is the outcome that
will be observed under assignment Z and agent actions A. We assume that outcomes are
numerical values; e.g., expenditure in dollars, number of product purchases, etc.

However, only one potential outcome can be observed at any given experiment, depending
on the realized assignment Z and actions A, while the rest will be missing. To emphasize the
difference between potential outcomes and observed outcomes, we use additional notation.
Let Y obs

ui denote the observed outcome on unit u that was assigned to agent i. The notation
Y obs
ui implies that u was assigned to i (i.e., Zu = i), and it is undefined if Zu 6= i, i.e., u

was not assigned to i. Following a “dot-notation,” Y obs
.i denotes the k× 1 vector of observed

outcomes of units assigned to agent i, and Y obs
.. denotes them×1 vector of observed outcomes

of all units.
Note the dependence of potential outcomes on the complete assignment vector Z; this

allows the outcome of unit u to depend on assignment Zu′ of some other unit u′, even
when agent actions A are held fixed. This situation is reasonable, for example, when units
form social networks and influence each other, and is generally known as social network
interference Toulis and Kao [11]. In our setting, interference between units affects the
actions agents take (treatment versions), which then affect the interference on units, and so
on. We collectively refer to this situation as strategic interference.4

We now illustrate the notation with an example application in viral marketing, which we
will reuse throughout this paper.

Example 1. Assume four units U = {1, 2, 3, 4} in a single block, say, undergraduate
students, and two marketing agents I = {1, 2}. Further assume that 1 and 2 are close
friends and 3 and 4 are close friends. The experimenter wants to understand which agent
is better at advertising to students. Assume a treatment assignment Z = (1, 2, 1, 2)⊺, i.e.,

3Dealing with multiple hidden treatments remains an open problem in traditional experimental design
and causal inference, although not in a game theoretic setting as ours, and it is typically assumed away, for
example, through SUTVA [10].

4 There exists work in experimental design with between-unit interference David and Kempton [8], al-
though not under a strategic interference setting as ours. In this paper, we will not be concerned with such
forms of interference, but it will be the focus of future work. There is also related work in estimation of
treatment effects in the context of strategic agents. For example, Athey et. al. [1] and Toulis and Parkes
[12] evaluate mechanisms in terms of their revenue, under the causal framework of potential outcomes. In
both papers, the treatments are two different mechanism formats, and the units are the agents competing in
the mechanism. The present work differs because, under our framework, the treatments are in fact strategic
agents that are evaluated through an experiment, whereas the units passively exhibit treatment outcomes.
See, also, the discussion by Dash [7] on the challenges of causal inference in dynamical systems within a
different causal framework, namely causal graphs [9].
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units 1, 3 are assigned to agent 1, and units 2, 4 to agent 2. Each agent has two actions
(treatment versions): advertise through phone or through social media. The action sets are
thus A1 = A2 = {phone, social}, and a possible action profile is A = (phone, social)⊺ with
A1 = phone (agent 1 uses phone to reach units 1 and 3) and A2 = social (agent 2 uses social
media to reach units 2 and 4.)

The potential outcome Yu(Z,A) could denote the number of product purchases (integer
outcome) made by unit u, or the net profit from advertising to unit u (continuous outcome).
Dependence on the assignment and treatment versions of both agents is reasonable because
there could be word-of-mouth effects between students.

Consider observed data Y obs
.. = (0, 1, 4, 1)⊺; for example, Y obs

31 = 4, which indicates that
unit 3 was assigned to agent 1 and purchased four product items; Y obs

32 is undefined because
the outcome of unit 3 when assigned to agent 2 is not observed. To illustrate the dot-notation,
Y obs
.1 = (0, 4)⊺ indicates the outcomes of units assigned to agent 1, and Y obs

.2 = (1, 1)⊺ indicates
the outcomes for agent 2.

In Example 1, the experimenter might be tempted to declare agent 1 as the winner,
because it achieves Y obs

.1 = 2.0 purchases/unit, as opposed to Y obs
.2 = 1.0 purchases/unit

for agent 2. However, these sample averages are subject to random variability from the
randomization in the experiment, and may result from actions that are not the natural
actions of the agents. Therefore, it is unclear whether the sample averages actually estimate
how agents would do if they were selecting treatments without competition.

2.4 Estimand and estimators

A principled approach is to define the quantity of interest to the experimenter, the estimand,
and then devise appropriate estimators for that quantity. The estimand is the agent with best
possible performance, and thus we need a concrete notion of performance. For this, we want
to estimate how good an agent’s action would be if it was played without competition and
thus without strategic interference. This is important because, ultimately, the experimenter
wants to assign a contract (e.g., an advertising campaign) to the winner agent, after which
the winner will act by itself.

Let’s define the performance of agent i with respect to its action αi, denoted by χ(αi), as

χ(αi) = E (Yu(Z,A)|A = αi1, Zu = i) ; (1)

notation A = αi1 denotes the hypothetical situation where all agents other than agent i are
replaced by “replicates” of i, and each replicate plays action αi. The dependence of χ(αi)
on agent index i will be implicit in the notation. Given assignment vector Z and actions A,
we assume that the distribution of potential outcomes is known to all agents.

The expectation in Eq. (1) is taken with respect to this distribution, and defines the
quantity of interest to the experimenter because it captures how agent i would do, on average,
if the agent was acting alone without competition.5 We also refer to χ as the performance
function, and define χ(A) = (χ(A1), χ(A2), . . . , χ(An))

⊺. For brevity, all following definitions

5In causal inference, Eq. (1) is a superpopulation estimand, where the experimental units are assumed
to be a random sample from a superpopulation of units, which is the target of statistical inference. The
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for an agent, e.g., natural action, quality, etc., will be implicitly assumed to be stated with
respect to a particular performance function χ.

The natural action of agent i is the action that maximizes the quantity of interest to
the experimenter in a system where agent i acts alone without competition. In particular,
the natural action of agent i, denoted by A⋆

i , is defined as the action that maximizes its
performance, i.e.,

A⋆
i
def
= arg max

αi∈Ai

{χ(αi)} . (2)

The natural action profile is denoted by A⋆ = (A⋆
1, A

⋆
2, . . . , A

⋆
n). The quality of agent i,

denoted by χ⋆
i ∈ R, is the maximum performance that the agent can achieve, i.e., χ⋆

i = χ(A⋆
i ).

The estimand, denoted by τ , is the agent of highest quality, i.e.,

τ = argmax
i∈I

{χ⋆
i }. (3)

To estimate the agent of highest quality the experimenter needs to use the observed
outcomes Y obs

.. . We will assume that the experimenter uses a score function φ : Rm → R
n,

mapping all outcomes to a n× 1 vector of scores for each agent, denoted by φi for agent i.
For convenience, we will write φ(Y obs

.. ) = (φ1(Y
obs
.. ), φ2(Y

obs
.. ), . . . , φn(Y

obs
.. ))⊺.

In the experiment, agents will be evaluated according to their scores, and the winner is
the agent with the highest score. Several options for the score functions are possible. For
example, φi(Y

obs
.. ) = Y obs

.i , the sample mean of outcomes of units assigned to agent i, is one
choice for the score function; other choices are possible, e.g., the sample Sharpe ratio, the
sample median, etc.

The key challenge in incentive-compatible experimental design is to align maximizing
the probability of winning the experiment, as induced in part by the score function φ, with
selecting the action with maximum performance, i.e., the natural action.

2.5 Incentive-compatible experiment designs

Let’s first define an experiment design using the concepts of estimand and estimators from
Section 2.4.

Definition 2.1. An experiment design D = (ψ, φ) operates in the following steps:

1. Receives units U and agents I, as input.

2. Samples a treatment assignment Z according to ψ.

3. Each agent i picks a treatment version Ai, and administers the treatment to the set of
its assigned units, {u ∈ U : Zu = i}.

expectation in Eq. (1) is thus over all units in the superpopulation and all treatment assignments, for fixed
agent actions. Other estimands in that superpopulation are possible; for example, the experimenter might
be interested in the median outcomes, med(Yu(Z,A)), or the Sharpe ratio, E(Yu(Z,A))/SD(Yu(Z,A)), all
conditional on fixed actions as in Eq. (1). In this paper, we work under the estimand of Eq. (1), mainly for
simplicity, however our theory applies to all aforementioned estimands as well.
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4. Outcomes on units Y obs
.. are observed.

5. The winner agent τ̂ is declared according to the rule

τ̂ (Y obs
.. ) = argmax

i∈I

{

φi(Y
obs
.. )

}

. (4)

Given experiment design D and action profile A, the probability Pi(A|D) that agent i
wins the experiment is given by:

Pr
(

τ̂ (Y obs
.. ) = i|A,D

) def
= Pi(A|D) = Pi(αi,A−i|D). (5)

The randomness in Eq. (5) comes from the randomness of observed data Y obs
.. , and the

randomization in the treatment assignment. The winning probability Pi(·|D) in Eq. (5) is
the expected utility of agent i under action profile A, because agents care only about winning
the experiment.

Definition 2.2 (Incentive-compatible experiment design). An experiment design D = (ψ, φ)
is incentive-compatible if the natural action A⋆

i is a dominant strategy for each agent i, i.e.,
it maximizes the probability (5) of winning the experiment regardless of other agents’ actions,
such that

arg max
αi∈Ai

{Pi(αi,A−i|D)} = A⋆
i , (6)

for all actions A−i, and every agent i.

Remark. In an incentive-compatible experiment, the score function φ induces a probabil-
ity of winning (5) that is monotonically increasing with the performance function χ that the
experimenter cares about. If this monotonicity holds, an agent will prefer to play the action
that maximizes its performance (i.e., the natural action), because this will also maximize
the winning probability.

The notation is summarized in Table 1. We now return to the viral marketing prob-
lem that was introduced in Example 1. Examples 2(a)-(c) deal with Normally-distributed
outcomes, whereas Examples 3(a)-(g) deal with Poisson-distributed outcomes. Examples
3(c)-(g) deal specifically with the problem of interference, and work with a more realistic
form of the viral marketing problem.

Example 2(a). – Normal outcomes6. Consider the viral marketing problem of Example
1, with multiple units and two agents, where the outcomes of interest are the profit achieved
from advertising to each unit. We assume that an agent action αi = (µi, σ

2
i ) ∈ R × R

+,
determines the mean and variance of the profit from advertising to unit u, such that, given
assignment Z, actions A,

Yu(Z,A) ∼ N (µi, σ
2
i ), if Ai = αi, Zu = i. (7)

6This two-agent example (low-quality agent vs. high-quality agent) is different from the example in the
original paper published at EC’2015. The example was edited to illustrate a scenario where the low-quality
agent prefers to play an action that is not its natural action and also reduces the winning chances of the
high-quality agent. In the example of the original paper, the deviation from the low-quality agent actually
increased the chances of the high-quality agent.
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Table 1: Notation for incentive-compatible experimental design
Symbol Description Value/Domain

U Set of m units {1, 2, . . . ,m}
I Set of n agents {1, 2, . . . , n}
Zu Treatment assignment of unit u Zu ∈ I
Z Vector of treatment assignment (m× 1) (Z1, . . . , Zm)⊺

k Units per agent k = m/n

A Generic action space

Ai Action space of agent i Ai ⊆ A
Ai Action of agent i Ai ∈ Ai

A Complete action profile (n× 1) (A1, . . . , An)
⊺

Yu(Z,A) Potential outcome of unit u under assignment Z, actions A Yu(Z,A) ∈ R

Y obs
ui Observed outcome for unit u assigned to agent i

Y obs
.i Vector of observed outcomes of units assigned to agent i (k × 1) Y obs

.i ∈ R
k

Y obs
.. Vector of observed outcomes of all units (m× 1) Y obs

.. ∈ R
m

χ(αi) Performance of agent i playing action αi χ(αi) ∈ R

χ(A) Vector of performances (n × 1) (χ(A1), . . . , χ(An))
⊺

A⋆
i Natural action of agent i – maximizes performance A⋆

i ∈ Ai

χ⋆
i Quality of agent – performance at natural action χ⋆

i ∈ R

τ Agent of highest quality τ ∈ I
φi(Y

obs
.. ) Score of agent i φi(Y

obs
.. ) ∈ R

φ(Y obs
.. ) Vector of agent scores (n× 1)

(

φ1(Y
obs
.. ), . . . , φn(Y

obs
.. )

)⊺

τ̂(Y obs
.. ) Estimated agent of highest quality – agent with maximum score τ̂(Y obs

.. ) ∈ I
Pi(A|D) Probability agent i wins under design D, given fixed actions A

The profit defined in Eq. (7) can be negative because we assume implicit advertisement costs.
Furthermore Eq. (7) implies no interference between units, and no strategic interference
between agent actions. We will make this precise in Section 3.

The experimenter is interested only in expected profit, ignoring the risk. Thus, the
performance of action αi = (µi, σ

2
i ) of agent i is

χ(αi)
def
= E (Yu(Z,A)|A = αi1, Zu = i) = µi. (8)

Hence, the quality χ⋆
i of agent i is the maximum µi the agent can achieve over its action

space Ai. Now, consider an experiment design D = (ψ, φ), where the score function φ is

defined as φi(Y
obs
.. ) = Y obs

.i , i.e., the score of agent i is the sample mean profit from all units
assigned to agent i. Ignoring ties, the winning agent is given using Eq. (4):

τ̂(Y obs
.. ) =

{

1, if Y obs
.1 > Y obs

.2 ,

2, if Y obs
.1 < Y obs

.2 .
(9)
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By Eq. (7), Y obs
.i ∼ N (µi, σ

2
i /k), where k is the number of units per agent. Hence, the

probability that agent 1 wins is

P1(A|D)
def
= Pr

(

τ̂(Y obs
.. ) = 1|A,D

)

= P (Y obs
.1 > Y obs

.2 ) = Φ(
√
k
µ1 − µ2
√

σ2
1 + σ2

2

), (10)

where Φ is the normal cumulative distribution function (CDF). This design is not incentive-
compatible because the winning probability P1(A|D) is not monotone with performance
χ(α1) = µ1 for action α1 = (µ1, σ

2
1). For example, an increase in µ1 may be associated with

an increase in the risk σ2
1, such that the probability of winning is reduced.

To see this, assume there are only two actions for agent 1, which induce mean and vari-
ance A1 = {(1.5, 100), (2, 20)}, and only one action for agent 2, A2 = {(9, 1)}. The quality

of agent 1 is χ⋆
1

def
= max{µ : (µ, σ2) ∈ A1} = 2 and thus (2, 20) is agent 1’s natural action.

However, when agent 1 plays the natural action, its winning probability is approximately
equal to 0.12, whereas action (1.5, 100) yields winnining probability 0.364, approximately.
When agent 1 does not play the natural action, the expected value of its outcomes are re-
duced but their variance is increased, thus overall increasing agent 1’s chances to win the
experiment. Therefore, this experiment is not incentive compatible since agent 1 prefers not
to play the natural action.

Example 2(b). – Normal outcomes – High risk/reward. Continuing Example 2(a),
let’s suppose that the variance of the unit’s outcome satisfies σ2

i = µ4
i , indicating a delicate

trade-off between expected return and risk. The probability that agent 1 wins is easily
obtained from (10) as,

P1(A|D) = P (Y obs
.1 > Y obs

.2 ) = Φ(
√
k
µ1 − µ2
√

µ4
1 + µ4

2

). (11)

The experiment design is still not incentive-compatible because (11) is not increasing mono-
tonically with µ1. As before, the better agent will choose to be more conservative, and will
not reveal its quality (maximum possible µ1). However, we will show in Section 3 that an

incentive-compatible design can be achieved through the score function φi(Y
obs
.. ) = −1/Y obs

.i ,
i.e., the negative reciprocal of the sample mean profit. We will show that, with this score
function, the risk-reward trade-off in (11) disappears, which allows the experimenter to es-
timate agents’ qualities.

Example 3(a) – Poisson outcomes. Now suppose the outcomes are integer-valued,
e.g., representing the number of purchases. In this case, we assume that an agent’s action
αi = (λi) ∈ R

+ determines the purchase rate by unit u, such that, given assignment Z,
actions A,

Yu(Z,A) ∼ Pois(λi), if Ai = αi, Zu = i. (12)

As in Eq. (7) of Example 2(a), Eq. (12) implies no interference. Let’s suppose the
experimenter is interested in performance that is the expected purchase rate. Thus, using
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Eq. (1), the experimenter measures performance of action αi = (λi) of agent i, through

χ(αi)
def
= E (Yu(Z,A)|A = αi1, Zu = i) = λi. (13)

Hence, the quality χ⋆
i of agent i is the maximum purchase rate λi that the agent can achieve

over its action space Ai. Now, consider the experiment design D = (ψ, φ), where the score

function φ is defined as φi(Y
obs
.. ) = Y obs

.i , i.e., the score of agent i is the sample mean purchase
rate from all units assigned to agent i. Ignoring ties, the winning agent τ̂ (Y obs

.. ) is given using

Eq. (9). By the central limit theorem, Y obs
.i

D−→ N (λi, λi/k), where “
D−→” denotes convergence

in distribution, and k is the number of units per agent. The probability that agent 1 wins
is, asymptotically,

P1(A|D) = P (Y obs
.1 > Y obs

.2 ) = Φ(
√
k
λ1 − λ2√
λ1 + λ2

). (14)

This design is incentive-compatible because the winning probability P1(A|D) is monotone
with the agent performance; for example, an increase in λ1 incurs a larger increase in the
nominator of Eq. (14) than in the denominator. By symmetry, the winning probability for
agent i is maximized at its natural action.

In Section 4.1, we will show that a more powerful design is possible, i.e., there exists
an experiment design D′ that is incentive-compatible and also guarantees higher winning
chances to the better agent.

The examples highlight the challenges in incentive-compatible experimental design that
arise because the experimenter is interested in some quality of an agent (e.g., expected
return) but cannot find a design that incentivizes agents to play in a way that reveals their
qualities. The problem that can arise is because of a mismatch between the score function
φ that is used to declare the winner, and its effect in inducing a non-cooperative game, and
the performance function χ that is of interest to the experimenter.

Compared with classical mechanism design theory, incentive-compatible experimental
design differs in that:

• In mechanism design, the private information is an agent’s preferences, whereas here
the private information is an agent’s quality (i.e., the performance of its natural action).

• In mechanism design, there may be side payments that can be made, whereas here the
incentives are winner-take-all and depend on the outcome of the experiment.

• In mechanism design, it is standard to appeal to the revelation principle and design
a direct-revelation mechanism, in which agents report their preference type to the
mechanism. In comparison, the agents in our setting select an action and the designer
observes the effect of this action, but not the action itself.

3 Theory of incentive-compatible experimental design

In this section we prove our main result, which provides a construction of score functions to
design incentive-compatible experiments. The proof relies on the existence of statistics that
can estimate the individual agent performances χ(Ai), as the number of units grows large.
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Definition 3.1 (Identifiable performance, identifying statistic). An experiment design D =
(ψ, φ) has identifiable performance χ, if for every fixed action profileA, there exists a statistic
T : Rm → R

n calculated over data Y obs
.. , such that

√
k
(

T (Y obs
.. )− χ(A)

) D−→ N (0,Σ(A)), (15)

as the number of units per agent k grows large; N is the n-variate standard normal, and
Σ(A) is the n × n covariance matrix of T that can depend on A. The statistic T is an
identifying statistic for experiment design D.

An identifying statistic is important because it estimates the individual performances
χ(Ai), which are the quantities of interest to the experimenter. Although finding such a
statistic is not an easy task, one simple strategy is to use sample quantities, such as averages,
and then appeal to the central limit theorem, or other large-sample asymptotic results. We
use this strategy extensively in this paper.

However, an identifying statistic T calculated over data Y obs
.. need not be sufficient for

incentive alignment in our winner-take-all experiments. Thus, we consider score functions
defined as φi(Y

obs
.. ) = f(Ti), for an appropriate transformation f : R → R. The transforma-

tion is used to add flexibility in the design of the score function. Agents will be evaluated
according to the score vector φ(Y obs

.. ). The covariance matrix of the score vector φ(Y obs
.. ) is,

asymptotically, equal to

Vf(A) = JφΣ(A)J ⊺

φ , (16)

where Jφ is the Jacobian of φ calculated at χ(A), actually a diagonal matrix with elements
f ′(χ(Ai)). Whether an experiment design (ψ, φ) is incentive-compatible or not, depends
crucially on the matrix Vf(A) because this matrix defines the variances of the scores used
to evaluate the agents.

Theorem 3.1. Fix agent actions A, and consider design D = (ψ, φ) that has an identifying
statistic T with covariance matrix Σ(A). Define the score function as φi(Y

obs
.. ) = f(Ti), for

some function f : R → R, and let vij(A) be the ijth element of V (A) defined in Eq. (16).
Also define,

vijf (α|A−i) = vii(α,A−i) + vjj(α,A−i)− vij(α,A−i)− vji(α,A−i). (17)

Design D is incentive-compatible, if, for every agent i,

arg max
αi∈Ai

{

f(χ(αi))

vijf (αi|A−i)1/2

}

= arg max
αi∈Ai

{χ(αi)} def
= A⋆

i , (18)

for every agent j 6= i, and all actions A−i.

For a fixed action profile A, the element vijf in Eq. (18), is the variance of the difference

between the scores of agents i and j, φi(Y
obs
.. )− φj(Y

obs
.. ), as defined in Theorem 3.1. Thus,

Eq. (18) is the probability that agent i has a larger score than agent j, and implies that this
probability is maximized at the natural action.

Theorem 3.1 suggests a recipe to construct incentive-compatible experiments, as we il-
lustrate through examples in the following sections.

12



• First, one needs to find an identifying statistic to estimate the performances of agents,
i.e., their outcomes without competition. A parametric model for the unit outcomes
together with known asymptotic results, such as the central limit theorem, or the
asymptotic normality of the maximum-likelihood estimator, can provide such an iden-
tifying statistic with known covariance matrix Σ(A); see also Appendix D for a relevant
discussion.

• Second, given the identifying statistic, one then needs to find an appropriate transfor-
mation f to satisfy Eq. (18). This transformation can be as simple as the identity
function, as in Example 3(g), or the reciprocal function, as in Example 2(c). Intu-
itively, the design goal for f is to make the denominator of (18) less sensitive to agent
actions than the nominator.

Theorem 3.1 makes no assumption about interference. In the following sections, we will
specialize and apply Theorem 3.1 on the viral marketing example, both with and without
interference.

4 Incentive-compatible experiments without interfer-

ence

The setting without interference is formally defined through the following assumption.

Assumption 4.1 (No interference). There is no strategic interference among agents and no
interference between units, i.e., for all assignments Z and all agent actions A,

Yu(Z,A) ≡ Yu(Ai), where Zu = i. (19)

Assumption 4.1 postulates that the potential outcome Yu(Z,A) of a unit u assigned to
agent i, remains constant as long as agent i’s action and unit u’s assignment to agent i are
held fixed. Under no interference, the distribution of a score function defined through an
identifying statistic is a univariate normal, as shown in the following proposition.

Proposition 4.1. Consider design D = (ψ, φ) with an identifying statistic T with covariance
matrix Σ(A). Let φi(Y

obs
.. ) = f(Ti), for some function f : R → R, and suppose Assumption

4.1 holds. Then, for fixed actions A,

√
k
(

φi(Y
obs
.. )− f(χ(Ai)

) D−→ N (0, σ2(Ai)), (20)

where σ2(Ai) = f ′(χ(Ai))
2σ2

ii, with σ
2
ii being the ith diagonal element of Σ(A).

Proof. By Assumption 4.1 (no interference), the covariance matrix Σ(A) of T is diagonal
with elements σ2

ii. Thus, by definition of the identifying statistic,

√
k(Ti − χ(Ai))

D−→ N (0, σ2
ii).

Since, φi(Y
obs
.. ) = f(Ti), Eq. (20) follows from a simple application of the Delta theorem;

see, for example, Bickel and Docksum [3, Chapter 5], or Cox [5].

13



Proposition 4.1 provides the asymptotic distribution of the score function, given an iden-
tifying statistic and a known transformation f , when there is no interference. This will be
useful to derive the winning probabilities for agents in the experiment. We first illustrate
Proposition 4.1, and then show how it can be used to simplify the conditions of the more
general Theorem 3.1.

Example 2(c). We continue from Example 2(b), where agent i’s action is Ai = (µi),

and Y obs
.i ∼ N (µi, µ

4
i /k), where k is the number of units per agent. The statistic T (Y obs

.. ) =

(Y obs
.1 , Y obs

.2 , . . . , Y obs
.n )⊺ ≡ T , is an identifying statistic, since χ(A) = (µ1, µ2, . . . , µn)

⊺ def
= µ,

and

√
k(T − µ)

D−→ N (0,Σ), (21)

where Σ = diag(µ4
1, . . . , µ

4
n), is the diagonal matrix with elements µ4

i .

Consider the score functions φi(Y
obs
.. ) = 1/Ti = 1/Y obs

.i , i.e., f(x) = 1/x, in the notation
of Proposition 4.1. Using the result in Proposition 4.1, σ2(Ai) = f ′(µi)

2µ4
i = 1, and thus

√
k(φi(Y

obs
.. )− 1/µi)

D−→ N (0, 1). (22)

The variance of the score function in Eq. (22) is stabilized. The following theorem shows
that such variance stabilization can lead to incentive-compatible designs, when there is no
interference.

Theorem 4.1. Consider design D = (ψ, φ) with an identifying statistic T with covariance
matrix Σ(A). Suppose Assumption 4.1 holds. If, for every agent i,

φi(Y
obs
.. ) = f(Ti), where f : R → R, (23)

Var(φi(Y
obs
.. )) = const., (24)

arg max
αi∈Ai

f(χ(αi)) = arg max
αi∈Ai

{χ(αi)} def
= A⋆

i , (25)

then design D is incentive-compatible.

Condition (24) is related to variance-stabilizing transformations in statistics, which also
play an important role in hypothesis testing; we discuss this relationship in Appendix C.

Example 2(d). – Normal outcomes – High risk/reward. Continuing from Example
2(c), we consider the high risk-reward setting of the viral marketing problem, where an
agent’s action is to pick an expected return, i.e., Ai = (µi), and the winning probability is
given by

P1(A|D) = Φ(
√
k
µ1 − µ2
√

µ4
1 + µ4

2

). (26)

The performance function is χ(αi) = µi, and thus the natural action is A⋆
i = argmaxαi∈Ai

{αi}.
It was shown that design D in Example 2(b) –using the sample mean as the score function–
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is not incentive-compatible. Consider instead a design D′ with score function φi(Y
obs
.. ) =

−1/Y obs
.i . Using the result of Example 2(c),

√
k
(

φi(Y
obs
.. )− (−1/µi)

) D−→ N (0, 1). (27)

Condition (23) is satisfied by definition of φi. Condition (24) is also satisfied, because
the variance of φi(Y

obs
.. ) in Eq. (27) is constant. Furthermore,

arg max
αi∈Ai

{f(χ(αi))} = arg max
αi∈Ai

{−1/αi} = arg max
αi∈Ai

{αi} = A⋆
i ,

which satisfies Condition (25). Thus, all conditions of Theorem (4.1) are fulfilled. It follows
that the new design D′ is incentive-compatible.

By construction of the probabilistic model in Example 2(b), there is a very delicate trade-
off between expected return (agent performance) and risk; for example, if an agent doubles
its performance, then the risk will quadruple. In such situations, it is a bad idea to adopt the
sample mean as the score statistic. Intuitively, Eq. (26) shows that the higher-quality agent
will try more conservative actions, thus hiding its true quality. However, if agents are scored
according to the negated reciprocal of their sample mean, the probability that an agent wins
increases monotonically with an agent’s performance. Thus, agents have the incentive to
select actions that maximize their performance, and thus it is a dominant strategy to select
their natural action.

4.1 Powerful incentive-compatible experiment designs

Given the choice of two incentive-compatible designs, it is natural to prefer the design in
which the highest-quality agent has the highest probability of winning. We formalize this
intuition through the following definition.

Definition 4.1 (Powerful incentive-compatible design). Consider two experiment designs
D and D′ that are both incentive-compatible and operate on the same set of units U . Let τ
be the agent of highest quality. Design D′ is (weakly) more powerful than design D if the
probability that agent τ wins in the dominant strategy equilibrium is higher in D′ than D;
i.e.,

Pτ (A
⋆|D′) ≥ Pτ (A

⋆|D), (28)

where A⋆ is the natural action profile, which is the same in both designs.

In the following theorem, we give a simple case where we can transform an incentive-
compatible design into a more powerful one.

Theorem 4.2. Consider an incentive-compatible design D = (ψ, φ), where action sets Ai ⊆
R are compact, and performance χ is one-to-one and continuous. Let,

√
k
(

φi(Y
obs
.. )− χ(Ai)

) D−→ N (0, σ2(Ai)), (29)
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where function σ2 : A → R
+ satisfies

χ(α′

i) ≥ χ(αi) ⇒ σ2(α′

i) ≥ σ2(αi), (30)

for every agent i, and all actions α′
i, αi ∈ Ai.

7

Consider a design D′ = (ψ, φ′), where φ′
i(Y

obs
.. ) = ν(φi(Y

obs
.. )), for each agent i, with ν(·)

defined by

ν(y) =

∫ y 1
√

σ(χ−1(z))
dz. (31)

Then, design D′ is incentive-compatible and more powerful than D, if ν(·) is convex, or
1/
√

σ2(χ−1(·)) and σ2(χ−1(·)) are both convex.

The variance of the new score function, Var(φ′
i(Y

obs
.. )), is constant, because function ν

defined in Eq. (29) is a variance-stabilizing transformation [5]. This fulfills Condition (24)
of Theorem 4.1, while the monotonicity (30) of σ(·) maintains the monotonicity Condition
(25). The new design D′ is thus incentive-compatible.

Example 3(b) – Poisson outcomes. Continuing from Example 3(a), the actions are

Ai = (λi) ∈ R
+ with performance χ(Ai) = λi, while the score statistic is φi(Y

obs
.. ) = Y obs

.i ;

thus,
√
k
(

φi(Y
obs
.. )− λi

) D−→ N (0, λi). Let agent 1 be the best agent. Consider a new design
D′ with the transformation

ν(y) =

∫ y 1
√

σ(χ−1(z))
dz =

∫ y 1√
z
dz = 2

√
z,

and score function φ′
i(Y

obs
.. ) = ν(φi(Y

obs
.. )) = 2

√

Y obs
.i . Design D′ is incentive-compatible and

more powerful than design D of Example 3(a) by Theorem 4.2, since 1/
√

σ2(χ−1(z)) = 1/
√
z

and σ2(χ−1(z)) = z, are both convex. Another way to see this is through Proposition 4.1,

which implies
√
k
(

φ′
i(Y

obs
.. )− 2

√
λi
) D−→ N (0, 1). Thus, the probability that agent 1 wins is

P1(A|D′) = Φ(
√
2k(
√

λ1 −
√

λ2)). (32)

We can verify P1(A|D′) > P1(A|D) by comparing Eq. (32) with Eq. (14):

Φ
(√

2k(
√

λ1 −
√

λ2)
)

> Φ

(√
k
λ1 − λ2√
λ1 + λ2

)

⇔
√
2(
√

λ1 −
√

λ2) >
λ1 − λ2√
λ1 + λ2

.

The last inequality always holds because it reduces to (
√
λ1 −

√
λ2)

2 > 0.

In Example 3(b), the better agent (agent 1) has higher chances of winning in the new
design D′. Since D′ is also incentive-compatible, it follows that D′ is more powerful than D.
Intuitively, the square root transformation in the new design stabilizes the variance – there
is no denominator in Eq. (32) – which achieves incentive-compatibility through Theorem
4.1.

7Condition (30) posits that an agent cannot increase its expected score without increasing the variance
of the score. This is a reasonable assumption in practice because actions that do increase the expected score
without increasing the variance, are strongly preferred.
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4.2 Using transformations for more powerful designs

If there is only one block and transformation ν(·) in Theorem 4.2 is order-preserving, then the
transformation might not affect the power of the experiment design. For a simple argument,
let X, Y be two positive random variables, then P (X > Y ) = P (ν(X) > ν(Y )) if ν is
order-preserving.8

However, when there are multiple blocks, a transformation can improve the power of the
design even when the transformation is order-preserving. In the following simulation study,
we expand the design introduced in Example 3(a) to multiple blocks in order to illustrate
the positive effect of the square-root transformation, which is variance-stabilizing for Poisson
outcomes, on the power of the design. In this simulation study we focus on power because
the design is already incentive-compatible, as shown in Example 3(a).9

Consider a design D with two agents and two blocks. Agent i plays action λib in block
b; we set λ11 = 5, λ12 = 10 for agent 1, and λ21 = 4.25, λ22 = 9.95, and thus agent 1 is the
high-quality agent. We repeat the following process 10, 000 times. First we fix the number
of units per block, say k. Second, we sample Yuib ∼ Pois(λib) i.i.d. for every unit u in block
b, where Yuib indicates the total number of sales for unit u assigned to agent i in block b.
We then use the sample mean as the default score function, but also apply a transformation
ν. In particular, the total score of agent i is

∑2

b=1
ν(Y.ib), where Y.ib = (Yuib) is the vector of

unit outcomes for agent i in block b, and ν is the transformation. The winner is the agent
with highest score. After all 10, 000 repetitions we report the %wins by agent 1.

The results are shown in Table 2 where we compare the identity transformation against
the square-root transformation for multiple number of units per block. We observe that the
square-root transformation, which is also the variance stabilizing transformation according to
Theorem 4.2, increases the winning chances of agent 1 (high-quality agent). As the number
of units per block increases the sample means get closer to the actions played by the agents
(i.e., values λib) and thus agent 1 wins almost with probability one at both designs.

For an intuition why variance stabilizing works with multiple blocks, consider the argu-

ment at the beginning of this section. In particular, let X1

def
= Y .11, X2

def
= Y .12 be the sample

means of agent 1 in blocks 1 and 2, respectively, and let Y1
def
= Y .21, Y2

def
= Y .22, be the respec-

tive sample means for agent 2. If there was no transformation the winning probability for
agent 1 would be P (X1+X2 > Y1+Y2). With the square-root transformation this probabil-
ity is P (

√
X1 +

√
X2 >

√
Y1 +

√
Y2), which is generally larger than the probability without

transformation. Intuitively, the square-root transformation accentuates the differences in
the mean-rates of the two agents (i.e., the actions λib) and downplays the differences in the
tails. The formal proof is a simple extension of Theorem 4.2, which uses convexity/concavity
arguments.

8A similar observation can be made in regard to the use of score functions φi to achieve incentive com-
patibility: order-preserving transformations φi do not affect incentives. Note, for example, that the negated
reciprocal transformation that aligns incentives in Example 2(d) is not order-preserving (e.g., 2 > −1 but
−1/2 < −1/(−1)). The outcomes in that example could take negative values; if outcomes were constrained
to be positive, incentives would not be affected.

9The introduction of multiple blocks does not affect the incentives because incentive compatibility was
defined with respect dominant-strategy equilibrium and outcomes are sampled independently across blocks.
Multiple blocks could affect incentives if agents were able to benefit from making strategic trade-offs between
blocks, e.g., be conservative in one block and be risky in another.
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Table 2: Probability agent 1 wins in a design with two blocks and two possible score trans-
formations. Probabilities were calculated over 10,000 repetitions.

Transformation ν

#units/block ν(x) = x ν(x) =
√
x

5 0.62 0.65

10 0.67 0.72

25 0.77 0.82

50 0.85 0.91

100 0.93 0.97

500 1.00 1.00

1000 1.00 1.00

5 Incentive-compatible experiments with interference

We now consider strategic interference, whereby an action of an agent can affect the outcomes
of units assigned to another agent. Therefore, agent scores calculated on individual agent
outcomes are confounded with the entire action profile.

Example 3(c) – Poisson outcomes with interference. Building upon Example 3(b),
we now introduce a more realistic model of the viral marketing experiment, which we assume
operates as follows.

As before, units are assigned to agent 1 or agent 2. We refer to the units assigned to
agent i, i.e., the set {u ∈ U : Zu = i}, as the test set of agent i. In addition, each agent is
free to pick a seed set ; each seed set is in a separate population that is disjoint from the test
sets. The seed set i corresponds to treatment version –agent action– Ai. The seed set will be
targeted with a promotional campaign, and outcomes will be measured on units only in the
test sets, say, number of purchases for each unit. The rationale is that the experimenter is
interested in the viral marketing efficacy of the agents, i.e., their ability to select influential
seed sets.

Under interference, the treatment version (seed set) selected by agent i induces a rate
λi on units assigned to i, and a rate γλ

′

i, where 0 ≤ γ ≤ 1, on units assigned the other
agent. The parameter γ models the amount of interference; if γ = 0 there is no interference,
whereas γ = 1 indicates maximum interference. For the rest of this paper we will consider
γ known to agents and the designer, but this is without loss of generality. Rate λ

′

i can be
interpreted as the rate that agent i would achieve if the units that are targeted were its own
units. Parameter γ represents a discount because the targeted units are in the test set of
another agent.

The setting with interference is depicted in Figure 1. The labels on the edges correspond
to the effects from the seed sets, including interference effects. For example, the purchase
rate in test set 2 (units assigned to agent 2) is equal to γλ

′

1 + λ2; the first term is the dis-
counted influence from the seed set of agent 1, and the second term is the influence from the
seed set of agent 2. Agents are scored based on outcomes of units in their respective test
sets. Therefore, an agent can also “free-ride” on the conversion rate that comes from the
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action of the other agent.

seed 1

Test set 1

seed 2

Test set 2

λ1 ............λ2

γλ
′

2 γλ
′

1

Figure 1: Test set i has units assigned to agent i, i.e., {u ∈ U : Zu = i}. Seed set i
corresponds to the treatment version Ai. The seed sets influence the purchase rate of units
in the test sets, for example, through word-of-mouth effects between units. In particular,
Ai = (λi, λ

′

i), where λi is the induced rate from seed set i to test set i, and γλ
′

i is the induced
rate from seed set i to the other test set, where 0 ≤ γ ≤ 1 is a parameter that models
interference. Outcomes, i.e., product purchases, are measured on units in the test sets; the
score of agent i will be calculated based on observed purchases in test set i. Arrows indicate
induced purchase rates from the seed sets; dashed arrows indicate that the rate is discounted
by γ. The presence of interference, where an agent can affect the purchase rate on a test set
of another agent, changes how agent select their seed sets, i.e., their treatment versions.

Example 3(d) – Poisson outcomes with interference. Given the interference model
of Example 3(c), the actions are A1 = (λ1, λ

′

1), A2 = (λ2, λ
′

2), and the observed outcomes on
the units in the test sets have the following distributions:

Y obs
u1 ∼ Pois(λ1 + γλ

′

2),

Y obs
u2 ∼ Pois(λ2 + γλ

′

1). (33)

To derive the performance of an agent, say agent 1, we need to replace agent 2 with a
replicate of agent 1, playing action A2 = (λ1, λ

′

1). In this case, the induced rate on the units
assigned to agent 1 is actually equal to λ1 + λ

′

1 since, by definition of our interference model
in Example 3(c), a rate is discounted only from a seed set of one agent to the test set of
another agent. Thus, the performance of agent i for action αi = (λi, λ

′

i) is equal to

χ(αi) = E (Yu(Z,A)|A = αi1, Zu = i) = λi + λ
′

i. (34)

It can be seen, by inspection of Eq. (33), that the outcomes of one unit depend on
the action of the other agent. For example, the outcomes Y obs

.1 on units assigned to agent
1 depend on action λ1 of agent 1 as well as action λ

′

2 of agent 2. Hence, the observed
outcomes for one agent carries statistical information for the action of the other agent. This
information should be used in order to correctly estimate the agent qualities, and then the
agent of highest quality.
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However, the estimation of qualities is not possible through outcomes (33), because there
exist multiple action profiles for which the observed outcomes are equally likely. It follows
that there is no identifying statistic, and our theory (e.g., Theorem 3.1) cannot be applied.
Furthermore, the variance-stabilization transformations that were shown to give more pow-
erful designs in Example 3(b) do not work. This is illustrated in the following example.

Example 3(e). – Poisson outcomes with interference. Consider the setup of Example

3(c) and an experiment D with the usual score function φi(Y
obs
.. ) = Y obs

.i . As the number of
experimental units grows, Eq. (33) result in the following asymptotics.

√
k
(

Y obs
.1 − (λ1 + γλ

′

2)
)

D−→ N (0, λ1 + γλ
′

2),
√
k
(

Y obs
.2 − (λ2 + γλ

′

1)
)

D−→ N (0, λ2 + γλ
′

1).

Therefore, the probability that agent 1 wins is

P1(A|D) = Pr(Y obs
.1 > Y obs

.2 ) = Φ

(

√
k
(λ1 − γλ

′

1)− (λ2 − γλ
′

2)
√

λ1 + γλ
′

1 + λ2 + γλ
′

2

)

. (35)

This design is not incentive-compatible because agent 1 prefers a large λ1 − γλ
′

1 and a
small λ1 + γλ

′

1. As can been seen from Figure 1, a purchase rate of γλ
′

1 from the seed set
of agent 1 only benefits agent 2. Thus, agent 1 wants to benefit its assigned units (test
set 1) while minimizing the spillovers to test set 2 that benefit only agent 2. However, the
experimenter wants to know something very different. In particular, given the definition of
performance in Example 3(d), the experimenter wants to know the maximum λ1 + λ

′

1 that
agent 1 can achieve (and maximum λ2+λ

′

2, for agent 2). This quantity is of interest because
it is the quantity that agent 1 would maximize if a copy of agent 1 substituted agent 2, and
also played (λ1, λ

′

1).
Using the variance-stabilizing transformation of Example 3(b), does not solve the prob-

lem. In particular, if we use φi(Y
obs
.. ) = 2

√

Y obs
.i as the score function, then the winning

probability of agent 1 becomes

P1(A|D) = Φ

(

√

k/2(
√

λ1 + γλ
′

2 −
√

λ2 + γλ
′

1)

)

.

The incentive problem remains because agent 1 still wants achieve a high purchase rate
λ1 on units in test set 1, and a low rate λ

′

1 in units of test set 2.

5.1 Dealing with strategic interference through better designs

We now describe a method to construct an incentive-compatible design in the viral marketing
problem with interference. The idea is to introduce a new design that will provide an
identifying statistic, and then define appropriate score functions to fulfill the conditions of
Theorem 3.1 that guarantee incentive-compatibility.
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Example 3(f). – Poisson outcomes with interference – New design. We consider
the following new design. The units are split in two groups, say G1 and G2. Within each
group, units are randomly assigned to the two agents, resulting in 2 test sets per agent. For
example, group G1 has two test sets, namely G11 with units assigned to agent 1, and G12

with units assigned to agent 2. Similarly, group G2 has test sets G21 with units assigned
to agent 1, and G22 with units assigned to agent 2. Test sets in the same group may be
overlapping. In addition, each agent is free to pick one seed set ; each seed set is in a separate
population that is disjoint from the test sets. The seed set i corresponds to treatment version
–agent action– Ai. The outcomes Y , say number of purchases for each unit, for each agent
i, will be measured on units only in their two test sets, namely G1i and G2i. This design is
depicted in Figure 2.

aasasasas seed 1

Test set G11 Test set G12

Group G1

seed 2

Test set G21 Test set G22

Group G2

Figure 2: Test sets G1j and G2j have the units assigned to agent j, i.e., {u ∈ U : Zu = i};
there are two test sets per agent. Agent i selects an influential seed set i, that corresponds
to the treatment version Ai. The seed sets influence the purchase rate of units in the test
sets. In particular, Ai = (λi, λ

′

i), where λi is the induced rate from seed set i to a test
set with units assigned to i, and γλ

′

i is the induced rate from seed set i to a test set with
units assigned to the other agent. Outcomes are measured on units in the test sets; the
score of agent i will be calculated based on observed purchases of units assigned to agent
i; for example, agent 1 will be scored based on outcomes of units in G11 and G21. Arrows
indicate induced purchase rates from the seed sets; dashed arrows indicate that the rate is
discounted by γ. Agent scores are calculated based on outcomes in their respective test sets.
The presence of interference, where an agent can affect the purchase rate on a test set of
another agent, changes how agent select their seed sets, i.e., their treatment versions.

The outcomes model is similar to the design of Example 3(c) (see also Figure 1). A seed
set i –action Ai– induces a rate λi on units of group Gi, and a rate λ

′

i on units of the other
group. The rate is assumed to be discounted when the seed set is targeting units in a test
set of another agent. For example, units in test set G12 will have purchase rate λ

′

2+ γλ1; the
rate λ

′

2 originates from seed set 2 affecting units in group G1, and rate λ1 is from seed set 1
affecting units in G1, discounted by γ because G12 is a test set of agent 2. Thus, action Ai

is associated with a pair of rates, Ai = (λi, λ
′

i).
Agent 1’s action is A1 = (λ1, λ

′

1), and agent 2’s action is A2 = (λ2, λ
′

2). Therefore, the
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observed outcomes of units are distributed as follows:

Y obs
ui ∼



















Pois(λ1 + γλ
′

2), if u ∈ G11,

Pois(λ
′

2 + γλ1), if u ∈ G12,

Pois(λ
′

1 + γλ2), if u ∈ G21,

Pois(λ2 + γλ
′

1), if u ∈ G22.

(36)

Using the same interference model (parameter γ of discounted influence) introduced in
Example 3(c), the new design of Figure 2 now provides more information about the agent
actions, and thus their performance, through outcomes (36). This additional information
provides an identifying statistic that can be used to define score functions that make the
design of Figure 2 incentive-compatible.

Example 3(g). – Poisson outcomes. By symmetry of the new design, the experimenter
is interested to estimate χ(Ai) = λi + λ

′

i. Let Ȳij be the sample mean of outcomes of units
in test set Gij , and let Y = (Ȳ11, Ȳ12, Ȳ21, Ȳ22)

⊺. Define the matrices

B =

(

1 1 0 0

0 0 1 1

)

, and C =











1 0 γ 0

γ 0 1 0

0 1 0 γ

0 γ 0 1











.

Denote the action profile as A = (λ1, λ
′

1, λ
′

2, λ2)
⊺. Further, let DA = diag(CA) be the

diagonal matrix with diagonal elements from the vector CA. By Eq. (36), as the number
of units grows, we have

√

m/4(Y − CA)
D−→ N (0, DA). (37)

The term m/4 is because there are m/4 units per test set. Now define the statistic T =
BC−1Y . Since χ(A) = (λ1 + λ

′

1, λ2 + λ
′

2)
⊺ = BA, it holds, asymptotically,10

√

m/4(T − χ(A))
D−→ N (0, BC−1DA(C

−1)⊺B⊺). (38)

Therefore, the new design has identifiable performance, and T is an identifying statistic,
with covariance matrix Σ(A) = BC−1DA(C

−1)⊺B⊺.
Now, using notation of Theorem 3.1, define the score function simply as

φi(Y
obs
.. ) = f(Ti) = Ti. (39)

Thus, the Jacobian of φ is Jφ = I, the identity matrix. The matrix V (A) of Theorem 3.1 is
calculated as

V (A) = JφΣ(A)J ⊺

φ = BC−1DA(C
−1)⊺B⊺. (40)

10 The normality of T follows from normality of Y . The expected value of T is E(T ) = E(BC−1Y ) =
E(BC−1CA) = BA, and its variance is Var(T ) = Var(BC−1Y ) = BC−1

Var(Y )(C−1)⊺B⊺ =
BC−1(DA/m)(C−1)⊺B⊺.
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Through simple but tedious matrix algebra we obtain,

V (A) =
1

(1− γ2)2

(

d1 + γ2d2 + d3 + γ2d4 −γ∑4

i=1
di

−γ∑4

i=1
di γ2d1 + d2 + γ2d3 + d4

)

, (41)

where (di) are the diagonal elements ofDA; thus, d1 = λ1+γλ
′

2, d2 = γλ1+λ
′

2, d3 = λ
′

1+γλ2,
and d4 = γλ

′

1 + λ2. In particular,

4
∑

i=1

di = (1 + γ)
[

(λ1 + λ
′

1) + (λ2 + λ
′

2)
]

. (42)

It follows from Theorem Eq. (17) of Theorem 3.1,

vijf (α|A−i) =(d1 + γ2d2 + d3 + γ2d4) + (γ2d1 + d2 + γ2d3 + d4)− (−2γ
4
∑

i=1

di)

=(1 + γ)2
4
∑

i=1

di = (1 + γ)3
[

(λ1 + λ
′

1) + (λ2 + λ
′

2)
]

,

if i 6= j, and 0 otherwise. It follows that,

arg max
αi∈Ai

{

f(χ(αi))

vijf (αi|A−i)1/2

}

∝ arg max
αi∈Ai

{

λi + λ
′

i
√

(λ1 + λ
′

1) + (λ2 + λ
′

2)

}

. (43)

The expression on the right of Eq. (43) is increasing with respect to χ(αi) = λi + λ
′

i.
Therefore, each agent prefers to play actions (λi, λ

′

i) so as to maximize their sum, λi + λ
′

i,
which is the quantity of interest to the experimenter. Condition (18) of Theorem 3.1 is
fulfilled. Thus, incentives are aligned under the new design. Intuitively, the new design
allows all agents to benefit from spillovers. For example, in the previous design, agent 1
could not benefit from the spillover of seed set 1 to test set 2, because agent 1’s score was
calculated only on test set 1. However, in the new design, the score of agent 1 includes
outcomes from units in the test set G21, which receives spillovers from seed set 1.

6 Conclusion

We introduced game theory into experiments where the treatments are determined by actions
of strategic agents, and where treatments can interfere with each other. The goal of the
experiment is to estimate the agent that is best with respect to a quantity of interest,
defined in a context without competition; e.g., average number of conversions from the
agent’s algorithm for viral marketing. However, statistical estimation of the best agent is
based on experiment data, generated with competition among agents. Thus, the game-
theoretic setting poses new challenges to the statistical analysis of experiment data, and
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may often invalidate well-established experimental design methods. The goal of incentive-
compatible experimental design is to promote behaviors by agents that accord to the natural
actions the agents would take in the experiment if there was no competition.

When agent actions do not interfere with each other, we showed that incentive-compatible
designs are possible through variance-stabilizing transformations of statistics that estimate
how agent would perform without competition. Furthermore, we proved a result suggesting
that variance stabilization might, more generally, lead to more powerful incentive-compatible
experiment designs, in which better agents have higher chances of winning. In the presence
of interference, we showed that more elaborate designs are generally necessary to obtain
statistics that estimate agent performances. In the context of a viral marketing application,
we showed how a better design can be constructed that can account for interference among
agents, e.g., when agents are able to free-ride on the advertising campaign of other agents.

References

[1] Susan Athey, Jonathan Levin, and Enrique Seira. Comparing open and sealed bid auctions:
Evidence from timber auctions. Technical report, National Bureau of Economic Research,
2008.

[2] Julian Besag and Rob Kempton. Statistical analysis of field experiments using neighbouring
plots. Biometrics, pages 231–251, 1986.

[3] P.J. Bickel and K.A. Doksum. Mathematical Statistics: Basic Ideas and Selected Topics.
Number v. 1 in Holden-Day series in probability and statistics. Prentice Hall, 2001.

[4] George EP Box, William Gordon Hunter, J Stuart Hunter, et al. Statistics for experimenters.
1978.

[5] C Cox. Delta method. Encyclopedia of biostatistics, 1998.

[6] David Roxbee Cox and Nancy Reid. The theory of the design of experiments. CRC Press,
2000.

[7] Denver Dash and Marek Druzdzel. Caveats for causal reasoning with equilibrium models.
In Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pages 192–203.
Springer, 2001.

[8] Olivier David and Rob A Kempton. Designs for interference. Biometrics, pages 597–606, 1996.

[9] Judea Pearl. Causality: models, reasoning and inference, volume 29. Cambridge Univ Press,
2000.

[10] Donald B Rubin. Comment. Journal of the American Statistical Association, 75(371):591–593,
1980.

[11] Panos Toulis and Edward Kao. Estimation of causal peer influence effects. In Proceedings of
The 30th International Conference on Machine Learning, pages 1489–1497, 2013.

[12] Panos Toulis and David C Parkes. Long-term causal effects of interventions in multiagent
economic mechanisms. arXiv preprint arXiv:1501.02315, 2015.

24



[13] Panos Toulis, David C. Parkes, Elery Pfeffer, James Zou, and Guy Gildor. Incentive-
compatible experiment design (extended abstract). In Conference on Digital Experimentation
(CODE@MIT, 2014), 2014.

Appendix

A Extension to multiple blocks

In this paper, our theory is developed and applied assuming only one block. However, it is straight-
forward to extend it to multiple blocks in a typical blocking experiment design. In this section, we
give an outline of this extension.

The treatment assignment rule ψ now groups units into B blocks based on their covariates,
and then randomizes treatment (i.e., the assignment of units to agents) within the blocks; blocking
is performed in a deterministic way based on the publicly known covariates {Xu}, for each unit

u. Formally, rule ψ is a probability distribution over the space of pairs of binary matrices Ψ
def
=

({0, 1}m×B , {0, 1}m×n).
A pair (W,Z) ∈ Ψ is called a treatment assignment, and has the following interpretation. The

element Wub = 1 if unit u is assigned to block b, and it is 0 otherwise. Similarly, Zui = 1 if unit
u is assigned to agent i, and it is 0 otherwise. Using dot-notation W.b is the bth column of matrix
W , Wu. is the uth row of W as a B × 1 vector, and W.. ≡ W . Similarly for Z and other matrices.
Finally the notation (W,Z) ∼ ψ will denote a treatment assignment (W,Z) ∈ Ψ, that is sampled
according to rule ψ.

Example A1. Consider four experimental units (consumers) and two treatments (marketing
agents) that an experimenter wishes to evaluate. In particular, the experimenter is interested
to estimate which agent can achieve the highest number of sales. Suppose that, for each unit
u, the experimenter and the agents know the marriage status (only covariate). We assume that
units {1, 2} are not married and {3, 4} are, and these correspond to the two blocks b ∈ {1, 2}.
The experimenter suspects that the outcomes differ systematically based on marriage status, and
randomizes treatment within blocks. This design corresponds to treatment assignment rule ψ
which samples with equal probability 1/4 from the treatment assignments {W,Z} where Z ∈


































1 0

0 1

1 0

0 1













,













0 1

1 0

1 0

0 1













,













1 0

0 1

0 1

1 0
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0 1

1 0

0 1

1 0



































and W =













1 0

1 0

0 1

0 1













is the matrix that indi-

cates the blocking. Some examples of dot-notation follow: W1. = (1 0)⊺ is the assignment of unit u
over blocks, W.2 = (0 0 1 1)⊺ is the assignment over units in block 2, etc.

With multiple blocks, agents are allowed to play different actions across blocks. We would thus
write Aib for the action of agent i in block b, and Aib for the action space of this action.

With multiple blocks, there is also an additional block index for the potential and observed
outcomes. For example, Y obs

ubi is now the observed outcome of unit u assigned to block b and agent
i; with dot-notation, Y obs

.b. denotes the observed outcomes of units in block b. The experiment
design D has now multiple score functions, φb, one per block. For example, φib(Y

obs
.b. ) is the score
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of agent i in block b with data Y obs
.b. . Similar extensions are straightforward for the concepts of

performance, natural action, and quality.
Given block-specific score functions, the winner of the experiment is the agent who won the

majority of blocks, ignoring ties. When there is no interference across and within-blocks, then
the experimenter can design an incentive-compatible design within each block using Theorem 3.1.
In this case, each block would have a separate identifying statistic. When the action space of an
agent is the product space of the block action spaces, the agent will prefer to maximize its winning
probability within each block. Therefore, the incentive-compatibility results of Theorems 3.1 and
4.1 can be readily applied. The same results can be applied in the problem with interference,
assuming that there is no between-block interference, i.e., an action of agent i in block b does not
affect the outcomes for agent j in some other block b′.

B Proofs

Theorem 3.1. Fix agent actions A, and consider design D = (ψ, φ) that has an identifying statistic
T with covariance matrix Σ(A). Let φi(Y

obs
.. ) = f(Ti) for some function f : R → R, and let vij(A)

be the ijth element of V (A) defined in Eq. (16). Also define,

vijf (α|A−i) = vii(α,A−i) + vjj(α,A−i)− vij(α,A−i)− vji(α,A−i).

The design D is incentive-compatible, if, for every agent i,

arg max
αi∈Ai

{

f(χ(αi))

vijf (αi|A−i)1/2

}

= arg max
αi∈Ai

{χ(αi)} def
= A⋆

i ,

for every agent j, and all actions A−i. In such case, we say that T is aligned with performance χ
through score φ.

Proof. For a vector x ∈ Rn, let f(x) = (f(x1), f(x2), . . . , f(xn))
⊺. From the Delta theorem [3, 5],

and the asymptotic property (15) of the identifying statistic T , we obtain

√
k (f(T )− f(χ(A)))

D−→ N (0,JφΣ(A)J ⊺

φ ), (44)

where Jφ is the Jacobian of f at χ(A) (by definition, this is a diagonal matrix). The probability
that agent i wins over j is equal to

Pr
(

φi(Y
obs
.. ) > φj(Y

obs
.. )

)

= Pr (c⊺f(T ) > 0) , (45)

where c = (0, . . . , 1, 0, . . . ,−1, 0, . . .)⊺, is a n × 1 vector, with zero elements, except for ci = 1 and
cj = −1. Using Eq. (44), we have

√
k (c⊺f(T )− c⊺f(χ(A)))

D−→ N (0, c⊺JφΣ(A)J ⊺

φ c). (46)

From (46), probability (45) becomes

Pr
(

φi(Y
obs
.. ) > φj(Y

obs
.. )

)

= Φ

(

fi(χ(A)) − fj(χ(A))

vijf (A)1/2

)

= Φ

(

χ(Ai)− χ(Aj)

vijf (A)1/2

)

,

where vijf (A) is given in Eq. (17). Therefore, agent i maximizes its winning probability by playing
the natural action, by property (18).
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Theorem 4.1. Consider design D = (ψ, φ) with an identifying statistic T with covariance matrix
Σ(A). Suppose Assumption 4.1 holds. If, for every agent i,

φi(Y
obs
.. ) ≡ f(Ti), where f : R → R,

Var(φi(Y
obs
.. )) = const.,

arg max
αi∈Ai

f(χ(αi)) = arg max
αi∈Ai

{χ(αi)} def
= A⋆

i ,

then design D is incentive-compatible.

Proof. By Assumption 4.1 (no interference), Σ(A) is diagonal; let Σ(A) = diag(σ2ii(A)). Then,
from Theorem (4.1) and Condition (23),

Var(φi(Y
obs
.. )) = f ′(χ(Ai))

2σ2ii(A) = c,

for some constant c > 0. Also by Condition (23), the Jacobian of φ at A, is given by Jφ =
diag(f ′(χ(Ai))). Using the notation of Theorem 3.1,

V (A) = JφΣ(A)J ⊺

φ = diag(f ′(χ(Ai))
2σ2ii(A)) = cI.

It follows, vijf (α|A−i) = 2c for any i, j, where vijf is defined in Eq. (17), Theorem 3.1. Using
Condition (25),

arg max
αi∈Ai

{

f(χ(αi))

vijf (αi|A−i)1/2

}

= (1/2c) arg max
αi∈Ai

{χ(αi)} = A⋆
i .

Thus, all conditions of Theorem 3.1 are fulfilled, and the design D is incentive-compatible.

Theorem 4.2. Consider an incentive-compatible design D = (ψ, φ), where action sets Ai ⊆ R are
compact, and performance χ is one-to-one and continuous. Let,

√
k
(

φi(Y
obs
.. )− χ(Ai)

)

D−→ N (0, σ2(Ai)),

where function σ2 : A → R
+ satisfies

χ(α′
i) ≥ χ(αi) ⇒ σ2(α′

i) ≥ σ2(αi),

for every agent i, and all actions α′
i, αi ∈ Ai. Consider a design D′ = (ψ, φ′), where φ′i(Y

obs
.. ) =

ν(φi(Y
obs
.. )), for each agent i, with ν(·) defined by

ν(y) =

∫ y 1
√

σ2(χ−1(z))
dz.

Then, design D′ is incentive-compatible and more powerful than D, if ν(·) is convex, or 1/
√

σ2(χ−1(·))
and σ2(χ−1(·)) are both convex.

Proof. From the univariate Delta theorem,

√
k
(

ν(φi(Y
obs
.. )− ν(χ(Ai))

)

D−→ N (0, 1),
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since ν ′(χ(Ai))
2σ2(Ai) = 1, by Eq. (31). For brevity, set χ(Ai)

def
= χi and σ

2(Ai)
def
= σ2i . Without

loss of generality, assume χi ≥ χj. The probability that agent i wins over agent j in design D′ is
equal to,

P1(A|D′) = Φ
(

√

k/2(ν(χi)− ν(χj))
)

.

In the old design, D, this probability is equal to

P1(A|D) = Φ





√
k
χi − χj
√

σ2i + σ2j



 .

Case 1 – Convex ν(·). By convexity of ν we have

ν(χi)− ν(χj)

χi − χj
≥ ν ′(χj). (47)

By definition (29), ν ′(χj)
2σ2j = 1. By property (30), σ2i ≥ σ2j since χi ≥ χj. Hence, ν ′(χi)

2σ2i =

1 ⇒ ν ′(χi)
2 ≤ ν ′(χj)

2. It follows,

ν ′(χj)
2σ2j + ν ′(χj)

2σ2i ≥ 2 ⇒

ν ′(χj) ≥
√

2

σ2i + σ2j
. (48)

Combining (47) and (48), we obtain

ν(χi)− ν(χj)√
2

≥ χi − χj
√

σ2i + σ2j

⇒ Φ
(

√

k/2(ν(χi)− ν(χj))
)

≥ Φ





√
k
χi − χj
√

σ2i + σ2j



 ,

which implies that design D′ is more powerful than D.

Case 2 – 1/
√

σ2(χ−1(·)) and σ2(χ−1(·)) are both convex. It holds,

ν(χi)− ν(χj)

χi − χj
=

1

χi − χj

∫ χi

χj

1
√

σ2(χ−1(z))
dz ≥ 1

√

σ2(χ−1((χj + χi)/2))

≥ 1
√

σ2(χ−1(χj))/2 + σ2(χ−1(χi))/2

def
=

√

2

σ2i + σ2j
.

The first inequalty is obtained by convexity of 1/
√

σ2(χ−1(·)), and the second by convexity of
σ2(χ−1(·)). To finish the proof we follow the same arguments as in Case 1.

C Remarks on variance stabilization

In Theorem 4.1, the variance of the score functions φi is stabilized (made constant) through a
transformation f . Such transformations that stabilize the variance of a statistic, are known as
variance-stabilizing transformations in statistics, and they are of fundamental importance in various
tasks, such as hypothesis testing and estimation. For example, consider a sample average of n
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independent Poisson random variables with mean λ. The asymptotic distribution of the sample

average is Ȳ ∼ Poisson(λ/n). In the limit,
√
n(Ȳ − λ)

D−→ N (0, λ). This asymptotic result is not
useful to construct a confidence interval for the unknown parameter λ because the variance of Ȳ

depends on that unknown parameter. However, through the Delta theorem, 2
√
n(
√
Ȳ −

√
λ)

D−→
N (0, 1) i.e., the variance of

√
Ȳ is constant; the statistic

√
Ȳ can be used to obtain exact confidence

intervals for λ.
In our setting, the variance stabilization helps to mitigate the risk-return trade-off that strate-

gic agents can undertake in an experiment. Loosely speaking, when the variance is stabilized a
worse agent cannot benefit by being more risky, and a better agent cannot benefit by being more
conservative. Rather, incentives are aligned such that every agent will do its best, assuming the
remaining conditions of Theorem 4.1 are fulfilled.

D Discussion

Our approach to design incentive-compatible experiments has been through the use of an identifying
statistic, i.e., a statistic that can estimate the agent performances without competition. In many
situations, such a statistic exists, e.g., by using sample summaries (means, variances, etc), and then
appealing to the central limit theorem. In most realistic cases, a key assumption will be that the
outcomes have a known parametric form. In this paper, we made such parametric assumptions in
our viral marketing example.

However, an experimenter might be unwilling to make such parametric modeling assumptions.
An alternative would then be either to use a nonparametric test for the quantities of interest (i.e.,
agent performances), or a randomization-based analysis. The former includes a wide-class of non-
parametric methods, and we plan to investigate it in future work. It should be noted, however,
that even nonparametric tests have crucial underlying assumptions, e.g., exchangeability of observed
data, that are not easy to validate. In many situations, such assumptions are more critical than,
for example, normality assumptions that can be quite robust under many scenarios [4, Appendix
3A]. The latter method of randomization-based analysis usually starts from a null hypothesis which
aims to provide evidence for the likelihood of certain observed quantities, e.g., through p-values.
However, it is hard to test such hypotheses in our setting because agents can freely choose the
versions of the treatment to apply. Therefore, one cannot use the null hypothesis to impute coun-
terfactuals, i.e., outcomes that would have been observed under a different randomization because
agents act in a strategic, non-random way.

In the case with interference, the assumption that an identifying statistic exists has two compo-
nents. First, it is required that the experimenter has a good idea about the model of interference,
e.g., that an agent action affects the outcomes for another agent linearly, as in Example 3(c). As-
sumptions on the model of interference are frequent in practice because they help to deal with in-
terference after the experiment has been performed [2]. Second, it is required that the experimenter
knows exactly the hyperparameters of the assumed interference model. In the viral marketing prob-
lem of Section 5, a scalar parameter γ was used to model interference. In our examples, we assumed
that γ was known. One way to avoid this problem is to treat such parameters of interference as
nuisance parameters, and then use a suitable statistical method; e.g., use profile likelihood instead
of the true, but unknown, likelihood to obtain proxies for the maximum-likelihood estimates. A
Bayesian approach would be to set priors for such parameters and then obtain a posterior predictive
distribution for the unknown agent performances. Agents would then be scored according to this
posterior distribution, but this would not alter the core of our methodology.

29


	1 Introduction
	1.1 Results

	2 Preliminaries
	2.1 Treatment assignment
	2.2 Treatment selection game
	2.3 Outcomes
	2.4 Estimand and estimators
	2.5 Incentive-compatible experiment designs

	3 Theory of incentive-compatible experimental design
	4 Incentive-compatible experiments without interference
	4.1 Powerful incentive-compatible experiment designs
	4.2 Using transformations for more powerful designs

	5 Incentive-compatible experiments with interference
	5.1 Dealing with strategic interference through better designs

	6 Conclusion
	A Extension to multiple blocks
	B Proofs
	C Remarks on variance stabilization
	D Discussion



