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Abstract

Genome sequencing technology has advanced at a rapid pace and it is now possible to generate 

highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential 

to support various applications, including personalized medical services. While the benefits of the 

genomics revolution are trumpeted by the biomedical community, the increased availability of 

such data has major implications for personal privacy; notably because the genome has certain 

essential features, which include (but are not limited to) (i) an association with traits and certain 

diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. 

Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made 

available in less regulated environments, such as the Internet and for-profit companies. The 

problem of genome data privacy thus resides at the crossroads of computer science, medicine, and 

public policy. While the computer scientists have addressed data privacy for various data types, 

there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a 

systematization of knowledge for the computer science community. In doing so, we address some 
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of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about 

genome data privacy with biomedical specialists. Then, after characterizing the genome privacy 

problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies 

for mitigating such attacks, as well as contextualizing these attacks from the perspective of 

medicine and public policy. This paper concludes with an enumeration of the challenges for 

genome data privacy and presents a framework to systematize the analysis of threats and the 

design of countermeasures as the field moves forward.

Keywords

Additional Key Words and Phrases: genomics privacy; security; healthcare; biomedical research; 
recreational genomics

1. INTRODUCTION

The genomic era began with the announcement ten years ago that the Human Genome 

Project (HGP) had completed its goals [Guttmacher and Collins 2003]. The technology 

associated with genome sequencing has progressed at a rapid pace, and this has coincided 

with the rise of cheap computing and communication technologies. Consequentially, it is 

now possible to collect, store, process, and share genomic data in a manner that was 

unthinkable at the advent of the HGP. In parallel with this trend there has been significant 

progress on understanding and using genomic data that fuels a rising hunger to broaden the 

number of individuals who make use of their genomes and to support research to expand the 

ways in which genomes can be used. This rise in the availability and use of genomic data 

has lead to many concerns about its security and privacy. These concerns have been 

addressed with efforts to provide technical protections and a corresponding series of 

demonstrations of vulnerabilities. Given that much more research is needed and expected in 

this area, this seems like a good point to overview and systematize what has been done in 

the last decade and provide ideas on a framework to aid future efforts.

To provide context, consider that it was not until the early 1990s when sequencing the 

human genome was posited as a scientific endeavor. The first attempt for whole genome 

sequencing1 (a laboratory process that maps the full DNA sequence of an individual’s 

genome) was initiated at the U.S. National Institutes of Health (NIH) in 1990 and the first 

full sequence was released 13 years later at a total cost of $3 billion. Yet, sequencing 

technology has evolved and costs have plummeted, such that the price for a whole genome 

sequence is currently $6K2 and can be completed in two to three days. The “$1K genome in 

1 day” will soon be a reality.

Decreases in sequencing costs have coincided with an escalation in genomics as a research 

discipline with explicit application possibilities. Genomic data is increasingly incorporated 

in a variety of domains, including healthcare (e.g., personalized medicine), biomedical 

1In this study, we refer to the process of obtaining the Whole Genome Sequence (WGS) or the Whole Exome Sequence (WES) as 
sequencing and the process of obtaining the variants (usually only single nucleotide polymorphisms, or SNPs) as genotyping.
2http://goo.gl/UdxsP8
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research (e.g., discovery of novel genome-phenome associations), direct-to-consumer (DTC) 

services (e.g., disease risk tests), and forensics (e.g., criminal investigations). For example, it 

is now possible for physicians to prescribe the “right drug at the right time” (for certain 

drugs) according to the makeup of their patients’ genome [Bielinski et al. 2014; Overby et 

al. 2010; Gottesman et al. 2013b; Pulley et al. 2012].

To some people, genomic data is considered (and treated) no differently than traditional 

health data (such as what might be recorded in one’s medical record) or any other type of 

data more generally [Bains 2010; Rothstein 2005]. While genomic data may not be 

“exceptional” in its own right, it has many features that distinguish it (discussed in depth in 

the following section) and there is a common belief that it should be handled (e.g., that is 

stored, processed, and managed) with care. The privacy issues associated with genomic data 

are complex, particularly because such data has a wide range of uses and provides 

information on more than just the individual from which the data was derived. Yet, perhaps 

most importantly, there is a great fear of the unknown. Every day, we learn something new 

about the genome, whether it be knowledge of a new association with a particular disease or 

proof against a previously reported association. We have yet to discover everything there is 

from DNA, which makes it almost impossible to assign exact value, and thus manage DNA 

as a personal asset (or public good). So, as the field of genomics evolves, so too will the 

views on the privacy-sensitivity of genomic data. As this paper progresses, we review some 

of the common beliefs revolving around genome privacy. And, in doing, we report on the 

results of a survey we conducted with biomedical specialists regarding their perspective on 

genomic data privacy issues.

It should be recognized that there exist numerous publications on technical, ethical, and 

legal aspects of genomics and privacy. The research in the field covers privacy-preserving 

handling of genomic data in various environments (as will be reviewed in this paper). Yet, 

there are several challenges to ensuring that genomics and privacy walk hand-in-hand. One 

of the challenges that computer scientists face is that these views tend to be focused on one 

aspect of the problem in a certain setting with a certain discipline’s perspective. From the 

perspective of computer science, there is a need for a complete framework which shows (i) 

what type of security and privacy requirements are needed in each step of the handling of 

genomic data, (ii) a characterization of the various threat models that are realized at each 

step, and (iii) open computational research problems. By providing such a framework in this 

paper, we are able to illustrate the important problems of genomic privacy to computer 

science researchers working on security and privacy problems more generally.

Related Surveys and Articles—Privacy issues caused by forensic, medical and other 

uses of genomic data have been studied in the past few years [Stajano et al. 2008; Stajano 

2009; Malin 2005a; Ayday et al. 2013a; Naveed 2014; Cristofaro 2014]. A recent survey 

[Erlich and Narayanan 2013] discusses privacy breaches using genomic data and proposes 

methods for protection. It addresses topics that we discuss in Sections 6 and Section 9 of this 

paper. In Section 9 we present an end-to-end picture for the handling of genomic data in a 

variety of contexts as shown in Figure 9, while [Erlich and Narayanan 2013] discusses how 

access control, data anonymization and cryptographic techniques can be used to prevent 

genetic privacy breaches. Moreover, [Erlich and Narayanan 2013] has been written for a 
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general audience, whereas this paper is meant for computer scientists (and in particular 

security and privacy specialists).

Contributions—The main contributions of this paper are:

• We provide an extensive literature survey3 of computer science as well as medical 

literature about genome privacy.

• We report concerns expressed by an opportunistically ascertained group of 

biomedical specialists about the security and privacy of genomic data.

• We develop an end-to-end framework for the security and privacy of genomic data 

in a variety of healthcare, biomedical research, legal and forensics and direct-to-

consumer contexts.

• We present what we believe to be the first document that reflects the opinions of 

computer science, medical, and legal researchers for this important topic.

We also provide an online tutorial4 of biology and other related material to define technical 

terms used in this (and other) paper(s) on the security and privacy of genomic data. The 

remainder of this paper is organized as follows. Section 2 explains to what extent genomic 

data is distinct from data in general and health information in particular. Section 3 provides 

an overview of uses of genomic data for the nonspecialist. Section 4 emphasizes the 

relevance of genome privacy. Section 5 reports on the concerns of 61 opportunistically 

ascertained biomedical scientists regarding the importance of genomic data privacy and 

security. Sections 6 and 7 provide literature surveys, where the former summarizes the 

problem (i.e., the privacy risk) and the latter summarizes possible solutions. Section 8 

summarizes the challenges for genomic medicine and privacy. Based on this analysis, 

Section 9 offers a general framework for privacy-preserving handling of genomic data, 

including an extensive threat model that discusses what type of attacks are possible at each 

step of the data flow.

2. SPECIAL FEATURES OF GENOMIC DATA

In this section, we discuss why genomic data is special. We have identified six features of 

genomic data, as shown in Figure 1, and while other data harbor some of these features, we 

are not aware of any data (including other molecular, such as proteomics, data) that have all 

of these features.

Consider the following scenario. Alice decides to have her genome sequenced by a service 

called MyGenome.com that keeps her data in a repository and gives Alice information about 

it over time. At first she uses information from MyGenome to explore parts of her family 

tree and contribute her genomic data, along with some facts about herself, to support 

medical research on diseases of her choosing. Many years after MyGenome performed the 

initial sequencing, Alice began experiencing health problems for which she visited a doctor 

3In this paper, the word “survey” is used to mean literature survey as well as opinion poll, however, the meaning will be clear from 
the context.
4Available at https://sites.google.com/site/genomicssok/
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who used her genomic data to help diagnose a likely cause and customize a treatment based 

on variation in her genome sequence. Alice was impressed by this experience and wondered 

what other conditions might be in her future. After some exploration she discovered that 

evidence (based on published research papers) suggested a high risk of dementia for people 

with her genomic profile. She worried that various parties, including MyGenome, the 

genealogy service, and research studies with whom she shared her data, might share this and 

other information in ways that she did not expect or intend and whether this might have 

undesired consequences for her.

Alice’s story highlights several of the special features of genomic data. We depict six of 

them in Figure 1, which we review for orientation of the reader.

How does the result of a DNA-based lab test differ from that of other tests? One notable 

feature is how it is static and of long-lived value. Most tests, especially ones Alice could do 

for herself, like taking her temperature and blood pressure, are of relatively short term value, 

whereas genomic data changes little over a lifetime and may have value that lasts for 

decades. Of course, there are some exceptions to this longevity. For instance, sequencing 

techniques improve in accuracy over time, so tests may be repeated to improve reliability. 

Additionally, there are some modifications in DNA that accumulate over time (e.g., 

shortening of the ends of DNA strands due to aging [Harley et al. 1990]). Most particularly, 

somatic mutations occur resulting in some degree of mosaicism in every individual: the most 

striking examples are the deleterious modifications of the DNA observed in cancer cells in 

comparison to DNA derived from normal cells. However, this long-lasting value means that 

holding and using genomic data over extended periods of time, as Alice did, is likely.

Alice’s first use of her genomic data is expected to be a key driver for application 

development in the future. While DNA has been used for some time in parentage tests, it can 

be generalized from such studies to enable broader inference of kinship relations. Services 

such as Ancestry.com and 23andme.com already offer kinship services based on DNA 

testing. While a substantial portion of Alice’s DNA is in common with that of her relatives, 

it is also unique to her (unless she has an identical twin). This has another set of implications 

about potential use of genomic data, like its ability to link to her personally, a property that 

makes DNA testing useful in criminal forensics.

Another of the special features of DNA relates to its ability for diagnosing problems in 

health and behavior. Tests are able to demonstrate increased likelihood for conditions like 

macular degeneration in old age and Alzheimer’s (the most common form of dementia) 

[Goldman et al. 2011]. Although these are often probabilities, they can have diagnostic 

value as well as privacy ramifications [Seddon et al. 2011]. For instance, if Alice’s relatives 

learned about her increased risk of dementia, might they (consciously or unconsciously) 

trust her judgement a little less? Or might they instead help her to get timely treatment? This 

power for good and bad has led genomic data to have a certain “mystique”, which has been 

promoted by scientists and the media [Tambor et al. 2002]. The “mystique” surrounding the 

genomic data is evident from movies and books on the topic. Examples include the movie 

GATTACA and the book The DNA mystique [Nelkin and Lindee 1995].
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Although there are many other types of tests (e.g., protein sequence tests) that carry key 

common information with DNA tests, there is a special status that DNA data has come to 

occupy, a status that some have phrased as “exceptional” [Bains 2010]. These special fears 

about the sharing of genomic data, whether founded or not, cannot be ignored when 

considering privacy implications. Hence, while DNA data may or may not be exceptional 

[Evans et al. 2010; Gostin and Hodge Jr 1999], it is special in many ways, and hence 

warrants particular care.

3. USES OF GENOMIC DATA

An individual’s genomic sequence contains over 3 billion base pairs, which are distributed 

across twenty-three chromosomes. Despite its size, it is estimated that the DNA of two 

individuals differ by no more than 0.5% [Venter et al. 2001]; but it is these differences that 

influence an individual’s health status and other aspects (as discussed in Section 2). To 

provide further context for the importance of genomic data, this section reviews several of 

the major applications in practice and under development.

3.1. Healthcare

First, it has been recognized that mutation in an individual’s genomic sequence can 

influence his well being. In some cases, changes in a particular gene will have an adverse 

effect on a person’s health immediately or at some point in the future (i.e., the one gene, one 

disease, or OGOD, model) [Botstein and Risch 2003]. As of 2014, there were over 1,600 of 

these traits reported on in the literature5, ranging from metabolic disorders (e.g., 

phenylketonuria, which is caused by a mutation in the PKU gene) to neurodegenerative 

diseases (e.g., Huntington’s chorea, which is caused by a mutation in the HD gene 

[MacDonald et al. 1993]) to blood disorders (e.g., Sickle cell anemia, caused by a mutation 

in the HBB gene [Saiki et al. 1985]). While some of these diseases are manageable through 

changes in diet or pharmacological treatments, others are not and have no known 

intervention to assist in the improvement of an individual’s health status. Nonetheless, some 

individuals choose to learn their genetic status, so that they may order their affairs 

accordingly and contribute to medical research [Mastromauro et al. 1987] (as elaborated 

upon below). Moreover, genetic tests can be applied in a prenatal setting to detect a variety 

of factors that can influence health outcomes (e.g., if a fetus is liable to have a congenital 

defect that could limit its lifespan, such as Tay-Sach’s disease) [Lippman 1991].

Yet, the majority of variations in an individual’s genome do not follow the OGOD model. 

Rather, it has been shown that variation is associated with change in the susceptibility of an 

individual to a certain disease or behavior [Botstein and Risch 2003]. Cancer-predisposing 

variants in genes such as BRCA1/2 or the Lynch Syndrome are well-known examples. Such 

variation may also modify an individual’s ability to respond to a pharmaceutical agent. For 

instance, some individuals are strong (weak) metabolizers, such that they may require a 

lesser (greater) amount of a drug than is standard practice, or may gain the greatest benefit 

from a different drug entirely. This variation has been leveraged to provide dosing for 

several medications in practice, including blood thinners after heart surgery (to prevent 

5http://goo.gl/oQtb7u

NAVEED et al. Page 6

ACM Comput Surv. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://goo.gl/oQtb7u


clotting) and hypertension management (to lessen the severity of heart disease) [Pulley et al. 

2012]. Additionally, changes in an individual’s genome detected in a tumor cell can inform 

which medications are most appropriate to treat cancer [Feero et al. 2011].

3.2. Research

While the genome has been linked with a significant number of disorders and variable 

responses to treatments, new associations are being discovered on a weekly basis. 

Technology for performing such basic research continues to undergo rapid advances 

[Brunham and Hayden 2012]. The dramatic decrease in the cost of genome sequencing has 

made it increasingly possible to collect, store, and computationally analyze genomic 

sequencing data on a fine-grained level, as well as over populations on the order of millions 

of people (e.g., China’s Kadoorie biobank [Chen et al. 2011] and UK Biobank [Allen et al. 

2014] will each contain genomic data on 500,000 individuals by the end of 2014, while the 

U.S. National Cancer Institute is at the beginning of its Million Cancer Genome Project 

[Haussler et al. 2012]). Yet, it should be recognized that computational analysis is separate 

from, and more costly than, sequencing technology itself (e.g., the $1K analysis of a genome 

is far from being developed).

Moreover, technological advances in genome sequencing are coalescing with a big data 

revolution in the healthcare domain. Large quantities of data derived from electronic health 

records (EHRs), for instance, are being made available to support research on clinical 

phenotypes that, until several years ago, were deemed to be too noisy and complex to model 

[Gottesman et al. 2013a]. As a consequence, genome sequences have become critical 

components of the biomedical research process [Kohane 2011].

3.3. Direct-to-Consumer Services

Historically, genome sequencing was a complex and expensive process that, as a result, was 

left to large research laboratories or diagnostic services, but in the past several years, there 

has been a rise in DTC (Direct-to-consumer) genome sequencing from various companies 

[Prainsack and Vayena 2013]. These services have made it affordable for individuals to 

become directly involved in the collection, processing, and even analysis of their genomic 

data. The DTC movement has enabled individuals to learn about their disease susceptibility 

risks (as alluded to earlier), and even perform genetic compatibility tests with potential 

partners. Moreover, and perhaps more importantly, DTC has made it possible for individuals 

to be provided with digital representations of their genome sequences, such that they can 

control how such information is disclosed, to whom, and when.

Of course, not all consumer products are oriented toward health applications. For example, 

genomic data is increasingly applied to determine and/or track kinship. This information has 

been applied for instance to track an individual’s ancestral heritage and determine the extent 

to which individuals with the same surname are related with respect to their genomic 

variance [Jobling 2001].
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3.4. Legal and Forensic

Given the static nature of genomic sequences, this information has often been used for 

investigative purposes. For instance, this information may be applied in contested parentage 

suits [Anderlik 2003]. Moreover, DNA found at a crime scene (or on a victim) may be used 

as evidence by law enforcement to track down suspected criminals [Kaye and Smith 2003]. 

It is not unheard of for residents of a certain geographic region to be compelled to provide 

tissue samples to law enforcement to help in such investigations [Greely et al. 2006]. Given 

the kinship relationships that such information communicates, DNA from an unknown 

suspect has been compared to relatives to determine the corresponding individual’s likely 

identity in order to better facilitate a manhunt.

One of the concerns of such uses, however, is that it is unclear how law enforcement may 

retain and/or use this information in the future. The U.S. Supreme Court recently ruled that 

it is permissible for law enforcement to collect and retain DNA on suspects, even if the 

suspects are not subsequently prosecuted [Maryland v. King 2013]. Once DNA is shed by an 

individual (such as from saliva left on a coffee cup in a restaurant) it has been legislated as 

an “abandoned” resource [Joh 2006], such that the corresponding individual relinquishes 

rights of ownership. While the notion of “abandoned DNA” remains a hotly contested issue, 

it is currently the case in the U.S. that DNA collected from discarded materials can be 

sequenced and used by anyone without the consent of the individual from which it was 

derived.

4. RELEVANCE OF GENOMIC PRIVACY

As discussed in Section 2, genomic data has numerous distinguishing features and 

applications. As a consequence, the leakage of this information may have serious 

implications if misused, as in genetic discrimination (e.g., for insurance, employment, or 

education) or blackmail [Gottlieb 2001]. A true story exemplifying genetic discrimination 

was shared by Dr. Noralane Lindor at the Mayo Clinic’s Individualizing Medicine 

Conference (2012) [Lindor 2012]. During her study of a cancer patient, Dr. Lindor also 

sequenced the grandchildren of her patient, two of whom turned out to have the mutation for 

the same type of cancer6. One of these grandchildren applied to the U.S. army to become a 

helicopter pilot. Even though genetic testing is not a required procedure for military 

recruitment, as soon as she revealed that she previously went through the aforementioned 

genetic test, she was rejected for the position (in this case legislation does not apply to 

military recruitment, as will be discussed below).

Ironically, the familial aspect of genomics complicates the problems revolving around 

privacy. A recent example is the debate between the family members of Henrietta Lacks and 

the medical researchers [Skloot 2013]. Ms. Lacks (deceased in 1951) was diagnosed with 

cervical cancer and some of her cancer cells were removed for medical research. These cells 

later paved the way to important developments in medical treatment. Recently, researchers 

sequenced and published Ms. Lacks’s genome without asking the consent of her living 

family members. These relatives learned this information from the author of the bestselling 

6Having a genetic mutation for cancer only probabilistically increases the predisposition to cancer.
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book “The Immortal Life of Henrietta Lacks” [Skloot and Turpin 2010], and they expressed 

the concern that the sequence contained information about her family members. After 

complaints, the researchers took her genomic data down from public databases. However, 

the privacy-sensitive genomic information of the members of the Lacks family was already 

compromised because some of the data had already been downloaded and many 

investigators had previously published parts of the cells’ sequence. Although the NIH 

entered into an agreement with the Lacks family to give them a voice in the use of these 

cells [Ritter 2013], there is no consensus about the scope of control that individuals and their 

families ought to have over the downstream of their cells. Thousands of people, including 

James Watson [Nyholt et al. 2008], have placed their genomic data on the Web without 

seeking permission of their relatives.

One of the often voiced concerns regarding genomic data is its potential for discrimination. 

While, today, certain genome-disease and genome-trait associations are known, we do not 

know what will be inferred from one’s genomic data in the future. In fact, a grandson of 

Henrietta Lacks expressed his concern about the public availability of his grandmother’s 

genome by saying that “the main issue was the privacy concern and what information in the 

future might be revealed”. Therefore, it is likely that the privacy-sensitivity of genomic data, 

and thus the potential threats will increase with time.

Threats emerging from genomic data are only possible via the leakage of such data, and, in 

today’s healthcare system, there are several candidates for the source of this leakage. 

Genomic data can be leaked through a reckless clinician, the IT of a hospital (e.g., through a 

breach of the information security), or the sequencing facility. If the storage of such data is 

outsourced to a third party, data can also be leaked from such a database through a hacker’s 

activity or a disgruntled employee. Similarly, if the genomic data is stored by the individual 

himself (e.g., on his smartphone), it can be leaked due to a malware. Furthermore, 

surprisingly, sometimes the leakage is performed by the genome owner. For example, on a 

genome-sharing website, Open-SNP.org, people upload the variants in their genomes – 

sometimes with their identifying material, including their real names.

One way of protecting the privacy of individuals’ genomic data is through the law or via 

policy. In 2007, the U.S. adopted the Genetic Information Nondiscrimination Act (GINA), 

which prohibits certain types of discrimination in access to health insurance and 

employment. Similarly, the U.S. Presidential report on genome privacy [Presidential 

Commission for the Study of Bioethical Issues 2012] discusses policies and techniques to 

protect the privacy of genomic data. in 2008, the Council of Europe adopted the convention 

concerning genetic testing for health purposes [Council of Europe 2008]. There are, in fact, 

hundreds of legal systems in the world, ranging in scope from federal to state / province, and 

municipality level and each can adopt different definitions, rights, and responsibilities for an 

individual’s privacy. Yet, while such legislation may be put into practice, it is challenging to 

enforce because the uses of data cannot always be detected. Additionally, legal regimes may 

be constructed such that they are subject to interpretation or leave loopholes in place. For 

example, GINA does not apply to life insurance or the military [Altman and Klein 2002]. 

Therefore, legislation alone, while critical in shaping the norms of society, is insufficient to 

prevent privacy violations.
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The idea of using technical solutions to guarantee the privacy of such sensitive and valuable 

data brings about interesting debates. On one hand, the potential importance of genomic data 

for mankind is tremendous. Yet, privacy-enhancing technologies may be considered as an 

obstacle to achieving these goals. Technological solutions for genome privacy can be 

achieved by various techniques, such as cryptography or obfuscation (proposed solutions are 

discussed in detail in Section 7). Yet, cryptographic techniques typically reduce the 

efficiency of the algorithms, introducing more computational overload, while preventing the 

users of such data from “viewing” the data. And, obfuscation-based methods reduce the 

accuracy (or utility) of genomic data. Therefore, especially when human life is at stake, the 

applicability of such privacy-enhancing techniques for genomic data is questionable.

On the other hand, to expedite advances in personalized medicine, genomephenome 

association studies often require the participation of a large number of research participants. 

To encourage individuals to enroll in such studies, it is crucial to adhere to ethical principles, 

such as autonomy, reciprocity and trust more generally (e.g., guarantee that genomic data 

will not be misused). Considering today’s legal systems, the most reliable way to provide 

such trust pledges may be to use privacy-enhancing technologies for the management of 

genomic data. It would severely discredit a medical institution’s reputation if it failed to 

fulfill the trust requirements for the participants of a medical study. More importantly, a 

violation of trust could slow down genomic research (e.g., by causing individuals to think 

twice before they participate in a medical study) possibly more than the overload introduced 

due to privacy-enhancing technologies. Similarly, in law enforcement, genomic data (now 

being used in FBI’s Combined DNA Index System – CODIS) should be managed in a 

privacy-preserving way to avoid potential future problems (e.g., mistrials, law suits).

In short, we need techniques that will guarantee the security and privacy of genomic data, 

without significantly degrading the efficiency of the use of genomic data in research and 

healthcare. Obviously, achieving all of the aforementioned properties would require some 

compromise. Our preliminary assessment of expert opinion (discussed in Section 5) begins 

to investigate what tradeoffs users of such data would consider appropriate.

5. GENOMICS/GENETICS EXPERT OPINION

5.1. Objective

We explored the views of an opportunistically ascertained group of biomedical researchers 

in order to probe levels of concern about privacy and security to be addressed in formulating 

guidelines and in future research.

5.2. Survey Design

The field of genomics is relatively young, and its privacy implications are still being refined. 

Based on informal discussions (primarily with computer scientists) and our review of the 

literature, we designed a survey to learn more about biomedical researchers’ level of 

concern about genomics and privacy. Specifically, the survey inquired about (i) widely held 

assertions about genome privacy, (ii) ongoing and existing research directions on genome 

privacy, and (iii) sharing of an individual’s genomic data, using the following probes in 

Figure 2. The full survey instrument is available at http://goo.gl/forms/jwiyx2hqol. The 
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Institutional Review Board (IRB) at the University of Illinois at Urbana-Champaign granted 

an exemption for the survey. Several prior surveys focused on genome privacy have been 

conducted and have focused on the perspectives of the general public [Kaufman et al. 2009; 

Kaufman et al. 2012; Platt et al. 2013; Cristofaro 2013] and geneticists [Pulley et al. 2008]. 

Our survey is different because it investigates the opinion of biomedical researchers with 

respect to the intention of data protection by technical means.

5.3. Data Collection Methodology

We conducted our survey both online and by paper. Snowball sampling [Goodman 1961] 

was used to recruit subjects for the online survey. This approach enables us to get more 

responses, but the frame is unknown and thus response rate cannot be reported. A URL for 

the online survey was sent to the people working in genomics/genetics area (i.e., molecular 

biology professors, bioinformaticians, physicians, genomics/genetics researchers) known to 

the authors of this paper. Recipients were asked to forward it to other biomedical experts 

they know. Email and Facebook private messages (as an easy alternative for email) were 

used to conduct the survey. Eight surveys were collected by handing out paper copies to 

participants of a genomics medicine conference. Overall the survey was administered to 61 

individuals.

5.4. Potential Biases

We designed the survey to begin to explore the extent to which biomedical researchers share 

concerns expressed by some computer scientists. While not generalizable to all biomedical 

experts due to the method for recruiting participants, their responses do provide preliminary 

insights into areas of concern about privacy and security expressed by biomedical experts. 

More research is needed to assess the representativeness of these views.

5.5. Findings

Approximately half of the participants were from the U.S. and slightly less than half from 

Europe (the rest selected “other”). The participants were also asked to report their expertise 

in genomics/genetics and security/privacy. We show these results in Figure 3.

We asked whether the subjects agree with the statements listed in Figure 2 above. Figure 4 

shows the results. 20% of the respondents believe that protecting genome privacy is 

impossible as an individual genomic data can be obtained from his leftover cells (Probe 1). 

Almost half of the respondents consider genomic data to be no different than other health 

data (Probe 2). Even though genomic information is, in most instances, non-deterministic, 

all respondents believe that this fact does not reduce the importance of genome privacy 

(Probe 3). Only 7% of our respondents think that protecting genome privacy should be left 

to bioinformaticians (Probe 4). Furthermore, 20% of the respondents believe that genome 

privacy can be fully guaranteed by legislation (Probe 5). Notably, only 7% of the 

respondents think that privacy enhancing technologies are a nuisance in the case of genetics 

(Probe 6). According to only about 10% of the respondents, the confidentiality of genomic 

data is superfluous because it is hard to identify a person from her variants (Probe 7). And, 

finally, about 30% of the respondents think that advantages that will be brought by genomics 

in healthcare will justify the harm that might be caused by privacy issues (Probe 8).
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We asked participants whether they would share their genomes on the Web (Figure 5). 48% 

of the respondents are not in favor of doing so, while 30% would reveal their genome 

anonymously, and 8% would reveal their identities alongside their genome. We also asked 

respondents how they think about the scope of the individual’s right to share one’s genomic 

data given that the data contain information about the individual’s blood relatives. Figure 6 

shows that only 18% of the respondents think that one should not be allowed to share, 43% 

of the respondents think that one should be allowed to share only for medical purpose, and 

39% of the respondents think that one should have the right to share her genomic data 

publicly.

As discussed in Section 4, there is a tension between the desire for genome privacy and 

biomedical research. Thus, we asked the survey participants what they would trade for 

privacy. The results (shown in Figure 7) indicate that the respondents are willing to trade 

money and test time (duration) to protect privacy, but they usually do not accept trading 

accuracy or utility.

We also asked the respondents to evaluate the importance of existing and ongoing research 

directions on genomic privacy (as discussed in detail in Section 7), considering the types of 

problems they are trying to solve (Figure 8). The majority of respondents think that 

genomics privacy is important.

5.6. Discussion

Our results show that these biomedical researchers believe that genomic privacy is important 

and needs special attention. Figure 4 shows that, except for Probes 2 and 8, 80% of the 

biomedical experts do not endorse the statements listed in Figure 2. Approximately three-

quarters of the biomedical experts believe that advantages of genome-based healthcare do 

not justify the harm that can be caused by the genomic privacy breach. Probe 2 is an 

interesting result in that about half of the biomedical experts believe that genomic data 

should be treated as any other sensitive health data. This seems reasonable because, at the 

moment, health data can, in many instances, be more sensitive than genomic data. The 

biomedical community also agrees on the importance of current genomic privacy research. 

Figure 8 shows that these biomedical researchers ranks the placement of genomic data to the 

cloud as their prime concern. Moreover, they agree with the importance of other genomic 

privacy research topics shown in Figure 8.

6. KNOWN PRIVACY RISKS

In this section, we survey a wide spectrum of privacy threats to human genomic data, as 

reported by prior research.

6.1. Re-identification Threats

Re-identification is probably the most extensively studied privacy risk in dissemination and 

analysis of human genomic data. In such an attack, an unauthorized party looks at the 

published human genomes that are already under certain protection to hide the identity 

information of their donors (e.g., patients), and tries to recover the identities of the 

individuals involved. Such an attack, once it succeeds, can cause serious damage to those 
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donors, e.g., discrimination and financial loss. In this section, we review the weaknesses 

within existing privacy protection techniques that make this type of attack possible.

Pseudo-anonymized Data—A widely used method for protecting health information is 

the removal of explicit and quasi-identifying attributes (e.g., name and date of birth). Such 

redaction meets legal requirements to protect privacy (e.g., de-identification under the U.S. 

Health Insurance Portability and Accountability Act) for traditional health records. 

However, genomic data cannot be anonymized by just removing the identifying information. 

There is always a risk for the adversary to infer the phenotype of a DNA-material donor 

(that is, the person’s observable characteristics like eye/hair/skin colors), which will lead to 

her identification, from her genotypes (her genetic makeup). Even though the techniques for 

this purpose are still not there yet, the rapid progress in genomic research and technologies 

is quickly moving us toward that end. Moreover, re-identification can be achieved through 

inspecting the background information that comes with publicized DNA sequences 

[Gitschier 2009; Gymrek et al. 2013; Hayden 2013]. As an example, genomic variants on 

the Y chromosome have been correlated with surnames (for males), which can be found out 

using public geneology databases. Other instances include identifying Personal Genome 

Project (PGP) participants through public demographic data [Sweeney et al. 2013], 

recovering the identities of family members from the data released by the 1000 Genome 

Project using public information (e.g. death notices) [Malin 2006], and other correlation 

attacks [Malin and Sweeney 2004]. It has been shown that even cryptographically secure 

protocols leaks a lot of information when used for genomic data [Goodrich 2009].

Attacks on Machine Learning Models—Most attacks on genomic data use the entire 

dataset for the attack. Recently, [Fredrikson et al. 2014] showed that even the machine 

learning models that are trained on the genomic data can reveal information about the people 

whose data was used for training the model as well as any arbitrary person given some 

background information. They study Warfarin dosage example in detail and show that the 

attack has significant advantage compared to a random guess. The authors further show that 

differential privacy is not useful for Warfarin dosage machine learning model.

6.2. Phenotype Inference

Another critical privacy threat to human genome data is inference of sensitive phenotype 

information from the DNA sequence. Here we summarize related prior studies.

Aggregate Genomic Data—In addition to the aforementioned re-identification threats 

(discussed in Section 6.1, which comes from the possible correlation between an 

individual’s genomic data and other public information, the identity of a participant of a 

genomic study can also be revealed by a “second sample”, that is, part of the DNA 

information from the individual. This happens, for example, when one obtains a small 

amount of genomic data from another individual, such as a small set of her single nucleotide 

polymorphisms (SNPs), and attempts to determine her presence in a clinic study on HIV (a 

phenotype), based on anonymized patient DNA data published online. This turns out to be 

rather straightforward, given the uniqueness of individual’s genome. Particularly, in 2004, 

research shows that as few as 75 independent SNPs are enough to uniquely distinguish one 
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individual from others [Lin et al. 2004]. Based on this observation, the genomic researchers 

generally agree that such DNA raw data are too sensitive to release through online 

repositories (such as the NIH’s PopSet resources), without proper agreements in place. An 

alternative is to publish “pooled” data, in which summary statistics are disclosed for the case 

and control groups of individuals in a study.

Yet, in 2008, Homer and colleagues [Homer et al. 2008] showed that when an adversary had 

access to a known participant’s genome sequence, they could determine if the participant 

was in a certain group. Specifically, the researchers compared one individual’s DNA sample 

to the rates at which her variants show up in various study populations (and a reference 

population that does not include the individual) and applied a statistical hypothesis test to 

determine the likelihood of which group she is in (i.e., case or reference). The findings of the 

work compelled the NIH, as well as the Wellcome Trust in the UK, to remove all publicly 

available aggregate genomic data from their websites. Ever since, researchers are required 

to sign a data use agreement (prohibiting re-identification) to access such data [Zerhouni and 

Nabel 2008], the process of which could take several months. At the same time, such attacks 

were enhanced. First, Homer’s test statistic was improved through exploitation of genotype 

frequencies [Jacobs et al. 2009], while an alternative, based on linear regression was 

developed to facilitate more robust inference attacks [Masca et al. 2011]. Wang et. al. 

[Wang et al. 2009a] demonstrated, perhaps, an even more powerful attack by showing that 

an individual can be identified even from the aggregate statistical data (linkage 

disequilibrium measures –r2 values–) published in research papers. While the methodology 

introduced in [Homer et al. 2008] requires on the order of 10,000 genetic variations (of the 

target individual), this new attack requires only on the order of 200. Their approach even 

shows the possibility of recovering part of the DNA raw sequences for the participants of 

biomedical studies, using the statistics including p-values and the r2.

Quantification of information content in aggregate statistics obtained as an output of 

genome-wide association studies (GWAS) shows that an individual’s participation in the 

study and her phenotype can be inferred with high accuracy [Im et al. 2012; Craig et al. 

2011]. Beyond these works, it has been shown that a Bayesian network could be leveraged 

to incorporate additional background information, and thus improve predictive power 

[Clayton 2010]. It was recently shown that RNA expression data can be linked to the 

identity of an individual through the inference of SNPs [Schadt et al. 2012].

Yet, there is debate over the practicality of such attacks. Some researchers believe that 

individual identification from pooled data is hard in practice [Braun et al. 2009; 

Sankararaman et al. 2009; Visscher and Hill 2009; Gilbert 2008]. In particular, it has been 

shown that the assumptions required to accurately identify individuals from aggregate 

genomic data rarely hold in practice [Braun et al. 2009]. Such inference attacks depend upon 

the ancestry of the participants, the absolute and relative number of people in case and 

control groups, and the number of SNPs [Masca et al. 2011] and the availability of the 

second sample. Thus, the false positive rates are much higher in practice. Still, others 

believe that publication of complete genome wide aggregate results are dangerous for 

privacy of the participants [Lumley and Rice 2010; Church et al. 2009]. Furthermore, the 

NIH continues to adhere to its policy of data use agreements.

NAVEED et al. Page 14

ACM Comput Surv. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Beyond the sharing of aggregate data processing, it should be recognized that millions of 

people are sequenced or genotyped for state of the art GWAS studies. This sequenced data is 

shared among different institutions with inconsistent security and privacy procedures 

[Brenner 2013]. On the one hand, this could lead to serious backlash and fear to participate 

in such studies. On the other hand, not sharing this data could severely impede biomedical 

research. Thus, measures should be taken to mitigate the negative outcomes of genomic data 

sharing [Brenner 2013].

Correlation of Genomic Data—Partially available genomic data can be used to infer the 

unpublished genomic data due to linkage disequilibrium (LD), a correlation between regions 

of the genome [Halperin and Stephan 2009; Marchini and Howie 2010]. For example, Jim 

Watson (the discoverer of DNA) donated his genome for research but concealed his ApoE 

gene, because it reveals susceptibility to Alzheimer’s disease. Yet, it was shown that the 

ApoE gene variant can be inferred from the published genome [Nyholt et al. 2008]. Such 

completion attacks are quite relevant in DTC environments, where customers have the 

option to hide some of the variants related to a particular disease.

Kin Privacy Breach—A significant part of the population does not want to publicly 

release their genomic data [McGuire et al. 2011]. Disclosures of their relatives can thus 

threaten the privacy of such people, who never release their genomic data. The haplotypes of 

the individuals not sequenced or genotyped can be obtained using LD-based completion 

attacks [Kong et al. 2008]. For instance, if both parents are genotyped, then most of the 

variants for their offsprings can be inferred. The genomic data of family members can also 

be inferred using data that has been publicly shared by blood relatives and domain-specific 

knowledge about genomics [Humbert et al. 2013]. Such reconstruction attacks can be 

carried out using (i) (partial) genomic data of a subset of family members, and (ii) publicly-

known genomic background information (linkage disequilibrium and minor allele 

frequencies (MAFs) This attack affects individuals whose relatives publicly share genomic 

data (obtained using DTC services) on the Internet (e.g. on OpenSNP.org). The family 

members of the individuals who publish their genomic data on OpenSNP.org can be found 

on social media sites, such as Facebook [Humbert et al. 2013].

Note that “Correlation of genomic data” and “Kin privacy breach” attacks are based on 

different structural aspects of genomic data. While correlation attacks are based on the 

linkage disequilibrium (LD), which is a genetic variation within an individual’s genome. a 

kin privacy breach is caused by genomic correlations among individuals. Moreover, a kin 

privacy breach can also be realized through phenotype information alone. For instance, a 

parent’s skin color or height can be used to predict their child’s skin color or height.

6.3. Other Threats

In addition to the above threats, there are a few other genome-related privacy issues, as 

follows:

Anonymous Paternity Breach—As mentioned above, the Y chromosome is inherited 

from father to son virtually intact and genealogy databases link this chromosome to the 
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surname to model ancestry. Beyond the case discussed above, this information has been 

used to identify sperm donors in several cases. For example, a 15 year boy who was 

conceived using donor sperm, successfully found his biological father by sending his cheek 

swab to a genealogy service and doing Internet search [Motluk 2005; Stein 2005]. Similarly, 

an adopted child was able to find his real father with the help of a genealogy database (and 

substantial manual effort) [Naik 2009]. In short, DNA testing have made tracing anonymous 

sperm donors easy and theoretically sperm donors can no more be anonymous [Lehmann-

Haupt 2010].

Legal and Forensic—DNA is collected for legal and forensic purposes from criminals7 

and victims8. On the one hand, forensic techniques are becoming more promising with the 

evolving technology [Kayser and de Knijff 2011; Pakstis et al. 2010]. On the other hand, 

abuse of DNA (e.g., to stage crime scenes) have already baffled people and law enforcement 

agencies [Bobellan 2010]. Some people like Madonna (the singer) are paranoid enough 

about the misuse of their DNA that they hire DNA sterilization teams to clean up their 

leftover DNA (e.g., stray hairs or saliva) [Villalva 2012]. We are not aware of any privacy 

risk assessment studies done primarily in legal and forensic context, in part because law 

enforcement agencies store a very limited amount of genetic markers. Yet, in the future, it 

could well happen that law enforcement agencies will have access to the database of whole 

genome sequences. We discuss sperm donor paternity breach in the next subsection and it is 

also relevant in legal context.

7. STATE-OF-THE-ART SOLUTIONS

In this section, we provide an overview of technical approaches to address various privacy 

and security issues related to genomic data. Despite the risks associated with genomic data, 

we can find ways to mitigate them to move forward [Altman et al. 2013]. Some solutions are 

efficient enough for practical use, while others will need further development to become 

practical. In particular, practical solutions often exploit the special nature of the genomic 

data to find ways to be efficient under relevant domain assumptions.

7.1. Healthcare

Personalized medicine—Personalized medicine promises to revolutionize health-care 

through treatments tailored to an individual’s genomic makeup and genome-based disease 

risk tests that can enable early diagnosis of serious diseases. Various players have different 

concerns here. Patients, for instance, are concerned about the privacy of their genomes. By 

contrast, healthcare organizations are concerned about their reputation and the trust of their 

clients. And for-profit companies, such as pharmaceutical manufacturers, are concerned 

about the secrecy of their disease markers (proprietary information of business importance).

A disease risk test can be expressed as a regular expression query taking into account 

sequencing errors and other properties of sequenced genomic data. Oblivious automata 

enable regular expression queries to be computed over genome sequence data while 

7Using DNA to solve crimes, http://goo.gl/zII3Yo
8What is a Rape Kit, http://www.rainn.org/get-information/sexual-assault-recovery/rape-kit
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preserving the privacy of both the queries and the genomic data [Troncoso-Pastoriza et al. 

2007; Frikken 2009]. Cryptographic schemes have been developed to delegate the intensive 

computation in such a scheme to a public cloud in a privacy-preserving fashion [Blanton et 

al. 2012].

Alternatively, it has been shown that a cryptographic primitive called Authorized Private Set 

Intersection (A-PSI) can be used in this setting [Baldi et al. 2011; Cristofaro et al. 2012]. In 

personalized medicine protocols based on A-PSI, the healthcare organization provides 

cryptographically-authorized disease markers, while the patient supplies her genome. In this 

setting, a regulatory authority, such as the U.S. Food and Drug Administration (FDA), can 

also certify the disease markers before they can be used in a clinical setting. Despite its 

potential, this protocol has certain limitations. First, it is not very efficient in terms of its 

communication and computation costs. Second, the model assumes that patients store their 

own genomes, which is not necessarily the case in practice.

To address the latter issue, it has been suggested that the storage of the homomorphically 

encrypted variants (e.g., SNPs) can be delegated to a semi-honest third party [Ayday et al. 

2013c]. A healthcare organization can then request the third party to compute a disease 

susceptibility test (weighted average of the risk associated with each variant) on the 

encrypted variants using an interactive protocol involving (i) the patient, (ii) the healthcare 

organization and (iii) the third party. Additive homomorphic encryption enables a party with 

the public key to add ciphertexts or multiply a plaintext constant to a ciphertext. Additive 

homomorphic encryption based methods can also be used to conduct privacy-preserving 

computation of disease risk based on both genomic and non-genomic data (e.g., 

environmental and/or clinical data) [Ayday et al. 2013b]. One of the problems with such 

protocols, however, is that storage of homomorphically encrypted variants require orders of 

magnitude more memory than plaintext variants. However, a trade-off between the storage 

cost and level of privacy can be composed [Ayday et al. 2013b]. A second problem is that 

when an adversary has knowledge of the LD between the genome regions and the nature of 

the test, the privacy of the patients will decrease when tests are conducted on their 

homomorphically encrypted variants. This loss of privacy can be quantified using an 

entropy-based metric [Ayday et al. 2013a]. [Danezis and De Cristofaro 2014] propose two 

cryptographic protocols using framework proposed by [Ayday et al. 2013a]. The first 

protocol involves a patient and a medical center (MC). MC encrypts the (secret) weights, 

sends them to the patient’s smartcard, and operations are done inside the smartcard. This 

protocol also hides which and how many SNPs are tested. Second protocol is based on 

secret sharing in which the (secret) weights of a test is shared between the SPU and the MC. 

This protocol still relies on a smartcard (held by the patient) to finalize the computation. 

[Djatmiko et al. 2014] propose a secure evaluation algorithm to compute genomic tests that 

are based on a linear combination of genome data values. In their setting, a medical center 

prescribes a test and the client (patient) accesses a server via his mobile device to perform 

the test. The main goals are to (i) keep the coefficients of the test (secret weights) secret 

from the client, (ii) keep selection of the SNPs confidential from the client, and (iii) keep 

SNPs of the client confidential from the server (server securely selects data from the client). 

They achieve these goals by using a combination of partially homomorphic Paillier 
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encryption and private information retrieval. Test calculations are performed on the client’s 

mobile device and that the medical server can also perform some related computing 

functions. Eventually, client gets the result and shows it to his physician. As a case study, 

the authors implemented the Warfarin dosing algorithm as a representative example. They 

also implemented a prototype system in an Android App. In [Karvelas et al. 2014], authors 

propose a technique to store genomic data in encrypted form, use an Oblivious RAM to 

access the desired data without leaking the access pattern, and finally run secure two-party 

computation protocol to privately compute the required function on the retrieved encrypted 

genomic data. The proposed construction includes two separate servers: cloud and proxy.

Raw aligned genomic data—Raw aligned genomic data, that is, the aligned outputs of a 

DNA sequencer, are often used by geneticists in the research process. Due to the limitations 

of current sequencing technology, it is often the case that only a small number of nucleotides 

are read (from the sequencer) at a time. A very large number of these “short reads”9, 

covering the entire genome are obtained, and are subsequently aligned, using a reference 

genome. The position of the read relative to the reference genome is determined by finding 

the approximate match on the reference genome. With today’s sequencing techniques, the 

size of such data can be up to 300GB per individual (in the clear), which makes public key 

cryptography impractical for the management of such data. Symmetric stream cipher and 

order-preserving encryption [Agrawal et al. 2004] provide more efficient solutions for 

storing, retrieving, and processing this large amount of data in a privacy-preserving way 

[Ayday et al. 2014]. Order-preserving encryption keeps the ordering information in the 

ciphertexts to enable range queries on the encrypted data. We emphasize that order-

preserving encryption may not be secure for most practical applications.

Genetic compatibility testing—Genetic compatibility testing is of interest in both 

healthcare and DTC settings. It enables a pair of individuals to evaluate the risk of 

conceiving an unhealthy baby. In this setting, PSI can be used to compute genetic 

compatibility, where one party submits the fingerprint for his or her genome-based diseases, 

while the other party submits her or his entire genome. In doing so, the couple learns their 

genetic compatibility without revealing their entire genomes [Baldi et al. 2011]. 

Unfortunately this protocol can leak information about an individual’s disease risk status to 

the other party and its requirements for computation and communication may make it 

impractical.

Pseudo-anyonymization—Pseudo-anonymization is often performed by the health-care 

organization that collects the specimen (possibly by pathologists) to remove patient 

identifiers before sending the specimen to a sequencing laboratory. In lieu of such 

information, a pseudonym can be derived from the genome itself and public randomness, 

independently at the healthcare organization and sequence laboratory for symmetric 

encryption [Cassa et al. 2013]. This process can mitigate sample mismatch at the sequencing 

lab. However, since the key is derived from the data that is encrypted using the same key, 

symmetric encryption should guarantee circular security (security notion required when 

9A short read corresponds to a sequence of nucleotides on DNA. The raw genomic data of an individual consists of hundreds of 
millions of short reads, each including around 100 nucleotides.
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cipher is used to encrypt its own key), an issue which is not addressed in the published 

protocol.

7.2. Research

Genome-wide Association Studies (GWAS)—Genome-Wide Association Studies,10 

are conducted by analyzing the statistical correlation between the variants of a certain 

genomic region in a case group (i.e., phenotype positive) and control group (i.e., phenotype 

negative). GWAS is one of the most common types of studies performed to learn genome-

phenome associations. In GWAS the aggregate statistics (e.g., p-values) are published in 

scientific articles and are made available to other researchers. As mentioned earlier, such 

statistics can pose privacy threats as explained in Section 6.

Recently, it has been suggested that such information can be protected through the 

application of noise to the data. In particular, differential privacy, a well-known technique 

for answering statistical queries in a privacy preserving manner [Dwork 2006], was recently 

adapted to compose privacy preserving query mechanisms for GWAS settings [Fienberg et 

al. 2011; Johnson and Shmatikov 2013]. A mechanism K gives ε-differential privacy if for 

all databases D and D′ differing on at most one record, the probability of K(D) is less than or 

equal to the probability of exp(ε) × K(D′). In simple words, if we compute a function on a 

database with and without a single individual and the answer in both cases is approximately 

the same, then we say that the function is differentially private. Essentially, if the answer 

does not change when an individual is or is not in the database, the answer does not 

compromise the privacy of that individual. In [Fienberg et al. 2011] the authors propose 

methods for releasing differentially private minor allele frequencies (MAFs), chi-square 

statistics, p-values, the top-k most relevant SNPs to a specific phenotype, and specific 

correlations between particular pairs of SNPs. These methods are notable because traditional 

differential privacy techniques are unsuitable for GWAS due to the fact that the number of 

correlations studied in GWAS are much larger than the number of people in the study. 

However, differential privacy is typically based on a mechanism that adds noise (e.g., by 

using Laplacian noise, geometric noise, or exponential mechanism), and thus requires a very 

large number of research participants to guarantee acceptable levels of privacy and utility. 

Yu et al. [Yu et al. 2014] have extended the work of [Fienberg et al. 2011] to compute 

differentially private chi-square statistics for arbitrary number of cases and controls. In 

[Johnson and Shmatikov 2013], the authors explain that computing the number of relevant 

SNPs and the pairs of correlated SNPs are the goals of a typical GWAS and are not known 

in advance. They provide a new exponential mechanism –called a distance-score mechanism 

– to add noise to the output. All relevant queries required by a typical GWAS are supported, 

including the number of SNPs associated with a disease and the locations of the most 

significant SNPs. Their empirical analysis suggests that the new approach produces 

acceptable privacy and utility for a typical GWAS.

A meta-analysis of summary statistics from multiple independent cohorts is required to find 

associations in a GWAS. Different teams of researchers often conduct studies on different 

10http://www.genome.gov/20019523
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cohorts and are limited in their ability to share individual-level data due to Institutional 

Review Board (IRB) restrictions. However, it is possible for the same participant to be in 

multiple studies, which can affect the results of a meta-analysis. It has been suggested that 

one-way cryptographic hashing can be used to identify overlapping participants without 

sharing individual-level data [Turchin and Hirschhorn 2012].

[Xie et al. 2014] proposed a cryptographic approach for privacy preserving genome-

phenome studies. This approach enables privacy preserving computation of genome-

phenome associations when the data is distributed among multiple sites. No site needs to 

share its data with any other site.

Sequence comparison—Sequence comparison is widely used in bioinformatics (e.g., in 

gene finding, motif finding, and sequence alignment). Such comparison is computationally 

complex. Cryptographic tools such as fully homomorphic encryption (FHE) and secure 

multiparty computation (SMC) can be used for privacy-preserving sequence comparison. 

Fully homomorphic encryption enables any party with the public key to compute any 

arbitrary function on the ciphertext without ever decrypting it. Multiparty computation 

enables a group of parties to compute a function of their inputs without revealing anything 

other than the output of the function to each other. It has been shown that fully 

homomorphic encryption (FHE), secure multiparty computation (SMC) and other traditional 

cryptographic tools [Atallah et al. 2003; Jha et al. 2008] can be applied for comparison 

purposes, but they do not scale to a full human genome. Alternatively, more scalable 

provably secure protocols exploiting public clouds have been proposed [Blanton et al. 2012; 

Atallah and Li 2005]. Computation on the public data can be outsourced to a third party 

environment (e.g., cloud provider) while computation on sensitive private sections can be 

performed locally; thus, outsourcing most of the computationally intensive work to the third 

party. This computation partitioning can be achieved using program specialization which 

enables concrete execution on public data and symbolic execution on the sensitive data 

[Wang et al. 2009b]. This protocol takes advantage of the fact that genomic computations 

can be partitioned into computation on public data and private data, exploiting the fact that 

99.5% of the genomes of any two individuals are similar.

Moreover, genome sequences can be transformed into sets of offsets of different nucleotides 

in the sequence to efficiently compute similarity scores (e.g., Smith-Waterman 

computations) on outsourced distributed platforms (e.g., volunteer systems). Similar 

sequences have similar offsets, which provides sufficient accuracy, and many-to-one 

transformations provide privacy [Szajda et al. 2006]. Although this approach does not 

provide provable security, it does not leak significant useful information about the original 

sequences.

Until this point, all sequence comparison methods we have discussed work on complete 

genomic sequences. Compressed DNA data (i.e., the variants) can be compared using novel 

data structure called Privacy-Enhanced Invertible Bloom Filter [Eppstein et al. 2011]. This 

method provides communication-efficient comparison schemes.
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Person-level genome sequence records—Person-level genome sequence records 

contrast with the previous methods, which obscure sequences and report on aggregated data 

rather than that of a single person. Several techniques have been proposed for enabling 

privacy for person-level genome sequences. For instance, SNPs from several genomic 

regions can be generalized into more general concepts – e.g.; transition (change of A↔G or 

T↔C.), transversion (change of A↔C, A↔T, C↔G or G↔T.), and exact SNP positions 

into approximate positions) [Lin et al. 2002]. This generalization makes re-identification of 

an individual sequence difficult according to a prescribed level of protection. In particular, 

k-anonymity can be used to generalize the genomic sequences such that a sequence is 

indistinguishable from at least other k – 1 sequences. Also, the problem of SNP 

anonymization can be expanded to more complex variations of a genome using multiple 

sequence alignment and clustering methods [Malin 2005b; Li et al. 2012]. However, such 

methods are limited in that they only work when there are a large number of sequences with 

relatively small number of variations.

Given the limitations of generalization-based strategies, it has been suggested that 

cryptographic techniques might be more appropriate for maintaining data utility. In 

particular, it has been shown that additive homomorphic encryption can be used to share 

encrypted data while still retaining the ability to compute a limited set of queries (e.g., 

secure frequency count queries which are useful to many analytic methods for genomic data) 

[Kantarcioglu et al. 2008]. Yet, this method leaks information in that it reveals the positions 

of the SNPs, which in turn reveals the type of test being conducted on the data. Moreover, 

privacy in this protocol comes at a high cost of computation.

Cryptographic hardware at the remote site can be used as a trusted computation base (TCB) 

to design a framework in which all person-level biomedical data is stored at a central remote 

server in encrypted form [Canim et al. 2012]. The server can compute over the genomic data 

from a large number of people in a privacy-preserving fashion. This enables researchers to 

compute on shared data without sharing person-level genomic data. This approach is 

efficient for typical biomedical roach is limited though in that trusted hardware tends to have 

relatively small memory capacities, which dictate the need for load balancing mechanisms.

Sequence alignment—Sequence alignment is fundamental to genome sequencing. The 

increase in the quantity of sequencing data is growing at a faster rate than the decreasing 

cost of computational power, thus the delegation of read mapping to the cloud can be very 

beneficial. However, such delegation can have major privacy implications. Chen et. al. 

[Chen et al. 2012] have shown that read mapping can be delegated to the public cloud in a 

privacy preserving manner using a hybrid cloud-based approach. They exploit the fact that a 

sequence of small number of nucleotides (≈20) is unique and two sequences of equal length 

with edit distance of x, when divided into x + 1 segments will have at least one matching 

segment. Based on this fact, computation is divided into two parts: (i) the public part is 

delegated to the public cloud, in which the public cloud finds exact matches on encrypted 

data and returns small number of matches to the private cloud, whereas (ii) the private part 

takes place in a private cloud, which computes the edit distance using only the matches 

returned by the public cloud. This approach reduces the local computation by a factor of 30 

by delegating 98% of the work to the public cloud.
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7.3. Legal and Forensic

Paternity testing—Paternity testing determines whether a certain male individual is the 

father of another individual. It is based on the high similarity between the genomes of a 

father and child (99.9%) in comparison to two unrelated human beings (99.5%). It is not 

known exactly which 0.5% of the human genome is different between two humans, but a 

properly chosen 1% sample of the genome can determine paternity with high accuracy 

[Gibbs and Singleton 2006]. Participants may want to compute the test without sharing any 

information about their genomes.

Once genomes of both individuals are sequenced, a privacy-preserving paternity test can be 

carried out using PSI-Cardinality (PSI-CA), where inputs to PSI-CA protocol are the sets of 

nucleotides comprising the genome. The size of the human genome, or even 1% of it, cannot 

be handled by current PSI and other SMC protocols. However, by exploiting domain 

knowledge, the computation time can be reduced to 6.8ms and network bandwidth usage to 

6.5KB by emulating the Restriction Fragment Length Polymorphism (RFLP) chemical test 

in software, which reduces the problem to finding the intersection between two sets of size 

25 [Baldi et al. 2011]. Subsequent work demonstrates a framework for conducing such tests 

on a Android smartphone [Cristo-faro et al. 2012]. Since the ideal output of privacy-

preserving paternity test should be yes or no, it cannot be obtained using custom PSI 

protocols, whereas generic garbled circuit based protocols can be easily modified to add this 

capability [Huang et al. 2011; Huang et al. 2012]. [He et al. 2014; Hormozdiari et al. 2014] 

propose cryptographic protocols for identifying blood relatives.

Criminal forensics—Criminal forensic rules enable law enforcement agencies to have 

unlimited access to the complete DNA record database of millions of individuals, usually of 

convicted criminals (e.g., CODIS11 in the US). The motivation behind creating such a 

database is to find a record that matches the DNA evidence from a crime scene. Yet, 

providing unlimited access to law enforcement agencies is unnecessary and may open the 

system to abuse. Cryptographic approaches have been developed to preserve the privacy of 

the records that fail to match the evidence from the crime scene [Bohannon et al. 2000]. 

Specifically, DNA records can be encrypted using a key that depends upon certain tests, 

such that when DNA is collected from a crime scene, the scheme will only allow decryption 

of the records that match the evidence.

Finally, partial homomorphic encryption can be used for privacy-preserving matching of 

Short Tandem Repeat (STR) DNA profiles in honest-but-curious model [Bruekers et al. 

2008]. Such protocols (described in 7.4) are useful for identity, paternity, ancestry and 

forensic tests.

7.4. Direct-to-consumer (DTC)

Many DTC companies provide genealogy and ancestry testing. Cryptographic schemes can 

be used to conduct those tests in a privacy-preserving fashion. Partial homomorphic 

encryption can be cleverly used on STR profiles of individuals to conduct (i) common 

11Combined DNA Index System (CODIS), The Federal Bureau of Investigation, http://goo.gl/s99EX7
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ancestor testing based on the Y chromosome, (ii) paternity test with one parent, (iii) 

paternity test with two parents, and (iv) identity testing [Bruekers et al. 2008].

Despite the increasing use of DTC genome applications, less focus has been given to the 

security and privacy of this domain. In particular, genomic data aggregation issues require 

special attention because some companies allow people to publish high-density SNP profiles 

online in combination with demographic and phenotypic data.

Focusing on kin genomic privacy, [Humbert et al. 2014] build a protection mechanism 

against the kinship attack [Humbert et al. 2013] that uses DTC genomic data from 

www.openSNP.org. The main focus of the work is to find a balance between the utility and 

privacy of genomic data. Every family member has a privacy constraint that he wants to 

protect. At the same time, some family members want to publish (part of) their genomes 

mainly to facilitate genomic research. The paper proposes a multi-dimensional optimization 

mechanism in which the privacy constraints of the family members are protected and at the 

same time the utility (amount of genomic data published by the family members) is 

maximized.

8. CHALLENGES FOR GENOME PRIVACY

While the value of genome sequencing in routine care has yet to be fully demonstrated, it is 

anticipated that the plummeting cost and commoditization of these analyses will change the 

practice of medicine. Data confidentiality and individual privacy will be central to the 

acceptance and widespread usage of genomic information by healthcare systems. However, 

a clear demonstration of the clinical usefulness of genomics is first needed for doctors and 

other healthcare providers to fully embrace genomics and privacy.

8.1. Consumer-driven Genomics

An unprecedented aspect of contemporary genomics that comes with its own set of issues 

for data confidentiality is democratization, including facilitated access to large-scale 

personal, health-related data. Whereas medical and genetic information used to be 

obtainable only through hospital or research laboratories, people can now access their own 

genotyping or sequencing results through direct-to-consumer companies such as 23andMe, 

as discussed before. On the research side, numerous participant-centric initiatives have 

recently been launched (notably by citizens’ networks such as OpenSNP and the Personal 

Genome Project). As a result, genomic data are increasingly found outside the controlled 

cocoon of healthcare systems or research. In particular, individual genetic results or 

aggregated datasets are available on the Internet, often with non-existent or minimal 

protection. On one hand, these crowd-based initiatives are very exciting, because they have 

the potential to stimulate biomedical research, accelerate discoveries and empower 

individuals. Yet, on the other hand, they raise a number of concerns about potential privacy 

risks (as highlighted in Section 9). For example, privacy risks must here be assessed in the 

context of the extensive nature of information available on the Internet (including online 

social networks), and not only within the narrower confines of genomic research or clinical 

care delivery.
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8.2. Privacy and the Benefits of Genomic Data

It is important to note that both a lack and an excess of privacy have the potential to derail 

the expected benefits of genomics in healthcare and research. On one hand, the efficient and 

secured handling of individual genotype and sequence data will be central to the 

implementation of genomic medicine. The Hippocratic Oath12 remains a pillar of medical 

deontology and one of the few stable concepts in the highly tumultuous history of medical 

practice. The Hippocratic Oath contains a clear statement about the patient’s privacy. Trust 

is at the core of any successful healthcare system: any leakage of highly sensitive genomic 

information may raise concerns and opposition in the population and among political 

decision makers. Earning and conserving trust is essential for hospitals and private 

companies that deal with genomics. As a result, there is a potential for a service industry 

securing genomic data, either by providing ad hoc solutions or by fully supporting storage 

and delivery of raw/interpreted sequence information. Fortunately, as detailed in Section 7, 

there exist a variety of tools that can mitigate the problem. On the other hand, an excess of 

privacy-related hurdles could slow down research and interfere with large-scale adoption of 

genomics in clinical practice. When designing privacy-preserving solutions for genomic 

data, security and privacy researchers should keep in mind that most end-users are not 

familiar with computer science and are almost exclusively interested in the clinical utility of 

test results. Education is again a fundamental requirement for privacy protection. However, 

in bioinformatics curricula, students are trained to maximize the information to be extracted 

from (biological) data. Usually, such curricula do not address security and privacy concerns, 

because adversarial scenarios are out of their scope. Conversely, computer scientists rarely 

have formal training in biology, let alone genomics. But, they are better and better trained in 

security, notably because of the formidable challenge raised by the numerous vulnerabilities 

of the Internet. Consequently, to properly address the concerns about genomic data 

protection, there is a clear and strong potential of cross-fertilization between these two 

disciplines.

8.3. Acceptable Utility vs. Privacy of Genomic Data

The balance between acceptable utility and privacy of genomic data needs to be considered 

in context.

Healthcare—patient-level information must be as precise as possible. Because genomic 

data is used here to support clinical decision, including in life-threatening situations, any 

decrease in data accuracy must be avoided. Security of electronic medical records and other 

health-related information is therefore most often guaranteed through restricted access (e.g., 

intranet use, password and card identification) to unmodified data. It is important to note, 

however, that genetic testing is rarely urgent, and that privacy-preserving measures that 

would slightly delay a test result could be tolerated.

Research—research on complex trait genomics relies on large datasets on which 

genotyping or sequencing association studies can be run. To gain statistical power and detect 

meaningful associations, it is often necessary to merge many such studies through meta-

12See http://guides.library.jhu.edu/content.php?pid=23699&sid=190964 for modern version of Hippocratic Oath.
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analyses that can include data from hundreds of thousands of individuals. Due to non-

uniform use of technological platforms, to variation in time and place of genotyping, and to 

differences in analysis pipelines, some degree of noise is then unavoidable. An interesting 

avenue for research is here to empirically determine whether differential privacy strategies 

(e.g., [Johnson and Shmatikov 2013]) can be applied without compromising discovery.

Legal and forensics—DNA collection and search for similarity pattern in genomic data 

are used in criminal investigations and for other legal purposes like paternity testing. The 

accuracy of any test result is here again an absolute requirement to avoid legal prejudice. 

Extremely stringent data protection must also be ensured due to the highly sensitive nature 

of such cases.

Direct-to-consumer genomics—companies providing individual genomic data have a 

clear commercial incentive to protect customers’ privacy, in order to maintain trust and gain 

new customers. For example, the 23andMe webpage states: “Your personalized web account 

provides secure and easy access to your information, with multiple levels of encryption and 

security protocols protecting your personal information.” Of course, these measures are 

ineffective when individuals choose to unveil their full identity online together with their 

genetic information, thereby putting their genome privacy (and one of their relatives) at risk, 

either knowingly (as in the case of Personal Genome Project participants) or out of naivety.

9. FRAMEWORK FOR PRIVACY-PRESERVING HANDLING OF GENOMIC 

DATA

In this section, we provide a general framework for security and privacy in the handling of 

genomic data. The framework is illustrated in Figure 9. As has been done throughout this 

paper, we divide the framework into four categories: (i) healthcare, (ii) research, (iii) legal 

and forensics, and (iv) direct-to-consumer genomics. This classification is based on the most 

popular uses of genomic data; however, we recognize that the boundaries between these 

categories are blurred and there is significant overlap. For each of these we address setting, 

threat model, and solutions and open problems. The setting provides the most general 

environment around the problem (e.g., we do not discuss the possibility of outsourcing the 

computation as one can easily extend our setting to another one involving a third party). In 

this section, we assume that the adversary is computationally bounded. We further assume 

that the adversary can leverage all publicly available information (e.g., data from the 1000 

Genomes Project or public genealogy databases) to her advantage. Moreover, in some cases, 

the adversary might have access to private data. For instance, people can abuse their access 

to private data, an adversary can also steal the data, and data can be extracted from a lost 

laptop.

9.1. Biospecimen

DNA is obtained in chemical form and then digitized. This cyber-physical nature of DNA 

creates unique challenges for its protection.
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9.1.1. Threat Model—In our threat model, the adversary is capable of (i) obtaining DNA 

from an individual’s biological cells either voluntarily (e.g., for research with informed 

consent) or involuntarily (e.g., leftover hairs or saliva on a coffee cup), (ii) sequencing or 

genotyping the DNA from biospecimen, (iii) interpreting the sequenced data to breach 

identity, disease, kinship, and any other sensitive information, and (iv) linking the genomic 

data (or biospecimen) to the identity, health record, or any arbitrary background information 

about the individual.

9.1.2. Solutions and Open Problems—Legal protection is necessary to protect the 

biospecimen and the DNA (in its chemical form). However, a solution to this problem is a 

subject of public policy and is outside the scope of this paper.

9.2. Digitization: Sequencing/Genotyping

9.2.1. Setting—A biospecimen is obtained by an agency (e.g., hospital) and is sequenced 

or genotyped either by the same agency or by an external agency (e.g., Illumina, 23andMe, 

etc.).

9.2.2. Threat Model—Since a biospecimen is required for digitization, we assume the 

threat model discussed in Section 9.1.1 with the following extensions: (i) the adversary has 

full control over the entire sequencing or genotyping infrastructure, (ii) the adversary can be 

honest-but-curious and can attempt to learn partial or entire genomic data or any information 

derived from the genomic data, and (iii) the adversary can be malicious and can compromise 

the integrity of partial or entire genomic data.

9.2.3. Solutions and Open Problems—Given the cyber-physical nature of DNA, it is 

not possible to address this issue with technical measures alone. Both legal and technical 

protections are required to protect against this threat. An external agency cannot derive 

genomic data without a biospecimen, and legal protection is required to prevent misuse. 

Sequencing machines are expensive and are manufactured by a limited number of 

companies. We envision a well-regulated process for the manufacturing, procurement and 

use of sequencing machines and government regulations in place for it. The FDA already 

regulates the manufacturing of medical devices13 [Cheng 2003]. Regular inspections would 

check for compliance. Under such legal protections, sequencing machines could have 

tamper resistant trusted computing base (TCB) that could output encrypted data so even the 

sequencing agency could not legally access the plaintext genomic data.

9.3. Storage

We assume that once the adversary has access to the read data, it is easy to get raw aligned 

data and variant data, hence we present storage of all three forms of data together.

9.3.1. Setting—Genomic data can be stored by the (i) patient14, (ii) healthcare 

organization (e.g., as part of patient’s EHR), or (iii) a third party.

13http://goo.gl/I942hy
14We use the word patient to mean an individual whose genome is sequenced or genotyped and not necessarily a sick person.
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9.3.2. Threat Model—For all settings, we assume that the lifetime of genomic data is 

much longer than the lifetime of a cryptographic algorithm. We consider the following 

threat models

Patient: Storage media or the device storing genomic data can be lost, stolen or temporarily 

accessed. A patient’s computer can be attacked by an adversary (curious or malicious) to 

compromise confidentiality and/or integrity of the genomic data. We further assume that an 

adversary can associate the identity and background information (including phenotype 

information) from any arbitrary source. And, we assume that the adversary can use the 

compromised genomic data for any arbitrary purpose.

Hospital: We consider all of the threats described for the patient and the following 

additional threats. An insider (or hacker) has full access to the infrastructure and can link 

genomic information to the phenotypic information in the patient’s health record.15 We also 

consider the threat of the healthcare organization communicating incidental findings that are 

harmful – violating the right not to know.16 We assume that the adversary can intentionally 

try to figure out variants of regions of the genome from variants in other regions, e.g., to 

learn some sensitive SNPs removed due to incidental finding issues. We also assume that a 

healthcare organization could illegally collude with insurance agencies to facilitate 

discrimination based on genomic data.

Third party: We consider all of the threats discussed for the hospital and following 

additional threats. The adversary, as the third party itself, can be interested in 

deanonymizing the anonymized genomic data or aggregate genomic data.

9.3.3. Solutions and Open Problems—We report some solutions in Section 7. Users 

are generally not equipped with skills and equipment to protect the security and privacy of 

their genomic data. For the storage of genomic data, an option is to store it on a cloud in an 

encrypted fashion, which makes the adversary’s job harder, as now it needs to circumvent 

cloud storage security measures and also require to hack into user’s computer to steal the 

decryption key. Efficient encryption schemes allowing secure storage and computation are 

required.

9.4. Alignment/Assembly

As explained in Section 7, genomic data is obtained from the specimen in the form of short 

reads. These short reads are then assembled using alignment or assembly algorithms. 

Alignment is done by comparing the short reads to the reference genome, and is 

computationally very intensive. Hence, it can be economically beneficial to delegate the 

alignment to the cloud.

9.4.1. Setting—Short reads are obtained and alignment is delegated to an untrusted third 

party.

15We assume that data stored at the hospital is not anonymized.
16For instance, if a doctor telling a patient that his increased susceptibility to Alzheimer’s, when he doesn’t want to know. We 
emphasize that defining what is harmful is an ethical issue and is out of scope of this study.
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9.4.2. Threat Model—We assume that the third party can be honest-but-curious, as well 

as malicious, and can return incorrect results for economic or other malicious motives.

9.4.3. Solutions and open problems—We presented some solutions to this problem in 

Section 7 [Chen et al. 2012]. However, there are several problems with the most efficient 

solution to date. First, it is not provably secure. Second, its security and efficiency requires 

that the read size be greater than 100 nucleotides. Third, this scheme only works in a hybrid 

cloud environment and requires local computation. Given that our survey shows that third 

party environments are of the greatest concern to biomedical researchers, a provably secure 

and efficient solution that is capable of aligning the human genome in a cloud computing 

environment is an important open research problem.

9.5. Interpretation

Interpretation depends upon two private inputs: the patient’s genomic data and an 

interpretation algorithm (possibly from more than one party). Given the complexity of 

genomic data, it is unlikely that any single party will have a complete interpretation 

algorithm. This makes the computation a multiparty process between independent parties 

and the patient. Although each party with a piece of the interpretation algorithm can 

compute independently with the patient, collusion of any two parties may leak information 

about another party’s inputs. Moreover, the interpretation of one party may depend upon the 

interpretation of another party. We assume that all of these parties can be malicious and can 

collude to learn information (e.g., the patient’s genomic data or another parties’ algorithm). 

In some cases, it is necessary to sequence one’s parent to draw conclusions, in which case 

parents might also be concerned about their privacy.

Personalized medicine is a special case of interpretation and depends upon the patient’s 

genomic data and disease markers (possibly distributed among multiple parties).

Preconception testing is different from personalized medicine because it is a pre-pregnancy 

test and measures can be taken to conceive a healthy child (as evident from 

www.counsyl.com success stories). Additionally, the outcome of the preconception test 

almost always depends upon two people, each of whom might prefer to not disclose their 

genomic status to the other.

9.5.1. Setting—Computation is typically performed on private data from multiple parties. 

The parties involved in computation are those who input (i) their genomic data and (ii) 

interpretation algorithms. The output of the computation should only be released to the 

patient or authorized physician (possibly using the infrastructure of a healthcare 

organization).

9.5.2. Threat Model—We assume that all parties can be honest-but-curious, malicious, or 

colluding (and possibly all at the same time). They can use arbitrary background knowledge 

to breach privacy. Furthermore, they may use falsified genomic data, or an interpretation 

algorithm, an arbitrary number of times to ascertain another parties’ private inputs.
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9.5.3. Solutions and Open Problems—We discussed some of the solutions for the 

personalized medicine scenario in Section 7. However, current solutions are limited to 

privacy-preserving disease susceptibility tests. It is clear that computational solutions that 

support a broad range of computation over genomic data are needed. At the same time, the 

design of such systems must be practical because physicians and biomedical scientists have 

different usability, accuracy and privacy expectations from security and privacy researchers.

9.6. Genome-Wide Association Studies (GWAS)

9.6.1. Setting—The genomic data from two groups of people are collected, one being the 

case group (i.e., people with the disease or some other trait) and the other being the control 

group (i.e., people without the disease). Statistical analysis is then conducted to discover the 

correlation between the disease and genetic variants. The results are subsequently published 

in research papers and posted online possibly with restricted access (e.g., at dbGaP).

9.6.2. Threat Model—An adversary may wish to determine if the victim is a GWAS 

participant or blood relative of a GWAS participant. We assume that the adversary has 

access to the high density SNP profile of the victim and also to a reference population 

(which can be obtained from the same GWAS conducted on a different population). The 

attack succeeds if the adversary can gain knowledge from the data produced by GWAS, 

which she otherwise would not have.

9.6.3. Solutions and Open Problems—There are various solutions that could be 

applied in this setting. We explained noise-based solutions, such as differential privacy, in 

Section 7.2. Yet, differential privacy-based solutions make data more noisy, which make 

adoption of these approaches difficult. This is particularly problematic because biomedical 

researchers and physicians want more (not less) accurate data than is available today. An 

ideal solution should preserve the utility of data while preserving the privacy of participants. 

We believe that more research is required in this area to determine if noise-based approaches 

can lead to more usable and pragmatic data publications. These approaches may, for 

instance, build upon well-established sets of practices from other communities. For example, 

the Federal Committee on Statistical Methodology (FCSM) has a long history of sharing 

information in a privacy respective manner. These practices obey multi-level access 

principles and, to the best of the authors’ knowledge, no significant privacy breach from 

such domain has been reported.

While the data disclosed by federal agencies is quite different from high-dimensional 

genomic data, it might be possible to adapt practices to balance the benefits and harms 

caused by public sharing of aggregate genomic data. These strategies may be composed of 

social and technical protections. From a social perspective, a popular method to mitigate risk 

is through contractual agreements which prohibit the misuse of such data. Such contracts 

could be complemented by cryptographic protocols that help preserve the privacy of the 

participants, particularly in settings in which the data is used in the secure computation and 

only the output of the computation is revealed to a specific party.
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9.7. Data sharing

The majority of genome-phenome discoveries come from very large populations, sometimes 

on the order of millions of participants. Given the costs and scarcity of such resources, 

sharing data would fuel biomedical research. However, sharing this data entails privacy 

implications as discussed earlier.

It should be noted that individual-level genomic data from a large number of people is 

needed to conduct genome-phenome studies (e.g., GWAS). Moreover, the results of a 

typical GWAS are published as aggregate genomic data, which is usually made available to 

researchers at large (e.g., NIH requires results of all NIH-sponsored GWASs to be uploaded 

to dpGaP17 and published in research papers (e.g., p-values of relevant SNPs). Therefore, 

we only focus on the sharing of individual level genomic data here.

9.7.1. Setting—Genomic data needs to be shared among different research institutions, 

possibly under different jurisdictions. Privacy-preserving solutions can be built in the 

following settings: (i) all data delegated to and computation done on a trusted party (e.g., a 

governmental entity), (ii) all data delegated to and computation done on an untrusted party, 

(iii) all data stored at and computation done at the collection agency, (iv) sharing data using 

data use agreements, and (v) sharing anonymized data.

9.7.2. Threat Model—We assume that data is being shared between untrusted parties. The 

parties with whom data is being shared may want to use it for any arbitrary purpose, 

including using it for participant re-identification, or for finding disease susceptibility of the 

patients and his blood relatives. We also assume that once the data is shared, it can be used 

in an arbitrary manner.

9.7.3. Solutions and Open Problems—We described some solutions in Section 7.2. 

However, these solutions do not allow for arbitrary computations on encrypted data. 

Theoretically, many cryptographic solutions exist to solve this issue. For example, fully 

homomorphic encryption (FHE) can be used to encrypt the data and arbitrary computations 

can be done on it while preserving privacy, but data needs to be decrypted by the party that 

encrypted the data. Functional encryption (FE) could also be used, through which any 

arbitrary function can be computed on encrypted data. However, FHE and FE are not 

sufficiently efficient to be practically useful. The performance of FHE and FE is progressing 

and these schemes might be usable in the future to support data sharing. Clearly though, 

specialized efficient solutions for genomic data exploiting nature of genomic data are 

needed to support specific analytics.

9.8. Paternity

Genomic data is extensively used to determine parentage and test results are admissible in 

courts of law. Today, the biospecimen of the individuals involved in the tests are outsourced 

to a third party in the form of cheek swabs, where the DNA is extracted. Sending one’s 

DNA to a third party could have serious implications for one’s privacy.

17http://www.ncbi.nlm.nih.gov/gap
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9.8.1. Setting—Two parties each have their sequenced genome or variants and one party 

wants to know whether the other party is the parent.

9.8.2. Threat Model—The threat model in this case is the standard model defined for 

secure two-party computations. We assume that parties can be honest-but-curious or 

malicious.

9.8.3. Solutions and Open Problems—In Section 7, we explain some of the solutions 

to the problem. A chemical test – RFLP – can be simulated for a neat and efficient privacy-

preserving solution, given that genomes are stored by individuals themselves [Baldi et al. 

2011]. Yao’s garbled circuits can be used instead of PSI to output a binary answer (YES or 

NO) instead of the number of matched segments in simulated RFLP test.

9.9. Forensic DNA Databases

Many countries maintain a huge database of DNA profiles of convicted (and, in some cases, 

accused) criminals. Law enforcement agencies usually have unlimited access to such a 

resource, which makes it vulnerable to abuse. It is possible that in near future, instead of 

concise DNA profiles, law enforcement agencies will be able to have access to full genome 

sequences of individuals, which further exacerbates the issues.

9.9.1. Setting—Police officers collect DNA samples from a crime scene. Then, they want 

to check whether an individual with the same DNA profile/sequence is present in the DNA 

records database.

9.9.2. Threat Model—We assume that the adversary can be honest-but-curious, interested 

in learning about other people in the database. In addition, if the adversary has write access 

to the database, he can also try to compromise the integrity of the record(s) in the database. 

We also assume that the adversary is able to affect the outcome of a query in an arbitrary 

manner.

9.9.3. Solutions and Open Problems—We discussed some of the existing solutions to 

this problem in Section 7. Theoretically, this problem differs from interpretation and other 

types of computation, as the privacy for query is not required, only the privacy of the 

individuals other than the suspect is of concern here. This makes the problem more tractable, 

possibly making solutions scalable to large databases with millions of records.

9.10. Recreational Genomics

Several commercial companies offer direct-to-consumer genomics services. They include 

kinship, ancestry and partner compatibility testing.

9.10.1. Setting—The customer ships her specimen (usually saliva) to a company. This 

specimen is used to genotype typically one million SNPs and the data is then digitized and 

stored in digital form on the server. Some computation is done on this data for ancestry, 

disease susceptibility, kinship or other tests. The data and the results are then available for 
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the user to download or see through a browser. Some companies (e.g., 23andme) allow to 

search for people with common ancestors e.g., 3rd, 4th or 5th cousins.

9.10.2. Threat Model—We assume the threat models for specimen collection, digitization 

and interpretation. There are also new threats. The owner of the data posts his data online 

along with his identity and some phenotypical data, as done for example on openSNP.org. 

We assume that the data owner makes an informed decision, so he willingly gives away his 

genome privacy. The major threat then is to the blood relatives of the data owner, whose 

private information is also leaked.

Genomic data aggregation is another issue caused by users posting their genomic data 

online. This data can be aggregated by companies and then used for commercial or other 

purposes. It is worth noting that some genome-sharing websites have an achievement 

programs where users get rewards whenever they post their phenotype data (e.g., hair color, 

eye color, disease pre-disposition etc.). Genomic data along with phenotypic data is much 

more valuable than genomic data alone.

9.10.3. Solutions and Open Problems—All other solutions apply here, however 

recreational genomics presents new problems of public sharing and genomic data 

aggregation. We emphasize that public awareness is required to enable people to make an 

informed decision to share their genomic data publicly and thus compromising their own 

and their relatives’ privacy. It should be made clear that in case of abuse of this publicly 

available data, people would be discouraged to share genomic data even for legitimate 

research purposes. However, this is a policy and ethics debate and is out of scope of this 

paper.

Conclusion

The confluence of cheap computing and high-throughput sequencing technologies is making 

genomic data increasingly easy to collect, store, and process. At the same time, genomic 

data is being integrated into a wide range of applications in diverse settings (e.g., healthcare, 

forensics, consumer-related products), such that privacy and security issues have yet to be 

sufficiently defined and addressed. For instance, massive computation capability is needed 

to analyze genomic data for research purposes, such that the cloud is likely to play a large 

role in the management of such data. At the same time, genomic data will be used in specific 

applications (e.g., forensics) where mobile computing environments (e.g., tablets and 

smartphones) will be routinely used to access those data. And, genomic data will be 

increasingly available on the Web, especially in citizen-contributed environments, (e.g., 

online social networks). While some individuals are sharing such information, there are 

significant privacy concerns because it is not known what such information is capable of 

revealing, or how it will be used in the future.

As such, there is a clear need to support personalized medicine, genomic research, forensic 

investigation and recreational genomics while respecting privacy. Computing is a crucial 

enabler, but can also be the first source of leakage if appropriate mechanisms are not put in 

place. Our survey (opinion poll from the biomedical community) provides some insight into 
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what may be the most important aspects of the problem to study. And, along these lines, we 

have provided a review of the state-of-the-art regarding computational protection methods in 

this field, as well as the main challenges moving forward. To assist the data privacy and 

security community to develop meaningful solutions, we have provided a framework to 

facilitate the understanding of the privacy-preserving handling of genomic data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Properties of DNA that, in combination, may distinguish it from other data types
Health/Behavior means that DNA contains information about an individuals health and 

behavior. Static(Traceable) means that DNA does not change much over time in an 

individual. Unique means that the DNA of any two individuals can be easily distinguished 

from one another. Mystique refers to the public perception of mystery about DNA. Value 

refers to the importance of information content in DNA and that this importance does not 

decline with time (which is the case with other medical data e.g., blood pressure, glucose 

level, or a blood test). In fact, this importance will likely increase with time. Kinship means 

that DNA contains information about an individual blood relatives.
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Fig. 2. 
Probes of attitudes
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Fig. 3. 
Self-identified expertise of the survey respondents

NAVEED et al. Page 43

ACM Comput Surv. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Response to the question: Do you believe that: (Multiple options can be checked). The 

probes are described in detail in Figure 2. “None” means the respondent does not agree with 

any of the probes.
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Fig. 5. 
Response to the question: Would you publicly share your genome on the Web?
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Fig. 6. 
Response to the question: Assuming that one’s genomic data leaks lot of private information 

about his or her relatives, do you think one should have the right to share his or her 

genomic data?
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Fig. 7. 
Response to the question: What can we compromise to improve privacy of genomic data? 

(Multiple options can be checked)
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Fig. 8. 
Relevance of genome privacy research done by computer science community.
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Fig. 9. 
Genomic data handling framework: DNA is extracted from an individual’s tissue or cells. 

DNA is digitized either using sequencing (to obtain Whole Genome Sequence (WGS) or 

Whole Exome Sequence (WES)) or genotyping (to obtain variants (usually only SNPs)). 

Reads obtained from sequencing are aligned to form the complete genome, while genotyped 

variants are digitized from the microchip array directly. Read data may be stored for later 

analysis. The aligned genome can be either stored in raw form or compressed form 

(variations from a reference human genome). Medical tests and other types of computation 

shown in the figure can be performed either on raw aligned genome or just on variants. 

Possible outputs of computation are shown. Output depends on the type of computation and 

in some cases there is no output. The figure shows the genomic data aggregation problem 

caused by recreational genomics services. The figure is divided into three sections based on 

fundamental limitations of legal and technical measures for the protection of genomic data. 

Legal protection is required for the left section, legal as well as technical protection is 

required for the middle section, while, in theory, technical solutions would suffice for the 

protection of the right section. The legend shows which blocks are associated with different 

uses of genomic data. We use the word “patient” in this paper to mean someone whose 

genome is sequenced or genotyped and not necessarily a sick person.
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