
Accelerated Molecular Mechanical and Solvation Energetics on
Multicore CPUs and Manycore GPUs

Deukhyun Cha,
Bluware Inc., Houston, TX, USA.

Alexander Rand,
CD-adapco, Austin, TX, USA.

Qin Zhang,
CGG, Houston, TX, USA

Rezaul A. Chowdhury,
Dept. Computer Science, State University of New York, Stony Brook, NY, USA.

Jesmin Jahan Tithi,
Dept. Computer Science, State University of New York, Stony Brook, NY, USA.

Chandrajit Bajaj
Dept. Computer Science, Institute of Computational, Engineering and Sciences, University of
Texas at Austin, Austin, TX, USA.

Abstract

Motivation.—Despite several reported acceleration successes of programmable GPUs (Graphics

Processing Units) for molecular modeling and simulation tools, the general focus has been on fast

computation with small molecules. This was primarily due to the limited memory size on the

GPU. Moreover simultaneous use of CPU and GPU cores for a single kernel execution – a

necessity for achieving high parallelism – has also not been fully considered.

Results.—We present fast computation methods for molecular mechanical (Lennard-Jones and

Coulombic) and generalized Born solvation energetics which run on commodity multicore CPUs

and manycore GPUs. The key idea is to trade off accuracy of pairwise, long-range atomistic

energetics for higher speed of execution. A simple yet efficient CUDA kernel for GPU

acceleration is presented which ensures high arithmetic intensity and memory efficiency. Our

CUDA kernel uses a cache-friendly, recursive and linear-space octree data structure to handle very

large molecular structures with up to several million atoms. Based on this CUDA kernel, we

present a hybrid method which simultaneously exploits both CPU and GPU cores to provide the

best performance based on selected parameters of the approximation scheme. Our CUDA kernels

achieve more than two orders of magnitude speedup over serial computation for many of the

molecular energetics terms. The hybrid method is shown to be able to achieve the best

performance for all values of the approximation parameter.

Request permissions from permissions@acm.org.

deukhyun.cha@bluware.com.

HHS Public Access
Author manuscript
ACM BCB. Author manuscript; available in PMC 2020 July 09.

Published in final edited form as:
ACM BCB. 2015 September ; 2015: 222–231. doi:10.1145/2808719.2808742.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Availability.—The source code and binaries are freely available as PMEOPA (Parallel Molecular

Energetic using Octree Pairwise Approximation) and downloadable from http://

cvcweb.ices.utexas.edu/software.

Categories and Subject Descriptors

I.6 [SIMULATION AND MODELING]: Numerical Algorithms and Problems; D.1.3
[Concurrent Programming]:[Applications]; Algorithm; Graphics Processing Units; Parallel
Programming; Molecular Dynamics; Computational Chemistry; BioPhysics

1. INTRODUCTION

The aim of this paper is to accelerate the computations of configuration-dependent free

energy terms of very large molecules which need to be estimated repeatedly for

computational docking, energy minimization and molecular dynamics (MD) simulations.

We achieve this by simultaneously utilizing multicore CPUs and manycore GPUs. The

model of molecular free energy consists of a molecular mechanical portion EMM and a

solvation energy part Esol. The mechanical energy has been empirically parameterized into

three parts: EMM = Ebond+Evdw+Ecoul. The bonded component Ebond is typically computed

using efficient lookup tables based on expected bond lengths and angles, and thus is not

particularly computationally challenging. The Evdw and Ecoul terms, which represent

pairwise atomic energy due to van der Waals and electrostatic interactions, respectively, are

given by the following pairwise summations:

Evdw = ∑
i

∑
j > i

aij
rij12 −

bij
rij6

and Ecoul = ∑
i

∑
j > i

qiqj
ϵ rij rij

,

where rij is the distance between two given atoms indexed i and j, aij and bij are coefficients

based on atom types, qi and qj are Columbic partial charges, and ϵ rij is a distance

dependent dielectric constant.

The solvation energy model can be further decomposed into non-polar and polar

components [11, 16, 23, 43, 45]: Esol = Enonpol + Epol. Effective models for the non-polar

energy Enonpol have been empirically developed [10, 11, 14, 15, 25, 33, 35, 38, 52].

Although our method can also speed up the dispersive non-polar component of the

interaction, we focus on polarization energy which has the following form:

Epol = 1
2∫ ϕ(x) − ϕgas ρ(x)dx, (1)

where ρ is the charge density, ϕ and ϕgas are the electrostatic potential for the molecule in

solution and in gas, respectively. Two models are usually employed to compute this energy:

(a) modeling the potential with the Poisson-Boltzmann (PB) equation [44], or (b)

approximating the energy with the Generalized Born (GB) model [47]. The following GB

formula has been shown to give an effective approximation of polarization energy for large

systems [47]:

Cha et al. Page 2

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cvcweb.ices.utexas.edu/software
http://cvcweb.ices.utexas.edu/software

Epol = − 1
2 1 − 1

εsolv ∑
ij

qiqj rij2 + RiRjexp −
rij2

4RiRj

− 1
2

,

where εsolv is the dielectric constant of molecules in solution and Ri is the effective Born

radius of atom i, based on the assumption that the electric displacement is in the Columbic

form [2]. Several modifications of the GB model have been proposed [31, 30, 27, 46], and

we have used Grycuk’s GBr6 formulation [20, 51], i.e., Ri
−1 = 3

4π ∫ex r − xi
−6dr

1/3
, in our

computation.

Summary of Prior Work.

Naïve Approach: Naïve computation of Evdw, Ecol and Epol (pairwise interactions)

requires O(N2) arithmetic operations, and also Ω(N2) memory for the intermediate Born radii

computation in Epol, where N is the number of atoms in the system. Many techniques have

been developed to accelerate these computations, such as direct N2 (or N2/2) computation

method by exploiting shared memory via tile-based decomposition of the N2 matrix [9, 12,

17] or cell list method [49]. Here we briefly review GPU-based acceleration schemes,

neighbor list method [37, 58, 36] and fast multipole methods [19, 3], which are commonly

used in molecular simulations and mostly related to our current work.

Solutions using neighbor lists: The neighbor list of an atom contains only atoms

within a given cutoff distance from that atom. The neighbor lists of all atoms can be

represented as a matrix. Due to the irregularity of atomic distributions, the number of atoms

in distinct neighbor lists may vary. Several optimization schemes have been used for

mapping neighbor list structures on GPUs. In [57], 2D texture has been exploited for storing

the neighbor list to utilize the texture caches on GPUs. When the construction is performed

on GPU, the neighbor list is stored in device memory [34, 1, 56, 40]. In most algorithms,

each thread takes care of one atom by looping over all of its neighbors to relieve the burden

of device memory accesses by using registers for repeatedly visited data. It has been shown

in [54] that this approach can enhance performance in spite of reducing thread occupancy.

To increase the locality of atomic data accessed from the neighbor list, atoms are often

spatially sorted using space filling curves [1].

Neighbor list vs. octree: Computation of pairwise interactions using the neighbor list

scheme takes time linear in N and up to cubic in distance cutoff d, and it requires another O
(N2) distance computations for its construction. On the other hand, computation of pairwise

interactions using octree-based methods take time linear or nearly linear in N and is

independent of any distance cutoff, and octree construction takes O(N log N) time [5, 4].

Moreover, the neighbor list requires Θ(N2) memory in the worst case. Our parallel octree

scheme requires only O(N) space, since it only considers leaf nodes of the octree as

explained in Section 2. This enables our method to handle molecules and macromolecules

with millions of atoms.

Cha et al. Page 3

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fast-multipole like approaches: The fast multipole method (FMM) [39] approximates

O(N2) summations in O(N) or O(NlnαN) arithmetic operations by using a near-far distance

decomposition scheme. Increasing arithmetic intensity and balancing workload are crucial in

FMM because of its intensive memory accesses of the coefficient matrices and vectors as

well as the computation on nodes which are of irregular sizes. Most work on GPU-based

FMM map each target node to a single CUDA thread block and store source variables and

results into the shared memory for a significant reduction of the numbers of device memory

accesses [48, 21, 60, 26, 22, 59]. The number of elements in each node is further matched to

the number of threads in the thread block [48], or the number of thread blocks is fixed [22].

Darve et al. [8] cluster the nodes that use the same coefficient matrix to ensure coalesced

memory access of multipole coefficients. Once the multipole coefficients are copied into the

shared memory, each thread can access them without bank conflicts. In addition, Zhao and

Feng [61] sort non-zero entries of the coefficient matrices and generate clusters which are

run by separate kernels concurrently. Atoms are stored in Z-Morton layout to maximize data

locality when the computation is performed on CPU [26, 8] or on GPU [24]. More recently,

an adaptive FMM has been implemented on GPU [18].

Uniqueness of our approach: In spite of the similarities between our octree-based ϵ-

approximation technique and the FMM approximation, there are certain differences in the

optimization of our CUDA kernel. Our method uses Greengard-Rokhlin type near-far

approximation [19] which dynamically determines and evaluates operations on different

domains such as atom-atom, node-node, and atom-node while FMM separates those

operations to several computational layers. Implementing an efficient CUDA kernel for this

method brings new challenges on balancing workload among these computationally variable

domains and quick fetching of data, which we address in our kernel design. There are

previous studies on accelerating neighbor list based [41, 55] and FMM based [26, 24]

applications that leverage heterogeneous computational resources exhaustively and

asynchronously as their target systems. Although our aim is the same as theirs, i.e.,

achieving optimal performance by fully utilizing available resources in a given system, our

approach is different from theirs since we focus on exploiting heterogeneous resources for

computational kernels that are very simple but hardly separable. In our method, the

computational characteristics and entire workload vary significantly based on the

approximation parameter ϵ (i.e., desired error bound). Hence our combined use of CPU and

GPU cores yields dissimilar hybrid CILK and CUDA implementations to ensure desirable

performance on both of these architectures.

Our Contributions.

The major contributions of this paper are as follows:

• Acceleration on GPU and CPU and speed-accuracy tradeoff: In this paper, we

present parallel methods that run on commodity multicore CPUs and manycores

GPUs to accelerate and trade off speed for accuracy, i.e., ϵ-approximation [5] of

pairwise, long-range atomistic energetics. We first develop a pure GPU-oriented

method using CUDA programming model, and then extend it to a hybrid method

that simultaneously exploits both CPU and GPU cores.

Cha et al. Page 4

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• Efficient use of linear-space octree: Our CUDA kernel ensures efficiency with

highly balanced computational load on each thread, zero communication

between them, and optimized use of on-chip memories. The space-efficiency and

simplicity of the octree data structure enables us to handle extremely large

molecular structures. The entire data for a molecular structure containing several

million atoms can be loaded into 1.5 GB device memory and the computation

can be performed with one CUDA kernel invocation. Furthermore, an optimal

data decomposition is used for minimal CUDA kernel invocation when the size

of the data for a given structure exceeds the size of the device memory.

• Simultaneous and selective use of CPUs and GPUs: Since the computational

characteristics of our ϵ-approximation scheme changes based on the value of

parameter ϵ, we develop a hybrid method that exploits both CPU and GPU cores

in two different ways, i.e., simultaneously and selectively, according to the ϵ
value to produce the best performance on a given system.

• Performance demonstration on modern CPUs and GPUs and comparison with

Amber: We demonstrated empirically that the proposed methods can achieve

significant performance enhancements and handle large structures for selected

computations in molecular mechanical (Lennard-Johns and Columbic) and

generalized Born solvation energetics. For instance, Lennard-Johns (short range)

and generalized Born (long range) energetics were able to achieve two orders of

magnitude speedups over their respective serial versions for molecules

containing up to a couple of millions of atoms. We also present results showing

that the proposed method computes generalized Born energy faster than the

Amber GPU versions [6, 7] while producing less error in the energy values w.r.t.

Amber, considering the GB equation in [47] as a baseline.

A brief description of the octree-based ϵ-approximation scheme for estimating pairwise

atomic energetics with speed-accuracy tradeoff followed by details of our parallelization

including the CUDA kernel and the hybrid CILK and CUDA methods are given in Section 2.

Section 3 describes specific implementations of energetic terms. Performance results on the

energetics approximation on multicore CPUs and GPUs are given in Section 4. Finally,

Section 5 concludes the paper with some remarks.

2. METHOD

In this section we describe the algorithmic techniques we use to compute the molecular

energetic terms on CPUs and GPUs. Our methods based on pairwise ϵ-approximation that

uses a Greengard-Rokhlin type near and far decomposition of 3D data points [29] with an

octree data structure as described in [5, 50].

Cha et al. Page 5

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.1 ε-Approximation

Algorithm 1

Compute energy E(ni, nj) between nodes ni and nj using the Octree-based Pairwise

Approximation (OPA) algorithm.

1: procedure OPA(ni, nj)

2: Compute distance d = d(ni,nj) between node pair ni,nj.

3: if IsFar(d,ni,nj,ϵ) & IsSmall(ni) & IsSmall(nj) then

4: Approximate E(ni,nj) with a pseudo-atomic interaction

5: else

6: if IsLeaf(ni) & IsLeaf(nj) then

7: Compute atomic pairwise ni,nj.

8: else if IsLeaf(ni) then

9: for all child cj of node nj do

10: OPA(ni,cj)

11: end for

12: else if IsLeaf(ni) then

13: for all child ci of node ni do

14: OPA(ci,nj)

15: end for

16: else

17: for all child ci of node ni do

18: for all child cj of node nj do

19: OPA(ci,cj)

20: end for

21: end for

22: end if

23: end if

24: end procedure

First we briefly sketch the Octree Pairwise Approximation algorithm (OPA) proposed in [5]

and call it Algorithm 1. We used this Algorithm as our base algorithm. To compute the

interaction energy E ℳX, ℳY between two molecules ℳX and ℳY ℳY = ℳX for the case

of internal interactions in a single molecule), we construct two octrees TℳX and TℳY for

ℳX and ℳY , respectively, and perform a simultaneous recursive traversal of both trees

starting from their respective root nodes. For each pair of nodes ni, nj ni ∈ TℳX, nj ∈ TℳY
examined during the traversal, the computation can be split into three cases based on a user-

defined approximation parameter ϵ. If both ni and nj are leaf nodes (lines 6–7 in Algorithm

1), interaction between each atom of ni and every atom of nj is computed exactly. If nodes ni

and nj are far from each other and small enough (lines 3–4 in Algorithm 1), the pairwise

atomic interactions are approximated by a single interaction between two pseudo atoms

defined for the two nodes, where the pseudo atom corresponding to a node is centered at

geometric center of the atoms inside that node and has the smallest radius large enough to

contain all atoms of the node. If neither of the two cases above holds, we subdivide the

Cha et al. Page 6

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

octree nodes ni and/or nj and examine all the new child node pairs recursively (lines 8–22 in

Algorithm 1). The main benefit of this method is that we can trade off accuracy for

computational speed through the user-defined parameter ϵ [5].

2.2 Parallelization

To develop an efficient parallel algorithm for a heterogeneous CPU + GPU platform, we

need to develop efficient parallel algorithms for CPU and GPU separately to leverage

architecture specific properties with sufficient optimizations, and then hybridize them with

an appropriate decomposition of the overall problem. Since GPUs have much higher floating

point arithmetic intensity per clock cycle and requires additional care for performance, we

focus on optimizing the GPU-oriented parallel program and then hybridizing it with CPU

threads. We chose to use Cilk++ and CUDA programming tools and run-time libraries to

implement our parallel algorithms.

Algorithm 2

Compute energy E(li, lj) between leaf nodes li and lj using the Leaf Octree Pairwise

Approximation (LOPA) algorithm.

1: procedure LOPA

2: Compute leaf pair indices i and j.

3: Get node info li and lj and compute distance d = d(li, lj).

4: if IsFar(d,li,lj,ϵ) & IsSmall(li) & IsSmall(lj) then

5: Approximate E(li,lj) with a pseudo-atomic interaction

6: else

7: Compute atomic pairwise interaction E(li,lj).

8: end if

9: end procedure

2.2.1 Parallelizing using Cilk++ on multicores—The recursive divide-and-conquer

schemes in [5] are quite suitable for multithreaded execution on multicore CPUs. We

implemented a parallel ϵ-approximation algorithm using Intel’s Cilk++ [32] that uses

shared-memory parallelism as explained in [50]. When two octree nodes containing atoms

are close to each other at any stage of the traversal according to the given ϵ, each child of a

node is paired with each child of the other, thereby allowing a quick spawn of multiple

independent parallel threads and an easy recursive implementation. We have allocated

explicit buffers to accumulate partial sums produced by each thread, since it is often more

efficient than using a reducer [13] for a small number of partial sums.

2.2.2 Parallelizing using CUDA on GPUs—Our CUDA kernel has been designed to

ensure the following properties which are necessary for efficiency.

• capability to handle very large atomistic structures (enabling efficient memory

load)

• maximal occupancy of resident threads on GPU (hiding memory access latency

through warp switching)

Cha et al. Page 7

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• minimal device memory access overheads (enabling compute-intensive kernel)

• control diversity of the threads (balancing workload)

• smaller or equal approximation error w.r.t. the original scheme

Basic algorithm.: Our simple CUDA kernel computes an interaction between a given pair

of leaf nodes, using a octree based near-far pairwise approximation algorithm (OPA)

presented in [5]. We call our scheme the Leaf based Octree Pairwise Approximation (LOPA)

method. Once indices of two leaves are calculated from the thread ID, the pseudo-atomic

center and radius of each node are loaded from the device memory into the registers to

perform a near-far test. If the test result is far, pseudo-atomic approximations are performed

for the given leaf pair. Otherwise all pairwise interactions between the atoms of the two leaf

nodes are explicitly calculated. The algorithm for this CUDA kernel is shown in Algorithm

2.

Data layout and thread efficiency.: To reduce device memory access overheads, we exploit

the on-chip memories by arranging the leaf node pairs as shown in Figure 1. The leaf pairs

(i, j) are arranged so that the same leaf index i is accessed by all threads in the same block.

Next the data of atoms and pseudo atoms of the leaf i is loaded into the shared memory

once, and are accessed by all threads in the same block during the computation. The loop of

i runs inside the loop of j to maximize the use of the data in the shared memory. By shifting

the index i in the loop using the thread ID, bank conflict can be reduced for this shared

memory access. To prevent significant device-to-host data transfer, each thread stores its

partial sum in the shared memory, and the values are accumulated by a single thread after all

threads in the same block finish their computation. Then a single value per thread block is

stored into device memory and the entire buffer for all thread blocks is copied into the host

memory to perform the final accumulation.

When each leaf contains k atoms, (N/k)2 threads are spawned, and each thread computes up

to k2 loop iterations for the case of near. If k is small, our method spawns many

computationally light CUDA threads and reduces inefficiency caused by divergence of near

and far cases in the warp. The size of required shared memory is also decided by k, and the

number of active warps in each SM, i.e., the thread occupancy, is accordingly changed.

However, too small a value of k can eliminate the computational benefits of pseudo atomic

approximations. Finding an optimal k and space requirement will be discussed later in

Section 3.

2.2.3 Parallelizing using hybrid method—The computational expense of our octree-

based approximation scheme changes significantly with the approximation parameter ϵ,

because the total number of node pairs quickly decreases as ϵ value gets bigger. Therefore

we developed a hybrid method that uses both CPU and GPU processors in simultaneous and

selective ways based on the computational characteristics determined by the ϵ parameter.

The criteria for an efficient hybrid method on a heterogeneous CPU + GPU node can be:

• maximal simultaneous use of both processors

• minimal data transfer between CPU and GPU threads

Cha et al. Page 8

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• optimal problem decomposition which optimally matches the characteristics of

each processor

We first present three variants (A, B, C) of a hybrid method demonstrating how optimized

hybrid methods can be developed. Based on our experience with these three methods we

finally develop method (D).

Method A, shown in Figure 2(a), computes LOPA on both CPU and GPU cores by

allocating user-defined proportions of leaf pairs 0 ≤ PCilk ≤ 1 to Cilk threads and the rest to

CUDA threads. In this method, a user-defined number of Cilk threads is spawned, and one

of them invokes the CUDA kernel while others compute LOPA for the given leaf pairs.

Method A brings performance enhancement by distributing the work loads to CPU cores

which were in idle state for the pure GPU-oriented method. Method B, shown in Figure 2(b),

performs the near-far test, and computes pseudo atomic approximation for the far case on

the CPU using Cilk threads, and exact atomic interactions for the near case on the GPU. To

do so, this method stores indices of near leaf pairs during the computation on CPU and

copies it to device memory. In this way, we can fully exploit OPA on both processors by

decomposing it into memory access and conditional branching intensive part and compute-

intensive part. Method C modifies method B by performing the near-far test and pseudo

atomic approximation only before a user-defined octree depth d, and performing LOPA for

all the remaining leaf pairs on the GPU. This method reduces the number of near-far tests in

method B which is a waste when most computation are performed inside leaf pairs for small

values of ϵ. If we control the parameter d with respect to inverse proportion of ϵ, then the

deeper octants will be traversed only when shorter distance is allowed to be approximated.

We have tested our three methods for the Lennard-Jones potential computation where OPA

performs very efficiently while producing relatively small error even for large values of ϵ. To

see how these methods work, we use a fairly large molecular structure (PDBID: 1N2C,

39,946 atoms) so that the thread spawning time becomes negligible compared to the actual

computational load. Figure 3 shows performance of A, B, and C hybrid methods on 2 Intel

Xeon E5640 CPUs and 1 Nvidia Geforce GTX 580 GPU for molecule 1N2C. In the hybrid

method A, eight Cilk threads are used and one of them is allocated for CUDA kernel

invocation. Figure 3(a) shows that the computation time of method A decreases until 20% of

the leaf pairs are allocated to Cilk threads for all error ranges. Clearly, the parameter PCilk
needs to be set to make CPU and GPU run-times equal so that an optimal performance of

method A can be achieved. We have found that when PCilk = 0 . 2, method A achieve a

speedup of 1.16× w.r.t. the pure GPU (LOPA) version.

Figure 3(b) shows that even though methods B and C both run faster than GPU-oriented

LOPA for large values of ϵ, they are slightly slower than OPA using only Cilk threads (i.e.,

pure CPU version). Since the number of leaf pairs computed on GPU is very small,

computation time is dominated by overheads such as CUDA kernel invocation, host-to-

device copy of leaf pair indices, and additional device memory accesses in CUDA thread for

the leaf indices. On the other hand, for small ϵ values, most computations fall into leaf pairs

and octree traversal with near-far tests can be a total waste. Method B suffers from

overheads of traversing the octrees for small values of ϵ where most of the near-far tests end

Cha et al. Page 9

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

up being near, and as a result a large number of leaf pairs are sent to the GPU. Method C

gets worse for small ϵ, since it stops near-far tests at a high level of the octree and fully

traverses it without early termination to find remaining leaf pairs for the LOPA on GPU.

Therefore, running pure LOPA on GPU instead is much faster for those cases.

Based on all these observations, we developed method D as shown in Figure 4(a). Since the

OPA using Cilk threads is the most efficient for large values of ϵ, we select it for ϵ values

greater than a user-defined parameter ϵCilk. Otherwise we use method A which utilizes both

CPU and GPU simultaneously by allocating a certain proportion of leaf pairs to CPU threads

with a parameter PCilk. This method requires no communication between the two processors

during the computation. Figure 4(b) shows that the best performance graph is obtained by

method D for the LJ potential computation of the molecular structure 1N2C. The best

performance is obtained for the entire range of values of by setting the parameters

PCilk(= 0.2) and ϵCilk(= 0.7) properly. In general, optimal values for these parameters

depend on the system’s spec and our experiments for a large number of molecular structures

indicates that a reliable ϵCilk can be found for a given system fairly easily.

3. IMPLEMENTATION

In this section we provide some implementation details especially for our CUDA algorithm

explained in Section 2.2.

LJ Coefficients.

We use constant memory to store the LJ coefficients precomputed for each combination of

different atom types. Although there is a limitation on the number of atom types that can

fully exploit the constant cache, this allows us to access the coefficients for both the atomic

and pseudo atomic computations very efficiently. Without losing too much accuracy, atoms

having similar chemical properties can be grouped to reduce the number of coefficients for a

given constant cache.

GB Energy Computation.

Unlike other energetic terms, GB energy computation produces a pairwise loop during the

pseudo atomic computation due to an approximation of the Born radii into O(log N) groups

based on the ϵ value where N is the number of atoms [5, 50]. This makes it difficult to

utilize limited GPU caches. Moreover the accuracy of the GB energy computation is very

sensitive to the Born radii values and it requires a sufficient number of samples of the Born

radii. We found that sometimes exact computations involving only pairwise atomic

interactions without any Born radii approximation runs even slightly faster than the original

LOPA because of the elimination of the conditional branching of near-far cases.

Approximation can make the Born radii values more erroneous in this case, as the GB

energy computation achieves the accuracy of the Naïve computation because of using leaf

pairs only. For the Born radii computation, a special case of calculating the value on each

atom, we allocate all leaf pairs (i,j) with the same i value into each CUDA thread block. The

Born radii values for all atoms in leaf i are evaluated using threads in the thread block and

accumulated in the shared memory. After the computation, the final values are copied to

Cha et al. Page 10

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

device memory. The atomic and pseudo atomic information in leaf i is stored in the shared

memory, and the CUDA kernel performs LOPA with an additional outer loop for more than

one j, if needed.

Optimal k.

Even though finding an optimal k is not trivial, it can be bounded for the theoretical

maximum thread occupancy in each energetic computation. As explained before, k is one of

the parameters that decides the size of the shared memory used in the thread block. For

example, each block requires SB(= 20k +4TB) (TB stands for number of threads in a thread
block) bytes of the shared memory to compute the generalized Born energy. If the GPU

supports compute capability (CC) 1.3, then it needs to satisfy 16KB/SB ≥ 8 for thread

occupancy 1 while TB × 8 ≤ 1024. If we set TB to 128, then k needs to be less than 76.

Although the choice of value for k can affect the performance of the CUDA kernel in various

ways, one can quickly test the program with a few sample values of k under the given bound

to find a value close to the optimal. Table 1 shows how different choices of k changes

performance of GB energy computation when input is a molecule with 3,924 atoms. In this

example, k = 32 gives the best warp execution efficiency while issuing minimum number of

instructions.

Space Requirement.

As one of the major advantages, the proposed CUDA kernel requires fairly small and

controllable amount of device memory, which makes it possible to handle large molecular

structures. For given molecules ℳX and ℳY having NℳX and NℳY atoms, respectively, the

octrees have NℳX /k = NℒX and NℳX /k = NℒY leaves, respectively, assuming each leaf

contains k atoms. Therefore, if SZ is the byte size of an element (atom or node) in Z, we

need to allocate SℳXNℳX + SℳY NℳY + SℒXNℒX + SℒY NℒY bytes of device memory.

In addition to this, our method also allocates an intermediate buffer for each partial sum of

the thread block. It requires 4 NℒXNℒY /TB /NCall bytes if we divide node pairs into

NCall chunks and invoke the CUDA kernel NCall times. Suppose we compute GB energy

for a single molecule with the Born radius given as an input and have SDRAM bytes of device

memory. Then SℳXNℳX + SℒXNℒX + 4 NℒX
2/TB /NCall ≤ SDRAM. This relation can

be further generalized if we split the set of whole leaves into chunks with each chunk

containing NC (≤ NℒX) leaves for the case of extremely large molecular structures that do

not fit into the given memory. Since NℳX = kNℒX and NCall = ⌈NℒX/NC⌉, the relation

turns out to be 2kSℳXNC + 2SℒXNC + 4⌈ NC
2/TB /⌈NℒX /NC ⌉⌉ ≤ SDRAM where the first

two terms are scaled by 2 to take into account pairing different leaf chunks. By finding the

largest value of NC which satisfies this relation, our CUDA kernel can perform efficiently

for molecular structures of any size using minimal kernel invocation (NCall) with a given

size of the device memory. Our LOPA is able to handle up to 9.5 millions of atoms in GB

energy computation with k = 32 and NCall = 1 for 1536MB device memory as available in

Nvidia Geforce GTX 580 GPU used in our experiments.

Cha et al. Page 11

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Although our kernel design satisfies important optimization properties needed for GPU

implementation, it computes always constant (N/k)2 leaf pairs, regardless of the parameter ϵ.

On the other hand, ∑i = 1
log8(N/k) min 8i − 1, N × min 8/ϵ3, 8i − 1, N × 82 node pairs will be

considered, if the OPA is fully implemented. Even though one can easily see that the number

of node pairs in OPA will quickly decrease as ϵ value gets bigger, the implementation is not

suitable for the GPU architecture because of the extensive device memory accesses. OPA

produces up to 64 additional node pairs when a given node pair is determined to be near. To

balance workload, therefore, these new pairs of nodes need to be reallocated to active

threads properly. This requires frequent and even serialized device memory accesses. These

pros and cons in both methods suggest a hybrid approach similar to what we have used in

this paper.

4. EXPERIMENTAL RESULTS

In this section, we summarize the performance results of our CUDA implementation as well

as the hybrid approaches. Experiments were performed for the Coulomb potential (CP),

Lennard-Jones potential (LJP), and generalized Born polarization (GBP) energy

computations. The generalized Born energy calculation includes the Born radius

computation. For all the experiments shown in this section, the molecular complexes in

bounded state were selected from ZDock benchmark 2.0 where the number of atoms in each

complex lies between 6,000 and 32,000. We used state-of-the-art multicore CPUs and

manycore GPUs as listed in Table 3 to conduct these experiments.

In Table 2, we summarize the performance results of our CUDA and Cilk+CUDA

implementations. The number of threads in a thread block, TB, was set to 256. This

experiment was performed on GTX580. Maximum and average speedup factors over Naïve

and average computational time per atom are shown for CP, LJP, and GBP energy

computations in 4th, 5th, and 6th rows, respectively. All CUDA timings include device

memory allocation, device-to-host data copy, texture binding, kernel run, host-to-device data

copy, and final accumulation. Speedup factors over conventional serial implementation

(Naïve) for these three energetics terms are close to two orders of magnitude except for CP

which requires execution of more atomic pairs than other terms to bound the same error.

4.1 GB Energy

In this subsection we present detailed performance analysis of our methods for the

generalized Born energy computation. Figure 5 shows the runtime performance of GBP-

CuLOPA implementation on large molecular structures with number of atoms from half a

million to nearly two millions. Because of the complex shapes of the molecules a large

number of quadrature points are also required. Figure 5(b) shows a comparison of GBP-

CuLOPA with GBP-Cilk, Amber 12 and Amber 14 for the Cucumber Mosaic Virus Capsid

(CMVC) having 509,640 atoms with 1,929,128 quadrature points. Although relatively large

errors were produced during the approximation of Born radii for this large molecular

structure, GBP-CuLOPA brought a significant benefit in error-speedup tradeoff (less than

0.006% error versus more than 660× speedup) compared to GBP-Cilk. GBP-Cilk was run on

2 Intel Xeon-E2680 SandyBridge machines. GBP-CuLOPA and Amber 12-k20 were run on

Cha et al. Page 12

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kepler-20, Amber 14-GTX780 was run on GTX 780 and Amber 14-k80 (0.82GHz) was run

on Kepler 80 GPUs. Since Amber GPU versions do not directly report the GB energy time,

we consider 98% of the non-bonded energy time reported by Amber as the GB time as

suggested by an Amber GPU developer [53]. Note that, Amber GPU timings do not include

data uploading/downloading time to/from GPUs, whereas our timings include all of them.

Figure 5(c) shows a performance table of GBP-CuLOPA for the large molecular structures

shown in Figure 5(a). Each number within the parenthesis in the second and third columns

of the table indicates the number of leaf nodes in the corresponding octree data structure.

The number within parenthesis in the speedup column represents relative ‘rate of

computation time increase’/‘square rate of atom increase’ based on the values for the

molecule in the first row. This table shows that our CUDA implementation scales almost the

same rate as the square rate of atomic increment which is quite reasonable in this N2

pairwise computation. The speedup over Naïve decreases because the Naïve scales better as

the #atoms gets larger. The device memory required in the entire GBP-CuLOPA

computation is 20NℳX + 20NℒX + 28NℳY + 36NℒY + 4NℒXNℒY /TB bytes as explained

in Section 3

Overall, the performance of GBP-CuLOPA nicely scales with the number of atoms in the

molecule while producing only 0.006% error and using fairly small amount of device

memory which can be further reduced through multiple CUDA kernel invocations. It

demonstrates an ability of efficient handling of huge systems which distinguishes CuLOPA

from other GPU-based methods. Two other popular MD packages, Gromacs [42] and

NAMD [28] programs crash for large biomolecular complexes whereas our implementations

are able to successfully compute the energy terms. However, these MD packages are in

general highly optimized for moderate sized molecules. They nevertheless lack a GPU-based

implicit solvent/GB energy function or occasionally produced invalid results for some large

structures in our experiments which made a comparison with those difficult.

Figure 6 shows performance and error comparison of various methods for the generalized

Born polarization energy computation. GBP-CuLOPA achieves average speedup factors of

252 and 184 on Kepler 20 and Geforce GTX 580 GPUs, respectively, while producing small

errors. GBP-CuLOPA also runs faster and has less errors (w.r.t. Naïve) than Amber 12 GPU

version. As explained in Section 3, spatial domain decomposition using octrees nicely

balances workload of each thread and controls on-chip memory usage. Therefore, GBP-

CuLOPA can compute O(N2) atomic pairwise interactions efficiently. Furthermore, the

performance scales reasonably from Geforce GTX 580 to Kepler 20 which has about twice

the number of cores with slightly higher clock speed and larger on-chip memories.

4.2 LJ and Columb Energy

Figure 7 shows the performance of our CUDA implementation (CuLOPA) for LJP (Lennard-

Jones Potential) and CP (Coulomb Potential) energy computations. The CUDA timing

covers data-loading and kernel execution as before. Data-loading includes device memory

allocation, host-to-device memory copy, and texture binding. Kernel execution includes

actual kernel run, device-to-host memory copy for the result buffer, and final accumulation

Cha et al. Page 13

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of the result. For the sake of comparison, maximum and average speedups of CP/LJP-

CuLOPA over the fully atomic N2 computation (Naïve) and the OPA computation using 12

Cilk threads (12Cilk) are shown. Timing results were measured for the largest 50 protein

complexes in ZDock benchmark 2.0.

Figure 7 shows that CP-CuLOPA runs over 27.5× and 4× faster on the average than CP-

Naïve and CP-12Cilk, respectively, for all three error bounds presented. LJP-CuLOPA,

which is more efficient in error-speed tradeoff due to its quickly decaying distance-based

kernel and complex arithmetic operations, achieved average speedup factors of 101× and

1.2× over LJP-Naïve and LJP-12Cilk, respectively, while the errors were less than 0.5%.

Although LJP-CuLOPA runs two orders of magnitude faster than LJP-Naïve for larger

errors, it runs slower than LJP-12Cilk using OPA. The OPA for LJP significantly reduces the

number of node pairs computed by quickly terminating a large number of them in

intermediate levels. Then the computation can get even more efficient since near atom pairs

can be highly localized. On the other hand, for a given molecule LJP-CuLOPA always

spawns the same number of threads regardless of the value of ϵ. Therefore, our hybrid

method is necessary for LJP-CuLOPA to overcome this inefficiency and enhance its

performance further.

Figure 8 shows speedup factors achieved by two hybrid methods for computing Lennard-

Jones potential on the same set of molecular complexes used in Figure 7. Figure 8(a) shows

the speedup factors of Hybrid A over CuLOPA as PCilk varies, while Figure 8(b) shows how

Hybrid D speeds up over Naïve when PCilk and ϵCilk are kept fixed at 0.2 and 0.7,

respectively, but is varied. Hybrid D achieves optimal performance, i.e., faster than both

LJP-CuLOPA and LJP-Cilk, for all values of by fully utilizing the given cores in the system

for ϵ < 0.7 and selecting OPA with Cilk threads as an optimal algorithm when ϵ ≥ 0.7. In our

hybrid method, reliability in choo sing values for two parameters (PCilk and ϵCilk) is crucial.

In Hybrid A, 90% of the complexes exhibited speedup until PCilk reached 0.2. Although

40% of them started to lose performance at PCilk = 0.3, the average speedup peaks at

PCilk = 0.2 (Figure 8(a)) since those 40% of the complexes are relatively large and speedup

is much higher than the smaller ones. Therefore, choosing PCilk with average speedup is

reasonable to achieve a speedup close to optimal. For the parameter ϵCilk, LJP-CuLOPA ran

faster than LJP-12Cilk for 66% of the complexes with ϵ values less than 0.7. However, the

rates at which performance degrades for the remaining 34% of the complexes are relatively

small especially for the large structures, so it generally works well. Therefore, a small set of

complexes representing general range of sizes of the input structures should be sufficient to

find close to optimal values for those parameters for a given system.

5. CONCLUSION

This paper presents ϵ-approximation-based parallel algorithms using multicore CPUs and

manycore GPUs that achieve load balancing, extensive utilization of GPU resources, and

achieve minimal memory requirement through simple leaf node retrieval and CUDA kernel

optimizations. Average speedup factors of two orders of magnitude compared to a serial

Cha et al. Page 14

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

code have been demonstrated with various molecular structures and error ranges for the

selected energy terms. In our hybrid approach a simple yet reliable parametrization for

distributing workload to cores of CPUs and GPUs was adopted, and experimental results

show that our method can produce the best performance for all error ranges.

Our technique requires no intermediate communication between threads except for the final

accummulation of the intermediate results. Furthermore, our node pair ordering scheme can

enable efficient data splitting and loading on each node once octrees are generated.

Therefore, it can be easily extended to run on heterogeneous multi-node CPU and GPU

systems with increased scalability.

Acknowledgement

This research of DC, ZQ, AR, CB was supported in part by NIH grant R01- EB004873, NSF grant OCI-1216701
and Sandia subcontract SNL-1439100; and of JJ, RC by NSF grants CCF-1162196 and CCF-1439084, and by
XSEDE (NSF grant OCI-1053575). Research on this project was conducted when DC, ZQ, AR and in part by RC,
when they were at the Computational Visualization Center, Institute of Computational Engineering and Sciences, at
the University of Texas at Austin. We thank Carlos Simmerling for his help with Amber-14.

6. REFERENCES

[1]. Anderson JA, Lorenz CD, and Travesset A. General purpose molecular dynamics simulations fully
implemented on graphics processing units. J. Chem. Phys, 227(10):5342–5359, 2008.

[2]. Bashford D and Case DA. Generalized Born models of macromolecular solvation effects. Annu.
Rev. Phys. Chem, 51:129–152, 2000. [PubMed: 11031278]

[3]. Carrier J, Greengard L, and Rokhlin V. A fast adaptive multipole algorithm for particle
simulations. SAIM J. Sci. Stat. Comput, 9(4):669–686, 1988.

[4]. Chowdhury R, Beglov D, Moghadasi M, Paschalidis I, Vakili P, Vajda S, Bajaj C, and Kozakov D.
Efficient maintenance and update of nonbonded lists in macromolecular simulations. J. Chem.
Theor. Comput, 10(10):4449–4454, 2014.

[5]. Chowdhury RA and Bajaj C. Algorithms for faster molecular energetics, forces and interfaces.
ICES report 10–32, Institute for Computational Engineering & Science, The University of Texas
at Austin, Austin, TX, USA 78712., 8 2010.

[6]. Case DA et al. AMBER 12, 2012 University of California, San Francisco.

[7]. Case DA et al. AMBER 14, 2014 University of California, San Francisco.

[8]. Darve E, Cecka C, and Takahashi T. The fast multipole method on parallel clusters, multicore
processors, and graphics processing units. Comptes Rendus Mecanique, 339(2–3):185–193,
2011.

[9]. Dynerman D, Butzlaff E, and Mitchell JC. CUSA and CUDE: GPU-accelerated methods for
estimating solvent accessible surface area and desolvation. J. Comput. Biol, 16:523–537, 4 2009.
[PubMed: 19361325]

[10]. Dzubiella J, Swanson JMJ, and McCammon JA. Coupling hydrophobic, dispersion, and
electrostatic contributions in continuum solvent models. Phys. Rev. Lett, 96(8), 2006.

[11]. Eisenberg D and McLachlan A. Solvation energy in protein folding and binding. Nature,
319:199–203, 1986. [PubMed: 3945310]

[12]. Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, Legrand S, Beberg AL, Ensign DL,
Bruns CM, and Pande VS. Accelerating molecular dynamic simulation on graphics processing
units. J. Comput. Chem, 30:864–872, 2009. [PubMed: 19191337]

[13]. Frigo M, Halpern P, Leiserson CE, and Lewin-Berlin S. Reducers and other cilk++ hyperobjects.
In Proc. 21st Annu. Symp. Parl. Algo. Archi., pages 79–90. ACM, 2009.

[14]. Gallicchio E, Zhang LY, and Levy RM. The SGB/NP hydration free energy model based on the
surface generalized Born solvent reaction field and novel nonpolar hydration free energy
estimators. J. Comput. Chem, 23:517–519, 2002. [PubMed: 11948578]

Cha et al. Page 15

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[15]. Gibson KD and Scheraga HA. Minimization of polypeptide energy, I: Preliminary structures of
bovine pancreatic ribonuclease s-peptide. Proc. Natl. Acad. Sci. (USA), 58:420–427, 1967.
[PubMed: 5233450]

[16]. Gilson M, Davis M, Luty B, and McCammon J. Computation of electrostatic forces on solvated
molecules using the Poisson-Boltzmann equation. J. Phys. Chem, 97:3591–3600, 1993.

[17]. Götz AW, Williamson MJ, Xu D, Poole D, Le Grand S, and Walker RC. Routine microsecond
molecular dynamics simulations with AMBER on GPUs. 1. generalized Born. J. Chem. Theor.
Comput, 8(5):1542–1555, 2012.

[18]. Goude A and Engblom S. Adaptive fast multipole methods on the GPU Technical Report 2012–
012, Uppsala University, Electricity, 2012.

[19]. Greengard L and Rokhlin V. A fast algorithm for particle simulations. J. Comput. Phys,
73(2):325–348, 12 1987.

[20]. Grycuk T. Deficiency of the Coulomb-field approximation in the generalized Born model: An
improved formula for Born radii evaluation. J. Chem. Phys, 119:4817–4826, 2003.

[21]. Gumerov NA and Duraiswami R. Fast multipole methods on graphics processors. J. Chem. Phys,
227:8290–8313, 2008/09/10/ 2008.

[22]. Hamada S. GPU-accelerated indirect boundary element method for voxel model analyses with
fast multipole method. Comput. Phys. Comm, 182(5):1162–1168, 2011.

[23]. Hermann R. Theory of hydrophobic bonding. II. correlation of hydrocarbon solubility in water
with solvent cavity surface area. J. Phys. Chem, 76:2754–2759, 1972.

[24]. Hu Q, Gumerov NA, and Duraiswami R. Scalable fast multipole methods on distributed
heterogeneous architectures. In Proc. 2011 Intl Conf. High Perf. Comput. Ntw. Stg. Anlys.,
SC ’11, pages 36:1–36:12. ACM, 2011.

[25]. Hummer G, Garde S, Garcia AE, and Pratt LR. New perspectives on hydrophobic effects. Chem.
Phys, 258(2–3):349–370, 2000.

[26]. Lashuk I. A massively parallel adaptive fast-multipole method on heterogeneous architectures;
Proc. Conf. High Perf. Computing Ntw. Stg. Anlys.; ACM; 2009. 1–58.

[27]. Im W, Lee MS, and Brooks CL. Generalized Born model with a simple smoothing function. J.
Comput. Chem, 24:1691–1702, 2003. [PubMed: 12964188]

[28]. Phillips JC et al. Scalable molecular dynamics with NAMD. J. Comput. Chem, 26(16):1781–
1802, 2005. [PubMed: 16222654]

[29]. Jackins CL and Tanimoto SL. Oct-trees and their use in representing three-dimensional objects.
Comput. Graph. Image Proc, 14(3):249–270, 1980.

[30]. Lee MS, Feig M, Salsbury FR, and Brooks CL. New analytic approximation to the standard
molecular volume definition and its application to generalized Born calculations. J. Comput.
Chem, 24:1348–1356, 2003. [PubMed: 12827676]

[31]. Lee MS, Salsbury FR, and Brooks CL. Novel generalized Born methods. J. Chem. Phys,
116:10606–10614, 2002.

[32]. Leiserson CE. The Cilk++ concurrency platform. In Proc. Annu. Des. Auto. Conf., pages 522–
527. ACM, 2009.

[33]. Levy RM, Zhang LY, Gallicchio E, and Felts AK. On the nonpolar hydration free energy of
proteins: Surface area and continuum solvent models for the solute-solvent interaction energy. J.
Am. Chem. Soc, 125:9523–9530, 2003. [PubMed: 12889983]

[34]. Liu W, Schmidt B, Voss G, and MÃijller-Wittig W. Accelerating molecular dynamics simulations
using graphics processing units with CUDA. Comput. Phys. Comm, 179(9):634–641, 2008.

[35]. Lum K, Chandler D, and Weeks JD. Hydrophobicity at small and large length scales. J. Phys.
Chem. B, 103:4570–4577, 1999.

[36]. Maximova T and Keasar C. A noval algorithm for non-bonded-list updating in molecular
simulation. J. Comput. Biol, 13(5):1041–1048, 2006. [PubMed: 16796550]

[37]. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Chem. Phys,
117(1):1–19, 1995.

Cha et al. Page 16

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[38]. Rajamani S, Truskett TM, and Garde S. Hydrophobic hydration from samll to large length scales:
Understanding and manipulating the crossover. Proc. Natl. Acad. Sci, 102:9475–9480, 2005.
[PubMed: 15972804]

[39]. Rokhlin V. Rapid solution of integral equations of classical potential theory. J. Chem. Phys,
60(2):187–207, 1985.

[40]. Ruymgaart AP, Cardenas AE, and Elber R. Moil-opt: Energy-conserving molecular dynamics on
a GPU/CPU system. J. Chem. Theor. Comput, 7(10):3072–3082, 2011.

[41]. Ruymgaart AP and Elber R. Revisiting molecular dynamics on a CPU/GPU system: Water kernel
and shake parallelization. J. Chem. Theor. Comput, 8(11):4624–4636, 2012.

[42]. Pronk S et al. Gromacs 4.5: a high-throughput and highly parallel open source molecular
simulation toolkit. Bioinformatics, page btt055, 2013.

[43]. Sharp K. Incorporating solvent and ion screening into molecular dynamics using the finite-
difference Poisson-Boltzmann method. J. Comput. Chem, 12:454–468, 1991.

[44]. Sharp K and Honig B. Calculating total electrostatic energies with the nonlinear Poisson-
Boltzmann equation. J. Phys. Chem, 94:7684–7692, 1990.

[45]. Simonson T and Bruenger A. Solvation free energies estimated from macroscopic continuum
theory: An accuracy assessment. J. Phys. Chem, 98:4683–4694, 1994.

[46]. Srinivasan J, Trevathan M, Beroza P, and Case D. Application of a pairwise generalized Born
model to proteins and nucleic acids: inclusion of salt effects. Theor. Chem. Accts, 101:426–434,
1999.

[47]. Still WC, Tempczyk A, Hawley RC, and Hendrickson T. Semianalytical treatment of solvation
for molecular mechanics and dynamics. J. Am. Chem. Soc, 112:6127–6129, 1990.

[48]. Stock MJ and Gharakhani A. Toward efficient GPU-accelerated N-body simulation. In Proc. 46th
AIAA Aeros. Sci. Mtg. Exhib, pages 1–13, 2008.

[49]. Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, and Schulten K. Accelerating
molecular modeling applications with graphics processors. J. Chem. Phys, 28:2618–2640, 9
2007.

[50]. Tithi JJ and Chowdhury RA. Polarization energy on a cluster of multicores. In Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 569–578. IEEE, 2013.

[51]. Tjong H and Zhou H-X. GBr6: A parameterization-free, accurate, analytical generalized Born
method. J. Phys. Chem. B, 111:3055–3061, 2007. [PubMed: 17309289]

[52]. Wagoner J and Baker NA. Assessing implicit models for nonpolar mean solvation forces: The
importance of dispersion and volume terms. Proc. Natl. Acad. Sci. USA, 103:8331–8336, 2006.
[PubMed: 16709675]

[53]. Walker R, 2014 Personal communication.

[54]. Walters JP, Balu V, Chaudhary V, Kofke D, and Schultz A. Acclerating molecular dynamics
simulations with GPUs. In Proc. 21st Intl Soc. Computers and their Appl. Parl. Dist. Computing
Commun. Sys, ISCA-PDCCS’08, page 6, 2008.

[55]. Wu Q, Yang C, Tang T, and Lu K. Fast parallel cutoff pair interactions for molecular dynamics on
heterogeneous systems. Tsinghua Science and Technology, 17(3):265 –277, 6 2012.

[56]. Xu J, Ren Y, Ge W, Yu X, Yang X, and Li J. Molecular dynamics simulation of macromolecules
using graphics processing unit. J. Mol. Struct. (Theochem), 36:1131–1140, 2010.

[57]. Yang J, Wang Y, and Chen Y. GPU accelerated molecular dynamics simulation of thermal
conductivities. J. Comput. Phys, 221:799–804, 2 2007.

[58]. Yao Z, Wang J-S, Liu G-R, and Cheng M. Improved neighbor list algorithm in molecular
simulations using cell decomposition and data sorting method. Comput. Phys. Comm, 161(1–
2):27–35, 2004.

[59]. Yokota R and Barba L. Comparing the treecode with FMM on GPUs for vortex particle
simulations of a leapfrogging vortex ring. Computers & Fluids, 45(1):155–161, 2011.

[60]. Yokota R, Narumi T, Sakamaki R, Kameoka S, Obi S, and Yasuoka K. Fast multipole methods on
a cluster of GPUs for the meshless simulation of turbulence. Comput. Phys. Comm,
180(11):2066–2078, 2009.

Cha et al. Page 17

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[61]. Zhao X and Feng Z. Fast multipole method on GPU: tackling 3-d capacitance extraction on
massively parallel SIMD platforms. In Proc. 48th Des. Autom. Conf., DAC ’11, pages 558–563,
2011.

Cha et al. Page 18

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
Arrangement of indices in each leaf node pair to exploit the hierarchical cache structure.

Cha et al. Page 19

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
Our hybrid algorithms exploiting both CPU and GPU threads.

Cha et al. Page 20

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
(a) Performance of method A for different PCilk and ϵ values. (b) Performance of methods B

and C w.r.t. pure CPU/GPU-oriented computation.

Cha et al. Page 21

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
(a) Hybrid algorithm D. (b) Performance of Hybrid D w.r.t. pure CPU/GPU methods for

different ϵ.

Cha et al. Page 22

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
Performance of GBP-CuLOPA on different GPUs and comparison with Amber.

Cha et al. Page 23

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
GBP-CuOPA speedup results over GBP-Naïve. The result for Amber12 GPU version on

Kepler 20 GPU [6], GBr6 [51], GBP-12Cilk are also shown for comparison. The titles in

each row under horizontal axis represent % error with respect to GBP-Naïve, the number of

nodes (N) and threads (T) for CPU-based method and the GPU model for GBP-CuLOPA,

and name of method(program) used. 100 molecules having number of atoms between 1,304

and 8,336 were used from ZDock benchmark suite.

Cha et al. Page 24

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7:
CUDA speedup results for Coulomb and Lennard-Jones potential computations. The

maximum and average speedup factors of CP/LJP-CuLOPA (system: GTX 580) over (Top)

Naïve and (Bottom) 12Cilk (system: 12-core Xeon E5680) are shown for the largest 50

proteins in ZDock.

Cha et al. Page 25

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8:
Performance enhancement by hybrid methods A and D on LJP calculation. This experiment

was done with 2 Xeon E5640 and GTX 580. (Top) An average speedup graph of hybrid

method A over CuLOPA is shown as the fraction of leaf pairs using Cilk threads varies.

(Bottom) Maximum and average speedup factors of LJP-Hybrid D over LJP-Naïve for

various error bounds are shown. Eight Cilk threads were used for Hybrid A and twelve Cilk

threads were used for OPA when ϵCilk ≥ 0.7.

Cha et al. Page 26

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cha et al. Page 27

Table 1:

Impact of different k values.

k values => 16 32 48 64

kernel execution time (ms) 4.4 2.2 3.5 4.0

warp execution efficiency (%) 30.9 49.7 39.1 33.6

instructions per cycle 1.5 1.6 1.3 1.3

multiprocessor efficiency (%) 98.6 94.5 91.8 83.3

achieved occupancy 0.56 0.61 0.61 0.57

instructions issued (millions) 64M 34M 43M 50M

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cha et al. Page 28

Table 2:

Performance results of CUDA (cuLOPA) and Cilk+CUDA hybrid (Hybrid D) implementation.

Energetic CP LJP GBP

Method cuLOPA cuLOPA Hybrid D cuLOPA

Bounded Err 0.5% 0.1% 0.1% 0.7%

Speedup over Naïve Max. 52.5 181.0 205.9 302.6

Avg. 27.5 81.5 89.5 243.9

Avg. time (μs) / atom 0.45 0.25 0.23 2.76

ACM BCB. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cha et al. Page 29

Ta
b

le
 3

:

C
om

pa
ri

so
n

of
 p

ar
al

le
l t

es
tin

g
pl

at
fo

rm
s

fo
r

m
ul

tic
or

e
C

PU
s

an
d

m
an

yc
or

es
 G

PU
s.

P
ar

al
le

l t
ar

ge
t

C
P

U
G

P
U

P
ro

ce
ss

or
In

te
l X

eo
n

E
56

40
In

te
l X

eo
n

E
56

80
In

te
l X

eo
n

E
26

80
N

vi
di

a
G

ef
or

ce
 G

T
X

 5
80

N
vi

di
a

G
ef

or
ce

 G
T

X
 7

80
N

vi
di

a
K

ep
le

r
K

 2
0

N
vi

di
a

K
ep

le
r

K
 8

0

C
or

e
ar

ch
it

ec
tu

re
N

ah
al

em
Sa

nd
y

B
ri

dg
e

F
er

m
i

G
K

 1
04

G
K

 1
10

G
K

21
0

#c
or

es
/P

U
4

6
8

51
2

23
04

26
88

28
80

C
or

e
cl

oc
k

2.
67

 G
H

z
3.

33
 G

H
z

2.
70

 G
H

z
0.

77
 G

H
z

1.
02

 G
H

z
0.

71
 G

H
z

0.
82

 G
H

z

L
1

ca
ch

e
64

 K
B

32
K

B
16

–4
8

K
B

64
 K

B
64

 K
B

12
8

K
B

L
2

ca
ch

e
25

6
K

B
76

8
K

B
15

36
K

B
15

36
 K

B
15

36
 K

B

L
3

ca
ch

e
12

 M
B

20
M

B
-

-
-

-

co
m

pi
le

r
-

ic
c

12
.0

ic
c

13
.0

cu
da

 3
.2

cu
da

 5
.0

cu
da

 5
.5

cu
da

 6
.5

ACM BCB. Author manuscript; available in PMC 2020 July 09.

	Abstract
	INTRODUCTION
	Summary of Prior Work.
	Naïve Approach:
	Solutions using neighbor lists:
	Neighbor list vs. octree:
	Fast-multipole like approaches:
	Uniqueness of our approach:

	Our Contributions.

	METHOD
	ε-Approximation

	Algorithm 1
	Parallelization

	Algorithm 2
	IMPLEMENTATION
	LJ Coefficients.
	GB Energy Computation.
	Optimal k.
	Space Requirement.

	EXPERIMENTAL RESULTS
	GB Energy
	LJ and Columb Energy

	CONCLUSION
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Table 1:
	Table 2:
	Table 3:

