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Abstract

Motivation.—Despite several reported acceleration successes of programmable GPUs (Graphics 

Processing Units) for molecular modeling and simulation tools, the general focus has been on fast 

computation with small molecules. This was primarily due to the limited memory size on the 

GPU. Moreover simultaneous use of CPU and GPU cores for a single kernel execution – a 

necessity for achieving high parallelism – has also not been fully considered.

Results.—We present fast computation methods for molecular mechanical (Lennard-Jones and 

Coulombic) and generalized Born solvation energetics which run on commodity multicore CPUs 

and manycore GPUs. The key idea is to trade off accuracy of pairwise, long-range atomistic 

energetics for higher speed of execution. A simple yet efficient CUDA kernel for GPU 

acceleration is presented which ensures high arithmetic intensity and memory efficiency. Our 

CUDA kernel uses a cache-friendly, recursive and linear-space octree data structure to handle very 

large molecular structures with up to several million atoms. Based on this CUDA kernel, we 

present a hybrid method which simultaneously exploits both CPU and GPU cores to provide the 

best performance based on selected parameters of the approximation scheme. Our CUDA kernels 

achieve more than two orders of magnitude speedup over serial computation for many of the 

molecular energetics terms. The hybrid method is shown to be able to achieve the best 

performance for all values of the approximation parameter.
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Availability.—The source code and binaries are freely available as PMEOPA (Parallel Molecular 

Energetic using Octree Pairwise Approximation) and downloadable from http://

cvcweb.ices.utexas.edu/software.

Categories and Subject Descriptors

I.6 [SIMULATION AND MODELING]: Numerical Algorithms and Problems; D.1.3 
[Concurrent Programming]:[Applications]; Algorithm; Graphics Processing Units; Parallel 
Programming; Molecular Dynamics; Computational Chemistry; BioPhysics

1. INTRODUCTION

The aim of this paper is to accelerate the computations of configuration-dependent free 

energy terms of very large molecules which need to be estimated repeatedly for 

computational docking, energy minimization and molecular dynamics (MD) simulations. 

We achieve this by simultaneously utilizing multicore CPUs and manycore GPUs. The 

model of molecular free energy consists of a molecular mechanical portion EMM and a 

solvation energy part Esol. The mechanical energy has been empirically parameterized into 

three parts: EMM = Ebond+Evdw+Ecoul. The bonded component Ebond is typically computed 

using efficient lookup tables based on expected bond lengths and angles, and thus is not 

particularly computationally challenging. The Evdw and Ecoul terms, which represent 

pairwise atomic energy due to van der Waals and electrostatic interactions, respectively, are 

given by the following pairwise summations:

Evdw = ∑
i

∑
j > i

aij
rij12 −

bij
rij6

and Ecoul = ∑
i

∑
j > i

qiqj
ϵ rij rij

,

where rij is the distance between two given atoms indexed i and j, aij and bij are coefficients 

based on atom types, qi and qj are Columbic partial charges, and ϵ rij  is a distance 

dependent dielectric constant.

The solvation energy model can be further decomposed into non-polar and polar 

components [11, 16, 23, 43, 45]: Esol = Enonpol + Epol. Effective models for the non-polar 

energy Enonpol have been empirically developed [10, 11, 14, 15, 25, 33, 35, 38, 52]. 

Although our method can also speed up the dispersive non-polar component of the 

interaction, we focus on polarization energy which has the following form:

Epol = 1
2∫ ϕ(x) − ϕgas ρ(x)dx, (1)

where ρ is the charge density, ϕ and ϕgas are the electrostatic potential for the molecule in 

solution and in gas, respectively. Two models are usually employed to compute this energy: 

(a) modeling the potential with the Poisson-Boltzmann (PB) equation [44], or (b) 

approximating the energy with the Generalized Born (GB) model [47]. The following GB 

formula has been shown to give an effective approximation of polarization energy for large 

systems [47]:
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Epol = − 1
2 1 − 1

εsolv ∑
ij

qiqj rij2 + RiRjexp −
rij2

4RiRj

− 1
2

,

where εsolv is the dielectric constant of molecules in solution and Ri is the effective Born 

radius of atom i, based on the assumption that the electric displacement is in the Columbic 

form [2]. Several modifications of the GB model have been proposed [31, 30, 27, 46], and 

we have used Grycuk’s GBr6 formulation [20, 51], i.e., Ri
−1 = 3

4π ∫ex r − xi
−6dr

1/3
, in our 

computation.

Summary of Prior Work.

Naïve Approach: Naïve computation of Evdw, Ecol and Epol (pairwise interactions) 

requires O(N2) arithmetic operations, and also Ω(N2) memory for the intermediate Born radii 

computation in Epol, where N is the number of atoms in the system. Many techniques have 

been developed to accelerate these computations, such as direct N2 (or N2/2) computation 

method by exploiting shared memory via tile-based decomposition of the N2 matrix [9, 12, 

17] or cell list method [49]. Here we briefly review GPU-based acceleration schemes, 

neighbor list method [37, 58, 36] and fast multipole methods [19, 3], which are commonly 

used in molecular simulations and mostly related to our current work.

Solutions using neighbor lists: The neighbor list of an atom contains only atoms 

within a given cutoff distance from that atom. The neighbor lists of all atoms can be 

represented as a matrix. Due to the irregularity of atomic distributions, the number of atoms 

in distinct neighbor lists may vary. Several optimization schemes have been used for 

mapping neighbor list structures on GPUs. In [57], 2D texture has been exploited for storing 

the neighbor list to utilize the texture caches on GPUs. When the construction is performed 

on GPU, the neighbor list is stored in device memory [34, 1, 56, 40]. In most algorithms, 

each thread takes care of one atom by looping over all of its neighbors to relieve the burden 

of device memory accesses by using registers for repeatedly visited data. It has been shown 

in [54] that this approach can enhance performance in spite of reducing thread occupancy. 

To increase the locality of atomic data accessed from the neighbor list, atoms are often 

spatially sorted using space filling curves [1].

Neighbor list vs. octree: Computation of pairwise interactions using the neighbor list 

scheme takes time linear in N and up to cubic in distance cutoff d, and it requires another O
(N2) distance computations for its construction. On the other hand, computation of pairwise 

interactions using octree-based methods take time linear or nearly linear in N and is 

independent of any distance cutoff, and octree construction takes O(N log N) time [5, 4]. 

Moreover, the neighbor list requires Θ(N2) memory in the worst case. Our parallel octree 

scheme requires only O(N) space, since it only considers leaf nodes of the octree as 

explained in Section 2. This enables our method to handle molecules and macromolecules 

with millions of atoms.
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Fast-multipole like approaches: The fast multipole method (FMM) [39] approximates 

O(N2) summations in O(N) or O(NlnαN) arithmetic operations by using a near-far distance 

decomposition scheme. Increasing arithmetic intensity and balancing workload are crucial in 

FMM because of its intensive memory accesses of the coefficient matrices and vectors as 

well as the computation on nodes which are of irregular sizes. Most work on GPU-based 

FMM map each target node to a single CUDA thread block and store source variables and 

results into the shared memory for a significant reduction of the numbers of device memory 

accesses [48, 21, 60, 26, 22, 59]. The number of elements in each node is further matched to 

the number of threads in the thread block [48], or the number of thread blocks is fixed [22]. 

Darve et al. [8] cluster the nodes that use the same coefficient matrix to ensure coalesced 

memory access of multipole coefficients. Once the multipole coefficients are copied into the 

shared memory, each thread can access them without bank conflicts. In addition, Zhao and 

Feng [61] sort non-zero entries of the coefficient matrices and generate clusters which are 

run by separate kernels concurrently. Atoms are stored in Z-Morton layout to maximize data 

locality when the computation is performed on CPU [26, 8] or on GPU [24]. More recently, 

an adaptive FMM has been implemented on GPU [18].

Uniqueness of our approach: In spite of the similarities between our octree-based ϵ-

approximation technique and the FMM approximation, there are certain differences in the 

optimization of our CUDA kernel. Our method uses Greengard-Rokhlin type near-far 

approximation [19] which dynamically determines and evaluates operations on different 

domains such as atom-atom, node-node, and atom-node while FMM separates those 

operations to several computational layers. Implementing an efficient CUDA kernel for this 

method brings new challenges on balancing workload among these computationally variable 

domains and quick fetching of data, which we address in our kernel design. There are 

previous studies on accelerating neighbor list based [41, 55] and FMM based [26, 24] 

applications that leverage heterogeneous computational resources exhaustively and 

asynchronously as their target systems. Although our aim is the same as theirs, i.e., 

achieving optimal performance by fully utilizing available resources in a given system, our 

approach is different from theirs since we focus on exploiting heterogeneous resources for 

computational kernels that are very simple but hardly separable. In our method, the 

computational characteristics and entire workload vary significantly based on the 

approximation parameter ϵ (i.e., desired error bound). Hence our combined use of CPU and 

GPU cores yields dissimilar hybrid CILK and CUDA implementations to ensure desirable 

performance on both of these architectures.

Our Contributions.

The major contributions of this paper are as follows:

• Acceleration on GPU and CPU and speed-accuracy tradeoff: In this paper, we 

present parallel methods that run on commodity multicore CPUs and manycores 

GPUs to accelerate and trade off speed for accuracy, i.e., ϵ-approximation [5] of 

pairwise, long-range atomistic energetics. We first develop a pure GPU-oriented 

method using CUDA programming model, and then extend it to a hybrid method 

that simultaneously exploits both CPU and GPU cores.
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• Efficient use of linear-space octree: Our CUDA kernel ensures efficiency with 

highly balanced computational load on each thread, zero communication 

between them, and optimized use of on-chip memories. The space-efficiency and 

simplicity of the octree data structure enables us to handle extremely large 

molecular structures. The entire data for a molecular structure containing several 

million atoms can be loaded into 1.5 GB device memory and the computation 

can be performed with one CUDA kernel invocation. Furthermore, an optimal 

data decomposition is used for minimal CUDA kernel invocation when the size 

of the data for a given structure exceeds the size of the device memory.

• Simultaneous and selective use of CPUs and GPUs: Since the computational 

characteristics of our ϵ-approximation scheme changes based on the value of 

parameter ϵ, we develop a hybrid method that exploits both CPU and GPU cores 

in two different ways, i.e., simultaneously and selectively, according to the ϵ 
value to produce the best performance on a given system.

• Performance demonstration on modern CPUs and GPUs and comparison with 

Amber: We demonstrated empirically that the proposed methods can achieve 

significant performance enhancements and handle large structures for selected 

computations in molecular mechanical (Lennard-Johns and Columbic) and 

generalized Born solvation energetics. For instance, Lennard-Johns (short range) 

and generalized Born (long range) energetics were able to achieve two orders of 

magnitude speedups over their respective serial versions for molecules 

containing up to a couple of millions of atoms. We also present results showing 

that the proposed method computes generalized Born energy faster than the 

Amber GPU versions [6, 7] while producing less error in the energy values w.r.t. 

Amber, considering the GB equation in [47] as a baseline.

A brief description of the octree-based ϵ-approximation scheme for estimating pairwise 

atomic energetics with speed-accuracy tradeoff followed by details of our parallelization 

including the CUDA kernel and the hybrid CILK and CUDA methods are given in Section 2. 

Section 3 describes specific implementations of energetic terms. Performance results on the 

energetics approximation on multicore CPUs and GPUs are given in Section 4. Finally, 

Section 5 concludes the paper with some remarks.

2. METHOD

In this section we describe the algorithmic techniques we use to compute the molecular 

energetic terms on CPUs and GPUs. Our methods based on pairwise ϵ-approximation that 

uses a Greengard-Rokhlin type near and far decomposition of 3D data points [29] with an 

octree data structure as described in [5, 50].
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2.1 ε-Approximation

Algorithm 1

Compute energy E(ni, nj) between nodes ni and nj using the Octree-based Pairwise 

Approximation (OPA) algorithm.

1: procedure OPA(ni, nj)

2:   Compute distance d = d(ni,nj) between node pair ni,nj.

3:   if IsFar(d,ni,nj,ϵ) & IsSmall(ni) & IsSmall(nj) then

4:    Approximate E(ni,nj) with a pseudo-atomic interaction

5:   else

6:    if IsLeaf(ni) & IsLeaf(nj) then

7:      Compute atomic pairwise ni,nj.

8:    else if IsLeaf(ni) then

9:      for all child cj of node nj do

10:        OPA(ni,cj)

11:      end for

12:    else if IsLeaf(ni) then

13:      for all child ci of node ni do

14:        OPA(ci,nj)

15:      end for

16:    else

17:      for all child ci of node ni do

18:       for all child cj of node nj do

19:         OPA(ci,cj)

20:      end for

21:     end for

22:    end if

23:   end if

24: end procedure

First we briefly sketch the Octree Pairwise Approximation algorithm (OPA) proposed in [5] 

and call it Algorithm 1. We used this Algorithm as our base algorithm. To compute the 

interaction energy E ℳX, ℳY  between two molecules ℳX and ℳY ℳY = ℳX for the case 

of internal interactions in a single molecule), we construct two octrees TℳX and TℳY  for 

ℳX and ℳY , respectively, and perform a simultaneous recursive traversal of both trees 

starting from their respective root nodes. For each pair of nodes ni, nj ni ∈ TℳX, nj ∈ TℳY
examined during the traversal, the computation can be split into three cases based on a user-

defined approximation parameter ϵ. If both ni and nj are leaf nodes (lines 6–7 in Algorithm 

1), interaction between each atom of ni and every atom of nj is computed exactly. If nodes ni 

and nj are far from each other and small enough (lines 3–4 in Algorithm 1), the pairwise 

atomic interactions are approximated by a single interaction between two pseudo atoms 

defined for the two nodes, where the pseudo atom corresponding to a node is centered at 

geometric center of the atoms inside that node and has the smallest radius large enough to 

contain all atoms of the node. If neither of the two cases above holds, we subdivide the 
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octree nodes ni and/or nj and examine all the new child node pairs recursively (lines 8–22 in 

Algorithm 1). The main benefit of this method is that we can trade off accuracy for 

computational speed through the user-defined parameter ϵ [5].

2.2 Parallelization

To develop an efficient parallel algorithm for a heterogeneous CPU + GPU platform, we 

need to develop efficient parallel algorithms for CPU and GPU separately to leverage 

architecture specific properties with sufficient optimizations, and then hybridize them with 

an appropriate decomposition of the overall problem. Since GPUs have much higher floating 

point arithmetic intensity per clock cycle and requires additional care for performance, we 

focus on optimizing the GPU-oriented parallel program and then hybridizing it with CPU 

threads. We chose to use Cilk++ and CUDA programming tools and run-time libraries to 

implement our parallel algorithms.

Algorithm 2

Compute energy E(li, lj ) between leaf nodes li and lj using the Leaf Octree Pairwise 

Approximation (LOPA) algorithm.

1: procedure LOPA

2:    Compute leaf pair indices i and j.

3:    Get node info li and lj and compute distance d = d(li, lj).

4:    if IsFar(d,li,lj,ϵ) & IsSmall(li) & IsSmall(lj) then

5:     Approximate E(li,lj) with a pseudo-atomic interaction

6:    else

7:     Compute atomic pairwise interaction E(li,lj).

8:    end if

9: end procedure

2.2.1 Parallelizing using Cilk++ on multicores—The recursive divide-and-conquer 

schemes in [5] are quite suitable for multithreaded execution on multicore CPUs. We 

implemented a parallel ϵ-approximation algorithm using Intel’s Cilk++ [32] that uses 

shared-memory parallelism as explained in [50]. When two octree nodes containing atoms 

are close to each other at any stage of the traversal according to the given ϵ, each child of a 

node is paired with each child of the other, thereby allowing a quick spawn of multiple 

independent parallel threads and an easy recursive implementation. We have allocated 

explicit buffers to accumulate partial sums produced by each thread, since it is often more 

efficient than using a reducer [13] for a small number of partial sums.

2.2.2 Parallelizing using CUDA on GPUs—Our CUDA kernel has been designed to 

ensure the following properties which are necessary for efficiency.

• capability to handle very large atomistic structures (enabling efficient memory 

load)

• maximal occupancy of resident threads on GPU (hiding memory access latency 

through warp switching)
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• minimal device memory access overheads (enabling compute-intensive kernel)

• control diversity of the threads (balancing workload)

• smaller or equal approximation error w.r.t. the original scheme

Basic algorithm.: Our simple CUDA kernel computes an interaction between a given pair 

of leaf nodes, using a octree based near-far pairwise approximation algorithm (OPA) 

presented in [5]. We call our scheme the Leaf based Octree Pairwise Approximation (LOPA) 

method. Once indices of two leaves are calculated from the thread ID, the pseudo-atomic 

center and radius of each node are loaded from the device memory into the registers to 

perform a near-far test. If the test result is far, pseudo-atomic approximations are performed 

for the given leaf pair. Otherwise all pairwise interactions between the atoms of the two leaf 

nodes are explicitly calculated. The algorithm for this CUDA kernel is shown in Algorithm 

2.

Data layout and thread efficiency.: To reduce device memory access overheads, we exploit 

the on-chip memories by arranging the leaf node pairs as shown in Figure 1. The leaf pairs 

(i, j) are arranged so that the same leaf index i is accessed by all threads in the same block. 

Next the data of atoms and pseudo atoms of the leaf i is loaded into the shared memory 

once, and are accessed by all threads in the same block during the computation. The loop of 

i runs inside the loop of j to maximize the use of the data in the shared memory. By shifting 

the index i in the loop using the thread ID, bank conflict can be reduced for this shared 

memory access. To prevent significant device-to-host data transfer, each thread stores its 

partial sum in the shared memory, and the values are accumulated by a single thread after all 

threads in the same block finish their computation. Then a single value per thread block is 

stored into device memory and the entire buffer for all thread blocks is copied into the host 

memory to perform the final accumulation.

When each leaf contains k atoms, (N/k)2 threads are spawned, and each thread computes up 

to k2 loop iterations for the case of near. If k is small, our method spawns many 

computationally light CUDA threads and reduces inefficiency caused by divergence of near 

and far cases in the warp. The size of required shared memory is also decided by k, and the 

number of active warps in each SM, i.e., the thread occupancy, is accordingly changed. 

However, too small a value of k can eliminate the computational benefits of pseudo atomic 

approximations. Finding an optimal k and space requirement will be discussed later in 

Section 3.

2.2.3 Parallelizing using hybrid method—The computational expense of our octree-

based approximation scheme changes significantly with the approximation parameter ϵ, 

because the total number of node pairs quickly decreases as ϵ value gets bigger. Therefore 

we developed a hybrid method that uses both CPU and GPU processors in simultaneous and 

selective ways based on the computational characteristics determined by the ϵ parameter. 

The criteria for an efficient hybrid method on a heterogeneous CPU + GPU node can be:

• maximal simultaneous use of both processors

• minimal data transfer between CPU and GPU threads
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• optimal problem decomposition which optimally matches the characteristics of 

each processor

We first present three variants (A, B, C) of a hybrid method demonstrating how optimized 

hybrid methods can be developed. Based on our experience with these three methods we 

finally develop method (D).

Method A, shown in Figure 2(a), computes LOPA on both CPU and GPU cores by 

allocating user-defined proportions of leaf pairs 0 ≤ PCilk ≤ 1  to Cilk threads and the rest to 

CUDA threads. In this method, a user-defined number of Cilk threads is spawned, and one 

of them invokes the CUDA kernel while others compute LOPA for the given leaf pairs. 

Method A brings performance enhancement by distributing the work loads to CPU cores 

which were in idle state for the pure GPU-oriented method. Method B, shown in Figure 2(b), 

performs the near-far test, and computes pseudo atomic approximation for the far case on 

the CPU using Cilk threads, and exact atomic interactions for the near case on the GPU. To 

do so, this method stores indices of near leaf pairs during the computation on CPU and 

copies it to device memory. In this way, we can fully exploit OPA on both processors by 

decomposing it into memory access and conditional branching intensive part and compute-

intensive part. Method C modifies method B by performing the near-far test and pseudo 

atomic approximation only before a user-defined octree depth d, and performing LOPA for 

all the remaining leaf pairs on the GPU. This method reduces the number of near-far tests in 

method B which is a waste when most computation are performed inside leaf pairs for small 

values of ϵ. If we control the parameter d with respect to inverse proportion of ϵ, then the 

deeper octants will be traversed only when shorter distance is allowed to be approximated.

We have tested our three methods for the Lennard-Jones potential computation where OPA 

performs very efficiently while producing relatively small error even for large values of ϵ. To 

see how these methods work, we use a fairly large molecular structure (PDBID: 1N2C, 

39,946 atoms) so that the thread spawning time becomes negligible compared to the actual 

computational load. Figure 3 shows performance of A, B, and C hybrid methods on 2 Intel 

Xeon E5640 CPUs and 1 Nvidia Geforce GTX 580 GPU for molecule 1N2C. In the hybrid 

method A, eight Cilk threads are used and one of them is allocated for CUDA kernel 

invocation. Figure 3(a) shows that the computation time of method A decreases until 20% of 

the leaf pairs are allocated to Cilk threads for all error ranges. Clearly, the parameter PCilk
needs to be set to make CPU and GPU run-times equal so that an optimal performance of 

method A can be achieved. We have found that when PCilk = 0 . 2, method A achieve a 

speedup of 1.16× w.r.t. the pure GPU (LOPA) version.

Figure 3(b) shows that even though methods B and C both run faster than GPU-oriented 

LOPA for large values of ϵ, they are slightly slower than OPA using only Cilk threads (i.e., 

pure CPU version). Since the number of leaf pairs computed on GPU is very small, 

computation time is dominated by overheads such as CUDA kernel invocation, host-to-

device copy of leaf pair indices, and additional device memory accesses in CUDA thread for 

the leaf indices. On the other hand, for small ϵ values, most computations fall into leaf pairs 

and octree traversal with near-far tests can be a total waste. Method B suffers from 

overheads of traversing the octrees for small values of ϵ where most of the near-far tests end 
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up being near, and as a result a large number of leaf pairs are sent to the GPU. Method C 

gets worse for small ϵ, since it stops near-far tests at a high level of the octree and fully 

traverses it without early termination to find remaining leaf pairs for the LOPA on GPU. 

Therefore, running pure LOPA on GPU instead is much faster for those cases.

Based on all these observations, we developed method D as shown in Figure 4(a). Since the 

OPA using Cilk threads is the most efficient for large values of ϵ, we select it for ϵ values 

greater than a user-defined parameter ϵCilk. Otherwise we use method A which utilizes both 

CPU and GPU simultaneously by allocating a certain proportion of leaf pairs to CPU threads 

with a parameter PCilk. This method requires no communication between the two processors 

during the computation. Figure 4(b) shows that the best performance graph is obtained by 

method D for the LJ potential computation of the molecular structure 1N2C. The best 

performance is obtained for the entire range of values of by setting the parameters 

PCilk( = 0.2) and ϵCilk( = 0.7) properly. In general, optimal values for these parameters 

depend on the system’s spec and our experiments for a large number of molecular structures 

indicates that a reliable ϵCilk can be found for a given system fairly easily.

3. IMPLEMENTATION

In this section we provide some implementation details especially for our CUDA algorithm 

explained in Section 2.2.

LJ Coefficients.

We use constant memory to store the LJ coefficients precomputed for each combination of 

different atom types. Although there is a limitation on the number of atom types that can 

fully exploit the constant cache, this allows us to access the coefficients for both the atomic 

and pseudo atomic computations very efficiently. Without losing too much accuracy, atoms 

having similar chemical properties can be grouped to reduce the number of coefficients for a 

given constant cache.

GB Energy Computation.

Unlike other energetic terms, GB energy computation produces a pairwise loop during the 

pseudo atomic computation due to an approximation of the Born radii into O(log N) groups 

based on the ϵ value where N is the number of atoms [5, 50]. This makes it difficult to 

utilize limited GPU caches. Moreover the accuracy of the GB energy computation is very 

sensitive to the Born radii values and it requires a sufficient number of samples of the Born 

radii. We found that sometimes exact computations involving only pairwise atomic 

interactions without any Born radii approximation runs even slightly faster than the original 

LOPA because of the elimination of the conditional branching of near-far cases. 

Approximation can make the Born radii values more erroneous in this case, as the GB 

energy computation achieves the accuracy of the Naïve computation because of using leaf 

pairs only. For the Born radii computation, a special case of calculating the value on each 

atom, we allocate all leaf pairs (i,j) with the same i value into each CUDA thread block. The 

Born radii values for all atoms in leaf i are evaluated using threads in the thread block and 

accumulated in the shared memory. After the computation, the final values are copied to 
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device memory. The atomic and pseudo atomic information in leaf i is stored in the shared 

memory, and the CUDA kernel performs LOPA with an additional outer loop for more than 

one j, if needed.

Optimal k.

Even though finding an optimal k is not trivial, it can be bounded for the theoretical 

maximum thread occupancy in each energetic computation. As explained before, k is one of 

the parameters that decides the size of the shared memory used in the thread block. For 

example, each block requires SB(= 20k +4TB) (TB stands for number of threads in a thread 
block) bytes of the shared memory to compute the generalized Born energy. If the GPU 

supports compute capability (CC) 1.3, then it needs to satisfy 16KB/SB ≥ 8 for thread 

occupancy 1 while TB × 8 ≤ 1024. If we set TB to 128, then k needs to be less than 76. 

Although the choice of value for k can affect the performance of the CUDA kernel in various 

ways, one can quickly test the program with a few sample values of k under the given bound 

to find a value close to the optimal. Table 1 shows how different choices of k changes 

performance of GB energy computation when input is a molecule with 3,924 atoms. In this 

example, k = 32 gives the best warp execution efficiency while issuing minimum number of 

instructions.

Space Requirement.

As one of the major advantages, the proposed CUDA kernel requires fairly small and 

controllable amount of device memory, which makes it possible to handle large molecular 

structures. For given molecules ℳX and ℳY  having NℳX and NℳY  atoms, respectively, the 

octrees have NℳX /k = NℒX and NℳX /k = NℒY  leaves, respectively, assuming each leaf 

contains k atoms. Therefore, if SZ is the byte size of an element (atom or node) in Z, we 

need to allocate SℳXNℳX + SℳY NℳY + SℒXNℒX + SℒY NℒY  bytes of device memory. 

In addition to this, our method also allocates an intermediate buffer for each partial sum of 

the thread block. It requires 4 NℒXNℒY /TB /NCall  bytes if we divide node pairs into 

NCall  chunks and invoke the CUDA kernel NCall  times. Suppose we compute GB energy 

for a single molecule with the Born radius given as an input and have SDRAM bytes of device 

memory. Then SℳXNℳX + SℒXNℒX + 4 NℒX
2/TB /NCall ≤ SDRAM. This relation can 

be further generalized if we split the set of whole leaves into chunks with each chunk 

containing NC (≤ NℒX) leaves for the case of extremely large molecular structures that do 

not fit into the given memory. Since NℳX = kNℒX and NCall = ⌈NℒX/NC⌉, the relation 

turns out to be 2kSℳXNC + 2SℒXNC + 4⌈ NC
2/TB /⌈NℒX /NC ⌉⌉ ≤ SDRAM where the first 

two terms are scaled by 2 to take into account pairing different leaf chunks. By finding the 

largest value of NC which satisfies this relation, our CUDA kernel can perform efficiently 

for molecular structures of any size using minimal kernel invocation (NCall) with a given 

size of the device memory. Our LOPA is able to handle up to 9.5 millions of atoms in GB 

energy computation with k = 32 and NCall = 1 for 1536MB device memory as available in 

Nvidia Geforce GTX 580 GPU used in our experiments.
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Although our kernel design satisfies important optimization properties needed for GPU 

implementation, it computes always constant (N/k)2 leaf pairs, regardless of the parameter ϵ. 

On the other hand, ∑i = 1
log8(N/k) min 8i − 1, N × min 8/ϵ3, 8i − 1, N × 82  node pairs will be 

considered, if the OPA is fully implemented. Even though one can easily see that the number 

of node pairs in OPA will quickly decrease as ϵ value gets bigger, the implementation is not 

suitable for the GPU architecture because of the extensive device memory accesses. OPA 

produces up to 64 additional node pairs when a given node pair is determined to be near. To 

balance workload, therefore, these new pairs of nodes need to be reallocated to active 

threads properly. This requires frequent and even serialized device memory accesses. These 

pros and cons in both methods suggest a hybrid approach similar to what we have used in 

this paper.

4. EXPERIMENTAL RESULTS

In this section, we summarize the performance results of our CUDA implementation as well 

as the hybrid approaches. Experiments were performed for the Coulomb potential (CP), 

Lennard-Jones potential (LJP), and generalized Born polarization (GBP) energy 

computations. The generalized Born energy calculation includes the Born radius 

computation. For all the experiments shown in this section, the molecular complexes in 

bounded state were selected from ZDock benchmark 2.0 where the number of atoms in each 

complex lies between 6,000 and 32,000. We used state-of-the-art multicore CPUs and 

manycore GPUs as listed in Table 3 to conduct these experiments.

In Table 2, we summarize the performance results of our CUDA and Cilk+CUDA 

implementations. The number of threads in a thread block, TB, was set to 256. This 

experiment was performed on GTX580. Maximum and average speedup factors over Naïve 

and average computational time per atom are shown for CP, LJP, and GBP energy 

computations in 4th, 5th, and 6th rows, respectively. All CUDA timings include device 

memory allocation, device-to-host data copy, texture binding, kernel run, host-to-device data 

copy, and final accumulation. Speedup factors over conventional serial implementation 

(Naïve) for these three energetics terms are close to two orders of magnitude except for CP 

which requires execution of more atomic pairs than other terms to bound the same error.

4.1 GB Energy

In this subsection we present detailed performance analysis of our methods for the 

generalized Born energy computation. Figure 5 shows the runtime performance of GBP-

CuLOPA implementation on large molecular structures with number of atoms from half a 

million to nearly two millions. Because of the complex shapes of the molecules a large 

number of quadrature points are also required. Figure 5(b) shows a comparison of GBP-

CuLOPA with GBP-Cilk, Amber 12 and Amber 14 for the Cucumber Mosaic Virus Capsid 

(CMVC) having 509,640 atoms with 1,929,128 quadrature points. Although relatively large 

errors were produced during the approximation of Born radii for this large molecular 

structure, GBP-CuLOPA brought a significant benefit in error-speedup tradeoff (less than 

0.006% error versus more than 660× speedup) compared to GBP-Cilk. GBP-Cilk was run on 

2 Intel Xeon-E2680 SandyBridge machines. GBP-CuLOPA and Amber 12-k20 were run on 
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Kepler-20, Amber 14-GTX780 was run on GTX 780 and Amber 14-k80 (0.82GHz) was run 

on Kepler 80 GPUs. Since Amber GPU versions do not directly report the GB energy time, 

we consider 98% of the non-bonded energy time reported by Amber as the GB time as 

suggested by an Amber GPU developer [53]. Note that, Amber GPU timings do not include 

data uploading/downloading time to/from GPUs, whereas our timings include all of them.

Figure 5(c) shows a performance table of GBP-CuLOPA for the large molecular structures 

shown in Figure 5(a). Each number within the parenthesis in the second and third columns 

of the table indicates the number of leaf nodes in the corresponding octree data structure. 

The number within parenthesis in the speedup column represents relative ‘rate of 

computation time increase’/‘square rate of atom increase’ based on the values for the 

molecule in the first row. This table shows that our CUDA implementation scales almost the 

same rate as the square rate of atomic increment which is quite reasonable in this N2 

pairwise computation. The speedup over Naïve decreases because the Naïve scales better as 

the #atoms gets larger. The device memory required in the entire GBP-CuLOPA 

computation is 20NℳX + 20NℒX + 28NℳY + 36NℒY + 4NℒXNℒY /TB  bytes as explained 

in Section 3

Overall, the performance of GBP-CuLOPA nicely scales with the number of atoms in the 

molecule while producing only 0.006% error and using fairly small amount of device 

memory which can be further reduced through multiple CUDA kernel invocations. It 

demonstrates an ability of efficient handling of huge systems which distinguishes CuLOPA 

from other GPU-based methods. Two other popular MD packages, Gromacs [42] and 

NAMD [28] programs crash for large biomolecular complexes whereas our implementations 

are able to successfully compute the energy terms. However, these MD packages are in 

general highly optimized for moderate sized molecules. They nevertheless lack a GPU-based 

implicit solvent/GB energy function or occasionally produced invalid results for some large 

structures in our experiments which made a comparison with those difficult.

Figure 6 shows performance and error comparison of various methods for the generalized 

Born polarization energy computation. GBP-CuLOPA achieves average speedup factors of 

252 and 184 on Kepler 20 and Geforce GTX 580 GPUs, respectively, while producing small 

errors. GBP-CuLOPA also runs faster and has less errors (w.r.t. Naïve) than Amber 12 GPU 

version. As explained in Section 3, spatial domain decomposition using octrees nicely 

balances workload of each thread and controls on-chip memory usage. Therefore, GBP-

CuLOPA can compute O(N2) atomic pairwise interactions efficiently. Furthermore, the 

performance scales reasonably from Geforce GTX 580 to Kepler 20 which has about twice 

the number of cores with slightly higher clock speed and larger on-chip memories.

4.2 LJ and Columb Energy

Figure 7 shows the performance of our CUDA implementation (CuLOPA) for LJP (Lennard-

Jones Potential) and CP (Coulomb Potential) energy computations. The CUDA timing 

covers data-loading and kernel execution as before. Data-loading includes device memory 

allocation, host-to-device memory copy, and texture binding. Kernel execution includes 

actual kernel run, device-to-host memory copy for the result buffer, and final accumulation 
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of the result. For the sake of comparison, maximum and average speedups of CP/LJP-

CuLOPA over the fully atomic N2 computation (Naïve) and the OPA computation using 12 

Cilk threads (12Cilk) are shown. Timing results were measured for the largest 50 protein 

complexes in ZDock benchmark 2.0.

Figure 7 shows that CP-CuLOPA runs over 27.5× and 4× faster on the average than CP-

Naïve and CP-12Cilk, respectively, for all three error bounds presented. LJP-CuLOPA, 

which is more efficient in error-speed tradeoff due to its quickly decaying distance-based 

kernel and complex arithmetic operations, achieved average speedup factors of 101× and 

1.2× over LJP-Naïve and LJP-12Cilk, respectively, while the errors were less than 0.5%. 

Although LJP-CuLOPA runs two orders of magnitude faster than LJP-Naïve for larger 

errors, it runs slower than LJP-12Cilk using OPA. The OPA for LJP significantly reduces the 

number of node pairs computed by quickly terminating a large number of them in 

intermediate levels. Then the computation can get even more efficient since near atom pairs 

can be highly localized. On the other hand, for a given molecule LJP-CuLOPA always 

spawns the same number of threads regardless of the value of ϵ. Therefore, our hybrid 

method is necessary for LJP-CuLOPA to overcome this inefficiency and enhance its 

performance further.

Figure 8 shows speedup factors achieved by two hybrid methods for computing Lennard-

Jones potential on the same set of molecular complexes used in Figure 7. Figure 8(a) shows 

the speedup factors of Hybrid A over CuLOPA as PCilk varies, while Figure 8(b) shows how 

Hybrid D speeds up over Naïve when PCilk and ϵCilk are kept fixed at 0.2 and 0.7, 

respectively, but is varied. Hybrid D achieves optimal performance, i.e., faster than both 

LJP-CuLOPA and LJP-Cilk, for all values of by fully utilizing the given cores in the system 

for ϵ < 0.7 and selecting OPA with Cilk threads as an optimal algorithm when ϵ ≥ 0.7. In our 

hybrid method, reliability in choo sing values for two parameters (PCilk and ϵCilk) is crucial.

In Hybrid A, 90% of the complexes exhibited speedup until PCilk reached 0.2. Although 

40% of them started to lose performance at PCilk = 0.3, the average speedup peaks at 

PCilk = 0.2 (Figure 8(a)) since those 40% of the complexes are relatively large and speedup 

is much higher than the smaller ones. Therefore, choosing PCilk with average speedup is 

reasonable to achieve a speedup close to optimal. For the parameter ϵCilk, LJP-CuLOPA ran 

faster than LJP-12Cilk for 66% of the complexes with ϵ values less than 0.7. However, the 

rates at which performance degrades for the remaining 34% of the complexes are relatively 

small especially for the large structures, so it generally works well. Therefore, a small set of 

complexes representing general range of sizes of the input structures should be sufficient to 

find close to optimal values for those parameters for a given system.

5. CONCLUSION

This paper presents ϵ-approximation-based parallel algorithms using multicore CPUs and 

manycore GPUs that achieve load balancing, extensive utilization of GPU resources, and 

achieve minimal memory requirement through simple leaf node retrieval and CUDA kernel 

optimizations. Average speedup factors of two orders of magnitude compared to a serial 
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code have been demonstrated with various molecular structures and error ranges for the 

selected energy terms. In our hybrid approach a simple yet reliable parametrization for 

distributing workload to cores of CPUs and GPUs was adopted, and experimental results 

show that our method can produce the best performance for all error ranges.

Our technique requires no intermediate communication between threads except for the final 

accummulation of the intermediate results. Furthermore, our node pair ordering scheme can 

enable efficient data splitting and loading on each node once octrees are generated. 

Therefore, it can be easily extended to run on heterogeneous multi-node CPU and GPU 

systems with increased scalability.
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Figure 1: 
Arrangement of indices in each leaf node pair to exploit the hierarchical cache structure.
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Figure 2: 
Our hybrid algorithms exploiting both CPU and GPU threads.
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Figure 3: 
(a) Performance of method A for different PCilk and ϵ values. (b) Performance of methods B 

and C w.r.t. pure CPU/GPU-oriented computation.
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Figure 4: 
(a) Hybrid algorithm D. (b) Performance of Hybrid D w.r.t. pure CPU/GPU methods for 

different ϵ.
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Figure 5: 
Performance of GBP-CuLOPA on different GPUs and comparison with Amber.
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Figure 6: 
GBP-CuOPA speedup results over GBP-Naïve. The result for Amber12 GPU version on 

Kepler 20 GPU [6], GBr6 [51], GBP-12Cilk are also shown for comparison. The titles in 

each row under horizontal axis represent % error with respect to GBP-Naïve, the number of 

nodes (N) and threads (T) for CPU-based method and the GPU model for GBP-CuLOPA, 

and name of method(program) used. 100 molecules having number of atoms between 1,304 

and 8,336 were used from ZDock benchmark suite.
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Figure 7: 
CUDA speedup results for Coulomb and Lennard-Jones potential computations. The 

maximum and average speedup factors of CP/LJP-CuLOPA (system: GTX 580) over (Top) 

Naïve and (Bottom) 12Cilk (system: 12-core Xeon E5680) are shown for the largest 50 

proteins in ZDock.
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Figure 8: 
Performance enhancement by hybrid methods A and D on LJP calculation. This experiment 

was done with 2 Xeon E5640 and GTX 580. (Top) An average speedup graph of hybrid 

method A over CuLOPA is shown as the fraction of leaf pairs using Cilk threads varies. 

(Bottom) Maximum and average speedup factors of LJP-Hybrid D over LJP-Naïve for 

various error bounds are shown. Eight Cilk threads were used for Hybrid A and twelve Cilk 

threads were used for OPA when ϵCilk ≥ 0.7.
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Table 1:

Impact of different k values.

k values => 16 32 48 64

kernel execution time (ms) 4.4 2.2 3.5 4.0

warp execution efficiency (%) 30.9 49.7 39.1 33.6

instructions per cycle 1.5 1.6 1.3 1.3

multiprocessor efficiency (%) 98.6 94.5 91.8 83.3

achieved occupancy 0.56 0.61 0.61 0.57

instructions issued (millions) 64M 34M 43M 50M

ACM BCB. Author manuscript; available in PMC 2020 July 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cha et al. Page 28

Table 2:

Performance results of CUDA (cuLOPA) and Cilk+CUDA hybrid (Hybrid D) implementation.

Energetic CP LJP GBP

Method cuLOPA cuLOPA Hybrid D cuLOPA

Bounded Err 0.5% 0.1% 0.1% 0.7%

Speedup over Naïve Max. 52.5 181.0 205.9 302.6

Avg. 27.5 81.5 89.5 243.9

Avg. time (μs) / atom 0.45 0.25 0.23 2.76
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