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Fast Constructions of Light-Weight Spanners for General Graphs

Michael Elkin ∗ Shay Solomon ∗†

Abstract

Since the pioneering works of Peleg and Schäffer [29], Althöfer et al. [4], and Chandra et al. [11],
it is known that for every weighted undirected n-vertex m-edge graph G = (V,E), and every integer
k ≥ 1, there exists a (2k − 1)-spanner with O(n1+1/k) edges and weight O(k · n(1+ǫ)/k) · ω(MST (G)),
for any ǫ > 0. (Here ω(MST (G)) stands for the weight of the minimum spanning tree of G.) Nearly
linear time algorithms for constructing (2k− 1)-spanners with nearly O(n1+1/k) edges were devised in
[9, 34, 33]. However, these algorithms fail to guarantee any meaningful upper bound on the weight of
the constructed spanners.

To our knowledge, there are only two known algorithms for constructing sparse and light spanners
for general graphs. One of them is the greedy algorithm of Althöfer et al. [4], analyzed by Chandra et al.
[11]. The drawback of the greedy algorithm is that it requires O(m ·(n1+1/k+n · logn)) time. The other
algorithm is due to Awerbuch et al. [6], from 1991. It constructs O(k)-spanners with O(k · n1+1/k ·Λ)
edges, weight O(k2 · n1/k · Λ) · ω(MST (G)), within time O(m · k · n1/k · Λ), where Λ is the logarithm
of the aspect ratio of the graph.

The running time of both these algorithms is unsatisfactory. Moreover, the usually faster algorithm
of [6] pays for the speedup by significantly increasing both the stretch, the sparsity, and the weight of
the resulting spanner.

In this paper we devise an efficient algorithm for constructing sparse and light spanners. Specifically,
our algorithm constructs ((2k− 1) · (1 + ǫ))-spanners with O(k · n1+1/k) edges and weight O(k · n1/k) ·
ω(MST (G)), where ǫ > 0 is an arbitrarily small constant. The running time of our algorithm is
O(k ·m + min{n · logn,m · α(n)}). Moreover, by slightly increasing the running time we can reduce
the other parameters. These results address an open problem from the ESA’04 paper by Roditty and
Zwick [34].
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1 Introduction

1.1 Centralized Algorithms. Given an undirected weighted graph G = (V,E) and a parameter
t ≥ 1, a subgraph H = (V,E′) of G (E′ ⊆ E) is called a t-spanner if for every edge e = (u, v) ∈ E,
distH(u, v) ≤ t · distG(u, v). (Here distG(u, v) stands for the distance between u and v in the graph
G.) Graph spanners were introduced in 1989 by Peleg and Schäffer [29] and Peleg and Ullman [30],
who showed that for every unweighted n-vertex graph G = (V,E) and an integer parameter k ≥ 1,
there exists an O(k)-spanner with O(n1+1/k) edges. Althöfer et al. [4] improved and generalized these
results. They analyzed the natural greedy algorithm for constructing graph spanners, and showed that
for every n-vertex weighted graph G = (V,E) and an integer parameter k ≥ 1, this algorithm constructs
a (2k − 1)-spanner with O(n1+1/k) edges. (This is near-optimal [29].) They also showed that the weight
of the resulting spanner is O(n/k) · ω(MST (G)). (We will use the normalized notion of weight, called
lightness, which is the ratio between the weight of the spanner and ω(MST (G)).) In SoCG’92, Chandra
et al. [11] improved the lightness bound, and showed that spanners obtained by the greedy algorithm
have lightness O(k ·n(1+ǫ)/k), for an arbitrarily small ǫ > 0. However, the running time of their algorithm
is O(m · (n1+1/k + n · log n)), where m stands for |E|. Around the same time Awerbuch et al. [6] devised
an algorithm that constructs O(k)-spanners with O(k · n1+1/k · Λ) edges and lightness O(k2 · n1/k · Λ),
where Λ is the logarithm of the aspect ratio of the input graph. The running time of the algorithm of [6]
is O(m · k · n1/k · Λ).

In the two decades that passed since the results of [29, 30, 4, 11, 6] graph spanners turned out to be
extremely useful. Among their applications is compact routing [30, 31, 36], distance oracles and labels
[28, 35, 33], network synchronization [5], and computing almost shortest paths [13, 34, 16, 19, 20]. Graph
spanners also became a subject of intensive research for their own sake [13, 18, 16, 9, 37, 20, 19, 38, 32, 8].

In particular, a lot of research attention was devoted to devising efficient algorithms for constructing
sparse spanners for weighted graphs. Cohen [13] devised a randomized algorithm for constructing ((2k−
1) · (1 + ǫ))-spanners with O(k · n1+1/k) edges. Her algorithm requires expected O(m · n1/k · k) time.
Improving upon [13], Baswana and Sen [9] devised a randomized algorithm that constructs (2k − 1)-
spanners with expected O(k·n1+1/k) edges, within expected O(k·m) time. Roditty et al. [33] derandomized
this algorithm without any loss in parameters, or in running time. Roditty and Zwick [34] devised a
deterministic algorithm for constructing (2k − 1)-spanners with O(n1+1/k) edges in O(k · n2+1/k) time.
In the discussion section at the end of their paper Roditty and Zwick [34] write:

“Another interesting property of the (original) greedy algorithm, shown by [11], is that the total weight
of the edges in the (2k−1)-spanner that it constructs is at most O(n(1+ǫ)/k ·ω(MST (G))),1 for any ǫ > 0.
Unfortunately, this property no longer holds for the modified greedy algorithm. Again, it is an interesting
open problem to obtain an efficient spanner construction algorithm that does have this property.”

In the current paper we devise such a construction. Specifically, our algorithm constructs ((2k − 1) ·
(1+ ǫ))-spanners with O(k ·n1+1/k) edges and lightness O(k ·n1/k), and does so in time O(k ·m+min{n ·
log n,m · α(n)}), where α(n) is an inverse Ackermann function. In other words, the running time of our
algorithm is near-optimal and is drastically better than the running time O(m · (n1+1/k + n · log n)) of
[11] and than that of [6] (O(m · k ·n1/k ·Λ)). We pay for this speed up by a small increase (by a factor of
(1+ ǫ)) in the stretch and a small increase (by a factor of k) in the number of edges. (This comparison is
with [11]. Our algorithm strictly outperforms the algorithm of [6].) We also have another variant of our
algorithm with a slightly higher running time (O(k · n2+1/k)), and with O(n1+1/k) edges and lightness
O(k · n1/k).

Note that the relationship between the stretch and lightness in both our results is essentially the
same as in the state-of-the-art bound [11]. Specifically, in our result the slack factor (1 + ǫ) appears in
the stretch, while in [11] it appears in the exponent of the lightness. The number of edges in our slower
construction (that runs in O(k · n2+1/k) time) is the same as in [11]. The faster variant of our algorithm
(that runs in near-optimal time of O(k ·m+min{n · log n,m ·α(n)}), pays for the speedup by increasing

1Actually, the weight in [11] is O(k · n(1+ǫ)/k · ω(MST (G))).
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results stretch number of edges lightness running time

Althöfer et al. [4] 2k − 1 O(n1+1/k) O(n/k) O(m · n1+1/k)

Chandra et al. [11] 2k − 1 O(n1+1/k) O(k · n(1+ǫ)/k) O(m · (n1+1/k + n · log n))

Awerbuch et al. [6] O(k) O(k · n1+1/k · Λ) O(k2 · n1/k · Λ) O(m · k · n1/k · Λ)

Our faster construction (2k − 1) · (1 + ǫ) O(k · n1+1/k) O(k · n1/k) O(k · m + min{n · logn,m · α(n)})

Our slower construction (2k − 1) · (1 + ǫ) O(n1+1/k) O(k · n1/k) O(k · n2+1/k)

Table 1: A concise comparison of previous and our constructions of light spanners. All the constructions mentioned in
this table are deterministic. Our results are indicated by bold fonts.

the number of edges by a factor of k. See Table 1 for a concise comparison of our and previous results
on light spanners. (The lightness of all other spanner constructions [13, 9, 33, 34] is unbounded.)

Chandra et al. [11] also showed that the greedy algorithm gives rise to a construction of O(log2 n)-
spanners with O(n) edges and constant lightness, and to a construction of O(log n)-spanners with O(n)
edges and lightness O(log n). The running time of these constructions is O(m · n · log n). Our algorithm
also constructs spanners with the same (up to constant factors) parameters. The running time required
by our algorithm to construct these spanners is O(n2 · log n).

1.2 Streaming Algorithms. In the streaming model of computation the input graph G = (V,E)
arrives as a “stream”, i.e., the algorithm reads edges one after another. The algorithm is required to
process edges efficiently, and to store only a limited amount of information. In the context of computing
spanners the natural memory limitation is the size of the spanner. Multi-pass streaming algorithms also
allow several (ideally, just a few) passes over the input stream.

The streaming model of computation was introduced by Alon et al. [2] and by Feigenbaum et al.
[21]. The study of graph problems in the streaming model was introduced by Feigenbaum et al. [20]. In
particular, Feigenbaum et al. [20] devised a randomized one-pass streaming algorithm for computing a
(2k+1)-spanner with expected O(k · log n ·n1+1/k) edges, using O(k · log n ·n1/k) processing time-per-edge.
This result was improved in [17], who devised a randomized one-pass streaming algorithm that computes
(2k − 1)-spanners with expected O(k · n1+1/k) edges, using O(1) processing time-per-edge. See also [7].
Elkin and Zhang [19] devised a multi-pass streaming algorithm for constructing sparse (1+ǫ, β)-spanners.
The number of passes in their algorithm is O(β).

To our knowledge, there are currently no efficient streaming algorithms for computing light spanners.
We show that our algorithm can be implemented efficiently in the streaming model augmented with the
sorting primitives (henceforth, augmented streaming model). This model, introduced by Aggarwal et al.
[1] in FOCS’94, allows to have “sort passes”. As a result of a sort pass, in consequent passes one can
assume that the input stream that the algorithm reads is sorted. (See [1] for the justification of this
model. The authors in [1] argue that “streaming computations with an added sorting primitive are a
natural and efficiently implementable class of massive data set computations”.)

The algorithm of Chandra et al. [11] can be viewed as an algorithm in this model. After the initial
sorting pass, it requires one pass over the input stream. As a result it constructs a (2k− 1)-spanner with
O(n1+1/k) edges and lightness O(k ·n(1+ǫ)/k), for an arbitrarily small ǫ > 0. The processing time-per-edge
of this algorithm is, however, O(n1+1/k), i.e., prohibitively large.

We show that a variant of our algorithm computes ((2k−1)·(1+ǫ))-spanners with expected O(k·n1+1/k)
edges and expected lightness O(k2 · n1/k). It performs two passes over the input stream, that follow an
initial sorting pass. In the first pass the worst-case (resp., amortized) processing time-per-edge of our
algorithm is O( logn

log logn) (resp., O(α(n))). The processing time-per-edge of our algorithm in its second
pass over the input stream is O(1).

1.3 Our Techniques. Our algorithm is based on a transformation, which given a black-box construction
of sparse (possibly heavy) spanners with a certain stretch t, efficiently produces sparse and light spanners
with roughly the same stretch. We use this transformation in conjunction with a number of known
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algorithms that produce sparse spanners, but do not provide any bound on their lightness.
Our transformation generalizes a metric transformation from [11]. Specifically, the metric transfor-

mation of [11] converts constructions of sparse spanners for metrics into constructions of sparse and light
spanners (for the same metric). The generalized transformation that we devise applies to weighted not
necessarily complete graphs. (Observe that a metric can be viewed as a complete weighted graph.)

There are a number of technical difficulties that we overcome in our way to the generalized transfor-
mation. Next, we briefly discuss one of them. The construction of [11] hierarchically partitions the point
set of the input metric into clusters. Then it selects a representative point from each cluster, and invokes
its input black-box construction of sparse spanners on the metric induced by the representatives. One
can try to mimic this approach in graphs by replacing each missing metric edge between representatives
by the shortest path between them. This approach, however, is doomed to failure, as the overall number
of edges taken into the spanner in this way might be too large. To overcome this difficulty we carefully
select representative edges which are inserted into a certain auxiliary graph. Then the black-box input
construction is applied to the auxiliary graph. As a result we obtain a spanner of the auxiliary graph,
which we call auxiliary spanner. This auxiliary spanner Q = (U , E) is a graph over a new vertex set U ,
i.e., U is not a subset of the original vertex set V . Next, we “project” the auxiliary spanner Q onto the
original graph, i.e., we translate edges of E into edges of the original edge set E. This needs to be done
carefully, to avoid blowing up the stretch and lightness. Also, it is crucial that this translation procedure
will be efficient. Interestingly, we do not project vertices of U onto vertices of V , but rather edges of E
onto edges of E. In particular, for a vertex u ∈ U and two edges (u, x), (u, y) ∈ E , they may be translated
into two vertex-disjoint edges (u′, x′), (u′′, y′) ∈ E. As a result a path in Q does not translate into a path
in G, but rather into a collection of possibly vertex-disjoint edges. We show that these edges can be
carefully glued into a path. This gluing, however, comes at a price of slightly increasing the stretch.

1.4 Related Work. The large body of work on constructing graph spanners efficiently was already
discussed in Section 1.1. The problem of constructing light spanners efficiently was also studied in the
context of geometric spanners. See [15] and [23], and the references therein.

1.5 Organization. In Section 2 we present and analyze our algorithm in the centralized model of com-
putation. The algorithm is described in Section 2.1, and its analysis appears in Section 2.2. In Section 3
we present a few variants of our basic algorithm (from Section 2.1). In particular, the streaming variant
of our algorithm is presented in Section 3.5.

1.6 Preliminaries. We will use the following results as a black-box (we write n = |V |,m = |E|).

Theorem 1.1 [24] [unweighted graphs] For any unweighted graph G = (V,E) and any integer k ≥ 1, a
(2k − 1)-spanner with O(n1+1/k) edges can be built in O(m) time.

Theorem 1.2 [9, 33] [weighted graphs I] For any weighted graph G = (V,E) and any integer k ≥ 1, a
(2k − 1)-spanner with O(k · n1+1/k) edges can be built in O(k ·m) time.

Remark: The algorithm of [9] is randomized, but was later derandomized in [33]. Henceforth, the
algorithm provided by Theorem 1.2 is deterministic.

Theorem 1.3 [34] [weighted graphs II] For any weighted graph G = (V,E) and any integer k ≥ 1, a
(2k − 1)-spanner with O(n1+1/k) edges can be built in O(k · n2+1/k) time.

Theorem 1.4 [17] [integer-weighted graphs] For any integer-weighted graph G = (V,E) and any integer
k ≥ 1, a (2k − 1)-spanner with expected O(k · n1+1/k) edges can be built in O(SORT (m)) time, where
SORT (m) is the time needed to sort m integers.

Remark: The algorithm of [17] is randomized: while the guarantees 2k − 1 and O(SORT (m)) on the
stretch and running time, respectively, are deterministic, the guarantee O(k · n1+1/k) on the size of the
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spanner is in expectation. The fastest known randomized [26] (respectively, deterministic [25]) algorithm
for sorting m integers requires expected O(m ·

√
log log n) (resp., worst-case O(m · log log n)) running time.

We will henceforth refer to the algorithms of Theorems 1.1, 1.2, 1.3 and 1.4 as Algorithms UnwtdSp,
WtdSp, WtdSp2, and IntWtdSp, respectively.

2 The Basic Construction

2.1 The Algorithm

In this section we devise an algorithm LightSp that builds a light spanner efficiently.
Let G = (V,E) be an arbitrary weighted graph, with n = |V |,m = |E|. Let k ≥ 1 be an integer

parameter that determines the stretch bound of the spanner.
We start with building an MST (or an O(1)-approximate MST) T = (V,ET ) for G. Let MT =

(V, distT ) be the (shortest-path) metric induced by T . We then compute the Hamiltonian path L =
(v1, v2, . . . , vn) of MT drawn by taking the preorder traversal of T . Observe that for each 1 ≤ i ≤
n − 1, distL(vi, vi+1) = distT (vi, vi+1). More generally, for any pair u, v ∈ V of vertices, distL(u, v) ≥
distT (u, v). Define L = ω(L); it is well known ([14], ch. 36) that L ≤ 2·ω(T ), and so L = O(ω(MST (G))).

Let 1 < ρ ≤ 2 be some parameter to be determined later, and define ℓ = ⌈logρ n⌉. We partition
the edges of E into ℓ + 1 edge sets. The first edge set E0 contains all edges with weight in the range
W0 = (0, Ln ]. For each 1 ≤ j ≤ ℓ, the jth edge set Ej contains all edges with weight in the range
Wj = (ξj, ρ · ξj ], where ξj = ρj−1 · L

n .
Define V0 = V , and let n0 = |V0| = n. We use Algorithm WtdSp to build a (2k − 1)-spanner

H ′
0 = (V0, E

′
0) for G0 = (V,E0).

Algorithm LightSp proceeds in ℓ iterations j = 1, 2, . . . , ℓ.

1. First, we divide the path L into nj =
q·L
ξj

= q·n
ρj−1 intervals of length µj =

ξj
q each, where 1

2k−1 < q < k

is some parameter to be determined later. (Notice that nj > n, for all 1 ≤ j < logρ q + 1.) These
intervals induce a partition of V in the obvious2 way; denote these intervals and the correspond-

ing vertex sets by I
(1)
j , I

(2)
j , . . . , I

(nj)
j and V

(1)
j , V

(2)
j , . . . , V

(nj)
j , respectively. While computing this

partition of V , we will store the index i of the vertex set V
(i)
j to which any vertex v ∈ V belongs

in some variable indj(v), for each 1 ≤ i ≤ nj. For each interval I
(i)
j , 1 ≤ i ≤ nj, we define a new

“dummy” vertex r
(i)
j (i.e., not present in G) which will serve as the representative of the interval

I
(i)
j . The vertices r

(i)
j (respectively, intervals I

(i)
j ), 1 ≤ i ≤ nj, will also be referred to as the j-

level representatives (resp., j-level intervals). For any vertex v ∈ V , its j-level representative is

given by rj(v) = r
(indj(v))
j . We also define a dummy vertex set Vj , which contains all the j-level

representatives. Observe that |Vj | ≤ min{n, nj} = min
{

n, q·n
ρj−1

}

.

2. We then compute an edge set Ẽj over Vj as follows. First, we remove from the jth edge set Ej all
edges that have both their endpoints in the same j-level interval to obtain the edge set Ēj . For each
e = (u, v) ∈ Ēj , let ê = (rj(u), rj(v)) be a dummy edge of weight ω(e) between the corresponding
j-level representatives, and note that rj(u) 6= rj(v); we say that ê = r(e) is the representative edge
of e, and that e = s(ê) is the source edge of ê. Define Êj = {ê = r(e) | e ∈ Ēj}, and let Ĝj = (Vj , Êj)
be the corresponding multi-graph; note that Ĝj does not contain self-loops. Next, we transform Ĝj

into a simple graph G̃j = (Vj , Ẽj) by removing all edges but the one of minimum weight, for every
pair of incident vertices in Ĝj . During this process, we store with every edge ẽ ∈ Ẽj its source edge
e = s(ẽ) ∈ Ēj.

3. We proceed to building a (2k−1)-spanner H ′
j = (Vj , E

′
j) for G̃j = (Vj , Ẽj) using Algorithm WtdSp.

2A vertex that “lies” on the boundary of two consecutive intervals can be assigned to either one of them arbitrarily.
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4. Next, we replace each edge e′ ∈ E′
j by its source edge s(e′). (Note that e′ ∈ E′

j ⊆ Ẽj is a dummy
edge that connects some two distinct j-level intervals; denote them by I and I ′. Moreover, its
weight ω(e′) is the smallest weight of an Ej-edge which connects I and I ′. Hence the source edge
s(e′) is the minimum weight Ej-edge which connects the intervals I and I ′.) Denote the resulting
edge set by E∗

j and define H∗
j = (Vj , E

∗
j ); note that E∗

j ⊆ Ēj ⊆ Ej . We will refer to H∗
j as the

j-level spanner.

Finally, we define E∗ = ET ∪ E′
0 ∪
⋃ℓ

j=1E
∗
j , and return the graph H∗ = (V,E∗) as our spanner.

2.2 The Analysis

In this section we analyze the properties of the constructed graph H∗.

2.2.1 Stretch. We start with analyzing the stretch of the graph H∗ = (V,E∗).
Define str(k, q) = (2k − 1) · (1 + 2

q ) +
2
q . Next, we show that the stretch of H∗ is at most str(k, q).

In other words, we prove that distH∗(u, v) ≤ str(k, q) · distG(u, v), for any edge e = (u, v) ∈ E.
If e ∈ E0, then we have distH∗(u, v) ≤ distH′

0
(u, v) ≤ (2k−1) ·distG(u, v) ≤ str(k, q) ·distG(u, v).

We henceforth assume that e ∈ Ej , for some 1 ≤ j ≤ ℓ. The next lemma shows that distH∗(u, v) ≤
str(k, q) · ω(e). (This lemma in conjunction with the triangle inequality imply that distH∗(u, v) ≤
str(k, q) · distG(u, v), for any edge e = (u, v) ∈ E, which provides the required stretch bound on H∗.)

Lemma 2.1 There is a path of length at most str(k, q) ·ω(e) in H∗
j ∪T = (V,E∗

j ∪ET ) between u and v.

Proof: Since e is in Ej, its weight is in Wj = [ξj, ρ · ξj]. In particular, we have ω(e) ≥ ξj .
For any pair x, y ∈ V of vertices, let ΠT (x, y) denote the path in the MST T between them.
Suppose first that u and v belong to the same j-level interval. Note that the length of all j-level

intervals is µj =
ξj
q , and so distT (u, v) ≤ distL(u, v) ≤ ξj

q . Hence, the weight of the path ΠT (u, v)
between u and v in T is at most

ξj
q

≤ ω(e)

q
< (2k − 1) · ω(e) < str(k, q) · ω(e).

(The one before last inequality holds as q > 1
2k−1 .) Thus ΠT (u, v) is a path of the required length in

H∗
j ∪ T between u and v.

We henceforth assume that u and v belong to distinct j-level intervals. Let ẽ = (rj(u), rj(v)) ∈ Ẽj be
the respective edge in Ẽj , where rj(u) and rj(v) are the j-level representatives of u and v, respectively.
By the construction of Ẽj, we have ω(ẽ) ≤ ω(e). Let Π′(rj(u), rj(v)) = (rj(u) = u′0, u

′
1, . . . , u

′
h = rj(v))

be a path of length at most (2k − 1) · distG̃j
(rj(u), rj(v)) in H ′

j between rj(u) and rj(v). We have

ω(Π′(rj(u), rj(v))) ≤ (2k − 1) · distG̃j
(rj(u), rj(v)) ≤ (2k − 1) · ω(ẽ) ≤ (2k − 1) · ω(e). (1)

Notice that the edges of H ′
j (and of Π′(rj(u), rj(v))) are not taken as is to the graph H∗

j . That is,
each edge e′i = (u′i, u

′
i+1) ∈ H ′

j is replaced by its source edge s(e′i) = (ui, ui+1) ∈ E∗
j . To connect the

two endpoints u′i and u′i+1 of the original edge e′i ∈ E′
j in H∗

j ∪ T , we take the path Π(u′i, u
′
i+1) =

ΠT (u
′
i, ui) ◦ (ui, ui+1) ◦ ΠT (ui+1, u

′
i+1) obtained from the concatenation of the path ΠT (u

′
i, ui), the edge

s(e′i) = (ui, ui+1), and the path ΠT (ui+1, u
′
i+1). Observe that u′i is the j-level representative of ui, i.e.,

u′i = rj(ui). In particular, they belong to the same j-level interval, and so ω(ΠT (u
′
i, ui)) ≤

ξj
q . Similarly,

ω(ΠT (ui+1, u
′
i+1)) ≤

ξj
q . Also, since s(e′i) ∈ E∗

j ⊆ Ej , it holds that ω(e
′
i) ≥ ξj. Recall that the weight of

the source edge s(e′i) = (ui, ui+1) of e′i is equal to that of e′i = (u′i, u
′
i+1), and so ω(s(e′i)) = ω(e′i) ≥ ξj .

Consequently, the weight ω(Π(u′i, u
′
i+1)) of the path Π(u′i, u

′
i+1) satisfies

ω(Π(u′i, u
′
i+1)) = ω(ΠT (u

′
i, ui)) + ω(ui, ui+1) + ω(ΠT (ui+1, u

′
i+1))

≤ ξj
q

+ ω(e′i) +
ξj
q

≤ ω(e′i) ·
(

1 +
2

q

)

. (2)
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Let Π∗(rj(u), rj(v)) be the path in H∗
j ∪ T between rj(u) and rj(v) obtained from Π′(rj(u), rj(v))

by replacing each edge (u′i, u
′
i+1) in it by the path Π(u′i, u

′
i+1)) as described above. (See Figure 1.(I).)

Equations (1) and (2) yield

ω(Π∗(rj(u), rj(v))) ≤ ω(Π′(rj(u), rj(v))) ·
(

1 +
2

q

)

≤ (2k − 1) · ω(e) ·
(

1 +
2

q

)

.

ΠT (u, rj(u))

(I)

u rj(u)

ΠT (rj(v), v)

rj(v) v

Π∗(rj(u), rj(v))

u0rj(u) = u′
0

u3

ΠT (u
′
0
, u0)

u1 u′
1

u2u′
2 u′

3
= rj(v)

ΠT (u1, u
′
1
) ΠT (u

′
2
, u2)

|Iu| =
ξj
q

(II)

|Iv| =
ξj
q

ΠT (u3, u
′
3
)

e′
0

s(e′
0
)

e′
1

s(e′
2
)

e′
2

Figure 1: (I) An illustration of the path Π∗(rj(u), rj(v)). Edges e
′
i = (u′

i, u
′
i+1) of the path Π′(rj(u), rj(v)) in H ′

j are depicted
by dashed curved lines. The MST-paths ΠT (u

′
i, ui) ∈ T between vertices u′

i and ui that belong to the same interval are depicted
by thick curved lines. All the other edges (i.e., edges (ui, ui+1) in H∗

j ) are depicted by thin straight lines. (II) An illustration of
the path Π∗(u, v). The vertices u and rj(u) (respectively, v and rj(v)) belong to the same j-level interval, denoted here by Iu

(resp., Iv); the lengths of these intervals (denoted here by |Iu| and |Iv|) are both equal to
ξj
q
.

Finally, let Π∗(u, v) = ΠT (u, rj(u)) ◦ Π∗(rj(u), rj(v)) ◦ ΠT (rj(v), v) be the path in H∗
j ∪ T between

u and v obtained from the concatenation of the paths ΠT (u, rj(u)), Π
∗(rj(u), rj(v)) and ΠT (rj(v), v).

(See Figure 1.(II) for an illustration.) Since u and rj(u) belong to the same j-level interval, we have

ω(ΠT (u, rj(u))) ≤ ξj
q . Similarly, ω(ΠT (rj(v), v)) ≤ ξj

q . Recall that ω(e) ≥ ξj. We conclude that

ω(Π∗(u, v)) = ω(ΠT (u, rj(u))) + ω(Π∗(rj(u), rj(v))) + ω(ΠT (rj(v), v))

≤ ξj
q
+ (2k − 1) · ω(e) ·

(

1 +
2

q

)

+
ξj
q

≤ ω(e) ·
(

(2k − 1) ·
(

1 +
2

q

)

+
2

q

)

= str(k, q) · ω(e).

Hence Π∗(u, v) is a path of length at most str(k, q) · ω(e) between u and v in H∗
j ∪ T , as required.

2.2.2 Number of Edges. The next lemma bounds the number of edges in the spanner H∗ = (V,E∗).

Lemma 2.2 |E∗| = O
(

k · n1+1/k ·
(

1 + q
ρ−1

))

.

Proof: Recall that |Vj | ≤ min{n, nj} = min
{

n, q·n
ρj−1

}

≤ n, for 1 ≤ j ≤ ℓ. For an index

logρ q + 1 ≤ j ≤ ℓ, we have q
ρj−1 ≤ 1. Hence n ≥ q·n

ρj−1 = nj, and so |Vj| ≤ nj. By construction,

E∗ = ET ∪E′
0 ∪
⋃ℓ

j=1E
∗
j . Clearly |ET | = n− 1. By Theorem 1.2, |E′

0| = O(k · |V0|1+1/k) = O(k ·n1+1/k).
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Also, it holds that |E∗
j | = |E′

j | = O(k · |Vj |1+1/k) = O(k · n1+1/k), for each 1 ≤ j ≤ ℓ. Next, consider an

index logρ q + 1 ≤ j ≤ ℓ; in this case |Vj | ≤ nj =
q·n
ρj−1 . Since q < k, we have q1/k = O(1). It follows that

|E∗
j | = O

(

k ·
(

q · n
ρj−1

)1+1/k
)

= O

(

k · q · n1+1/k ·
(

1

ρ1+1/k

)j−1
)

. (3)

Since ρ > 1, we have

∑

logρ q+1≤j≤ℓ

(

1

ρ1+1/k

)j−1

≤
∞
∑

i=0

(

1

ρ1+1/k

)i

≤
∞
∑

i=0

(

1

ρ

)i

=
1

ρ− 1
+ 1.

It follows that

|E∗| = |ET |+ |E′
0|+

ℓ
∑

j=1

|E∗
j | = n− 1 +O(k · n1+1/k) +

∑

1≤j<logρ q+1

|E∗
j |+

∑

logρ q+1≤j≤ℓ

|E∗
j |

= O(k · n1+1/k) +O(logρ q · k · n1+1/k) +O
(

k · q · n1+1/k
)

·
∑

logρ q+1≤j≤ℓ

(

1

ρ1+1/k

)j−1

= O

(

k · n1+1/k ·
(

1 +
q

ρ− 1

))

.

(Note that for q > 1, it holds that logρ q = O( q
ρ−1).)

2.2.3 Weight. The next lemma estimates the weight of H∗ = (V,E∗).

Lemma 2.3 ω(E∗) = O
(

k2 · n1/k · q
ρ−1

)

· ω(MST (G)).

Proof: First, observe that the edge weights in E0 are bounded above by L
n . Since |E′

0| = O(k · n1+1/k),
it follows that

ω(E′
0) ≤ O(k · n1+1/k) · L

n
= O(k · n1/k · L). (4)

The edge weights in Ej are bounded above by ξj · ρ = ρj · L
n , for each 1 ≤ j ≤ ℓ.

Consider first indices j in the range 1 ≤ j < logρ q + 1. Since |E∗
j | = O(k · n1+1/k), we have ω(E∗

j ) =

O(k · n1+1/k) · (ρj · L
n ) = O(k · n1/k · ρj · L). It follows that
∑

1≤j<logρ q+1

ω(E∗
j ) = O

(

k · n1/k · L
)

·
∑

1≤j<logρ q+1

ρj = O
(

k · n1/k · L · q
)

. (5)

Next, consider indices j with logρ q + 1 ≤ j ≤ ℓ. By (3), |E∗
j | = O

(

k · q · n1+1/k ·
(

1
ρ1+1/k

)j−1
)

. Hence

ω(E∗
j ) = O

(

k · q · n1+1/k ·
(

1

ρ1+1/k

)j−1
)

·
(

ρj · L
n

)

= O

(

k · q · n1/k ·
(

1

ρ1/k

)j−1

· L
)

.

Observe that
∑

logρ q+1≤j≤ℓ

(

1

ρ1/k

)j−1

≤
∞
∑

i=0

(

1

ρ1/k

)i

= O

(

k

ρ− 1

)

.

It follows that

∑

logρ q+1≤j≤ℓ

ω(E∗
j ) = O

(

k · q · n1/k · L
)

·
∑

logρ q+1≤j≤ℓ

(

1

ρ1/k

)j−1

= O

(

k2 · q · n1/k · L · 1

ρ− 1

)

. (6)
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By Equations (4), (5) and (6),

ω(E∗) = ω(T ) + ω(E′
0) +

∑

1≤j<logρ q+1

ω(E∗
j ) +

∑

logρ q+1≤j≤ℓ

ω(E∗
j )

= ω(T ) +O(k · n1/k · L) +O
(

k · n1/k · L · q
)

+O

(

k2 · q · n1/k · L · 1

ρ− 1

)

= O

(

k2 · n1/k · q

ρ− 1

)

· ω(MST (G)).

(Since q > 1
2k−1 , we have k2 · q = Ω(k).)

2.2.4 Running Time. The next lemma bounds the running time of our construction.

Lemma 2.4 The graph H∗ can be built within time O(k ·m+min{n · log n,m · α(n)}).

Proof: The tree T can be built in time O(min{m + n · log n,m · α(m,n)}) [12]. Computing the
Hamiltonian path L of MT , as well as its weight L = ω(L), take another O(n) time. Having computed
L, we can partition the edges of E to the ℓ+1 edge sets E0, E1, . . . , Eℓ in O(m) time in the obvious way.
By Theorem 1.2, building the spanner H ′

0 for G0 = (V,E0) requires O(k · |E0|) = O(k ·m) time.
Next, we bound the running time of a single iteration j in the main loop, for 1 ≤ j ≤ ℓ.

1. For each 1 ≤ j ≤ ℓ, we allocate an array Aj of size nj. For each x ∈ Vj , the entry Aj [x] will contain
the linked list of x’s neighbors in the multi-graph Ĝj (with the weights of the representative edges).
For each edge e = (u, v) ∈ E we determine the index j ∈ [ℓ] such that ω(e) ∈ Wj (and so e ∈ Ej). By
the locations of u and v on the path L, we determine the j-level representatives rj(u) and rj(v) of u
and v, respectively. We also determine whether the edge crosses between different j-level intervals.
If it is the case (i.e., e ∈ Ēj), then we insert the edge into the array Aj. (In other words, we update
the linked lists of both rj(u) and rj(v) in Aj .) In this way we form the multi-graphs Ĝ1, Ĝ2, . . . , Ĝℓ

within O(|E|) = O(m) time. To prune these multi-graphs into simple graphs G̃1, G̃2, . . . , G̃ℓ, we
need to remove all edges but the one of minimum weight, for every pair of incident vertices in Ĝj .
This can be done deterministically within O(m) time and space. (Alternatively, one can apply one
of the algorithms for constructing (2k − 1)-spanners with O(k · n1+1/k) edges for weighted graphs
[9, 34, 17] directly on the multi-graphs Ĝ1, Ĝ2, . . . , Ĝℓ, without pruning them first. It is easy to
verify that this does not affect their guarantees for stretch, size and running time.)

2. By Theorem 1.2, the time needed to build the (2k − 1)-spanner H ′
j = (Vj, E

′
j) for G̃j = (V, Ẽj) is

O(k·|Ẽj |) = O(k·|Ej |). Summing over all ℓ iterations, the overall time is
∑ℓ

j=1O(k·|Ej |) = O(k·m).

3. Replacing each edge of E′
j by its source edge takes O(1) time, thus the graph H∗

j = (V,E∗
j ) is built

in O(|E′
j |) = O(|Ej |) time. Summing over all ℓ iterations, the overall time is

∑ℓ
j=1O(|Ej |) = O(m).

It follows that the total running time of the construction is

O(min{m+ n · log n,m · α(m,n)}) +O(k ·m) = O(k ·m+min{n · log n,m · α(n)}).
We remark that there are randomized algorithms for constructing MST within O(m + n) time [27].
Employing one of them reduces the running time of our algorithm to just O(k ·m).

2.2.5 Summary. We summarize the properties of the spanner H∗ = (V,E∗) in the following theorem.
(We substituted ρ = 2 to optimize the parameters of the construction.)

Theorem 2.5 Let G = (V,E) be a weighted graph, with n = |V |,m = |E|. For any integer k ≥ 1

and any number 1
2k−1 < q < k, a

(

(2k − 1) · (1 + 2
q ) +

2
q

)

-spanner with O
(

k · n1+1/k · (1 + q)
)

edges and

lightness O
(

k2 · n1/k · q
)

, can be built in O(k ·m+min{n · log n,m · α(n)}) time.

8



By substituting q = Θ(1ǫ ) in Theorem 2.5, for some small constant ǫ > 0, we obtain:

Corollary 2.6 Let G = (V,E) be a weighted graph, with n = |V |,m = |E|. For any integer k ≥ 1 and
any constant ǫ > 0, a ((2k − 1) · (1 + ǫ))-spanner with O

(

k · n1+1/k
)

edges and lightness O
(

k2 · n1/k
)

,
can be built in O(k ·m+min{n · log n,m · α(n)}) time.

Note also that by substituting q = Θ(k/ǫ), we get a (2k − 1 + ǫ)-spanner with O
(

k2 · n1+1/k
)

edges

and lightness O
(

k3 · n1/k
)

, within the same time.

3 Variants of the Construction

In this section we devise some variants of the basic construction of Section 2 by applying a small (but
significant) modification to Algorithm LightSp.

Notice that Algorithm LightSp employs Algorithm WtdSp as a black box for building (i) the spanner
H ′

0 = (V0, E
′
0) for the graph G0 = (V,E0), and (ii) the spanner H ′

j = (Vj, E
′
j) for the graph G̃j = (Vj , Ẽj)

in step 3 of the main loop, for each 1 ≤ j ≤ ℓ. Instead of employing Algorithm WtdSp, we can employ
some of the other black-box spanners that are summarized in Section 1.6.

3.1 First Variant (Slightly Increasing the Stretch)

There is a significant difference between the spanner H ′
0, and the spanners H ′

j for j ≥ 1. While the aspect
ratio (defined as the ratio between the maximum and minimum edge weights) of the graph G0 may be
unbounded, the aspect ratio of all the graphs G̃j , 1 ≤ j ≤ ℓ, is bounded above by ρ. This suggests that
we may view the graphs G̃j as unweighted, and will thus be able to use Algorithm UnwtdSp for building
the spanners H ′

j for them. As a result, the stretch of each spanner H ′
j will increase by a factor of ρ.

Denote by H∗ the variant of H∗ obtained by employing Algorithm UnwtdSp for building the spanners
H ′

j, 1 ≤ j ≤ ℓ. (We still use Algorithm WtdSp to build the spanner H ′
0.)

We will next analyze the properties of the resulting construction H∗. This analysis is very similar to
the analysis of the basic construction that is given in Section 2.2, hence we aim for conciseness.

Stretch. We first show how to adapt the stretch analysis of Section 2.2.1 to the new construction H∗.
The proof of Lemma 2.1 carries through except for Equation (1) that needs to be changed. Observe that
all weights of edges in Ẽj belong to Wj = [ξj , ρ · ξj ]. Hence they differ from each other by at most a
multiplicative factor of ρ. Note that H ′

j is an unweighted (2k − 1)-spanner for G̃j , i.e., a subgraph of G̃j

that contains, for every edge e ∈ Ẽj , a path with at most (2k− 1) edges between its endpoints. It is easy
to see that H ′

j provides a (ρ · (2k − 1))-spanner for G̃j . Hence, instead of Equation (1), we will now have

ω(Π′(rj(u), rj(v))) ≤ ρ · (2k − 1) · distG̃j
(rj(u), rj(v)) ≤ ρ · (2k − 1) · ω(ẽ) ≤ ρ · (2k − 1) · ω(e).

As a result, the upper bound on the weight of the path Π∗(rj(u), rj(v)) will also increase by a factor of

ρ, and we will have ω(Π∗(rj(u), rj(v))) ≤ ρ · (2k − 1) · ω(e) ·
(

1 + 2
q

)

. Consequently, we will get that

ω(Π∗(u, v)) ≤ ω(e) ·
(

ρ · (2k − 1) ·
(

1 + 2
q

)

+ 2
q

)

. Hence the stretch of H∗ is ρ · (2k − 1) · (1 + 2
q ) +

2
q .

Number of Edges. Next, we show how to adapt the size analysis for the new construction H∗.
The only change from the proof of Lemma 2.2 is that now the upper bound on |E∗

j | = |E′
j |, for 1 ≤ j ≤ ℓ,

is smaller by a factor of k. The reason is that we now use Algorithm UnwtdSp rather than Algorithm
WtdSp to build the spanner H ′

j = (Vj , E
′
j), for 1 ≤ j ≤ ℓ; compare Theorem 1.1 with Theorem 1.2.

Note that the bound on |E′
0| remains unchanged, though, as we still use Algorithm WtdSp to build the

spanner H ′
0. We will get

|E∗| = |ET |+ |E′
0|+

ℓ
∑

j=1

|E∗
j | = n− 1 +O(k · n1+1/k) +

∑

1≤j<logρ q+1

|E∗
j |+

∑

logρ q+1≤j≤ℓ

|E∗
j |
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= O(k · n1+1/k) +O(logρ q · n1+1/k) +O
(

q · n1+1/k
)

·
∑

logρ q+1≤j≤ℓ

(

1

ρ1+1/k

)j−1

= O

(

n1+1/k ·
(

k +
q

ρ− 1

))

.

Weight. We now show how to adapt the weight analysis for the new construction H∗.
The only change from the proof of Lemma 2.3 is that now the upper bound on ω(E∗

j ), 1 ≤ j ≤ ℓ, is
smaller by a factor of k. The bound on ω(E′

0) remains unchanged (see Equation (4)). Hence,

ω(E∗) = ω(T ) + ω(E′
0) +

∑

1≤j<logρ q+1

ω(E∗
j ) +

∑

logρ q+1≤j≤ℓ

ω(E∗
j )

= ω(T ) +O(k · n1/k · L) +O
(

n1/k · L · q
)

+O

(

k · q · n1/k · L · 1

ρ− 1

)

= O

(

k · n1/k ·
(

1 +
q

ρ− 1

))

· ω(MST (G)).

Running time. Clearly, the running time of H∗ is not higher than that of the basic construction.
We summarize the properties of the resulting construction H∗ in the following theorem.

Theorem 3.1 Let G = (V,E) be a weighted graph, with n = |V |,m = |E|. For any integer k ≥ 1, and any

numbers 1
2k−1 < q < k and 1 < ρ ≤ 2, a

(

ρ · (2k − 1) · (1 + 2
q ) +

2
q

)

-spanner with O
(

n1+1/k ·
(

k + q
ρ−1

))

edges and lightness O
(

k · n1/k ·
(

1 + q
ρ−1

))

, can be built in O(k ·m+min{n · log n,m · α(n)}) time.

By substituting q = Θ(1ǫ ), ρ = 1 + Θ(ǫ) in Theorem 3.1, for an arbitrary constant ǫ > 0, we obtain:

Corollary 3.2 Let G = (V,E) be a weighted graph, with n = |V |,m = |E|. For any integer k ≥ 1 and any
small constant ǫ > 0, a ((2k − 1) · (1 + ǫ))-spanner with O

(

k · n1+1/k
)

edges and lightness O
(

k · n1/k
)

,
can be built in O(k ·m+min{n · log n,m · α(n)}) time.

Corollary 3.2 in the particular case k = O(log n) gives rise to an O(log n)-spanner with O(n · log n) edges
and lightness O(log n). The running time of this construction is O(m · log n).

3.2 Second Variant (Increasing the Running Time)

Denote by Ȟ the variant of H∗ obtained by employing Algorithm UnwtdSp for building the spanners H ′
j,

1 ≤ j ≤ ℓ, and employing Algorithm WtdSp2 (due to Roditty and Zwick [34]) to build the spanner H ′
0. It

is easy to see that the stretch bound of the resulting construction Ȟ is equal to that of H∗. Also, the size
and weight bounds of Ȟ are better than those of H∗ and H∗, but the running time (which is dominated
by the running time of Algorithm WtdSp2) is higher. The analysis of this variant is very similar to the
analysis of the basic construction (in Section 2.2) and the analysis of the first variant (in Section 3.1),
and is thus omitted.

We summarize the properties of the resulting construction Ȟ in the following theorem.

Theorem 3.3 Let G = (V,E) be a weighted graph, with n = |V |. For any integer k ≥ 1, and any

numbers 1
2k−1 < q < k and 1 < ρ ≤ 2, a

(

ρ · (2k − 1) · (1 + 2
q ) +

2
q

)

-spanner with O
(

n1+1/k ·
(

1 + q
ρ−1

))

edges and lightness O
(

k · n1/k · q
ρ−1

)

, can be built in O(k · n2+1/k) time.

By substituting q = Θ(1ǫ ), ρ = 1 + Θ(ǫ) in Theorem 3.3, for an arbitrary constant ǫ > 0, we obtain:

Corollary 3.4 Let G = (V,E) be a weighted graph, with n = |V |. For any integer k ≥ 1 and any small
constant ǫ > 0, a ((2k − 1) · (1 + ǫ))-spanner with O

(

n1+1/k
)

edges and lightness O
(

k · n1/k
)

, can be built

in O(k · n2+1/k) time.
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Note that the tradeoff between the stretch and lightness exhibited in Corollary 3.4 is the same as in [11].
(There the stretch is 2k − 1, and the lightness is O(k · n(1+ǫ)/k).) The number of edges is O(n1+1/k) in
both results, but our running time is O(k · n2+1/k), instead of O(m · (n1+1/k + n · log n)) in [11].

By substituting q = Θ(1/k), ρ = 2 in Theorem 3.3, we obtain:

Corollary 3.5 Let G = (V,E) be a weighted graph, with n = |V |. For any integer k ≥ 1, an O(k2)-
spanner with O

(

n1+1/k
)

edges and lightness O
(

n1/k
)

, can be built in O(k · n2+1/k) time.

Corollary 3.5 in the particular case k = O(log n) gives rise to an O(log2 n)-spanner with O(n) edges and
lightness O(1). We can extend this result to get a general tradeoff between the three parameters by
substituting k = O(log n), ρ = 2 in Theorem 3.3, and taking 1 ≤ ℓ = 1

q = O(log n).

Corollary 3.6 Let G = (V,E) be a weighted graph, with n = |V |. For any number 1 ≤ ℓ = O(log n), an
O(log n · ℓ)-spanner with O(n) edges and lightness O( lognℓ ), can be built in O(n2 · log n) time.

The tradeoff of Corollary 3.6 was also given by Chandra et al. [11], but their running time is O(m·n·logn).

3.3 Third Variant (Increasing the Running Time Some More)

Denote by Ĥ the variant of H∗ obtained by employing Algorithm WtdSp2 for building all the spanners
H ′

j, 1 ≤ j ≤ ℓ, as well as the spanner H ′
0. It is easy to see that the stretch bound of the resulting

construction Ĥ is equal to that of the basic construction H∗. Also, the size and weight bounds of Ĥ are
exactly the same as those of the second variant Ȟ, but the running time is slightly higher (by a factor of
(1 + q2)) than that of Ȟ. The analysis of this variant is very similar to the above, and is thus omitted.

We summarize the properties of the resulting construction Ĥ in the following theorem. (We substituted
ρ = 2 to optimize the parameters of the construction.)

Theorem 3.7 Let G = (V,E) be a weighted graph, with n = |V |. For any integer k ≥ 1, and any

number 1
2k−1 < q < k, a

(

(2k − 1) · (1 + 2
q ) +

2
q

)

-spanner with O
(

n1+1/k · (1 + q)
)

edges and lightness

O
(

k · n1/k · q
)

, can be built in O(k · n2+1/k · (1 + q2)) time.

3.4 Fourth Variant (Integer-Weighted Graphs)

The fourth variant of our construction applies to integer-weighted graphs only. Denote by Hint the
variant of H∗ obtained by employing Algorithm IntWtdSp for building all the black-box spanners, i.e.,
the spanners H ′

j, 1 ≤ j ≤ ℓ, and the spanner H ′
0. The new construction achieves exactly the same bounds

as the basic construction H∗, except for the running time. The running time of this variant consists of
two parts. Specifically, it is the time required to compute the MST and the time required to compute
a spanner. On an integer-weighted graph the first task can be done in O(m + n) time [22], while the
second task requires O(SORT (m)) time (see Theorem 1.4 in [17]). Note, however, that the construction
becomes randomized.

We summarize the properties of the new construction Hint in the following theorem.

Theorem 3.8 Let G = (V,E) be an integer-weighted graph, with n = |V |,m = |E|. For any integer k ≥ 1

and any number 1
2k−1 < q < k, a

(

(2k − 1) · (1 + 2
q ) +

2
q

)

-spanner with expected O
(

k · n1+1/k · (1 + q)
)

edges and expected lightness O
(

k2 · n1/k · q
)

, can be built in O(SORT (m)) time.

3.5 Fifth Variant (Spanners in the Streaming Model)

In this section we analyze our algorithm in the augmented streaming model. Specifically, this is the model
introduced by Aggarwal et al. [1], which allows sorting passes over the input.

Our algorithm relies on a streaming algorithm for constructing sparse (but possibly heavy) spanners
from [17], summarized in Theorem 3.9 below. We remark that Theorem 3.9 also applies to multi-graphs.
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Theorem 3.9 [17] For any unweighted n-vertex graph G = (V,E) and any integer k ≥ 1, there exists a
one-pass streaming algorithm that computes a (2k − 1)-spanner with O(k · n1+1/k) edges (expected). The
processing time-per-edge of the algorithm is O(1), and its space requirement is O(k · n1+1/k) (expected).
Also, in the augmented streaming model (if the algorithm accepts a sorted stream of edges as input) the
algorithm produces (2k−1)-spanners with O(k ·n1+1/k) edges (expected) for weighted graphs as well. The
processing time-per-edge and space requirements of this algorithm are the same as in the unweighted case.

Our algorithm will run ℓ+ 1 copies of the algorithm for weighted graphs from Theorem 3.9. We will
denote these copies Aj, for 0 ≤ j ≤ ℓ.

Our algorithm starts with a sorting pass over the stream of edges. After this pass, in the consecutive
pass the algorithm reads edges in a non-decreasing order of weights. The objective of the first pass (after
the sorting pass) is to compute an MST of the input graph. To accomplish this, the algorithm maintains
a Union-Find data structure (see Ch. 21 in [14]). It is known [10, 3] that all operations can be performed
in worst-case O( logn

log logn) time, and in total O(n+m · α(n)) time, using O(n) space.
As a result of the first pass, the MST T is computed. The Hamiltonian path L of MT is computed

between the passes. In addition, the algorithm maintains the location on L of every vertex v ∈ V . It also
initializes ℓ+ 1 arrays Aj of size nj each, 0 ≤ j ≤ ℓ.

Then the algorithm performs the second pass over the sorted stream of edges. For each edge e = (u, v)
that the algorithm reads in the second pass, the algorithm determines the index j such that ω(e) ∈ Wj .
Then it tests if the edge crosses between different j-level intervals, i.e., belongs to Ēj . If it does not, this
edge is skipped. Otherwise the algorithm passes the edge e to the jth copy Aj of the weighted streaming
algorithm from Theorem 3.9. The streaming algorithm Aj will ultimately produce the spanner H ′

j for

Ĝj = (Vj , Êj). (Here we follow the notation of Section 2.1.) If the streaming algorithm Aj decides to
insert e into the spannerH ′

j, it will also insert its source edge s(e) into the ultimate spannerH∗ = (V,E∗).
As a result the spanner H∗ will contain the union of the j-level spanners, for 0 ≤ j ≤ ℓ. The edge set of
the MST will also be inserted into H∗ (either between the passes, or after the second pass).

This completes the description of the algorithm. By Theorem 3.9, the (expected) space requirement

in the second pass is
∑ℓ

j=0O(k · n1+1/k
j ) = O(k · n1+1/k). The processing time-per-edge is O(1).

We summarize our streaming algorithm in the following theorem.

Theorem 3.10 In the augmented streaming model, for any weighted graph G = (V,E), any integer k ≥ 1,
and any constant ǫ > 0, our algorithm requires two passes after the sorting pass. It computes a ((2k−1) ·
(1+ ǫ))-spanner with expected O(k · n1+1/k) edges and expected lightness O(k2 · n1/k). The expected space
requirement is O(k · n1+1/k). The worst-case processing time-per-edge of the first (respectively, second)
pass is O( logn

log logn) (resp., O(1)). Moreover, the overall processing time of the first pass is O(m · α(n)).

As was mentioned in the introduction, the algorithm of [11] can be viewed as an algorithm in this model.
It constructs (2k − 1)-spanners with O(n1+1/k) edges and lightness O(k · n(1+ǫ)/k). It requires one pass
after the initial sorting pass, but its processing time-peg-edge is very large (specifically, it is O(n1+1/k)).
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