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ABSTRACT
Recent advances in neural language models have contributed
new methods for learning distributed vector representations
of words (also called word embeddings). Two such methods
are the continuous bag-of-words model and the skipgram
model. These methods have been shown to produce embed-
dings that capture higher order relationships between words
that are highly effective in natural language processing tasks
involving the use of word similarity and word analogy. De-
spite these promising results, there has been little analysis
of the use of these word embeddings for retrieval.

Motivated by these observations, in this paper, we set out
to determine how these word embeddings can be used within
a retrieval model and what the benefit might be. To this
aim, we use neural word embeddings within the well known
translation language model for information retrieval. This
language model captures implicit semantic relations between
the words in queries and those in relevant documents, thus
producing more accurate estimations of document relevance.

The word embeddings used to estimate neural language
models produce translations that differ from previous trans-
lation language model approaches; differences that deliver
improvements in retrieval effectiveness. The models are ro-
bust to choices made in building word embeddings and, even
more so, our results show that embeddings do not even need
to be produced from the same corpus being used for retrieval.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Infor-
mation Search and Retrieval

1. INTRODUCTION
Statistical language models have proven effective in in-

formation retrieval, but are still primarily based on the ex-
act matching of query terms. Since queries are generally
terse and relevant documents may use a different vocabu-
lary, these language models can only get us so far. Ideally
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the identification of relevant documents should be based
on semantic matching rather than exact keyword match-
ing. One way in which researchers have approached tackling
this problem is with the use of translation language models,
where semantic matching is modelled as a translation be-
tween terms in the query and those in relevant documents [5,
16]. A core component of such models is the estimation of
the translation probability between terms.

At the same time, advances in neural language modelling
have produced novel distributed representations of words
that may allow for effective estimations of translation prob-
abilities between terms. Specifically, two such models, the
continuous bag-of-words model and the skipgram model [21],
produce vector representations of words (also called word
embeddings) that have proven effective on a number of lin-
guistic tasks (including word similarity and word analogy [21]).

The hypothesis of this paper is that these word embed-
dings can be exploited in information retrieval. Specifically,
we first show how word embeddings can be incorporated
into a retrieval model by levaraging the translation language
model framework. Second, we empirically determine the
benefit of such an approach, including contributing anun-
derstanding of the impact that choices made when building
word embeddings have on retrieval effectiveness.

The empirical evaluation shows that neural translation
language models, which introduce a novel word meaning
representation, provide superior retrieval effectiveness than
previous translation language models when evaluated on a
number of TREC test collections. Neural translation lan-
guage models are robust to decisions on how the word em-
beddings are constructed. Even more so, our results show
that the word embeddings do not even need to be produced
from the same corpus being used for retrieval; thus the word
embeddings, could, in fact, be derived from a general pur-
pose collection. With the introduction of word representa-
tions based on neural language models, this research opens
a number of avenues for exploiting implicit semantic rela-
tionships like operations on vectors of word embeddings [23]
for improved retrieval effectiveness.

2. TRANSLATION LANGUAGE MODELS
FOR INFORMATION RETRIEVAL

2.1 Statistical Translation Language Models
The use of language modelling for information retrieval is

an attractive approach as it directly models how language



is used to express meaning; in addition, it has proven an
effective method for document retrieval [30]. In the language
modelling framework, documents are ranked according to
the log-likelihood

logp(q|d) =
∑

i:c(qi;d)>0

log
ps(qi|d)

αdp(qi|C)
+nlogαd+

n∑
i=1

logp(qi|C)

(1)
where the last component of the equation can be ignored for
ranking purposes as it is document independent.

Different smoothing strategies to language models instan-
tiate the likelihood of seen terms ps(w|d) (and consequently
αd) in different ways. Dirichlet smoothing (used in this pa-
per) estimates ps(w|d) according to the following equation:

pµ(w|d) =
c(w, d) + µp(w|C)

|d|+ µ
=
pml(w|d) ∗ |d|+ µp(w|c)

|d|+ µ
(2)

In Dirichlet smoothing language models, ps(w|d) is esti-
mated by mixing the maximum likelihood estimation, pml(w|d),
with the collection background probability, p(w|C). Berger
and Lafferty have proposed an alternative estimation of ps(w|d)
inspired by models in statistical machine translation [5]. In
that work, they modelled retrieval as a machine transla-
tion process and estimated the query likelihood by means of
a translation model that computes the likelihood that the
query has been produced by a translation of the document:

pt(w|d) =
∑
u∈d

pt(w|u)p(u|d) (3)

where pt(w|u) represents the probability of translating term
u into w. As Karimzadehgan and Zhai have noted [16], the
translation probability pt(w|u) allows for the incorporation
of semantic relations between terms with non-zero proba-
bilities: this provides a sort of “semantic smoothing” for
p(w|d). The new estimation pt(w|d) provided by translation
language models can be injected into the Dirichlet smoothed
language models by substituting pml(w|d) with pt(w|d) [16].

The key challenge in translation language models then
becomes how to estimate pt(w|u), i.e., the probability of
translation of u into the (query) term w. Berger and Laf-
ferty have proposed estimating the translation probabilities
for each document by synthesising a query for which the
document would be relevant [5]. This approach requires the
availability of labelled training data (relevance assessments),
is inefficient and does not guarantee translation probabilities
are available for all query terms [16].

2.2 Estimation of Translation Probability based
on Mutual Information

As alternative to the synthetic queries process, Karimzade-
hgan and Zhai have proposed a family of approaches to es-
timate pt(w|u) based on mutual information [16, 17]. In
statistics, mutual information measures the mutual depen-
dence between two random variables by determining how
similar the joint distribution p(X,Y ) is to the products of
the marginals, p(X)p(Y ). When applied to distributions of
terms in documents, mutual information provides a measure
of the strength of relation between two terms.

In mutual information based translation language models,
for each term in the collection, scores are computed for words
with high mutual information and further normalised [16].
The mutual information between terms w and u is computed
as (refer to [16] for details):

I(w, u) =
∑

Xw=0,1

∑
Xu=0,1

p(Xw, Xu)log
p(Xw, Xu)

p(Xw)p(Xu)
(4)

where Xu and Xw are binary variables indicating the pres-
ence or absence of u and w, respectively. Mutual information
values are then normalised to obtain the translation proba-
bility pmi(w|u) estimated based on mutual information:

pmi(w|u) =
I(w, u)∑
w′ I(w′, u)

(5)

We refer to the use of pmi(w|u) to estimate the translation
probability pt(w|u) in Equation 3 as the translation language
model based on mutual information (TLM-MI).

Table 1 provides sample translations obtained with TLM-
MI (left), derived from TREC 1 query 55, “insider trading”.
The translation terms provided by TLM-MI were related
to the query terms. Indeed, the method did unveil terms
that were related to cases of insider trading reported in the
collection (e.g., “drexel”, “burnham”, “lambert” refer to the
Wall Street investment banking firm Drexel Burnham that
was forced into bankruptcy due to its involvement in illegal
activities1). However, there were also terms that, although
related, may intuitively harm retrieval (e.g., more general
terms such as “wall”, “index” and “prices”).

The estimation of the translation probability described
in Equation 5 forms the basis of variations of translation
language models based on mutual information. Mutual in-
formation does not guarantee that the self-translation prob-
ability p(w|w) (i.e., the probability of translating a word w
to itself) is higher than any other translation probability [16]
(it is possible that p(w|u) > p(w|w)). An axiomatic analy-
sis of translation language models has shown that this is not
a desired situation because documents that match a query
word qi exactly may receive a lower score than documents
that match translations of qi that have a translation prob-
ability higher than the self-translation probability [17]. To
overcome this issue, a heuristic has been proposed to control
the effect of self-translation via a parameter α:

pmi−α =

{
α+ (1− α)pmi(u|u) if w = u
(1− α)pmi(w|u) if w 6= u

(6)

We refer to the translation language model that uses this
estimation as TLM-MI-α.

Similarly, an alternative heuristic is to impose constant
self-translation probabilities for all words in the vocabu-
lary [17], i.e., setting p(u|u) to a constant value s for every u.
This produces another variant of TLM-MI, which we refer
to as TLM-MI-s, where pt(w|u) is estimated according to:

pmi−s =

{
s if w = u

(1− s) pmi(w|u)∑
v 6=u pmi(v|u)

if w 6= u (7)

3. A NEURAL TRANSLATION LANGUAGE
MODEL

A variety of neural network-based language models2 have
emerged as effective approaches for generating representa-
tions of words [4, 26, 22].

A fundamental characteristic of neural language models
is that in such architectures, words are mapped to vectors
in a high dimensional, real valued space (forming a word

1
http://en.wikipedia.org/wiki/Drexel_Burnham_Lambert

2For brevity we refer to these as neural language models.

http://en.wikipedia.org/wiki/Drexel_Burnham_Lambert


TLM-MI NTLM - cbow NTLM - skipgram
w = insider w = trading w = insider w = trading w = insider w = trading

u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u) u p(w|u)
insider 0.094 trading 0.050 insider 0.285 trading 0.216 insider 0.169 trading 0.164
trading 0.023 exchange 0.016 fraud 0.104 traders 0.103 fraud 0.102 traders 0.103
securities 0.023 stock 0.014 drexel 0.095 market 0.094 drexel 0.099 futures 0.099
fraud 0.015 market 0.013 criminal 0.084 stock 0.090 securities 0.096 stock 0.097
drexel 0.013 prices 0.012 securities 0.084 markets 0.085 racketeering 0.093 exchange 0.094
burnham 0.013 traders 0.009 racketeering 0.084 futures 0.084 bribery 0.091 market 0.093

Table 1: Example word translations, along with translation probabilities, using TLM-MI (left), NTLM with
cbow embeddings (centre) and with skipgram embeddings (right). The terms for which we are seeking
translations are those of query 55, “insider trading”, from TREC 1.

embedding); the mappings are learnt through the optimisa-
tion of an objective function. Along with the probabilistic
model learnt by training neural network language models, a
distributed word representation (or word embedding) is also
learnt and can be further exploited.

An objective function that is often used for training word
embeddings is to learn a vector for a target word which
predicts the vectors for words occurring near to it; this is
the intuition behind the continuous skipgram model.

3.1 Continuous bag-of-word model
The continuous bag-of-words model (cbow) constructs term

representations by optimising the ability of context words to
predict the representations of the current target word (i.e.,
predict a word given its context), and is based on a standard
feed-forward neural language model without the intermedi-
ate projection layer [21].

Given a target word wt and a sequence of training words
W = {wt−2, wt−1, wt+1, wt+2} (where wt−k precedes and
wt+k follows wt by k positions), the objective of the cbow
model is to maximise the likelihood of correctly predicting
the target word wt, where weights for different positions in
the sequence are shared. Because all words share the projec-
tion layer in the neural network, all words are projected into
the same position and thus their vectors are averaged. For-
mally, the cbow model generates a vector vt, corresponding
to the target word wt, as the average of the vectors of words

within the training sequence W, i.e., vt = 1
|W|

∑|W|
i=1 vi. Av-

eraging vector representations of input words implies that
the order of the words in the context does not matter.

3.2 Skipgram model
The skipgram model constructs term representations by

optimising their ability to predict the representations of sur-
rounding terms.

At initialisation, the vector representations of the words
are assigned random values; these vector representations are
then optimised using gradient descent with decaying learn-
ing rate by iterating through sentences observed in the train-
ing corpus. Specifically, given a sequence of training words
W = {w1, . . . , wt, . . . , wn}, the objective of the skipgram
model is to maximise the following average log probability

1

|W|

|W|∑
i=1

∑
−|W|≤j≤|W|,j 6=0

log p(wt+j |wt) (8)

The context window size, |W| determines which words sur-
rounding the target word wt are considered for the compu-
tation of the log probability (where the window is centred
around the target word). However, note that in the skipgram
model |W| is in effect the maximal window radius: in practi-

cal implementations3, for each word in the corpus, a window
size |W|′ ≤ |W| is sampled uniformly from [1, |W|] [15].

The probability of an output word is computed according
to the softmax function:

p(wO|wI) =
exp(v>wO

vwI )∑|V |
w=1 exp(vw>, vwI )

(9)

where the vwI and vwO are the vector representations of the

input and output vectors, respectively, and
∑|V |
w=1 exp(v>w , vwI )

is the normalisation factor, whose role is to normalise the in-
ner product results across all vocabulary words (|V | is the
vocabulary size). Negative sampling is used to reduce com-
putational complexity, where the objective function is mod-
ified to force the model to distinguish the target word wO
from one that is drawn from a noise distribution [23].

3.3 Estimating Translation Probabilities with
Neural Language Models

The use of neural language models based on continuous
bag-of-words or skipgram gives rise to two different word em-
beddings. Word embeddings can be used to estimate trans-
lation probabilities in translation language models; specifi-
cally, cosine similarity can be used as a proxy for p(u|w):

pcos(u|w) =
cos(u,w)∑

u′∈V cos(u
′, w)

(10)

where cos(u,w) is the cosine between the vector represen-
tation of word u and w and this is normalised to obtain a
probability distribution over all possible translations. These
estimations are then plugged in Equation 3 to derive the
neural translation language models (NTLM) based on cbow
(NTLM-cbow) and skipgram (NTLM-skipgram).

Table 1 reports example translations for query 55 in TREC
1, “insider trading”, obtained using the cbow (centre) and
skipgram models (right). As for mutual information (see
Section 2.2), the methods based on word embeddings sug-
gest translations that appeared highly related to the topic
expressed by the query. However, there were a number of
key differences between the neural language models and the
model based on mutual information. First, syntactic vari-
ations of the query term that refer to the same meaning
(e.g., u=“traders” for w =“trading”) were often assigned a
higher translation probability (and ranked higher in gen-
eral among the possible translations). (Similar findings are
observed across many other queries.) Second, with neural
translation language models, there was generally less dif-
ference in magnitude when comparing the self translation
probability P (w|w) with the next highest translation prob-
ability P (w|u). For example, with cbow and skipgram, the

3e.g., in the widely adopted word2vec implementation of skip-
gram models, which is used in this paper.



self translation probability p(trading|trading) was between
1.6 and 2 times larger than the next translation probability,
while with TLM-MI the same self translation probability was
more than 3 times larger than that of the next translation.
The effect that these differences between mutual information
and neural language models have on retrieval effectiveness is
what we investigate in our empirical evaluation of Section 4.

4. EMPIRICAL EVALUATION
Our evaluation was conducted to answer the following re-

search questions: RQ1: Do neural language models provide
translation probability estimates between words that lead
to improvement in retrieval effectiveness when compared to
state-of-the-art translation language models? RQ2: How
sensitive are neural translation language models to the dif-
ferent ways word embeddings can be constructed: latent
space dimensions, window size and type of word embedding
(cbow or skipgram)? RQ3: Does the choice of corpus used
to induce word embeddings influence retrieval effectiveness,
and specifically, what is the effect of embeddings constructed
on a different corpus to that used in retrieval?

4.1 Experiment Settings
4.1.1 Data Sets

Evaluation was done using four standard TREC collec-
tions for ad-hoc retrieval: 1) news articles from AP88-89
(TREC disk 1 and 2) with topics from TREC 1, 2 and
3 ad-hoc (topics 51-200); 2) news articles from WSJ87-92
(TREC disk 1) with topics from TREC 1, 2 and 3 ad-hoc
(topics 51-200); 3) webpages from the crawl of the .gov do-
main from DOTGOV with topics from TREC 2002 (topics
551-600); and 4) TREC Medical Records Track (MedTrack)
collection (2011 and 2012). The use of AP and WSJ is in
line with previous work on translation language models [16,
17], although we consider more documents (AP88-89) and
more topics (TREC 1, 2 and 3). The motivation for the use
of AP88-89 and WSJ87-92 was that manual runs were in-
cluded to form the pools of documents for assessment. Thus,
the judged documents did not necessarily contain the query
keywords. Therefore, these collections would be more suited
for the evaluation of translation methods that exploit more
semantic relationships. The MedTrack collection was cho-
sen as medical search is a particular domain known to suffer
from issues of vocabulary mismatch [14, 18], which may be
alleviated by the translation language models. Translation
language models have never been evaluated before on the
DOTGOV collection (and in general on collections larger
than few hundred thousands documents). Deriving trans-
lation probabilities on large collections poses computational
challenges if particular attention is not paid to optimising
the operations involved in calculating these estimations4, al-
though this is generally not a problem for NTLM. For exam-
ple, the estimation of probabilities based on mutual infor-
mation requires computing co-occurrence statistics for every
term in the vocabulary with respect to every other term –

4Our experiments were performed on the full DOTGOV.

Desc. # Docs Topics Avg.
query
size

Vocab.
size

AP88-89 164,597 51-200 AdHoc 5.2 247,350
WSJ87-92 173,252 51-200 AdHoc 5.2 216,539
DOTGOV 1,247,442 551-600 3.3 3,051,601
MedTrack 100,866 101–185 8.9 55,065

Table 2: Statistics for the TREC collections used.

and then to normalise these statistics over all the vocabulary
to form the probability distribution pmi(w|u).

Statistics of collections are reported in Table 2.

4.1.2 Software Implementations
Both indexing and retrieval was implemented using the

Terrier IR toolkit [24]. Both documents and queries were
stopped using the stopping list distributed with Terrier.

Word embeddings were computed using the word2vec soft-
ware package released by Mikolov et al. [21, 23]. Embed-
dings were then loaded at retrieval time, pairwise similarity
was computed and normalised to form the probability dis-
tribution p(u|w). While our use of the embeddings was not
necessarily efficient, it did allowed us to better control for
different settings and to make the embeddings themselves
available to others. A more efficient solution is to precom-
pute the p(u|w) distribution offline and then lookup the rel-
evant values at runtime. Other efficiency improvements can
be adopted; for example, Blanco et al. [6] provide techniques
for improving efficiency by compressing vector embeddings.

The source code used for all methods is made available
at https://github.com/ielab/adcs2015-NTLM, with word
embeddings, parameter files, result files and evaluation files
produced in our empirical experiments. These embeddings
can be used beyond the scope of this work; e.g., to study
differences in language use across corpora, or the impact of
parameters settings on the produced word embeddings.

4.1.3 Baseline — Dirichlet Language Model
The Dirichlet language model constituted the baseline method

(LM), in line with the previous experiments on translation
language models of Karimzadehgan and Zhai [16, 17]. We
mimic their experimental methodology: parameters were
tuned per-collection and per-topic set (but not on a per-
query basis) with MAP as objective measure5. For example,
for the Dirichlet language model on AP88-89 (and TREC
topics 51-200), we report the results for the single value of
the smoothing parameter µ that achieved the highest ef-
fectiveness on that collection; while for the same retrieval
method on WSJ87-92 (and TREC topics 51-200) we report
the results for the single value of µ that achieved the high-
est effectiveness on that collection/topic set combination,
i.e., the value of µ for WSJ87-92 may be different from that
for AP88-89. Values of µ considered were 100 and those in
the range [500, 4000].

4.1.4 Benchmark — Translation Language Model
For the translation language models, we set µ to the same

value that provided the highest effectiveness on the base-
line language model (thus this value may not have been the
optimal for the translation model). Translation language
models parameters (i.e., α, s) were tuned with the same
methodology used for the baseline language model, i.e., per
collection (as done by [16, 17]). Only the top 10 translation
terms were considered for retrieval as translations terms be-
yond the top 10 have been shown to have little influence for
TLM-MI based approaches [16].

4.1.5 Neural Translation Language Model
The neural translation language models based on cbow

and skipgram estimations rely on the parameters that con-

5Except for Medtrack where bpref was used as this was the
primary measure for that task.

https://github.com/ielab/adcs2015-NTLM


Corpus Latent Dimensions Window Size

AP88-89 100 – 1,000, step = 100 5, 10
WSJ87-92 100 – 1,000, step = 100 5, 10
DOTGOV 200 – 1,000, step = 200 5, 10
MedTrack 100 – 1,000, step = 100 5, 10

Table 3: Parameter values explored in the training
of cbow and skipgram word embeddings.

trol the construction of the word embeddings. In the exper-
iments, we tuned the latent dimensionality of the embed-
dings and the size of the window used to capture contextual
information around target terms following the same method-
ology used for the baseline and the benchmark approaches.
Details of the range of values considered during the tun-
ing process are provided in Table 3. Typical values used
in computational linguistics tasks are 100-600 for the latent
dimensionality of the word embeddings and 5-10 for the con-
text window [21, 23, 12, 25]. The effect of parameter values
other than those leading to the best effectiveness for each
collection were investigated separately in the sections that
follow. We will, however, notice that the parameter values
of the neural translation language models have limited effect
on their retrieval effectiveness (at least they do not change
the main trends observed in the results).

We did not experiment with other parameters of the word
embeddings, such as the sampling technique used to dampen
the effect of frequent words. Specifically, we used negative
sampling (as opposed to hierarchical softmax) with 20 sam-
ples and a subsampling of frequent words that discards a

word w in the training set with probability 1 −
√

10−4

c(w,C)
.

The number of iterations or epochs used in the stochastic
gradient descent optimisation was set to 5. These values
are all in line with those used by previous work that experi-
mented with neural language models [21, 23, 6, 12, 25]. We
leave the experimentation of alternative settings of param-
eters for future work. For the neural translation language
models, the Dirichlet smoothing parameter µ was set to the
same value that provided the highest effectiveness on the
baseline language model: as for the benchmark models, this
value may not be the optimal for NTLM. In line with the
translation language model benchmark [16], the number of
translation terms was set to 10. (The influence of the num-
ber of translation terms in NTLM is out of the scope of this
evaluation and will be subject of future work.)

Finally, to answer RQ3 (the effect of different training
corpora), we built the word embeddings using three differ-
ent corpora, AP88-89, WSJ87-92 and Wikipedia1B6; these
word embeddings were then used in the retrieval system and
evaluated against AP88-89 and WSJ87-92.

4.2 RQ1 — Comparing Neural Translation LM
with State-of-the-art Translation LM

Retrieval results comparing baseline LM, benchmark TLM
and the NTLM are show in Table 4. The per-collection set-
ting of µ are provided in the first row; the best overall re-
sults are provided in bold, while the best mutual information
based translation model results are provided in italics.

In line with previous work on translation models [16, 17],
the benchmark TLM does provide some improvements over
the baseline LM. However, these are not always statistically
significant and no single TLM is best across test collec-
tions: TLM-MI is best for AP88-89 but TLM-MI-s is best for

6We provide more details about this dataset in Section 4.4.
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Figure 1: Per-query performance on AP88-89 of
NTLM (skigram and cbow) in comparison with
Dirichlet language model. Queries are ordered by
descending MAP of the LM baseline.

WSJ87-92 (with s=0.9), DOTGOV (with s=0.8) and Med-
Track (with s=0.9). Note, these findings differ somewhat
from those of [16, 17]. This may be due to two differences in
our evaluation: 1) we used 150 topics each for AP88-89 and
WSJ87-92, whereas they used 50 each; and 2) we evaluated
on two additional test collections (DOTGOV & MedTrack).

For three collections the neural translation model pro-
vides the best performance. For AP88-89, the improvements
of both the skipgram (dimension=200, window=5) and the
cbow (dimension=900, window=10) are statistically signif-
icant compared to the LM baseline. For WSJ87-92, the
improvements of both the skipgram (dimension=500, win-
dow=5) and the cbow (dimension=100, window=10) are
statistically significant compared to the LM baseline and
the TLM benchmarks. For DOTGOV, the improvements of
both the skipgram (dimension=1000, window=5) and the
cbow (dimension=200, window=5) have the highest MAP
but are not found to be statistically significant. For Med-
Track, the improvements on P@10 of both the skipgram (di-
mension=1000, window=10) and the cbow (dimension=1000,
window=10) are statistically significant compared to the LM
baseline; however, the best method according to bpref is
TLM-MI-s (s=0.9).

While the results for the NTLM were obtained with word
embeddings parameter settings that maximised MAP (bpref
for MedTrack), we observed that different parameter set-
tings still produced similar improvements over other meth-
ods. Sections 4.3 provides a more detailed analysis of this.

4.2.1 Per-query Analysis of Neural Translation Lan-
guage Models

To better understand the trend in gain provided by the
neural translation model we consider the performance of in-
dividual queries. Figure 1 shows the per-query MAP for the
NTLM models against the LM baseline (for brevity, we re-
port only AP88-89, although the same trend was found for
other collections); the figure is sorted by descending MAP
of the LM baseline. Both subfigures show that the NTLM
provides modest improvements on a large number of queries
(rather than large differences on only a few queries).

While we do not have space to provide a complete anal-
ysis of all cases of success and failure, it is interesting to
comment on a couple of example queries. One of the queries
that exhibited the largest gains over both the baseline and
the benchmark method was query 55 from TREC 1 (gains
both in AP88-89 and WSJ87-92). For example, for AP88-
89 NTLM-cbow and NTLM-skipgram obtained an average
precision of 52.72 and 52.22 respectively, while LM achieved



AP88-89 (µ = 1, 000) WSJ87-92 (µ = 1, 500) DOTGOV (µ = 500) MedTrack (µ = 3, 500)
Method MAP P@10 MAP P@10 MAP P@10 bpref P@10
Dirichlet LM 22.69 39.60 21.71 40.80 18.73 24.60 37.69 43.95

TLM-MI 23.83d 41.67d 20.75 40.73 17.06 22.40 37.02 46.42
TLM-MI-α 22.55 39.73 21.32 40.33 17.15 22.60 37.23 43.70

TLM-MI-s 22.53 39.13 22.08 41.33 18.76 24.80 38.93 49.26d

NTLM-skipgram 24.27d 41.00 22.66d,m 42.40d 19.32 25.00 38.83 49.75d

NTLM-cbow 24.18d 41.93d 22.62d,m 42.27d 19.16 24.80 38.77 49.51d

Table 4: Effectiveness of language models with Dirichlet smoothing baseline (Dirichlet LM ), translation lan-
guage models with Mutual Information estimates (TLM-MI, TLM-MI-α, TLM-MI-s) and neural translation
models, with continues bag-of-words (NTLM-cbow) and skipgram (NTLM-skipgram). Statistically significant
differences, using paired t-test, indicated by d against Dirichlet LM and m against best TLM.

48.61 and TLM-MI 33.07, suggesting that the NTLM models
provided high quality translations while those of TLM-MI
led to poor estimations and consequently losses in retrieval
effectiveness. The translations provided by these methods
were already examined in Table 1 and Sections 2.1 and 3.3,
and it was shown that cbow and skipgram assigned more
probability mass to syntactic variations of the query terms,
in contrast to TLM-MI. It was further noted that the dif-
ference in magnitude between self-translation probabilities
and other probabilities is less for NTLM-cbow and NTLM-
skipgram than for TLM-MI.

One of the queries where NTLM-cbow and NTLM-skipgram
exhibited the largest losses over both the baseline and bench-
mark methods is query 195 from TREC 3,“stock market per-
turbations attributable to computer initiated trading”. For
this query, on AP88-89, NTLM-cbow and NTLM-skipgram
obtained an average precision of 14.03 and 12.65 respec-
tively, while LM achieved 15.43 and TLM-MI 21.89. The
translations obtained for this query using cbow were char-
acterised by the strong presence of the term“dollar”as trans-
lation of stock, market (with high probability estimate), and
trading. The word did not appear to be a good discriminator
of relevance for documents associated to this topic, and its
presence as a translation for three of the original query terms
may have induced excessive weight to be assigned to non
relevant documents that contained this non-discriminating
term. Indeed, when dollar was removed from the transla-
tions provided by cbow the effectiveness of NTLM-cbow did
improve. While the skipgram embeddings shared a number
of translation terms with both TLM-MI and the cbow em-
beddings (but not “dollar”), some of the translations that
were derived resulted in documents with irrelevant content
being retrieved. For example, “video” and “chip” were pro-
vided as translations of “computer” (while translations pro-
vided by TLM-MI and cbow were somewhat more“corporate
oriented”). These translations, although valid in general,
were certainly not related to the topic of the query.

4.3 RQ2 — Sensitivity to how Word Embed-
dings are Built

4.3.1 The Effect of Embedding Dimensionality
Each word in the neural language model is represented

by a vector of a certain dimensionality in the latent space.
To study the effect of the number of dimensions, the win-
dow size was fixed (to the best setting) and dimensionality
altered to determine its effect on MAP. Figure 2 shows the
effect of dimensionality on MAP for AP88-89 and WSJ87-92
(other collections excluded for brevity). NTLM was robust
according to number of dimensions, with only a single set-
ting of NTLM-cbow on AP88-89, where dimensions=100,
produced a MAP below that of the TLM benchmark.
4.3.2 The Effect of Window Size
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Figure 2: Effect on MAP of different dimension size
used to build word embeddings. Choice in dimen-
sion size did not significantly affect effectiveness.
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Figure 3: Effect on MAP of different window size
settings used to build word embeddings. Choice in
window size did not significantly affect effectiveness.

Word embeddings were created by considering co-occurrence
statistics according to a context window of a specific size. To
study the effect of window size, the dimensionality was fixed
(to the best setting) and window size altered to determine
its effect on MAP. Figure 3 shows the effect of window sizes
2, 5, 7, 10, 15 and 20 on MAP. Window size 2 was used
to test wether very tight co-occurrence (bigrams) generates
word embeddings that focus more on the local context; win-
dow sizes 15 and 20 were built to study the influence of
distant relationships in the construction of the embeddings
and ultimately on retrieval effectiveness. As with dimen-
sionality, the NTLMs were robust according to window size.
The NTLM-skipgram is more effective with smaller window
sizes (w=5) than the NTLM-cbow (w=10). Overall, window
size has more of an effect on cbow than skipgram.

4.3.3 The Effect of Word Embedding Type
Word embeddings can be built in two ways: cbow and

skipgram. Overall, the retrieval results showed no statistical
significant differences between the two (some collections are
better with one model and some with the other, although the
differences are minor). Everything else being equal, cbow is



computationally less expensive than skipgram in terms of
time (space is the same). However, the previous sections re-
vealed that skipgram generally performed better with less di-
mensions and smaller context windows; thus skipgram with
these parameter settings was computationally more efficient
(time and space).

Considering the effect of both number of latent dimensions
and window size, the neural translation language models
are robust to the choice of parameter settings. In light of
this, other forms of parameter tuning, e.g. cross-validation,
would not have influenced largely the results and trends ob-
served in our empirical analysis.

4.4 RQ3 — The Effect of Training Corpus
Word embeddings can be built prior to both indexing and

retrieval of a corpus and, in fact, do not have to be built
using the corpus used in retrieval. The choice of corpus used
to build the word embeddings may affect retrieval results.
To study this effect, we conducted two sets of experiments.

First, word embeddings were derived from AP88-89 but
were evaluated on WSJ87-92, and vice versa. The two cor-
pora contain newswire articles that refer to the same period
and thus are comparable. In addition, they are evaluated on
the same set of topics, both in the original TREC campaigns
and in our experiments.

Second, word embeddings were derived from a dump of
Wikipedia7, containing the first 1 billion words that are
commonly used in experiments in computational linguistics.
These experiments provided an initial evaluation of the fea-
sibility of using a general purpose corpus (like Wikipedia) to
generate word embeddings, rather than creating embeddings
on each specific corpus.

The results of this cross-corpus evaluation are shown in
Table 5. The grey shaded cells indicate when the same cor-
pus is used for building the word embeddings and for re-
trieval; bold values indicate the corpus that produced the
best performance for each of the NTLM model. The results
show that the choice of corpus used to construct word em-
beddings had little effect on retrieval results. Even when
evaluating on newswire collections, the NTLM models were
effective when word embeddings are built from Wikipedia
articles. This demonstrates the general purpose nature of
the distributed word representations provided by these types
of neural language models. Such representations could, po-
tentially, be built from general sources of language (e.g.,
Wikipedia) and be made available as a service, independent
of any particular retrieval experiment or model.

5. RELATED WORK
Translation language models were first proposed by Berger

and Lafferty, inspired by approaches in automatic machine
translations [5]. Karimzadehgan and Zhai have subsequently
investigated translation language models based on mutual
information, showing their superiority with respect to both
standard smoothed language models and the original esti-
mations of Berger and Lafferty [16].

The retrieval mechanism of translation language models
initiates a transfer of probability mass from non-query terms
to query terms. This probability kinematics resembles the
underlying idea introduced by Crestani et al. in their Logical
Imaging retrieval model [10]. However, in Logical Imaging

7
http://mattmahoney.net/dc/enwik9.zip

probability mass is transferred from terms not in the doc-
ument to terms in the document, as opposed to the trans-
fer from non-query terms to query terms that takes place
in translation language models. Logical Imaging has been
shown to be ineffective for modern ad-hoc IR tasks [31].

Beyond translation language models, numerous other ap-
proaches have been investigated to incorporate semantic in-
formation within the retrieval process and thus go beyond
retrieval based on simple (query) keyword matching. While
it is impossible to provide a fair and complete account of
all methods, we briefly mention some notable pointers to
important and recent milestones in this context.

Query expansion [8] is the process of adding terms to a
seed query to improve its retrieval effectiveness: concep-
tually, the automatic expansion process shares the same
key intuition as translation language models. Automatic
query expansion based on crafted linguistic resources such
as WordNet have not led to substantial improvements in
effectiveness [29]. Data-driven automatic query expansion
has, however, been effective (e.g., [2]), although research
has highlighted that such techniques are often optimised to
perform well on average, yet their effectiveness is unstable
across queries and, for a portion of queries, automatic query
expansion may be detrimental [9].

Graph-based models, such as Turtle and Croft’s [28] in-
ference network, have been used to define inference mecha-
nisms to augment the retrieval process. Extensions of this
approach have progressively increased the amount of seman-
tic information leveraged to extend search beyond keyword
matching (e.g., [3]). The recent work of Dalton et al. [11]
demonstrates how query representations can be enriched
with features from semantic annotations and their links to
knowledge bases, such as FreeBase.

The neural translation language models proposed in this
paper exploit recent advances in word representations, in
particular continuous bag-of-words and skipgram models [21].
Levy & Goldberg have noted similarities between these mod-
els and matrix factorisation [19]. However, [21] indicates
that linear relationships between word vectors derived from
the embeddings generated by cbow and skipgram do not
hold for simpler models like latent semantic analysis [13],
latent Dirichlet allocation [7] or vectors using tf-idf features.

The process used to construct word embeddings with cbow
and skipgram also bear some resemblance with the process
used in the hyperspace analogue to language (HAL) [20] and
probabilistic HAL [1] models. These have been also used for
retrieval with certain success [1, 27]. However, in HAL, co-
occurrences within a window centred around a target term
are accumulated to form the vector representations; while
in cbow and skipgram the representation of a target term
is fitted to predict the representations of its lexical context
(skipgram), and vice versa (cbow). Despite this, it is not
clear yet whether these neural inspired models are generally
better than traditional distributional semantic methods.

6. KEY CONTRIBUTIONS AND FINDINGS
1. Theoretically, we provide a means of incorporating neural

language models within a retrieval model based on the
translation language framework — a neural translation
language model. The model captures implicit semantic
relationships — via word embeddings — between terms.

2. Empirically, the neural translation language model is sta-
tistically significantly better than baseline language mod-

http://mattmahoney.net/dc/enwik9.zip


AP88-89 WSJ87-92

NTLM Word Embeddings Corpus MAP P@10 P@20 Rel Retr MAP P@10 P@20 Rel Retr

skipgram
AP88-89 24.27 41.00 37.53 9483 22.43 42.20 37.70 8744

WSJ87-92 24.31 41.87 37.20 9329 22.66 42.40 37.67 8967
Wikipedia 1B 24.09 41.67 36.87 9250 22.50 42.13 37.33 8762

cbow
AP88-89 24.18 41.93 37.63 9331 22.05 41.33 36.73 8542

WSJ87-92 23.65 40.80 36.87 9097 22.62 42.27 37.37 8728
Wikipedia 1B 23.91 41.00 36.37 9208 22.19 42.27 37.57 8565

Table 5: Retrieval results when embeddings were constructed on a different corpus to that used in retrieval.
The results show that no there are no statistically significant differences when a different corpus was used to
construct word embeddings, even when different types of corpora (e.g., newswire vs. Wikipedia) were used.

els (Dirichlet) and comparable to (when not better than)
benchmark translation language models.

3. We contribute an understanding of the impact that choices
made when building word embeddings have on retrieval
effectiveness. Specifically, retrieval is robust with respect
to choices in embedding dimensionality and window size.

4. We empirically show that word embeddings do not even
need to be produced from the same corpus used for re-
trieval. Even when different types of corpus (e.g., newswire
vs. Wikipedia articles) are used, there is no statistically
significant degradation in retrieval effectiveness.

5. We contribute back to the research community both our
implementation of neural translation language models and
the large number of word embeddings computed to ex-
plore our research questions. These embeddings could
be further used by the community, including applications
outside information retrieval.

7. WIDER IMPACT AND FUTURE WORK
The neural language models investigated here do provide

valid and useful translations. However, these are done inde-
pendently of the specific context of the query. Indeed, our
analysis of certain queries highlighted that retrieval could be
harmed when translating to valid yet out-of-context terms
(e.g., translating “stock” to “dollar”). Clearly taking into
account the context of the query would be desirable. Neu-
ral language models do in fact provide a possible mecha-
nism to do this via effective representations of phrases [23].
Through simple arithmetic operations on vectors, transla-
tion can be considered not only for single terms but also by
including term compositions, up to treating the entire query
as a single phrase vector. Indeed, one of the advantages
of these neural language models is that they provide sim-
ple, efficient methods to operate on terms based on simple
arithmetic operations on vectors. These powerful yet sim-
ple semantic operations can be incorporated into retrieval
to better model, among others, query terms dependencies,
named-entities and expressions.
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