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Abstract. We introduce a hierarchy of fast-growing complexity classes
and show its suitability for completeness statements of many non ele-
mentary problems. This hierarchy allows the classification of many deci-
sion problems with a non-elementary complexity, which occur naturally
in logic, combinatorics, formal languages, verification, etc., with com-
plexities ranging from simple towers of exponentials to Ackermannian
and beyond.

Key Words. Fast-growing complexity, subrecursion, well-quasi-order

1. Introduction

Complexity classes, along with the associated notions of reductions and
completeness, provide our best theoretical tools to classify and compare
computational problems. The richness and liveness of this field can be ex-
perienced by taking a guided tour of the Complexity Zoo,1 which presents
succinctly most of the known specimens. The visitor will find there a wealth
of classes at the frontier between tractability and intractability, starring
the classes P and NP, as they help in understanding what can be solved
efficiently by algorithmic means.

From this tractability point of view, it is not so surprising to find much
less space devoted to the “truly intractable” classes, in the exponential hier-
archy and beyond. Such classes are nevertheless quite useful for classifying
problems, and employed routinely in logic, combinatorics, formal languages,
verification, etc. since the 70’s and the exponential lower bounds proven by
Meyer and Stockmeyer [66, 87].

Non Elementary Problems. Actually, these two seminal articles go further
than mere exponential lower bounds: they show respectively that satisfia-
bility of the weak monadic theory of one successor (WS1S) and equivalence
of star-free expressions (SFEq) are non elementary, as they require space
bounded above and below by towers of exponentials of height depending (ele-
mentarily) on the size of the input. Those are just two examples among many
others of problems with non elementary complexities [see e.g. 67, 38, 92],
but they are actually good representatives of problems with a tower of expo-
nentials as complexity, i.e., one would expect them to be complete for some
suitable complexity class.

Work supported in part by the ReacHard project (ANR 11 BS02 001 01).
1https://complexityzoo.uwaterloo.ca.
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What might then come as a surprise is the fact that, presently, the Zoo
does not provide any intermediate stops where classical problems like WS1S
and SFEq would fit adequately: they are not in Elementary (henceforth
Elem), but the next class is Primitive-Recursive (aka PR), which is far
too big: WS1S and SFEq are not hard for PR under any reasonable notion
of reduction. In other words, we seem to be missing a “Tower” complexity
class, which ought to sit somewhere between Elem and PR. Going higher,
we find a similar uncharted area between PR and Recursive (aka R).
These absences are not specific to the Complexity Zoo: they seem on the
contrary universal in textbooks on complexity theory—which seldom even
mention Elem or PR. Somewhat oddly, the complexities above R are better
explored and can rely on the arithmetical and analytical hierarchies.

Drawing distinctions based on complexity characterisations can guide the
search for practically relevant restrictions to the problems. In addition, non
elementary problems are much more pervasive now than in the 70’s, and they
are also considered for practical applications, motivating the implementation
of tools, e.g. MONA for WS1S [27]. It is therefore high time for the definition
of hierarchies suited for their classification.

Our Contribution. In this paper, we propose an ordinal-indexed hierarchy
(Fα)α of fast growing complexity classes for non elementary complexities.

Beyond the already mentioned Tower
def
= F3—for which WS1S and SFEq

are examples of complete problems—, this hierarchy includes non primitive-
recursive classes, for which quite a few complete problems have arisen in the
recent years, e.g.

• Fω in [64, 91, 83, 31, 14, 58, 45, 43],
• Fωω in [18, 73, 55, 8, 16, 9, 77],
• Fωωω in [42], and
• Fε0 in [40, 24].

The classes Fα are related to the Grzegorczyk (E k)k [39] and extended
Grzegorczyk (Fα)α [62] hierarchies, which have been used in complexity
statements for non elementary bounds. The (Fα)α classes are very well-
suited for characterising various classes of functions, for instance computed
by forms of for programs [68] or terminating while programs [28], or
provably total in fragments of Peano arithmetic [29, 85], and they char-
acterise some important milestones like Elem or PR. They are however
too large to classify our decision problems and do not lead to completeness
statements—in fact, one can show that there are no “Elem-complete” nor
“PR-complete” problems—; see Section 2. Our Fα share however several
nice properties with the Fα classes: for instance, they form a strict hierar-
chy (Section 5) and are robust to slight changes in their generative functions
and to changes in the underlying model of computation (Section 4).

In order to argue for the suitability of the classes Fα for the classification
of high-complexity problems, we sketch two completeness proofs in Section 3,
and present an already long list of complete problems for Fω and beyond in
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Section 6. A general rule of thumb seems to be that statements of the form
“L is in Fα but not in Fβ for any β < α” found in the literature can often
be replaced by the much more precise “L is Fα-complete.”

There are of course essential limitations to our approach: there is no hope
of defining such ordinal-indexed hierarchies that would exhaust R using
sensible ordinal notations [30]; this is called the “subrecursive stumbling
block” by Schwichtenberg and Wainer [85, Section 5.1]. Our aim here is
more modestly to provide suitable definitions “from below” for naturally-
occurring complexity classes above Elem.

In an attempt not to drown the reader in the details of subrecursive
functions and their properties, most of the technical contents appears in
Appendix A at the end of the paper.

2. Fast-Growing Complexity Classes

We define in this section the complexity classes Fα. We rely for this on
the fast-growing functions Fα of Löb and Wainer [62] as a standard against
which we can measure high complexities (c.f. §2.2.1). In logic and recursion
theory, these functions are used to generate the classes of functions Fα when
closed under substitution and limited primitive recursion (see §5.3.1). These
classes are however not suitable for our complexity classification objectives:
the class Fα contains indeed arbitrary finite compositions of the function
Fα. We define instead in Section 2.3 each Fα class as the class of problems
decidable within time bounded by a single application of Fα composed with
any function p already defined in the lower levels Fβ for β < α.

These hierarchies of functions, function classes, and complexity classes
we employ in order to deal with non elementary complexities are all in-
dexed using ordinals, and we reuse the very rich literature on subrecur-
sion [e.g. 78, 70, 85]. We strive to employ notations compatible with those of
Schwichtenberg and Wainer [85, Chapter 4], and refer the interested reader
to their monograph for proofs and additional material.

2.1. Cantor Normal Forms and Fundamental Sequences. In this pa-
per, we only deal with ordinals that can be denoted syntactically as terms
in Cantor Normal Form:

α = ωα1 · c1 + · · ·+ ωαn · cn where α > α1 > · · · > αn and ω > c1, . . . , cn > 0
(CNF)

and hereditarily α1, . . . , αn are also written in CNF. In this representation,
α = 0 if and only if n = 0. An ordinal α with CNF of form α′ + 1 is
called a successor ordinal—it has n > 0 and αn = 0—, and otherwise if
α > 0 it is called a limit ordinal, and can be written as γ + ωβ by setting
γ = ωα1 · c1 + · · · + ωαn · (cn − 1) and β = αn. We usually employ “λ” to
denote limit ordinals.
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A fundamental sequence for a limit ordinal λ is a sequence (λ(x))x<ω of
ordinals with supremum λ. We consider a standard assignment of funda-
mental sequences for limit ordinals, which is defined inductively by

(γ + ωβ+1)(x)
def
= γ + ωβ · (x+ 1) , (γ + ωλ)(x)

def
= γ + ωλ(x) . (1)

This particular assignment of fundamental sequences satisfies e.g. 0 < λ(x) <
λ(y) for all x < y and limit ordinals λ. For instance, ω(x) = x + 1,

(ωω
4

+ ωω
3+ω2

)(x) = ωω
4

+ ωω
3+ω·(x+1). We also consider the ordinal ε0,

which is the supremum of all the ordinals writable in CNF, as a limit ordinal
with fundamental sequence defined by ε0(0)

def
= ω and ε0(x+ 1)

def
= ωε0(x), i.e.

a tower of ω’s of height x+ 1.

2.2. The Extended Grzegorczyk Hierarchy. (Fα)α<ε0 is an ordinal-
indexed infinite hierarchy of classes of functions with argument(s) and im-
ages in N [62]. The extended Grzegorczyk hierarchy has multiple natural
characterisations: for instance as loop programs for α < ω [68], as ordinal-
recursive functions with bounded growth [93], as functions computable with
restricted resources as we will see in (5), as functions that can be proven
total in fragments of Peano arithmetic [29], etc.

2.2.1. Fast-Growing Functions. At the heart of each Fα lies the αth fast-
growing function Fα:N→ N, which is defined inductively on the ordinal
index: as the successor function at index 0

F0(x)
def
= x+ 1 , (2)

by iteration at successor indices α+ 1

Fα+1(x)
def
= Fω(x)

α (x) =

ω(x) times︷ ︸︸ ︷
Fα(· · · (Fα(x)) · · · ) , (3)

and by diagonalisation on the fundamental sequence at limit indices λ

Fλ(x)
def
= Fλ(x)(x) . (4)

For instance, F1(x) = 2x + 1, F2(x) = 2x+1(x + 1) − 1, F3 is a non ele-

mentary function that grows faster than tower(x)
def
= 2.

. .2
}
x times, Fω a non

primitive-recursive “Ackermannian” function, Fωω a non multiply-recursive
“hyper-Ackermannian” function, and Fε0(x) cannot be proven total in Peano
arithmetic. For every α, the Fα function is strictly monotone in its argu-
ment, i.e. x < y implies Fα(x) < Fα(y). As Fα(0) = 1, it is therefore also
strictly expansive, i.e. Fα(x) > x for all x.

2.2.2. Computational Characterisation. The extended Grzegorczyk hierar-
chy itself is defined by means of recursion schemes with the (Fα)α as gen-
erators (see §5.3.1). Nevertheless, for α ≥ 2, each of its levels Fα is also
characterised as a class of functions computable with bounded resources [93].
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More precisely, for α ≥ 2, it is the class of functions computable by deter-
ministic Turing machines in time bounded by O(F cα(n)) for some constant
c, when given an input of size n:

Fα =
⋃
c<ω

FDTime (F cα(n)) . (5)

Note that the choice between deterministic and nondeterministic, or between
time-bounded and space-bounded computations in (5) is irrelevant, because
α ≥ 2 and F2 is already a function of exponential growth.

2.2.3. Main Properties. Each class Fα is closed under (finite) composition.
Every function f in Fα is honest, i.e. can be computed in time bounded
by some function also in Fα [93, 29]—this is a relaxation of the time con-
structible condition, which asks instead for computability in time O(f(n)).
Since each f in Fα is also bounded by F cα for some c [62, Theorem 2.10],
this means that

Fα =
⋃
f∈Fα

FDTime (f(n)) . (6)

In particular, for every α the function Fα belongs to Fα, and therefore F cα
also belongs to Fα.

Every f in Fβ is also eventually bounded by Fα if β < α [62], i.e.
there exists a rank x0 such that, for all x1, . . . , xn, if maxi xi ≥ x0, then
f(x1, . . . , xn) ≤ Fα(maxi xi)—a fact that we will use copiously. However,
for all α > β > 0, Fα 6∈ Fβ, and the hierarchy (Fα)α<ε0 is therefore strict
for α > 0.

2.2.4. Milestones. At the lower levels, F0 = F1 contains (among others) all
the linear functions (see §5.3.2). We focus however in this paper on the non
elementary classes by restricting ourselves to α ≥ 2. Writing

F<α
def
=
⋃
β<α

Fβ , (7)

we find for instance F2 = F<3 = FElem the set of Kalmar-elementary
functions, F<ω = FPR the set of primitive-recursive functions, F<ωω =
FMR the set of multiply-recursive functions, and F<ε0 = FOR the set of
ordinal-recursive functions (up to ε0). We are dealing here with classes of
functions, but writing F ∗α for the restriction of Fα to {0, 1}-valued functions,
i.e.

F ∗α =
⋃
c<ω

DTime (F cα(n)) , F ∗<α
def
=
⋃
β<α

F ∗β , (8)

we obtain the corresponding classes for decision problems F ∗<3 = Elem,
F ∗<ω = PR, F ∗<ωω = MR, and F ∗<ε0 = OR.
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F ∗
<3 = Elem

F3 = Tower

F ∗
<ω = PR Fω = Ack

F ∗
<ωω = MR

Fωω = HAck

· · ·

Figure 1. Some complexity classes beyond Elem.

2.3. Fast-Growing Complexity Classes. Unfortunately, the classes in
the extended Grzegorczyk hierarchy are not quite satisfying for some inter-
esting problems, which are non elementary (or non primitive-recursive, or
non multiply-recursive, . . . ), but only barely so. The issue is that complexity
classes like e.g. F ∗3 , which is the first class to contain non elementary prob-
lems, are very large: F ∗3 contains for instance problems that require space
F 100

3 (n), more than a hundred-fold compositions of towers of exponentials.
As a result, hardness for F ∗3 cannot be obtained for many classical examples
of non elementary problems.

We therefore introduce smaller classes of problems:

Fα
def
=

⋃
p∈F<α

DTime (Fα(p(n))) . (9)

In contrast with F ∗α in (8), only a single application of Fα is possible, com-
posed with some “lower” reduction function p from F<α. As previously, the
choice of DTime rather than NTime or Space is irrelevant for α ≥ 3 (see
Lemma 4.6 later).

This definition yields for instance the desired class Tower
def
= F3, closed

under elementary reductions (i.e., reductions in F2), but also a class Ack
def
=

Fω of Ackermannian problems closed under primitive-recursive reductions, a
class HAck

def
= Fωω of hyper-Ackermannian problems closed under multiply-

recursive reductions, etc. In each case, we can think of Fα as the class of
problems not solvable with resources in F<α, but barely so: non elementary
problems for F3, non primitive-recursive ones for Fω, non multiply-recursive
ones for Fωω , and so on. See Figure 1 for the first main stops of the hierarchy.

2.3.1. Reduction Classes. Of course, we could replace in (9) the class of
reductions F<α by a more traditional one, like logarithmic space (FL) or
polynomial time (FP) functions. We feel however that our definition in
(9) better captures the intuition we have of a problem being “complete
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for Fα.” Moreover, using at least F2 as our class of reductions allows to
effectively compute the Fα function in the functional version FFα of Fα (see
Section 5.1), leading to interesting combinatorial algorithms (see §3.2.3 for
an example).

Unless stated differently, we always assume many-one F<α reductions
when discussing hardness for Fα in the remainder of this paper, but we
could just as easily consider Turing reductions (see §4.2.3).

2.3.2. Basic Fα-Complete Problems. By (9), Fα-hardness proofs can reduce
from the acceptance problem of some input string x by some deterministic
Turing machine M working in time Fα(p(n)) for some p in F<α. This can
be simplified to a machine M ′ working in time Fα(n). Indeed, because p
in F<α is honest, p(n) can be computed in F<α. Thus the acceptance of
x by M can be reduced to the acceptance problem of a #-padded input
string x′

def
= x#p(|x|)−|x| of length p(|x|) by a machine M ′ that simulates M ,

and treats # as a blank symbol—now M ′ works in time Fα(n). Another
similarly basic Fα-hard problem is the halting problem for Minsky machines
with the sum of counters bounded by Fα(n) [see 37].

To sum up, we have by definition of the (Fα)α classes the following two Fα-
complete problems—which incidentally have been used in most of the master
reductions in the literature in order to prove non primitive-recursiveness, non
multiple-recursiveness, and other hardness results [47, 91, 83, 18, 42, 40, 58,
77, 24]:

Fα-Bounded Turing Machine Acceptance (Fα-TM)
instance: A deterministic Turing machine M working in time Fα and an

input x.
question: Does M accept x?

Fα-Bounded Minsky Machine Halting (Fα-MM)
instance: A deterministic Minsky machine M with sum of counters bounded

by Fα(|M |).
question: Does M halt?
See Section 6 for a catalogue of natural complete problems, which should be
easier to employ in reductions.

3. Fast-Growing Complexities in Action

We present now two short tutorials for the use of fast-growing complex-
ities, namely for the equivalence problem for start-free expressions (Sec-
tion 3.1) and reachability in lossy counter systems (Section 3.2), pointing
to the relevant technical results from later sections. We also briefly discuss
in each case the palliatives employed so far in the literature for expressing
such complexities.

3.1. A Tower-Complete Example can be found in the seminal paper
of Stockmeyer and Meyer [87], and is quite likely already known by many
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readers. Define a star-free expression over some alphabet Σ as a term e with
abstract syntax

e ::= a | ε | ∅ | e+ e | ee | ¬e
where “a” ranges over Σ and “ε” denotes the empty string. Such expressions
are inductively interpreted as languages included in Σ∗ by:

JaK def
= {a} JεK def

= {ε} J∅K def
= ∅

Je1 + e2K
def
= Je1K ∪ Je2K Je1e2K

def
= Je1K · Je2K J¬eK def

= Σ∗ \ JeK .

The decision problem SFEq asks, given two such expressions e1, e2, whether
they are equivalent, i.e. whether Je1K = Je2K. Stockmeyer and Meyer [87]
show that this problem is hard for tower(log n) space under FL reductions
if |Σ| ≥ 2. The problem WS1S can be shown similarly hard thanks to a
reduction from SFEq.

3.1.1. Completeness. Recall that Tower is defined as F3, i.e. by the in-
stantiation of (9) for α = 3, as the problems decidable by a Turing machine
working in time F3 of some elementary function of the input size:

Tower
def
= F3 =

⋃
p∈FElem

DTime (F3(p(n))) . (10)

Once hardness for tower(log n) is established, hardness for Tower under
elementary reductions is immediate; a detailed proof can apply Theorem 4.1
and Equation (22) to show that

Tower =
⋃

p∈FElem

Space(tower(p(n)) (11)

and use a padding argument as in §2.3.2 to conclude.
That SFEq is in Tower can be checked using an automaton-based al-

gorithm: construct automata recognising Je1K and Je2K respectively, using
determinization to handle each complement operator at the expense of an
exponential blowup, and check equivalence of the obtained automata in
PSpace—the overall procedure is in space polynomial in tower(n), thus in
F3. A similar automata-based procedure yields the upper bound for WS1S.

3.1.2. Discussion. Regarding upper bounds, there was a natural candidate
in the literature for the missing class Tower: Grzegorczyk [39] defines an
infinite hierarchy of function classes (E k)k∈N inside FPR with E k+1 = Fk

for k ≥ 2. This yields FElem = E 3, and the tower function is in E 4 \ E 3.
Thus WS1S and SFEq are in “time E 4,” and such a notation has occasionally
been employed, for instance for β-Eq the β equivalence of simply typed λ-
terms [86, 84, 10]. Again, we face the issue that E 4 is much too large
a resource bound, as it contains for instance all the finite iterates of the
tower function, and there is therefore no hope of proving the hardness for
E 4 of WS1S, SFEq, or indeed β-Eq, at least if using a meaningful class of
reductions.
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Regarding non elementary lower bounds, recent papers typically establish
hardness for k-ExpTime (or k-ExpSpace) for infinitely many k (possibly
through a suitable parametrisation of the problem at hand), for instance by

reducing from the acceptance of an input of size n by a 2.
. .2︸︷︷︸

k times

n

time-bounded

Turing machine. Provided that such a lower bound argument is uniform for
those infinitely many k, it immediately yields a Tower-hardness proof, by
choosing k ≥ n. On a related topic, note that, in contrast with e.g. the
relationship between PH and PSpace, because the exponential hierarchy is
known to be strict, we know for certain that

• for all k, k-ExpTime ( Elem =
⋃
k k-ExpTime,

• there are no “Elem-complete problems,” and
• Elem ( Tower.

3.2. An Ack-Complete Example. Possibly the most popular complete
problem for Ack in use in reductions, LCM Reachability asks whether a
given configuration is reachable in a lossy counter machine (LCM) [83]. Such
counter machines are syntactically identical to Minsky machines 〈Q, C, δ, q0〉,
where transitions δ ⊆ Q×C×{=0?, ++, --}×Q operate on a set C of counters
through zero-tests c=0?, increments c++ and decrements c--. The semantics
of an LCM differ however from the usual, “reliable” semantics of a counter
machine in that the counter values can decrease in an uncontrolled manner
at any point of the execution. These unreliable behaviours make several
problems decidable on LCMs, contrasting with the situation with Minsky
machines.

Formally, a configuration σ = (q,~v) associates a control location q in Q
with a counter valuation ~v in NC, i.e. counter values can never go negative. A
transition of the form (q, c, op, q′) defines a computation step (q,~v)→ (q′, ~v′)
where ~v(c′) ≤ ~v′(c′) for all c 6= c′ in C, and

• if op = =0?, then ~v(c) ≥ ~v′(c) = 0,
• if op = ++, then ~v(c) + 1 ≥ ~v′(c), and
• if op = --, then ~v(c) ≥ ~v′(c) + 1.

Let the initial configuration be (q0,~0). The reachability problem for such
a system asks whether a given configuration τ can be reached in a finite
number of steps, i.e. whether (q0,~0)→∗ τ . The hardness proof of Schnoebe-
len [83] immediately yields that this problem is Ack-hard [see also 91, 82],
where Ack is defined as an instance of (9): it is the class of problems de-
cidable with Fω resources of some primitive-recursive function of the input
size:

Ack
def
= Fω =

⋃
p∈FPR

DTime
(
Fω(p(n))

)
. (12)

3.2.1. Decidability of LCM. Lossy counter machines define well-structured
transition systems over the set of configurations Q × NC, for which generic
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algorithms have been designed [4, 36], which rely on the existence of a well-
quasi-ordering [wqo, see 53] over the set of configurations. The particular
variant of the algorithm we present here is well-suited for a complexity anal-
ysis, and is taken from [81].

Call a sequence of configurations σ0, σ1, . . . , σn a witness if σ0 = τ is the
target configuration, σn = (q0,~0) is the initial configuration, and σi+1 → σi
for all 0 ≤ i < n. An instance of LCM is positive if and only if there exists a
witness, which we will search for backwards, starting from τ and attempting
to reach the initial configuration (q0,~0).

Consider the ordering over configurations defined by (q,~v) ≤ (q′, ~v′) if
and only if q = q′ and ~v ≤× ~v′, the latter being defined as ~v(c) ≤ ~v′(c) for
all c in C. Observe that, if σ0, σ1, . . . , σn is a shortest witness, then for all
i < j, σi 6≤ σj , i.e. it is a bad sequence for ≤, or we could have picked σj
at step i and obtained a strictly shorter witness. Furthermore, if at some
step i there existed s′i ≤ si with s′i → si−1, then we could substitute s′i for si
and still have a witness, because si+1 → s′i. Thus, if there exists a witness,
then there is a minimal bad one, i.e. a bad one where for all 0 < i < n,
σi+1 ∈ MinPre(σi) where MinPre(σ)

def
= min≤{σ′ | σ′ → σ}.

Now, because Q and C are finite, (Q × NC,≤) is a well-quasi-order by
Dickson’s Lemma, thus

(i) for all i, the set MinPre(σi) is finite, and
(ii) any bad sequence, i.e. any sequence σ0, σ1, . . . where σi 6≤ σj for all

i < j, is finite.

Therefore, an algorithm for LCM can proceed by exploring a tree of prefixes
of potential minimal witnesses, which has finite degree by (i) and finite
height by (ii), hence by Kőnig’s Lemma is finite.

3.2.2. Length Function Theorems. A nondeterministic version of this search
for a witness for LCM will see its complexity depend essentially on the height
of the tree, i.e. on the length of bad sequences. Define the size of a con-
figuration as its infinity norm |(q,~v)| = maxc∈C ~v(c), and note that any σ
in MinPre(σi) is of size |σ| ≤ |σi| + 1. This means that in any sequence
σ0, σ1, . . . where τ = σ0 and σi+1 ∈ MinPre(σi) for all i, |σi| ≤ |τ | + i =

succi(|τ |) the ith iterate of the successor function succ(x)
def
= x+ 1. We call

such a sequence controlled by succ.
What a length function theorem provides is an upper bound on the length

of controlled bad sequences over a wqo, depending on the control function—
here the successor function—and the maximal order type of the wqo—here
ω|C| · |Q|. In our case, the theorems in [79, 80] provide an

F
|Q|
h,|C|(|τ |) ≤ Fh,ω(max{|C|, |Q|, |τ |}) def

= ` (13)

upper bound on both this length and the maximal size of any configuration
in the sequence, where
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• h:N → N is an increasing polynomial function (which depends on
the control function) and
• for any increasing h:N→ N, (Fh,α)α is a relativized fast-growing hi-

erarchy that uses h instead of the successor function as base function
with index 0:

Fh,0(x)
def
= h(x) , Fh,α+1(x)

def
= F

ω(x)
h,α (x) , Fh,λ(x)

def
= Fh,λ(x)(x) . (14)

3.2.3. A Combinatorial Algorithm. We have established an upper bound on
the length of a shortest minimal witness, entailing that if a witness exists,
then it is of length bounded by ` defined in (13). This bound can be exploited
by a nondeterministic forward algorithm, which

(1) computes ` in a first phase: as we will see with Theorem 5.1, this can
be performed in time Fh,ω(e(n))) for some elementary function e,

(2) then nondeterministically explores the reachable configurations, start-

ing from the initial configuration (q0,~0) and attempting to reach the
target configuration τ—but aborts if the upper bound on the length
is reached. This second phase uses at most ` steps, and each step can
be performed in time polynomial in the size of the current configu-
ration, itself bounded by `. The whole phase can thus be performed
in time polynomial in `, which is bounded by Fh,ω(f(n)) for some
primitive-recursive f by Lemma 4.6.

Thus the overall complexity of this algorithm can be bounded by Fh,ω(p(n))
where h and p are primitive-recursive. Because by Corollary 4.3 and Equa-
tion (22), for any primitive-recursive strictly increasing h,

Ack =
⋃

p∈FPR

NTime
(
Fh,ω(p(n))

)
, (15)

this means that LCM is in Ack.

3.2.4. Discussion. The oldest statement of Ack-completeness (under poly-
nomial time Turing reductions) we are aware of is due to Clote [20] for FCP,
the finite containment problem for Petri nets; see §6.1.1. As observed by
Clote, his definition of Ack as DTime

(
Fω(n)

)
is somewhat problematic,

since the class is not robust under changes in the model of computation, for
instance RAM vs. multitape Turing machines. A similar issue arises with
the definition

⋃
c<ω DTime

(
Fω(n+ c)

)
employed in [42]: though robust un-

der changes in the model of computation, it is not closed under reductions.
Those classes are too tight to be convenient.

Conversely, stating that a problem is “in F ∗ω but not in F ∗k for any
k” [e.g. 33] is much less informative than stating that it is Fω-complete: F ∗ω
is too large to allow for completeness statements, see Section 5.

4. Robustness

In the applications of fast-growing classes we discussed in sections 3.1
and 3.2, we relied on both counts on their “robustness” to minor changes
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in their definition. More precisely, we employed space or time hierarchies
indifferently, and alternative generative functions: first for the lower bound
of SFEq and WS1S, when we used the tower function instead of F3 in the
reduction, and later for the upper bound of LCM, where we relied on a
relativised version of Fω. In this section, we prove these and other small
changes to be innocuous.

4.1. Generative Functions. There are many variants for the definition of
the fast-growing functions (Fα)α, but they are all known to generate essen-
tially the same hierarchy (Fα)α.2 Nevertheless, because the fast-growing
complexity classes Fα we defined are smaller, there is no guarantee for these
classical results to hold for them.

4.1.1. Ackermann Hierarchy. We start with one particular variant, which is
rather common in the literature: define Aα:N→ N for α > 0 by:

A1(x)
def
= 2x , Aα+1(x)

def
= Axα(1) , Aλ(x)

def
= Aλ(x)(x) . (16)

The hierarchy differs in the treatment of successor indices, where the argu-
ment is reset to 1 instead of keeping x as in (3). This definition results for
instance in A2(x) = 2x and A3(x) = tower(x), and is typically used in lower
bound proofs.

We can define a hierarchy of decision problems generated from the (Aα)α
by analogy with (9):

Aα
def
=

⋃
p∈F<α

DTime (Aα(p(n)) . (17)

For two functions g:N→ N and h:N→ N, let us write g ≤ h if g(x) ≤ h(x)
for all x in N. Because Aα ≤ Fα for all α > 0, it follows that Aα ⊆ Fα.
The converse inclusion also holds: in order to prove it, it suffices to exhibit
for all α > 0 a function pα in F<α such that Fα ≤ Aα ◦ pα. It turns out
that a uniform choice pα(x)

def
= 6x+ 5 fits those requirements—it is a linear

function in F0 and Fα ≤ Aα ◦ pα as shown in Lemma A.4—, thus:

Theorem 4.1. For all α > 0, Aα = Fα.

4.1.2. Relativised Hierarchies. Another means of defining a variant of the
fast-growing functions is to pick a different definition for F0: recall the
relativised fast-growing functions employed in (14). The corresponding rel-
ativised complexity classes are then defined by

Fh,α
def
=

⋃
p∈F<α

DTime (Fh,α(p(n))) . (18)

It is easy to check that, if g ≤ h, then Fg,α ≤ Fh,α for all α. Because we
assumed h to be strictly increasing, this entails Fα ≤ Fh,α, and we have the
inclusion Fα ⊆ Fh,α for all strictly increasing h.

2See [76] and [62, pp. 48–51] for such results—and the works of Weiermann et al. on
phase transitions for investigations of when changes do have an impact [e.g. 71].
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The converse inclusion does not hold, since for instance Fh,1 is non ele-
mentary for h(x) = 2x. Observe however that, in this instance, h ≤ F2, and
we can see that FF2,k = F2+k for all k in N. This entails that Fh,1 ⊆ F3

for h(x) = 2x. Thus, when working with relativised classes, one should
somehow “offset” the ordinal index by an appropriate amount.

There is nevertheless a difficulty with relativised functions: it is rather
straightforward to show that Fh,α ≤ Fβ+α if h ≤ Fβ, assuming that the
direct sum β + α does not “discard” any summand from the CNF of β;
e.g. FF1,k = Fk+1 and FFω ,ω = Fω·2. Observe however that FF1,ω(x) =
FF1,x+1(x) = Fx+2(x) > Fx+1(x) = Fω(x). Thanks to the closure of Fα
under reductions in F<α, this issue can be solved by composing with an
appropriate function, e.g. FF1,ω(x) ≤ Fω(x + 1). This idea is formalised in
Section A.4, and allows to show:

Theorem 4.2. Let h:N → N be a strictly increasing function and α, β be
two ordinals.

(i) If h ∈ Fβ, then Fh,α ⊆ Fβ+1+α.
(ii) If h ≤ Fβ, then Fh,α ⊆ Fβ+α.

Proof. For (i), if h is in Fβ, then there exists xh in N such that, for all
x ≥ xh, h(x) ≤ Fβ+1(x) [62, Lemma 2.7]. By Lemma A.5, this entails that
for all x ≥ xh, Fh,α(x) ≤ Fβ+1+α(Fγ(x)) for some γ < β + 1 + α. Define

the function fh by fh(x)
def
= x + xh; then for all x, Fh,α(x) ≤ Fh,α(fh(x)) ≤

Fβ+1+α(Fγ(fh(x))). Observe that Fγ◦fh is in F<β+1+α, thus Fh,α ⊆ Fβ+1+α.
For (ii), if β + α = 0, then β = α = 0, thus h(x) = x + 1 since it has

to be strictly increasing, and Fh,0 = F0. Otherwise, Lemma A.5 shows that
Fh,α ≤ Fβ+α ◦ Fγ for some γ < β + α. Observe that Fγ is in F<β+α, thus
Fh,α ⊆ Fβ+α. �

The statement of Theorem 4.2 is somewhat technical, but easy to apply
to concrete situations; for instance:

Corollary 4.3. Let h:N → N be a strictly increasing primitive recursive
function and α ≥ ω. Then Fh,α = Fα.

Proof. The function h is in Fk for some k < ω, thus Fh,α ⊆ Fk+1+α = Fα by
Theorem 4.2. Conversely, since h is strictly increasing, Fα ⊆ Fh,α. �

4.1.3. Fundamental Sequences. Our last example of a minor variation is to
change the assignment of fundamental sequences. Instead of the standard
assignment of (1), we posit a monotone function s:N→ N and consider the
assignment

(γ + ωβ+1)(x)s
def
= γ + ωβ · s(x) , (γ + ωλ)(x)s

def
= γ + ωλ(x)s . (19)

Thus the standard assignment in (1) is obtained as the particular case s(x) =
x+ 1. As previously, this gives rise to new fast-growing functions

F0,s(x)
def
= x+ 1 , Fα+1,s(x)

def
= F s(x)

α,s (x) , Fλ,s(x)
def
= Fλ(x)s,s(x) (20)
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and complexity classes

Fα,s
def
=

⋃
p∈F<α

DTime (Fα,s(p(n))) . (21)

We obtain similar results with non standard fundamental sequences as
with relativised hierarchies (thus also yielding a statement similar to that
of Corollary 4.3):

Theorem 4.4. Let s:N → N be a strictly increasing function and α, β be
two ordinals.

(i) If s ∈ Fβ, then Fα,s ⊆ Fβ+1+α.
(ii) If s ≤ Fβ, then Fα,s ⊆ Fβ+α.

Proof. By applying Theorem 4.2 alongside Lemma A.6. �

The case where s is the identity function id(x)
def
= x is fairly common in

the literature; we obtain in this particular case:

Corollary 4.5. For all α, Fα,id = Fα.

Proof. By Theorem 4.4 and since id ≤ F0, we have the inclusion Fα,id ⊆
Fα. The converse inclusion stems from Fα ≤ Fα,id ◦ F0, as can be seen by
transfinite induction over α (see Lemma A.7). �

4.2. Computational Models and Reductions. In order to be used to-
gether with reductions in F<α, the classes Fα need to be closed under such
functions. The main technical lemma to this end states:

Lemma 4.6. Let f and f ′ be two functions in F<α. Then there exists p in
F<α such that f ◦ Fα ◦ f ′ ≤ Fα ◦ p.

Proof. By Corollary A.9, we know that there exists g in F<α such that
f ◦ Fα ≤ Fα ◦ g. We can thus define p

def
= g ◦ f ′, which is also in F<α since

the latter is closed under composition, to obtain the statement. �

4.2.1. Computational Models. Note that because we assume α ≥ 3, F<α

contains all the elementary functions, thus Lemma 4.6 also entails the ro-
bustness of the Fα classes under changes in the model of computation—e.g.
RAM vs. Turing machines vs. Minsky machines, deterministic or nondeter-
ministic or alternating—or the type of resources under consideration—time
or space; e.g.

Fα =
⋃

p∈F<α

NTime
(
Fα(p(n))

)
=

⋃
p∈F<α

Space
(
Fα(p(n))

)
. (22)
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4.2.2. Many-One Reductions. For a function f :N→ N and two languages A

and B, we say that A many-one reduces to B in time f(n), written A ≤fm B,
if there exists a Turing transducer T working in deterministic time f(n) such
that, for all x, x is in A if and only if T (x) is in B. For a class of functions

C, we write A ≤Cm B if there exists f in C such that A ≤fm B. As could be
expected given the definitions, each class Fα is closed under many-one F<α

reductions:

Theorem 4.7. Let A and B be two languages. If A ≤F<α
m B and B ∈ Fα,

then A ∈ Fα.

Proof. By definition, A ≤F<α
m B means that there exists a Turing trans-

ducer T working in deterministic time f(n) for some f in F<α; note that
this implies that the function implemented by T is also in F<α by (6). Fur-
thermore, B ∈ Fα entails the existence of a Turing machine M that accepts
x if and only if x is in B and works in deterministic time Fα(p(n)) for some p
in F<α. We construct T (M) a Turing machine which, given an input x, first
computes T (x) by simulating T , and then simulates M on T (x) to decide
acceptance; T (M) works in deterministic time f(n) + Fα(p(T (n))), which
shows that A is in Fα by Lemma 4.6. �

4.2.3. Turing Reductions. We write similarly that A ≤fT B if there exists a
Turing machine for A working in deterministic time f(n) with oracle calls

to B, and A ≤CT B if there exists f in C such that A ≤fT B. It turns out
that Turing reductions in F<α can be used instead of many-one reductions:

Theorem 4.8. Let α ≥ 3 and A and B be two languages. If A ≤F<α
T B and

B ∈ Fα, then A ∈ Fα.

Proof. It is a folklore result on queries in recursion theory that, if A ≤fT B,

then A ≤2f
m Btt where 2f (n)

def
= 2f(n) and Btt is the truth table version of

the language B, which evaluates a Boolean combination of queries “x ∈ B.”
Indeed, we can easily simulate the oracle machine for A using a nondeter-
ministic Turing transducer also in time f(n) that guesses the answers of the
B oracle and writes a conjunction of checks “x ∈ B” or “x 6∈ B” on the out-
put, to be evaluated by a Btt machine. This transducer can be determinised
by exploring both outcomes of the oracle calls, and handling them through
disjunctions in the output; it now works in time 2f (n).

Since α ≥ 3 and f is in F<α, 2f is also in F<α. Furthermore, since B is
in Fα, Btt is also in Fα. The statement then holds by Theorem 4.7. �

5. Strictness

The purpose of this section is to establish the strictness of the (Fα)α
hierarchy (Section 5.2). As a first step, we prove that the Fα functions are
“elementarily” constructible (Section 5.1), which is of independent interest
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for combinatorial algorithms in the line of that of §3.2.3. We end this section
with a remark on the case α = 2 (Section 5.3).

5.1. Elementary Constructivity. The functions Fα are known to be hon-
est, i.e. to be computable in time Fα [93, 29]. This is however not tight
enough for their use in length function theorems, as in §3.2.3, where we want
to compute their value in time elementary in Fα itself. Formally, we call a
function f elementarily constructible if there exists an elementary function
e in FELem = F ∗<3 such that f(n) can be computed in time e(f(n)) for all
n.

We present the statement in the more general case of relativised fast-
growing functions, defined in (14) and discussed in §4.1.2; since F0(x) = x+1
is elementarily constructible, this yields the result that all the Fα functions
are elementarily constructible:

Theorem 5.1. Let h:N → N be an elementarily constructible strictly in-
creasing function and α be an ordinal, then Fh,α is also elementarily con-
structible.

Proof. Assume that h(n) can be computed in time e(h(n)) for some fixed
elementary monotone function e. Proposition A.12 shows that Fh,α can

be computed in time O(f(Fh,α(n))) for the elementary function f(x)
def
=

x · (p ◦Gωα(x)) + e(x)), where p ◦Gωα is an elementary function that takes
the cost of manipulating (an encoding of) the ordinal indices into account.
Lemma 4.6 then yields the result. �

5.2. Strictness. Let us introduce yet another generalisation of the (Fα)α
classes, which will allow for a characterisation of the (F ∗α )α and (F ∗<α)α
classes. For an ordinal α and a finite c > 0, define

Fc
α

def
=

⋃
p∈F<α

DTime
(
F cα(p(n))

)
. (23)

Thus Fα as defined in (9) corresponds to the case c = 1.

Proposition 5.2. For all α ≥ 2,

F ∗α =
⋃
c

Fc
α .

Proof. The left-to-right inclusion is immediate by definition of F ∗α in (8).
The converse inclusion stems from the fact that if p is in Fβ for some β < α,

then there exists d such that p ≤ F dα [62, Theorem 2.10], hence F cα◦p ≤ F c+dα

by monotonicity of Fα. �

Let us prove the strictness of the (Fc
α)c,α hierarchy. By Proposition 5.2

it will also prove that of (F ∗α )α along the way (note that it is not implied
by the strictness of (Fα)α, since it would be conceivable that none of the
separating examples would be {0, 1}-valued):
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Theorem 5.3 (Strictness). For all c > 0 and 2 ≤ β < α,

Fc
β ( Fc+1

β ( Fα .

Proof of Fc+1
β ( Fα. Consider first a language L in Fc+1

β , accepted by a

Turing machine working in time F c+1
β ◦ p for some p in F<β that we can

assume to be monotone. Since β < α and F c+1
β ◦ p is in Fβ, there ex-

ists n0 such that, for all n ≥ n0, F c+1
β (p(n)) ≤ Fα(n), hence for all n,

F c+1
β (p(n)) ≤ F c+1

β (p(n+n0)) ≤ Fα(n+n0) by monotonicity and expansiv-

ity of Fβ. Observe that the function n 7→ n0 + n is in F0 ⊆ F<α, thus L
also belongs to Fα.

The strictness of the inclusion can be shown by a straightforward diago-
nalisation argument. Define for this the language

Lα
def
= {〈M〉#x |M accepts x in Fα(|x|) steps} (24)

where 〈M〉 denotes a description of the Turing machine M and # is a
separator. Then, by Theorem 5.1, Lα belongs to Fα, thanks to a Turing
machine that first computes Fα in time Fα ◦ e for some elementary function
e, and then simulates M in time elementary in Fα ◦ e. Assume now for the
sake of contradiction that Lα belongs to Fc+1

β , i.e. that there exists some

c and some Turing machine K that accepts Lα in time F c+1
β . Again, since

β < α and F c+1
β ◦ F1 is in Fβ, there exists n0 such that, for all n ≥ n0,

F c+1
β (2n+ 1) ≤ Fα(n). We exhibit a new Turing machine N

(1) that takes as input the description 〈M〉 of a Turing machine and
simulates K on 〈M〉#〈M〉 but accepts if and only if K rejects, and

(2) we ensure that a description 〈N〉 of N has size n ≥ n0.

Feeding this description 〈N〉 to N , it runs in time F c+1
β (2n + 1) ≤ Fα(n),

and we obtain a contradiction whether it accepts or not:

• if N accepts, then K rejects 〈N〉#〈N〉 which is therefore not in Lα,
thus N does not accept 〈N〉 in at most Fα(n) steps, which is absurd;
• if N rejects, then K accepts 〈N〉#〈N〉 which is therefore in Lα, thus
N accepts 〈N〉 in at most Fα(n) steps, which is absurd. �

Proof of Fc
β ( Fc+1

β . Similar to the previous proof; picking F c+1
β as the time

bound instead of Fα in (24) suffices to establish strictness. �

By Proposition 5.2, a first consequence of Theorem 5.3 is that

F ∗β ( Fα (25)

for all 2 ≤ β < α. Another consequence is that (Fα)α “catches up” with
(F ∗α )α at every limit ordinal:

Corollary 5.4. Let λ be a limit ordinal, then

F ∗<λ =
⋃
β<λ

Fβ ( Fλ .
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Proof. The equality F ∗<λ =
⋃
β<λ Fβ and the inclusion F ∗<λ ⊆ Fλ can be

checked by considering a problem in some F ∗β for β < λ: it is in Fc
β for some

c > 0 by Proposition 5.2, hence in Fβ+1 with β + 1 < λ by Theorem 5.3,
and therefore in Fλ again by Theorem 5.3. Regarding the strictness of the
inclusion, assume for the sake of contradiction Fλ ⊆

⋃
β<λ Fβ: this would

entail Fλ ⊆ Fβ for some β < λ, violating Theorem 5.3. �

Corollary 5.4 yields another characterisation of the primitive-recursive and
multiply-recursive problems as

PR =
⋃
k

Fk , MR =
⋃
k

Fωk . (26)

Note that strictness implies that there are no “F ∗α -complete” problems
under F<α reductions, since by Proposition 5.2 such a problem would nec-
essarily belong to some Fc

α level, which would in turn entail the collapse of
the (Fc

α)c hierarchy at the Fc
α level and contradict Theorem 5.3.

Similarly, fix a limit ordinal λ and some reduction class Fα for some
α < λ: there cannot be any meaningful “F ∗<λ-complete” problem under Fα

reductions, since such a problem would be in F ∗β for some α < β < λ, hence

contradicting the strictness of the (F ∗β )β<α hierarchy; in particular, there
are no “PR-complete” nor “MR-complete” problems.

5.3. The Case α = 2 is a bit particular. We did not consider it in the rest
of the paper (nor the other cases for α < 2) because it does not share the
usual characteristics of the (Fα)α: for instance, the model of computation
and the kind of resources become important, as

F2
def
=
⋃
p∈F1

DTime
(
F2(p(n))

)
(27)

would a priori be different if we were to define it through NTime or DSpace
computations; the following results are artifacts of this particular choice of
a definition.

5.3.1. Recursion Schemes. In order to define F2 fully we need the origi-
nal definition of the extended Grzegorczyk hierarchy (Fα)α by Löb and
Wainer [62]—the characterisation in (5) is only correct for α ≥ 2. This
definition is based on the closure of a set of initial functions under the op-
erations of substitution and limited primitive recursion. More precisely, the
set of initial functions at level α comprises the constant zero function 0, the
sum function +:x1, x2 7→ x1 +x2, the projections πni :x1, . . . , xn 7→ xi for all
0 < i ≤ n, and the fast-growing function Fα. New functions are added to
form the class Fα through two operations:

substitution: if h0, h1, . . . , hp belong to the class, then so does f if

f(x1, . . . , xn) = h0(h1(x1, . . . , xn), . . . , hp(x1, . . . , xn)) ,
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limited primitive recursion: if h0, h1, and g belong to the class, then so
does f if

f(0, x1, . . . , xn) = h0(x1, . . . , xn) ,

f(y + 1, x1, . . . , xn) = h1(y, x1, . . . , xn, f(y, x1, . . . , xn)) ,

f(y, x1, . . . , xn) ≤ g(max{y, x1, . . . , xn}) .
Observe that primitive recursion is defined by ignoring the last limitedness
condition in the previous definition. See the survey by Clote [21] on the rela-
tionships between machine-defined and recursion-defined complexity classes.

5.3.2. Linear Exponential Time. Let us focus for now on F1, which is the
class of reductions used in F2. First note that the successor function succ(x) =
x+ 1 = x+ F1(0) belongs to F1.

Call a function f linear if there exists a constant c such that f(x1, . . . , xn) ≤
c ·maxi xi for all x1, . . . , xn. Observe that, for all c, the function fc(x)

def
= c ·x

is in F1 since fc(0) = 0, fc(x+1) = succc(0)+fc(x), and fc(x) ≤ F c1 (x); thus
any linear function is bounded above by a function in F1. Conversely, if f
is in F1, then it is linear: this is true of the initial functions, and preserved
by the two operations of substitution and limited primitive recursion.3

This entails that F2 matches a well-known complexity class, since fur-
thermore F2(n) = 2n+1+log(n+1) − 1 is in 2O(n): F2 is the weak (aka linear)
exponential-time complexity class:

F2 = E
def
= DTime(2O(n)) . (28)

6. A Short Catalogue

Our introduction of the fast-growing complexity classes is motivated by
already known decidability problems, arising for instance in logic, verifica-
tion, or database theory, for which no precise classification could be provided
in the existing hierarchies. By listing some of these problems, we hope to
initiate the exploration of this mostly uncharted area of complexity, and to
foster the use of reductions from known problems, rather than proofs from
Turing machines. The following catalogue of complete problems does not at-
tempt to be exhaustive; Friedman [38] for instance presents many problems
“of enormous complexity.”

Because examples for Tower are well-known and abound in the liter-
ature, starting with a 1975 survey by Meyer [67],4 we rather focus on the
non primitive-recursive levels, i.e. the Fα for α ≥ ω. Interestingly, all these
examples rely for their upper bound on the existence of some well-quasi-
ordering (of maximal order type ωα [see 23]), and on a matching length
function theorem.

3Thus F1 ( E 2: the latter additionally contains the function x, y 7→ (x+ 1) · (y+ 1) as
an initial function, and is equal to FLinSpace [75, 21, Theorem 3.36].

4Of course Meyer does not explicitly state Tower-completeness, but it follows imme-
diately from the lower and upper bounds he provides.
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6.1. Fω-Complete Problems. We gather here some of the decision prob-
lems known to be Ack-complete at the time of this writing. The common
trait of all these problems is their reliance on Dickson’s Lemma over Nd
for some d for decidability, and on the associated length function theorems
[65, 20, 33, 6] for Ack upper bounds.

6.1.1. Vector Addition Systems (VAS, and equivalently Petri nets), provided
the first known Ackermannian decision problem: FCP.

A d-dimensional VAS is a pair 〈~v0, ~A〉 where ~v0 is an initial configuration in

Nd and ~A is a finite set of transitions in Zd. A transition ~u in ~A can be applied
to a configuration ~v in Nd if ~v′ = ~v + ~u is in Nd; the resulting configuration
is then ~v′. The complexity of decision problems for VAS usually varies from
ExpSpace-complete [61, 74, 11] to Fω-complete [64, 47] to undecidable [41,
46], via a key problem, whose exact complexity is unknown: VAS Reachability
[63, 51, 54, 59, 60].

Finite Containment Problem (FCP)
instance: Two VAS V1 and V2 known to have finite sets Reach(V1) and

Reach(V2) of reachable configurations.
question: Is Reach(V1) included in Reach(V2)?
lower bound: Mayr and Meyer [64], from an Fω-bounded version of Hilbert’s

Tenth Problem. A simpler reduction is given by Jančar [47] from
Fω-MM the halting problem of Fω-bounded Minsky machines.

upper bound: Originally McAloon [65] and Clote [20], or more generally us-
ing length function theorems for Dickson’s Lemma [33, 6].

comment: Testing whether the set of reachable configurations of a VAS is
finite is ExpSpace-complete [61, 74]. FCP has been generalised by
Jančar [47] to a large range of behavioural relations between two
VASs. Without the finiteness condition, these questions are unde-
cidable [41, 46, 47].

An arguably simpler problem on vector addition systems has recently been
shown to be Ack-complete by Hofman and Totzke [45]. A labelled vector
addition system with states (VASS) V = 〈Q,Σ, d, T, q0, ~v0〉 is a VAS extended
with a finite set Q of control states that includes a distinguished initial
state q0. The transitions in T of such systems are furthermore labelled with
symbols from a finite alphabet Σ: transitions are then defined as quadruples

q
a,~u−−→ q′ for a in Σ and ~u in Zd. Such a system defines an infinite labelled

transition system 〈Q× Nd,→, (q0, ~v0)〉 where (q,~v)
a−→ (q′, ~v + ~u) if q

a,~u−−→ q′

is in T and ~v + ~u ≥ ~0. The set of traces of V is the set of finite sequences

L(V)
def
= {a1 · · · an ∈ Σ∗ | ∃(q,~v) ∈ Q× Nd.(q0, ~v0)

a1···an−−−−→ (q,~v)}.
One-Dimensional VASS Universality (1VASSU)
instance: A one-dimensional labelled VASS V = 〈Q,Σ, 1, T, q0, ~x0〉.
question: Does L(V) = Σ∗, i.e. is every finite sequence over Σ a trace of V?
lower bound: Hofman and Totzke [45] by reduction from reachability in

gainy counter machines, see LCM.
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upper bound: Hofman and Totzke [45] using length function theorems for
Dickson’s Lemma.

comment: One-dimensional VASS are also called “one counter nets” in the
literature. More generally, the inclusion problem L ⊆ L(V) for some
rational language L is still Ack-complete.

6.1.2. Unreliable Counter Machines. A lossy counter machine (LCM) is syn-
tactically a Minsky machine, but its operational semantics are different: its
counter values can decrease nondeterministically at any moment during ex-
ecution. See Section 3.2 for details.

Lossy Counter Machines Reachability (LCM)
instance: A lossy counter machine M and a configuration σ.
question: Is σ reachable in M with lossy semantics?
lower bound: Schnoebelen [83], by a direct reduction from Fω-bounded Min-

sky machines. The first proofs were given independently by Urquhart
in 1999 [91] and Schnoebelen in 2002 [82].

upper bound: Length function theorem for Dickson’s Lemma.
comment: Completeness also holds for terminating LCMs (meaning that ev-

ery computation starting from the initial configuration terminates),
coverability in Reset or Transfer Petri nets, and for reachability in
gainy counter machines, where counter values can increase nonde-
terministically.

6.1.3. Relevance Logics provide different semantics of implication, where a
fact B is said to follow from A, written “A → B”, only if A is actually
relevant in the deduction of B. This excludes for instance A → (B → A),
(A ∧ ¬A)→ B, etc.—see Dunn and Restall [26] for more details. Although
the full logic R is undecidable [90], its conjunctive-implicative fragment
R→,∧ is decidable, and Ack-complete:

Conjunctive Relevant Implication (CRI)
instance: A formula A of R→,∧.
question: Is A a theorem of R→,∧?
lower bound: Urquhart [91], from a variant of LCM: the emptiness problem

of alternating expansive counter systems, for which he proved Fω-
hardness directly from Fω-MM the halting problem in Fω-bounded
Minsky machines.

upper bound: Urquhart [91] using length function theorem for Dickson’s
Lemma.

comment: Hardness also holds for any intermediate logic between R→,∧
and T→,∧, which might include some undecidable fragments. The
related contractive propositional linear logic LLC and its additive-
multiplicative fragment MALLC are also Ack-complete [56].

6.1.4. Data Logics & Register Automata are concerned with structures like
words or trees with an additional equivalence relation over the positions.
The motivation for this stems in particular from XML processing, where
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the equivalence stands for elements sharing the same datum from some in-
finite data domain D. Enormous complexities often arise in this context,
both for automata models (register automata and their variants, when ex-
tended with alternation or histories) and for logics (which include logics
with freeze operators and XPath fragments)—the two views being tightly
interconnected.

Emptiness of Alternating 1-Register Automata (A1RA)
instance: An A1RA A.
question: Is the data language L(A) empty?
lower bound: Demri and Lazić [25], from reachability in gainy counter ma-

chines LCM.
upper bound: Demri and Lazić [25], by reducing to reachability in gainy

counter machines LCM.
comment: There exist many variants of the A1RA model, and hardness also

holds for the corresponding data logics [e.g. 48, 25, 32, 88, 31, 89].

See A1TA for the case of linearly ordered data, and LTL↓[k] for data

logics using multiple attributes with a hierarchical policy.

6.1.5. Metric Temporal Logic (MTL) allows to reason on timed words over
Σ × R, where Σ is a finite alphabet and the real values are non decreasing
timestamps on events [52]. When considering infinite timed words, one
usually focuses on non-Zeno words, where the timestamps are increasing and
unbounded. MTL is an extension of linear temporal logic where temporal
modalities are decorated with real intervals constraining satisfaction; for
instance, a timed word w satisfies the formula F[3,∞)ϕ at position i, written
w, i |= F[3,∞)ϕ, only if ϕ holds at some position j > i of w with timestamp
τj − τi ≥ 3. The safety fragment of MTL restricts the intervals decorating
“until” modalities to be right-bounded.

Satisfiability of Safety Metric Temporal Logic (SMTL)
instance: A safety MTL formula ϕ.
question: Does there exist an infinite non-Zeno timed word w s.t. w, 0 |= ϕ?
lower bound: Lazić et al. [58], by a direct reduction from Fω-bounded Turing

machines.
upper bound: Lazić et al. [58] by resorting to length function theorems for

Dickson’s Lemma.
comment: The complexity bounds are established through reductions to and

from the fair termination problem for insertion channel systems,
which Lazić et al. [58] show to be Ack-complete; see LCST.

6.1.6. Ground Term Rewriting. A ground term rewrite system with state
(sGTRS) maintains a finite ordered labelled tree along with a control state
from some finite set. While most questions about ground term rewrite sys-
tems are decidable [22], the addition of a finite set of control states yields
a Turing-powerful formalism. Formally, a sGTRS 〈Q,Σ, R〉 over a ranked
alphabet Σ and a finite set of states Q is defined by a finite set of rules
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R ⊆ (Q× T (Σ))2 of the form (q, t)→ (q′, t′) acting over pairs of states and
trees, which rewrite a configuration (q, C[t]) into (q′, C[t′]) in any context C.

Hague [43] adds age labels in N to every node of the current tree. In the
initial configuration, every tree node has age zero, and at each rewrite step
(q, C[t])→ (q′, C[t′]), in the resulting configuration the nodes in t′ have age
zero, and the nodes in C see their age increment by one if q 6= q′ or remain
with the same age as in (q, C[t]) if q = q′. A senescent sGTRS with lifespan
k in N restricts rewrites to only occur in subtrees of age at most k, i.e. when
matching C[t] the age of the root of t is ≤ k.

State Reachability in Senescent Ground Term Rewrite Systems (SGTRS)

instance: A senescent sGTRS 〈Q,Σ, R〉 with lifespan k, two states q0 and
qf in Q, and an initial tree t0 in T (Σ).

question: Does there exist a tree t in T (Σ) such that (qf , t) is reachable from
(q0, t0)?

lower bound: Hague [43], from coverability in reset Petri nets, see LCM.
upper bound: Hague [43], by reducing to coverability in reset Petri nets,

see LCM.

6.1.7. Interval Temporal Logics provide a formal framework for reasoning
about temporal intervals. Halpern and Shoham [44] define a logic with
modalities expressing the basic relationships that can hold between two
temporal intervals, 〈B〉 for “begun by”, 〈E〉 for “ended by”, and their in-
verses 〈B̄〉 and 〈Ē〉. This logic, and even small fragments of it, has an
undecidable satisfiability problem, thus prompting the search for decidable
restrictions and variants. Montanari et al. [69] show that the logic with rela-
tions AĀBB̄—where 〈A〉 expresses that the two intervals “meet”, i.e. share
an endpoint—, has an Fω-complete satisfiability problem over finite linear
orders:

Finite Linear Satisfiability of AĀBB̄ (ITL)
instance: An AĀBB̄ formula ϕ.
question: Does there exist an interval structure S over some finite linear

order and an interval I of S s.t. S, I |= ϕ?
lower bound: Montanari et al. [69], from reachability in lossy counter sys-

tems (LCM).
upper bound: Montanari et al. [69], by reducing to reachability in lossy

counter systems (LCM).
comment: Hardness already holds for the fragments ĀB and ĀB̄ [14].

6.2. Fωω-Complete Problems. The following problems are known to be
complete for HAck. In most cases they have been proven decidable thanks
to Higman’s Lemma over some finite alphabet, and the complexity upper
bounds stem from the length function theorems of Weiermann [94], Cichoń
and Tahhan Bittar [19], Schmitz and Schnoebelen [79].

6.2.1. Lossy Channel Systems (LCS) are finite labelled transition systems
〈Q,M, δ, q0〉 where transitions in δ ⊆ Q × {?, !} ×M × Q read and write
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on an unbounded channel. This would lead to a Turing-complete model of
computation, but the operational semantics of LCS are “lossy”: the channel
loses symbols in an uncontrolled manner. Formally, the configurations of
an LCS are pairs (q, x), where q in Q holds the current state and x in M∗

holds the current contents of the channel. A read (q, ?m, q′) in δ updates this
configuration into (q, x′) if there exists some x′′ s.t. x′ ≤∗ x′′ and mx′′ ≤∗ x—
where ≤∗ denotes subword embedding—, while a write transition (q, !m, q′)
updates it into (q′, x′) with x′ ≤∗ xm; the initial configuration is (q0, ε), with
empty initial channel contents.

Due to the unboundedness of the channel, there might be infinitely many
configurations reachable through transitions. Nonetheless, many problems
are decidable [2, 15] using Higman’s Lemma and what would later become
known as the theory of well-structured transition systems (WSTS) [35, 4, 36].
LCS are also the primary source of problems hard for Fωω :

LCS Reachability (LCS)
instance: A LCS and a configuration (q, x) in Q×M∗.
question: Is (q, x) reachable from the initial configuration?
lower bound: Chambart and Schnoebelen [18], by a direct reduction from

Fωω -MM the halting problem in Fωω -bounded Minsky machines.
upper bound: Chambart and Schnoebelen [18] using the length function the-

orem of Cichoń and Tahhan Bittar [19], or more generally using
length function theorems for Higman’s Lemma [94, 79].

comment: Hardness holds already for the (semantically defined) class of ter-
minating systems, and for reachability in insertion channel systems,
where symbols are nondeterministically inserted in the channel at
arbitrary positions instead of being lost. The bounds are refined
and parametrised in function of the size of the alphabet M in [49].

There are many interesting applications of this question; let us mention
one in particular: Atig et al. [8] show how concurrent finite programs commu-
nicating through weak shared memory—i.e. prone to reorderings of read or
writes, modelling the actual behaviour of microprocessors, their instruction
pipelines, and cache levels—have an Fωω -complete control-state reachability
problem, through reductions to and from LCS.

LCS Termination (LCST)
instance: A LCS.
question: Is every sequence of transitions from the initial configuration fi-

nite?
lower bound: Chambart and Schnoebelen [18], by a reduction from termi-

nating instances of LCS.
upper bound: Length function theorems for Higman’s Lemma.
comment: Unlike Reachability, Termination is sensitive to switching from

lossy semantics to insertion semantics: it becomes NL-complete in
general [15], Tower-complete when the channel system is equipped
with channel tests [13], and Ack-complete when one asks for fair
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non termination, where the channel contents are read infinitely of-
ten [58].

6.2.2. Embedding Problems have been introduced by Chambart and Schnoe-
belen [16], motivated by decidability problems in various classes of channel
systems mixing lossy and reliable channels. These problems are centred on
the subword embedding relation ≤∗ and called Post Embedding Problems.
There is a wealth of variants and applications, see e.g. [17, 50, 49].

We give here a slightly different viewpoint, taken from [9, 49], that uses
regular relations (i.e. definable by synchronous finite transducers) and ra-
tional relations (i.e. definable by finite transducers):

Rational Embedding Problem (RatEP)
instance: A rational relation R included in Σ∗ × Σ∗.
question: Is R ∩ ≤∗ non empty?
lower bound: Chambart and Schnoebelen [16], from reachability in lossy

channel systems (LCS).
upper bound: Length function theorems for Higman’s Lemma.
comment: Chambart and Schnoebelen [16] call this problem the Regular Post

Embedding Problem, not to be mistaken with GEP. An equivalent
presentation uses a rational language L included in Σ∗ and two ho-
momorphisms u, v: Σ∗ → Σ∗, and asks whether there exists w in
L s.t. u(w) ≤∗ v(w). The bounds are refined and parametrised in
function of the size of the alphabet Σ in [49].

Generalised Embedding Problem (GEP)
instance: A regular relationR included in (Σ∗)m and a subset I of {1, ...,m}2.
question: Does there exist (w1, . . . , wm) in R s.t. for all (i, j) in I, wi ≤∗ wj?
lower bound: Barceló et al. [9], from RatEP.
upper bound: Length function theorems for Higman’s Lemma.
comment: The Regular Embedding Problem (RegEP) corresponds to the case

where m = 2 and I = {(1, 2)}, and is already Fωω -hard; see [49] for
refined bounds. Barceló et al. [9] use GEP to show the Fωω -hardness
of querying graph databases using particular extended conjunctive
regular path queries.

6.2.3. Timed Automata [7] are finite automata able to recognise timed words.
They are extended with clocks that evolve synchronously through time, and
can be reset and compared against some time interval by the transitions of
the automaton. The model can be extended with alternation, and is then
called an ATA. Satisfiability problems for MTL reduce to emptiness prob-
lems for ATAs. Ouaknine and Worrell [73] and Lasota and Walukiewicz [55]
prove using WSTS techniques that, in the case of a single clock, empti-
ness of ATAs is decidable. Note that the safety fragment of MTL has an
Ack-complete satisfiability problem, see SMTL.
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Emptiness of Alternating 1-Clock Timed Automata (A1TA)
instance: An A1TA A.
question: Is the timed language L(A) empty?
lower bound: Lasota and Walukiewicz [55], from reachability in insertion

channel systems (LCS).
upper bound: Length function theorems for Higman’s Lemma.
comment: Hardness already holds for universality of nondeterministic 1-

clock timed automata.

Finite Satisfiability of Metric Temporal Logic (fMTL)
instance: An MTL formula ϕ.
question: Does there exist a finite timed word w s.t. w, 0 |= ϕ?
lower bound: Ouaknine and Worrell [73], from reachability in insertion chan-

nel systems (LCS).
upper bound: Length function theorems for Higman’s Lemma.
comment: Satisfiability for infinite timed words is undecidable [72].

Note that recent work on data automata over linearly ordered domains
has uncovered some strong ties with timed automata [34, 31].

6.2.4. Unordered Data Nets are a generalisation of Petri nets where each to-
ken carries some datum from some infinite data domain, which can be tested
for equality against the data of other tokens when firing the transitions of
the system. This is a restriction over the more general data nets [57], where
the data domain is deemed to be densely linearly ordered; see ENC. Like gen-
eral data nets, unordered data nets allow so-called “whole-place” operations,
endowing them with generalised reset capabilities; the exact complexity of
coverability for unordered Petri data nets, where such operations are not
available, is unknown at the moment (Tower-hardness is shown by Lazić
et al. [57]).

Unordered Data Nets Coverability (UDN)
instance: An unordered data net N and a place p of the net.
question: Is there a reachable marking with a least one token in p?
lower bound: Rosa-Velardo [77], by a direct reduction from the halting prob-

lem in Fωω -bounded Minsky machines.
upper bound: Rosa-Velardo [77], by proving a length function theorem for

Mfin(Nd) the set of finite multisets of vectors of naturals, ordered by
multiset embedding.

This is the only instance in this list of a HAck-complete problem that
does not explicitly rely on Higman’s Lemma.

6.3. Fωωω -Complete Problems. Currently, all the known Fωωω -complete
problems are related to extensions of Petri nets called enriched nets, which
include timed-arc Petri nets [3], ordered data nets and ordered Petri data
nets [57], and constrained multiset rewriting systems [1]. Reductions be-
tween the different classes of enriched nets can be found in [5, 12]. Defining
these families of nets here would take too much space; see the referenced
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papers for details. These models share one characteristic: they define well-
structured transition systems over finite sequences of vectors of natural num-

bers, which have an ωω
ωω

maximal order type.

Enriched Net Coverability (ENC)
instance: An enriched net N and a place p of the net.
question: Is there a reachable marking with a least one token in p?
lower bound: Haddad et al. [42], by a direct reduction from the halting prob-

lem in Fωωω -bounded Minsky machines.
upper bound: Haddad et al. [42], using length function theorems for finite

sequences of vectors of natural numbers and Higman’s Lemma [79].

6.4. Fε0-Complete Problems Problems complete for Fε0 are untractable
in a distinctive sense: although there exists a Turing machine able to answer
on every instance, the termination proof of this Turing machine implies a
totality proof for a function akin to Fε0 : the latter is however known to be
independent of Peano Arithmetic [e.g. 29].

6.4.1. Priority Channel Systems are defined similarly to lossy channel sys-
tems (c.f. §6.2.1), but the message alphabet M is linearly ordered to rep-
resent message priorities. Rather than message losses, the unreliable be-
haviours are now message supersedings, i.e. applications of the rewrite rules
ab→ b for b ≥ a in M on the channel contents.

PCS Reachability (PCS)
instance: A PCS and a configuration (q, x) in Q×M∗.
question: Is (q, x) reachable from the initial configuration?
lower bound: Haase et al. [40], by a direct reduction from the halting prob-

lem in Fε0-bounded Turing machines.
upper bound: Haase et al. [40], using length function theorems for nested

applications of Higman’s Lemma [79].

6.4.2. Nested Counter Systems & Hierarchical Multi-Attributed Data Log-
ics. Finite data words may in general carry several data values from some
infinite data domain in addition to a label from some finite alphabet. The
satisfiability of data logics over such data words becomes undecidable, even
for the restricted logics discussed in §6.1.4. However, decidability can be
recovered when the logic is restricted by a hierarchical discipline on its at-
tributes {0, . . . , k}, where attribute i can only be tested for equality on two
positions of the word if all the attributes 0, . . . , i−1 are also simultaneously
tested.

Satisfiability of Freeze LTL with Ordered Attributes (LTL↓[k])

instance: A formula ϕ of Freeze LTL with one register and k hierarchical
attributes.

question: Does there exist a k-attributed finite data word w s.t. w |= ϕ?
lower bound: Decker and Thoma [24] by a direct reduction from Fε0-bounded

Minsky machine.
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upper bound: Decker and Thoma [24] by a reduction to reachability in pri-
ority channel systems (PCS).

comment: The complexity bounds are established through the coverability
problem for a class of nested counter systems [24].

7. Concluding Remarks

The classical complexity hierarchies are limited to elementary problems,
in spite of a growing number of natural problems that require much larger
computational resources. We propose in this paper a definition for fast-
growing complexity classes (Fα)α, which provide accurate enough notations
for many non elementary decision problems: they allow to express some
important landmarks, like Tower = F3, Ack = Fω, or HAck = Fωω , and
are close enough to the extended Grzegorczyck hierarchy so that complexity
statements in terms of Fα can often be refined as statements in terms of
Fα. These definitions allow to employ the familiar vocabulary of complexity
theory, reductions and completeness, instead of the more ad-hoc notions
used this far. This will hopefully foster the reuse of “canonical problems” in
establishing high complexity results, rather than proofs from first principles,
i.e. resource-bounded Turing machines.

A pattern emerges in the list of known Fα-complete problems, allowing
to answer a natural concern already expressed by Clote [20]: “what do
complexity classes for such rapidly growing functions really mean?” Indeed,
beyond the intellectual satisfaction one might find in establishing a problem
as complete for some class, being Fα-complete brings additional information
on the problem itself: that it relies in some essential way on the ordinal ωα

being well-ordered. All the problems in Section 6 match this pattern, as
their decision algorithms rely on well-quasi-orders with maximal order type
ωα for their termination, for which length function theorems then allow to
derive Fα bounds.

Finally, we remark that there are currently no known natural problem of
“intermediate” complexity, for instance between Elem and Ack, or between
the latter and HAck. Parametric versions of LCM or LCS seem like good
candidates for this, but so far the best lower and upper bounds do not quite
match [see e.g. 49]. It would be interesting to find examples that exercise
the intermediate levels of the (Fα)α hierarchy.

Appendix A. Subrecursive Hierarchies

This section presents the technical background and proofs missing from
the main text.

A.1. Hardy Functions. Let h:N → N be a strictly increasing function.
The Hardy functions (hα)α<ε0 controlled by h are defined inductively by

h0(x)
def
= x , hα+1(x)

def
= hα (h(x)) , hλ(x)

def
= hλ(x)(x) . (29)
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A definition related to fundamental sequences is that of the predecessor at
x of an ordinal greater than 0, which recursively considers the xth element
in the fundamental sequence of limit ordinals, until a successor ordinal is
found:

Px(α+ 1)
def
= α , Px(λ)

def
= Px(λ(x)) . (30)

Using predecessors, the definition of the Hardy functions becomes even sim-
pler: for α > 0,

hα(x)
def
= hPx(α) (h(x)) . (31)

Observe for instance that hk(x) for some finite k is the kth iterate of h. This
intuition carries over: hα is a transfinite iteration of the function h, using
diagonalisation to handle limit ordinals. The usual Hardy functions Hα are
then obtained by fixing H(x)

def
= succ(x) = x+ 1.

The Hardy functions enjoy a number of properties; see [28, 19]. They are
expansive, and monotonic with respect to both the base function h and to
the argument x: for all g ≤ h, x ≤ y, and α,

x ≤ hα(x) , gα(x) ≤ hα(x) , hα(x) ≤ hα(y) . (32)

As often with subrecursive functions, what the Hardy functions lack is mono-
tonicity in the ordinal index, see Section A.2.

By transfinite induction on ordinals, we also find several identities:

hω
α·c = F ch,α , (33)

hα+β = hα ◦ hβ . (34)

Note that (33) entails the expansiveness and monotonicity of the fast-growing
functions.

Equation (34) is extremely valuable: it shows that—up to some extent—
the composition of Hardy functions can be internalised in the ordinal index.
Here we run however into a limitation of considering “set-theoretic” ordinal
indices: informally, (34) is implicitly restricted to ordinals α+ β “in CNF”.
Formally, it requires α + β = α ⊕ β, where “⊕” denotes the natural sum
operation. For instance, it fails in H1(Hω(x)) = H1(Hx(x+ 1)) = 2x+ 2 >
2x + 1 = Hω(x), although 1 + ω = ω. We will discuss this point further in
Section A.6.
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Remark A.1. Thanks to (33), the definitions of the (F<α)α and (Fα)α classes
can be restated purely in terms of the Hardy functions. Indeed,

F<α =
⋃

β<α,c<ω

FDTime
(
F cβ(n)

)
=

⋃
β<α,c<ω

FDTime
(
Hωβ ·c(n)

)
=
⋃
γ<ωα

FDTime
(
Hγ(n)

)
,

Fα =
⋃

p∈F<α

DTime
(
Hωα(p(n))

)
.

A.2. Monotonicity. One of the issues of most subrecursive hierarchies of
functions is that they are not monotone in the ordinal index: β < α does
not necessarily imply Hβ ≤ Hα; for instance, Hx+2(x) = 2x+ 2 > 2x+ 1 =
Hω(x). What is true however is that they are eventually monotone: if β < α,
then there exists n0 such that, for all x ≥ n0, Hβ(x) ≤ Hα(x). This result
(and others) can be proven using a pointwise ordering : for all x, define the
≺x relation as the transitive closure of

α ≺x α+ 1 , λ(x) ≺x λ . (35)

The relation “β ≺x α” is also noted “β ∈ α[x]” in [85, pp. 158–163], where
the results of this section are proven.

The ≺x relations form a strict hierarchy of refinements of the ordinal
ordering <:

≺0 ( ≺1 ( · · · ( ≺x ( · · · ( < . (36)

We are going to use two main properties of the pointwise ordering:

x < y implies λ(x) ≺y λ(y) , (37)

β ≺x α implies Hβ(x) ≤ Hα(x) . (38)

For a first application, define the norm of an ordinal term as the maximal
coefficient that appears in its normal form: if α = ωα1 ·c1+· · ·+ωαm ·cm with
α1 > · · · > αm and c1, . . . , cm > 0, thenNα

def
= max{c1, . . . , cm, Nα1, . . . , Nαm}.

Then β < α implies β ≺Nβ α [85, p. 158]. Together with (38), this entails

that, for all x ≥ Nβ, Hβ(x) ≤ Hα(x).

A.3. Ackermann Functions. We prove in this section some basic prop-
erties of the Ackermann hierarchy of functions (Aα)α defined in §4.1.1. Its
definition is less uniform than the fast-growing and Hardy functions, leading
to slightly more involved proofs.

Lemma A.2. For all α > 0, Aα(0) ≤ 1.

Proof. By transfinite induction over α. For α = 1, A1(0) = 0 ≤ 1. For
a successor ordinal α + 1, Aα+1(0) = 1. For a limit ordinal λ, Aλ(0) =
Aλ(0)(0) ≤ 1 by ind. hyp. �
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As usual with subrecursive hierarchies, the main issue with the Acker-
mann functions is to prove various monotonicity properties in the argument
and in the index.

Lemma A.3. For all α, β > 0 and x, y:

(i) if α > 1, Aα is strictly expansive: Aα(x) > x,
(ii) Aα is strictly monotone in its argument: if y > x, Aα(y) > Aα(x),

(iii) (Aα)α is pointwise monotone in its index: if α �x β, Aα(x) ≥ Aβ(x).

Proof. Let us first consider the case α = 1: A1 is strictly monotone, proving
(ii). Regarding (i) for α = 2, A2(x) = 2x > x for all x.

We prove now the three statements by simultaneous transfinite induction
over α. Assume they hold for all β < α (and thus for all β ≺x α for all x).

For (i),

• if α is a successor ordinal β + 1, then Aβ+1(x) ≥ Aβ(x) > x by ind.
hyp. (iii) and (i) on β ≺x α.
• If α is a limit ordinal λ, then Aλ(x) = Aλ(x)(x) > x by ind. hyp. (i)

on λ(x) ≺x α.

For (ii), it suffices to prove the result for y = x+ 1.

• If α is a successor ordinal β+1, then Aα(x+1) = Aβ
(
Aα(x)

)
> Aα(x)

by ind. hyp. (i) on β ≺x α.
• If α is a limit ordinal λ, then Aλ(x+1) = Aλ(x+1)(x+1) ≥ Aλ(x)(x+

1) by ind. hyp. (iii) on λ(x) ≺x+1 λ(x+1) (recall Equation 37), hence
the result by ind. hyp. (ii) on λx ≺x α.

For (iii), it suffices to prove the result for α = β + 1 and β = α(x) and
rely on transitivity.

• If α = β + 1, then we show (iii) by induction over x: the base case
x = 0 stems from Aα(0) = A0

β(1) = 1 ≥ Aβ(0) by Lemma A.2; the

induction step x+1 stems from Aα(x+1) = Aβ
(
Aα(x)

)
≥ Aβ(x+1)

using the ind. hyp. on x and (ii) on β ≺Aα(x) α.
• If β = α(x), then Aα(x) = Aβ(x) by definition. �

Our main interest in the Ackermann functions is their relation with the
fast-growing ones:

Lemma A.4. For all α > 0 and all x, Aα(x) ≤ Fα(x) ≤ Aα(6x+ 5).

Proof. We only prove the second inequality, as the first one can be deduced
from the various monotonicity properties of Fα and Aα. The case x = 0 is
settled for all α > 0 by checking that Fα(0) = 1 ≤ 10 = A1(5) ≤ Aα(5),
since 1 �x α for all α > 0 and we can therefore apply Lemma A.3.(iii).
Assume now x > 0; we prove the statement by transfinite induction over
α > 0.

• For the base case α = 1, F1(x) = 2x+ 1 ≤ 12x+ 10 = A1(6x+ 5).

• For the successor case α + 1, Aα+1(6x + 5) = A
5(x+1)
α

(
Axα(1)

)
≥

A
5(x+1)
α (x) by Lemma A.3.
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We show by induction over j that A5j
α (x) ≥ F jα(x). This holds

for the base case j = 0, and for the induction step, A5
α

(
A5j
α (x)

)
≥

A5
α

(
F jα(x)

)
by ind. hyp. on j and Lemma A.3.(ii). Furthermore, for

all y > 0, Aα
(
A4
α(y)

)
≥ Aα

(
A4

1(y)
)

= Aα(16y) ≥ Aα(6y+5) ≥ Fα(y)

by ind. hyp. on α, which shows that A5
α

(
F jα(x)

)
≥ F j+1

α (x) when

choosing y = F jα(x) > 0. Then A
5(x+1)
α (x) ≥ F x+1

α (x) = Fα+1(x),
thus completing the proof in the successor case.
• For the limit case λ, Aλ(6x+5) = Aλ(6x+5)(6x+5) ≥ Aλ(x)(6x+5) ≥
Fλ(x)(x) = Fλ(x), using successively Lemma A.3.(iii) on λ(x) ≺6x+5

λ(6x+ 5) and the ind. hyp. on λ(x) < λ. �

A.4. Relativised Functions. We prove here the missing lemma from the
proof of Theorem 4.2:

Lemma A.5. Let h:N→ N be a function, α, β be two ordinals, and x0 be a
natural number. If for all x ≥ x0, h(x) ≤ Fβ(x), then there exists an ordinal
γ such that

(i) for all x ≥ x0, Fh,α(x) ≤ Fβ+α(Fγ(x)), and
(ii) γ < β + α whenever β + α > 0.

Proof. Let us first fix some notations: write α = ωα1 + · · · + ωαm with
α1 ≥ · · · ≥ αm and β = ωβ1 + · · · + ωβn with β1 ≥ · · · ≥ βn, and let i be
the maximal index in {1, . . . , n} such that βi ≥ α1, or set i = 0 if this does

not occur. Define β′
def
= ωβ1 + · · · + ωβi and γ

def
= ωβi+1 + · · · + ωβn (thus

β′ = 0 if i = 0); then β = β′ + γ and β + α = β′ + α. Note that this implies
γ < ωα1 ≤ α ≤ β + α, unless α = 0 and then γ = 0, thus fulfilling (ii).

We first prove by transfinite induction over α that

Fβ′+α ◦ Fγ ≥ Fγ ◦ FFβ ,α . (39)

Proof of (39). For the base case α = 0, then γ = 0 and β′ = β, and indeed

Fβ(F0(x)) = Fβ(x+ 1)

≥ Fβ(x) + 1 by monotonicity of Fβ

= F0(Fβ(x))

= F0(FFβ ,0(x)) .

For the successor case α + 1 and assuming it holds for α, let us first show
by induction over j that, for all y,

F jβ′+α(Fγ(y)) ≥ Fγ(F jFβ ,α(y)) . (40)

This immediately holds for the base case j = 0, and for the induction step,

Fβ′+α
(
F jβ′+α(Fγ(y))

)
≥ Fβ′+α

(
Fγ(F jFβ ,α(y))

)
by ind. hyp. (40) on j

≥ Fγ
(
FFβ ,α(F jFβ ,α(y))

)
by ind. hyp. (39) on α < α+ 1.
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This yields the desired inequality:

Fβ′+α+1(Fγ(x)) = F
Fγ(x)+1
β′+α (Fγ(x))

≥ F x+1
β′+α(Fγ(x))

≥ Fγ(F x+1
Fβ ,α

(x))

= Fγ(FFβ ,α+1(x))

using (40) with j = x+ 1 and y = x.
For the limit case λ,

Fβ′+λ(Fγ(x)) = Fβ′+λ(Fγ(x))(Fγ(x))

≤ Fβ′+λ(x)(Fγ(x)) since λ(x) ≺Fγ(x) λ(Fγ(x))

≤ Fγ(FFβ ,λ(x)(x)) by ind. hyp. (39) on λ(x) < λ

= Fγ(FFβ ,λ(x)) . �

Returning to the main proof, a simple induction over α shows that, for
all x ≥ x0,

Fh,α(x) ≤ FFβ ,α(x) . (41)

We then conclude for (i) that, for all x ≥ x0,

Fh,α(x) ≤ FFβ ,α(x) by (41)

≤ Fγ(FFβ ,α(x)) by expansivity of Fγ

≤ Fβ′+α(Fγ(x)) by (39). �

A.5. Non-standard Assignment of Fundamental Sequences. We show
here the omitted details of the proof of Theorem 4.4:

Lemma A.6. Let s:N→ N be a monotone function and α be an ordinal.

• If s is strictly expansive, then Fα,s ≤ Fs,α ◦ s, and
• otherwise Fα,s ≤ Fα.

Proof. For the first point, let us show that

s(Fα,s(x)) ≤ Fs,α(s(x)) (42)

for all monotone s with s(x) > x, all α and all x, which entails the lemma
since s is expansive. We proceed by transfinite induction over α. For the base
case, Fs,0(s(x)) = s(s(x)) ≥ s(x + 1) = s(F0,s(x)) since s is monotone and

strictly expansive. For the successor case, Fs,α+1(s(x)) = F
s(x)+1
s,α (s(x)) ≥

s(F
s(x)
α,s (x)) = s(Fα+1,s(x)), where the middle inequality stems from the

fact that F js,α(s(x)) ≥ s(F jα,s(x)), as can be seen by induction on j using
the induction hypothesis on α < α + 1. For the limit case, observe that
λ(x)s ≺s(x) λ(s(x)), thus Fs,λ(s(x)) = Fs,λ(s(x))(s(x)) ≥ Fs,λ(x)s(s(x)) ≥
s(Fλ(x)s,s(x)) = s(Fλ,s(x)) using the induction hypothesis on λ(x)s < λ.

The second point is straightforward by induction over α. �

Lemma A.7. For all α, F0 ◦ Fα ≤ Fα,id ◦ F0.



34 S. SCHMITZ

Proof. By induction over α. For the zero case, F0(F0(x)) = x + 2 =

F0,id(F0(x)). For the successor case, we can check that F jα,id(x + 1) ≥
F jα(x) + 1 for all j using the induction hypothesis on α, thus Fα,id(x+ 1) =

F x+1
α,id (x + 1) ≥ F x+1

α (x) + 1 = Fα+1(x) + 1. For the limit case, note that

λ(x) ≺x+1 λ(x + 1) thus Fλ,id(x + 1) = Fλx+1,id(x + 1) ≥ Fλ(x+1)(x) + 1 ≥
Fλ(x)(x) + 1 = Fλ(x) + 1. �

A.6. Composing Hardy Functions. The purpose of this section is to
provide the technical details for the proof of Lemma 4.6.

The natural sum α ⊕ β of two ordinals written as α = ωα1 + · · · + ωαm

with α1 ≥ · · · ≥ αm and β = ωβ1 + · · ·ωβn with β1 ≥ · · · ≥ βn can be defined
as the ordinal ωγ1 + · · · + ωγm+n where the γi’s range over {αj | 1 ≤ j ≤
m} ∪ {βk | 1 ≤ k ≤ n} in non-increasing order. For instance, ω2 + ωω = ωω

but ω2 ⊕ ωω = ωω + ω2.

Lemma A.8. For all ordinals α and β, and all functions h,

hα ◦ hβ ≤ hα⊕β .

Proof. Write α = ωα1+· · ·+ωαm with α1 ≥ · · · ≥ αm and β = ωβ1+· · ·+ωβn
with β1 ≥ · · · ≥ βn, then α ⊕ β = ωγ1 + · · · + ωγm+n . We prove the lemma
by transfinite induction over β: it holds immediately for the base case since
α ⊕ 0 = α and for the successor case since α ⊕ (β + 1) = (α ⊕ β) + 1. For
the limit case, let i be the last index of βn among the γj in the CNF of
α⊕ β. If i = m+ n, then α⊕ (β(x)) = (α⊕ β)(x) and the statement holds.

Otherwise, define γ
def
= ωγ1 + · · ·+ ωγi and γ′

def
= ωγi+1 + · · ·+ ωγm+n . For all

x,

hα⊕β = hγ(hγ
′
(x)) by (34)

= hγ(hγ
′
(x))(hγ

′
(x)) since γ is a limit ordinal

≥ hγ(x)(hγ
′
(x)) since γ(x) ≺[hγ′(x)] γ(hγ

′
(x))

= hα⊕(β(x))(x) by (34)

≥ hα(hβ(x)(x)) by ind. hyp. on β(x) < β

= hα(hβ(x)) . �

Corollary A.9. Let α be an ordinal and f a function in F<α. Then there
exists g in F<α such that f ◦ Fα ≤ Fα ◦ g.

Proof. As f is in some Fβ for β < α, f ≤ F cβ for some finite c by [62,

Theorem 2.10], thus f ≤ Hωβ ·c by (33), and we let g
def
= Hωβ ·c, which indeed

belongs to Fβ ⊆ F<α. Still by (33), Fα = Hωα . Observe that ωβ · c < ωα,

hence (ωβ ·c)⊕ωα = ωα+ωβ ·c. By (34), Hωα+ωβ ·c = Hωα ◦Hωβ ·c. Applying
(33) and Lemma A.8, we obtain that f ◦ Fα ≤ g ◦ Fα ≤ Fα ◦ g. �
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A.7. Computing Hardy Functions. We explain in this section how to
compute Hardy functions, thus providing the background material for the
proof of Theorem 5.1. This type of results is pretty standard—see for in-
stance [93], [29], or [85, pp. 159–160]—, but the particular way we employ
is closer in spirit to the viewpoint employed in [42, 49, 40].

A.7.1. Hardy Computations. Using (31), let us call a Hardy computation
for hα(n) a sequence of pairs 〈α0, n0〉, 〈α1, n1〉, . . . , 〈α`, n`〉 where α0 = α,
n0 = n, α` = 0, and at each step 0 < i ≤ `, αi = Pni−1(αi−1) and ni =
h(ni−1). An invariant of this computation is that hαi(ni) = hα(n) at all
steps 0 ≤ i ≤ `, hence n` = hα(n). Since h is increasing, the ni values
increase throughout this computation, while the αi values decrease, and
termination is guaranteed.

Our plan is to implement the Hardy computation of hα(n) using a Tur-
ing machine, which essentially needs to implement the ` steps 〈αi, ni〉 →
〈Pni−1(αi−1), h(ni−1)〉. We assume h to be an elementarily constructible ex-
pansive function, such that h(n) can be computed in e(h(n)) for some fixed
monotone elementary function e. Then, the complexity of a single step will
depend mainly on h(ni−1) ≤ h`(n) and on the complexity of updating αi.

A.7.2. Cichoń Functions. In order to measure the length ` of a Hardy com-
putation for hα(n), we define a family (hα)α of functions N→ N by induction
on the ordinal index:

h0(x)
def
= 0 , hα+1(x)

def
= 1 + hα(h(x)) , hλ(x)

def
= hλ(x)(x) . (43)

This family is also known as the length hierarchy and was defined by Cichoń
and Tahhan Bittar [19]. It satisfies several interesting identities:

hα(x) = hhα(x)(x) , hα(x) ≥ hα(x) + x . (44)

Its main interest here is that it measures the length of Hardy computations:
` = hα(n) ≤ hα(n) by the above equations, which in turn implies h`(n) =
hα(n).

A.7.3. Encoding Ordinal Terms. It remains to bound the complexity of com-
puting αi = Pni−1(αi−1). Assuming some reasonable string encoding of the
terms denoting the αi [e.g. 40], we will consider that each αi can be com-
puted in time p(|αi|) a monotone polynomial function of the size |αi| of its
term representation, and will rather concentrate on bounding this size. We
define it by induction on the term denoting αi:

|0| def
= 0 , |ωα| def

= 1 + |α| , |α+ α′| def
= |α|+ |α′| . (45)

Let us also recall the definition of the slow-growing hierarchy (Gα)α:

G0(x)
def
= 0 , Gα+1(x)

def
= 1 +Gα(x) , Gλ(x)

def
= Gλ(x)(x) . (46)
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The slow-growing function satisfy several natural identities

Gα(x) = 1 +GPx(α)(x) , (47)

Gα(x+ 1) > Gα(x) , (48)

if β ≺x α then Gβ(x) ≤ Gα(x) . (49)

Furthermore,

Gα+α′(x) = Gα(x) +Gα′(x) , Gωα(x) = (x+ 1)Gα(x) . (50)

Hence, Gα(x) is the elementary function which results from substituting
x+ 1 for every occurrence of ω in the Cantor normal form of α [85, p. 159].

Lemma A.10. Let x > 0. Then |α| ≤ Gα(x).

Proof. By induction over the term denoting α: |0| = 0 = G0(x), |ωα| =

1 + |α| ≤ (x + 1)|α| ≤ (x + 1)Gα(x) = Gωα(x), and |α + α′| = |α| + |α′| ≤
Gα(x) +Gα′(x) = Gα+α′(x). �

Lemma A.11. If 〈α0, n0〉, . . . , 〈α`, n`〉 is a Hardy computation for hα(n)
with n > 0, then for all 0 ≤ i ≤ `, |αi| ≤ Gα(n`).

Proof. We distinguish two cases. If i = 0, then |α0| = |α| ≤ Gα(n) by
Lemma A.10 since n > 0, hence |α0| ≤ Gα(n`) since n` ≥ n by (48). If
i > 0, then

|αi| = |Pni−1(αi−1)|
≤ GPni−1 (αi−1)(ni−1) by Lemma A.10 since ni−1 ≥ n > 0

< Gαi−1(ni−1) by (47)

≤ Gα(ni−1) since αi−1 ≺ni−1 α by (49)

≤ Gα(n`) since ni−1 ≤ n` by (48) �

The restriction to n > 0 in Lemma A.11 is not a big issue: either h(0) = 0

and then hα(0) = 0, or h(0) > 0 and then hγ+ωβ (0) = hγ(h(0)) and we can
proceed from γ instead of γ + ωβ as initial ordinal of our computation.

A.7.4. Wrapping up. To conclude, each of the ` ≤ hα(n) steps of a Hardy
computation for hα(n) needs to compute

• αi, in time p(Gα(hα(n))) since |αi| ≤ Gα(hα(n)) and p was assumed
monotone, and
• ni, in time e(hα(n)) since h(ni−1) ≤ hα(n) and e was assumed mono-

tone.

This yields the following statement:

Proposition A.12. The Hardy function hα can be computed in time

O
(
hα(n) ·

(
p(Gα(hα(n))) + e(hα(n))

))
.
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