
HAL Id: hal-04109462
https://hal.science/hal-04109462v1

Submitted on 30 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Domain Specific Test Language for Systems
Integration

Robin Bussenot, Hervé Leblanc, Christian Percebois

To cite this version:
Robin Bussenot, Hervé Leblanc, Christian Percebois. A Domain Specific Test Language for Systems
Integration. XP2016 Scientific Workshops (XP 2016), May 2016, Édimbourg, United Kingdom. pp.1-
10, �10.1145/2962695.2962711�. �hal-04109462�

https://hal.science/hal-04109462v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17211

The contribution was presented at XP2016:
http://xp2016.org/cfp/Workshops.html

To cite this version : Bussenot, Robin and Leblanc, Hervé and
Percebois, Christian A Domain Specific Test Language for Systems
Integration. (2016) In: XP2016 Workshops (2016), 24 May 2016
(Edinburgh, Scotland, United Kingdom).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A Domain Specific Test Language for Systems Integration

Robin Bussenot
IRIT

118 route de Narbonne
Toulouse, France

robin.bussenot@irit.fr

Hervé Leblanc
IRIT

118 route de Narbonne
Toulouse, France

herve.leblanc@irit.fr

Christian Percebois
IRIT

118 route de Narbonne
Toulouse, France

christian.percebois@irit.fr

ABSTRACT

In avionic context, systems are complex, embedded, critical,
reactive and real time. In this context, testing activities are
predominant in a V development process. We propose to
bring in some features coming from agile methods. System
integration testing that means systems are tested individ-
ually and together in order to ensure that they all operate
correctly. We focus on functional and system integration
testing just before the ground testing phase. Nowadays, test
procedures and test plans we studied are described in tex-
tual manner and are executed manually. We aim to provide
a common specific language that improves communications
for the team of test designers and between test designers and
test performers. In the same manner as agile test frame-
works, this language allows to structure the test procedures.
Moreover, this language tends to facilitate the automatic ex-
ecution of some parts of the procedures. We choose a domain
specific language approach to design a first domain specific
test language dedicated to networks system integration.

-

Keywords

Test system; Test procedure; Domain Specific Language;

1. INTRODUCTION
In avionic context, systems are complex, embedded, criti-

cal, reactive and real time. These characteristics demand to
increase the effort needed to test the behavior of all systems
that composed an aircraft and also an effort at the require-
ments phase. Moreover, the whole development process in
this context follows a classic V -model. Testing is principally
done in the integration phase (right side of the V -model).

In system context, a test bench is needed to interact with
the System Under Test (SUT). These test benches can re-
alize automatic or manual tests with human intervention
on the bench to execute them step-by-step. Our work was
supported by a FUI1 project named ACOVAS aiming at
introducing agile methods around a new generation of test
benches. The initial observation is that the verification and
validation process is the Achilles’ heel of complex systems
development. In this project, our contribution would consist
in providing a support allowing Test First design. However,
a necessary condition to adopt this approach is to be able to
produce unit tests. Then, we propose a first Domain Spe-
cific Test Language (DSTL) dedicated to a specific field for
system integration testing in avionic context.
We are working on system integration testing phase. Test-

ing in this context is supported by test procedures written in
natural language in a textual form. The execution of those
tests remains mostly manual. Test procedures are pulled
from design office requests which gives as input test plans
with their related objectives. As several people are implied
in testing activities, test procedures are a very important
way of communicating. But the use of natural language
could produce several errors due to misunderstanding of
testers who design and execute the test procedure. Produc-
ing a Domain Specific Language (DSL) for them will improve
communications between testers and avoid misunderstand-
ings, misinterpretations, unsaid things, ambiguities that can
arise with natural languages. And finally, producing a for-
mal language dedicated to test procedures is a precondition
to generate executable scripts on a test bench.
To better understand our contribution, we introduce some

basic concepts as testing in avionic system and DSLs in sec-
tion 2. To introduce our DSTL, we present test procedures
written in natural language and their use of these in the work
flow document process in section 3. Our contribution is de-
tailed in section 4. The structure of our DSTL divide flight
plan test procedures into unit tests. We classify elementary
instructions into five categories (Step, Trace, Check, Log,
Reminder).
In section 5, we compare our work with other dedicated

test languages, other approaches to disseminate agile meth-
ods in embedded system development and with scenario
based languages. We summarize our contribution and give
future developments of our work in section 6.

1Fonds Unique Interministériel (FUI) is a French program
dedicated to support applied research, to help the develop-
ment of new products and services susceptible to be mar-
keted in court or middle term.

Figure 1: The W -model and testing activities.

2. BACKGROUND
In this section, we present concepts necessary to appre-

hend our work: testing avionic systems with their W -model,
details about Domain Specific Languages (DSL) and inte-
grated environment development for the design of new com-
puter languages.

2.1 Testing avionic systems
After presenting the W -model of testing activities, we fo-

cus on Hardware-in-the-Loop testing during the system in-
tegration testing phase.

2.1.1 The W-model and testing activities

Tests in avionic context act for a validation and a veri-
fication process. Validation is the process of making sure
that the final product will reflect customer expectations.
Verification is the process of justifying that the system fol-
lows its specified requirements. Verification and validation
will be performed at both requirement and implementation
levels [14]. System is complex, system of systems is more
complex and then an important part of the validation and
verification activities is performed by tests.

An airplane is composed by many complex and embed-
ded systems and the process of development of each system
follows a V -model. Figure 1 presents a V -model for one of
them. The bottom part of the Figure 1 shows two V -models
that occur in parallel. These two V -models are named the

W -model and generally the system resulting from this pro-
cess is done by an avionic equipment provider. The V -model
on the left side corresponds to the software process devel-
opment and the V -model on the right side corresponds to
the hardware process development. The result of these two
processes is integrated in a main process at the system level
that follows a V -model too. System and multi-system levels
are the fields of an aircraft manufacturer.
There are two kinds of testing activities: classic test in

isolation and In-the-Loop Testing (surround with bold box).
In-the-Loop Testing provides models and simulators to put
the System Under Test (SUT) in simulated flight conditions.
Simulation of the environment stimulates the SUT with in-
put data in order to produce output data to be analyzed.
This kind of testing was implemented to allow integration

testing as soon as possible. The environment model con-
cerns collaborations between the SUT and other systems.
A real time simulator embedded in the test bench executes
models to simulate test context environment. This is needed
to be able to test integration of components before getting
all real systems available. The main In-the-Loop testing
activities are: Model-in-the-Loop Testing (MiL) , Software-
in-the-Loop Testing (SiL) and Hardware-in-the-Loop Test-
ing (HiL). Classic testing activities are Software Testing and
Hardware Testing.
Testing is also performed since requirements level (MiL).

Even if at this moment there is no physical equipments nor

software to test, a simulation model is executed to ensure
that requirements are correct. In SiL testing, the real soft-
ware is considered and tested with an emulated hardware.
In hardware testing, the real hardware is considered to en-
sure compatibility with its operating system. In HiL testing,
the real software is integrated into the target hardware.

Our proposition of DSTL matches with HiL testing activ-
ity. From this activity in the V -process, the denomination
hardware will refer to the real software with the real hard-
ware. They are tested together by the HiL testing activity.
HiL testing is the main activity of the system integration
testing phase we detail below.

2.1.2 System integration testing

The class of problems managed corresponds to shared re-
sources for avionic modules and network testing. There are
three kinds of testing: functional testing, structural test-
ing and random testing. Functional testing correspond to a
black-box approach and structural to a white-box approach.
System integration testing (named System V&V in the fig-
ure) corresponds to functional testing. System integration
testing and multi-system integration testing mean that sys-
tems are tested first in isolation and then together in order
to ensure they all operate correctly.

The execution of a test will be manual if there is no formal
test specifications or if the test bench does not support all
the automation. In any case, test execution can be auto-
mated or semi-automated if test specifications are encoded
in a computer language [14].

In our case, integration testing corresponds to network
systems and tests are principally manual. Testers will pro-
vide inputs to the SUT directly managing the interface pro-
vided by the test bench, for example: pressing button, cut-
ting cable, power off a component Depending on the
domain and due to the complexity of the SUT, some accep-
tance criteria cannot be formalized and even if it is possible,
test oracles cannot be designed or implemented. Testers
must manage tools manually to collect data that will be an-
alyzed later to give a verdict for some tests.

2.2 DSL, DSTL and languages workbenches
To present the result of our work, we recall the notion

of DSL that we have extended to DSTL (Domain Specific
Test Language). To design our DSTL, we have chosen a lan-
guage workbench. Then we present language workbenches,
which are rising IDE specialized to produce small specific
languages [5].

2.2.1 Domain Specific Language

A DSL is a computer language that allows to provide a
solution for a particular class of problems [6]. We can oppose
it to a general purpose language (GPL) as Java or PHP
that can respond to any class of problems. We can cite
for examples SQL, HTML, scripting languages that permit
building applications, XML configuration languages . . .

Producing a DSL for a specific domain brings many ad-
vantages [22]:

• a DSL makes easier expressing domain concerns,

• a DSL hides GPL complexity,

• a DSL is used by domain experts that not necessarily
have computer knowledges,

• a DSL can generate many lines of code in GPL from
few lines,

• a DSL improves team communication and increases
the common knowledge about a domain,

• a DSL is managed by specific tools as an IDE for GPL
languages (Eclipse for example).

DSLs can be executed following two patterns: external
and internal [6]. Internal DSLs extend the syntax of a host
language. The most popular host language we can cite is
Lisp. External DSLs bring their own syntax and produce
executable code in a GPL language.
Our language is an external DSL focusing on the descrip-

tion of test scenarios in an avionic context. This language
is dedicated to test engineers only. In fact, our language
addresses the problem of writing test scenarios for a par-
ticular business domain. We named Domain Specific Test
Language this new category of DSL.
Since this kind of language is dedicated to test, it has

to follow the AAA pattern (Actor-Action-Assertion) that
comes from software engineering. We can quote some exist-
ing DSTL like TDL [4] (Test Description Language) aiming
at specifying test descriptions.

2.2.2 Language Workbenches

Language workbenches are tools to manage and help the
implementation of new languages [5]. We can list most popu-
lar of them: Xtext [8], Spoofax [21] and Meta-Programming
System [9]. All these tools are doing almost the same thing,
but with a different vision and a different approach. The Ta-
ble 1 summarizes the vision and the approach for the most
popular language workbenches.

Table 1: Projectional vs Parsing
CS first AS first

Parsing Xtext Xtext
Spoofax

Projectional MPS

The vision concerns program editors for new languages.
Editors can be projectionals as done in MPS for example,
or textuals as usual in Xtext and Spoofax for example. In
projectional editing, the abstract representation is the core
definition of the system. Then, the language workbench ma-
nipulates directly the abstract representation and projects
an editable representation for the programmer. According
to Martin Folwer in [6]: ”Projectional editing thus usually
displays a wider range of editing environments - including
graphical and tabular structures - rather than just a textual
form.”The separation between concrete syntax and Abstract
Syntax Tree (AST) permits a better control than a unique
textual editor.
Two ways to design a DSL exist, meta-model first ap-

proach (Abstract Syntax first) or Concrete Syntax first ap-
proach. The meta-model approach is issued from MDA
(Model Driven Architecture) community and matches with
a top-down approach, while the concrete syntax approach
focuses on the syntax of the language and then is considered
as a bottom-up approach.
To choose the language workbench between Xtext and

MPS, we first implement two prototypes of a test language
resuming JBehave principals. We applied these principals

to the multiplication class example issued from the tutorial
of JBehave. Scenarios are expressed in a Gherkin language
and then are derived into executable JUnit tests.

Table 2: JBehave in Parsing vs Projectional
Xtext MPS

Grammar in EBNF AST concepts
Editor for each concept

Generation with template Generation with template
in textual manner in projectional editor

The Table 2 presents the steps to implement the proto-
type. With MPS, the programmer is guided by projectional
editors corresponding to each concept of the AST. With
Xtext, the programmer has an empty text frame and must
know the grammar of the language to produce test scenarios.
With MPS, no syntax errors are allowed. With Xtext, syn-
tactical errors are allowed and we must manage error mes-
sages. Xtext provides a small stub generator with a method
doGenerate() and a set of primitives to address concrete
syntax trees. MPS provides a model-to-model transforma-
tion approach [1] by linking each concept of the JBehave
AST with concepts of the Java AST. Code templates in MPS
are coded with a projectional editor that prevents syntax er-
rors.

For those reasons, we have chosen MPS. Moreover, MPS
permits to add constraints to each concept helping program-
mers to avoid other semantic errors and displays errors on
the incorrect code directly. It also, provides features for
language composition and language extension [2].

3. CONTEXT
We have set of 20 test procedures dedicated to network

system integration at our disposal. First, we explain the
workflow of documents in the specification process of test
procedures. The second part presents test procedure docu-
ments. Then, we finish by explications about some instruc-
tions.

3.1 Workflow of test procedures
In this process, design office and testers are the two stake-

holders. The workflow of documents is illustrated in the
Figure 2.

First the design office produces a test plan providing inte-
gration testing strategy for a specific system, and acceptance
criteria defined from system requirements. Then, the design
office derives test plans into Lab Test Requests (LTR). A
LTR is specific to a campaign of tests while a test plan is
more generic. A campaign of test is related to a version of
the SUT. A LTR is composed by test objectives. A test
objective is described by a single sentence and is completed
by test conditions on the SUT from which results of a test
can be exploited, a description of a scenario independent
of the test means, and expected results. Finally, LTRs are
linked into concrete test procedures by a tester. A test pro-
cedure contains a description in a graphical language of test
means and a sequence of test chapters. Test means consist
in test bench architecture around the SUT and logical links
between the test bench and the SUT represented by ICDs
(Interface Control Document). Test chapters represent exe-
cutable scenarios on a test bench based on the descriptions
owned by the LTR. For each concrete scenario corresponds

a test block that contains instructions described in natural
language.

Figure 2: Test procedures workflow

3.2 Test procedure documents
We got as input for our experimentation 20 test proce-

dures. A half contains procedures with tagged instructions.
Considering only procedures with tagged instructions brings
us a pre-classification which facilitates the study. Overall,
the corpus studied is composed by 3708 instructions con-
tained in 10 procedures. A document procedure is com-
posed on average by 360 instructions, but it could vary from
70 to 1700. The biggest document comes with 118 pages of
word text containing 17 chapters split into many test blocks
(about 110 test blocks). A test block corresponds to the
execution of one test.
Nowadays, these test procedures are executed manually on

a test bench. Instructions are written in natural language
and would describe atomic actions that a tester performs on
a test bench. Integration testing must be performed on sev-
eral sites. That is why, test procedures must follow the same
template and the natural language used has to be simple in
order to reduce ambiguities. The existence of a first clas-
sification of instructions demonstrates the effort of testers
team to speak the same language.
However, instructions remain in natural language that

does not permit automation of tests, does not assure un-
ambiguous instructions, does not allow any code duplication
and does not restrict the number of ways to express the same
idea.

3.3 Instructions
Procedures expressed by testers are composed of five kinds

of instructions:

Step: an action is performed on the SUT, or on the test
bench, or on a tool.

Check: a verification is performed about the state of the
SUT. There are two contexts of use: a precondition on
the SUT to perform the test and a verdict on the test.

Log: an action to store some parameter values involved in
the test.

Trace: an action on a tool in order to record relevant test
data.

Reminder: instruction addressed to a tester concerning the
management of test executions.

Table 3: Number of instructions by type
Step Check Log Trace Reminder

Number 1274 1047 594 520 269
% 34,4 28,3 16 14 7,2

The distribution of these kinds of instructions is given in
the Table 3. Although we are in a hardware context, test
procedures follow the AAA pattern (Actor-Action-Assertion),
a majority of instructions concerns actions (tagged by step)
and assertions (tagged by check). At least, 30% of instruc-
tions manage test results data in order to be analyzed later.
The goal of Trace instructions is to start and stop tools
needed to log outputs or to spy system behavior. The goal
of Log instructions is to get some specific variables or pa-
rameters to store them.

Unfortunately, even if test procedures are tagged, some
inconsistencies occur. For example, we can have instructions
not correctly tagged:
[STEP]Wait for a SID, in order to check the MODULE config-

uration.

[/STEP] The semantic of this instruction is when SID signal
is received a check is performed to test the configuration.
Then the type of this instruction is a check, more precisely
a precondition of the test.

For another example, an instruction can be composed by
many sentences that could be classified in a different kind of
instructions:
[STEP]Switch on all others MODULES of the same cluster,

with full configuration of loads.

Then link all the modules of the cluster to the AFDX net-

work.

With Tool1 or Tool2 check that all SB of these MODULES send

failure

messages both with IMA bit send to 1 and 0.[/STEP]

First and second sentences are two step instructions while
the last one is a check instruction. Seeing the complexity
of test procedures, even if they are tagged, the goal of our
DSTL is to improve the way to produce test procedures.

4. CONTRIBUTION
The language we provide is a DSL (Domain Specific Lan-

guage) [22], more precisely a DSTL (Domain Specific Test
Language). To design this language, we follow a bottom-
up approach. After studying test procedures from network
avionic context and by analogy with xUnit test frameworks
we propose a structure for this language. The structure of
the DSTL consists of all concepts necessary to contain test
instructions. We are working on test instructions with a nat-
ural language processing [12] approach and we give results
for instructions tagged by trace.

4.1 From Word to xUnit tests
We change and complete the structure of Word documents

to match with concepts from xUnit frameworks. In xUnit
frameworks, all concepts for unit testing match with the
Actor-Action-Assertion pattern. Moreover, frameworks of
unit tests provide some mechanisms for refactoring code of
the tests (setUp() and tearDown() methods). Using con-
cepts of unit test into integration tests improves readability
and value of these tests. Integration tests will not be used
for verification and validation purposes only.

The Table 4 gives a correspondence between a test proce-

dure in our context and a test suite in xUnit frameworks. In
software engineering, an actor corresponds a class instance
class to be tested but in our context it corresponds to the
SUT connected to the test bench. The instructions which
denote an action correspond to instructions tagged by Step
and Check. Sometimes, some preconditions occur on the
state of the SUT before starting the check of the test. A test
can give a verdict if and only if its precondition succeeds.
The instructions which denote an assertion correspond to
instructions tagged by Check and Trace. In avionic system
context, there are a lot of test objectives that are not speci-
fiable in the form of check instructions. Then, testers use
many tools to record tests data to be analyzed later with a
data viewer in order to provide a verdict for the test.
The tear down concept is not transposed in our language

because we applied a bottom-up approach to a corpus of
manual test procedures where the tear down action is im-
plicitly done by the tester between each test. However, in
an automatic execution context, we think that a tear down
concept could be useful.

Table 4: Mapping between xUnit concepts and system inte-
gration testing concepts

xUnit Integration test
concepts concepts

AllTests Test procedure
TestCase Test chapter
setUp() Set up

tearDown() ?
test() Test
Actor System Under Test
Actions Step

Assertions Check,Trace
Green bar all tests are OK
Red bar at least one test failed

Orange bar at least one precondition failed

In software engineering, unit testing aims to isolate test
concerns and the execution order of unit tests in a test suite
can be variable. But in a system context, testers play to put
the system into an error state, in order to ensure that the re-
action of the SUT is conform to the requirements. This kind
of systems is called reactive. For example, when a test must
show that an alarm is raised when a threshold is broken (first
test), the system has to return in a normal execution state
by itself (second test). In this case, we authorize the tester
to do these two tests in a unique integration test. More-
over, tests usually follow a nominal flight plan to ensure a
correct behavior of the SUT in the nearest conditions of a
real flight. Then, the test suite must follow the flight plan
and the execution time is expensive. So we cannot constrain
testers to isolate each of integration test as the same man-
ner as software engineers. However, each integration test in
avionic context must concern one and only one test objec-
tive in order to decrease time debugging for the SUT or for
the test itself.
We formalized the setup mechanism that was already ex-

isting in Word test procedure documents. The Figure 3
shows the setup block that will be executed first for each
test block. A setup block is not dedicated to the configu-
ration of the test bench or tools around the bench, but it
has to handle the initialization of the SUT to put it in the
expected state. This corresponds to the ”given” clause of

Figure 4: Structure of the DSTL

Figure 3: Gherkin language for system integration testing

a Gherkin language [18]. Unfortunately, we can have sev-
eral ”when-then” clauses in the same unit test that concern
the same test objective. One of the main purpose in using
our DSTL is to minimize ”when-then” clauses redundancy
in order to reach the best practices of unit tests.

4.2 Language structure
The structure of our language is presented in a meta-

model form in Figure 4. Each concept of the AST is related
to a class in the meta-model. In accordance to the metaphor
with xUnit (see Table 4) and the workflow of test procedure
documents (see Figure 2) we have defined concepts in our

language.
The main purpose of our DSTL is TestProcedure. A Test-

Procedure refers to one LabTestRequest that owns TestOb-
jectives. A TestProcedure is composed by several TestChap-
ters and at least two are needed to produce a consistent
TestProcedure. To place the TestProcedure correctly in the
workflow document, we have added additional concepts as
enumeration types: LabTestRequest, Tool, TestBench and
TestObjective. TestObjectives are shared by LabRestRe-
quest and TestChapter in order to generate a traceability
matrix that ensures the cover of TestObjectives by TestPro-
cedures.
The container of instructions are classes SetUp and Test.

In Words document procedures, a file procedure can reach
over hundred pages due to the high number of test chap-
ters. With our language, we supply to the user an interface
for the definition of test blocks separated from the interface
supplied for the procedure. Now a test chapter just contains

a reference list towards test chapters: a simple
✄

✂

!

✁
Ctrl+Click

on a reference of a chapter will bring us to the corresponding
chapter file.

4.2.1 Formalization using OCL constraints

To complete the formalization, we give some additional
constraints in OCL language. First, we put uniqueness con-
straints on some concepts in our language.

context TestProcedure
inv:TestProcedure :: allInstances.name ->isUnique(n|n)
context LabTestRequest
inv:LabTestRequest :: allInstances.name ->isUnique(n|n)

Figure 5: MPS concept constraint for covered objectives

context TestObjective
inv:TestObjective :: allInstances.name ->isUnique(n|n)
context TestChapter
inv:TestChapter :: allInstances.name ->isUnique(n|n)
context TestBench
inv:TestBench :: allInstances.name ->isUnique(n|n)
context Tool
inv:Tool:: allInstances.nameAndVersion ->isUnique(n|n)

A test chapter must cover consistent TestObjectives. A
Covered objective by a test chapter has to belong to the
LabTestRequest referenced in the procedure which contains
this test chapter.

context TestChapter
inv:self.ancestor.labTesRequest.objectives ->
includesAll(self.coveredObjectives)

At block instruction level, we added two constraints. We
must also ensure that a TestChapter contains at least one
Step instruction.

inv:self.setUp.instructions ->
union(self.tests.instructions)
->exists(su|su.oclIsKindOf(Step))

We must also ensure that a test contains at least one
Check or Trace instruction.

context Test
inv:self.instructions ->
exists(su|su.oclIsKindOf(Check)
or su.oclIsKindOf(Trace))

We do not allow a tester doing check or trace in a setup
block because its goal is to put the SUT in test conditions
and not to check or trace anything.

4.2.2 Formalization in MPS

All constraints owned by the meta-model and described
in OCL are implemented in MPS.

In order to help the comprehension of the concept con-
straint of the Figure 5, we recall some definitions about con-
straints in MPS. The abstract representation of the language
is given on the form of a hierarchy of concepts. A concept
can extend another concept, and two concepts can be linked
by composition or by aggregation. A Concept defines the
structure of a node of the future AST representing code
written using a programming language. An abstract syntax
tree (AST) is a tree representation of the abstract syntactic
structure of source code written in a programming language.
Each node of the tree denotes a construct occurring in the
source code.

Constraints in MPS are designed for two purposes. Type
system constraints allow to report semantic errors to the
end user of the language, for example a constraint that en-
sures that the name of a test procedure is unique. Concept
constraints allow to prevent semantic errors by guiding the
end user of the language. For example, the constraint of
test objectives covered by a test chapter is implemented by
a concept constraint. Each constraint has as a starting node
representing a concept. From a concept, MPS can give all
instances of this concept present in the project, and MPS
permits to navigate through relationships between concepts.
The constraint of the Figure 5 is applied when a test de-

signer wants to link test objectives to a test chapter. The
designer is writing a test chapter and would add a new test
objective. The starting node of this constraint is a new ref-
erence of a test objective in a test chapter. This constraint
is implemented by a code that must return a sequence of
test objective nodes (ListScope in the code) that populates
the auto-completion list in the code editor. A test chapter is
owned by a test procedure. This list will be only composed
by test objectives provided by the Lab Test Request refer-
enced in the test procedure except test objectives already
referenced in the test chapter.
More precisely in the code, the variable procedure will con-

tain the test procedure owning the current test chapter. The
variable allLTR contains all test objectives present in the
project. The variable currentLTR contains all test objec-
tives referenced in the procedure by a process of filtering on
the variable allLTR. And finally the variable autocomplete
contains only remaining test objectives by the same process.
This variable will be return into a ListScope that provides
an auto-completion list in the MPS editor.
This constraint ensures that the end user cannot do mis-

take due to the use of the auto-completion list.

4.3 The case of Trace instruction
We are working on test instructions and we present the

state of our reflection on the kind of instructions that we
named Trace. The Table 5 provides a global vision of which
type of action is often used.
A first manual analyze of the corpus of test procedures

gave us a list of sentence patterns. A pattern is a sentence
starting with a verb in an imperative form. We recall that
a procedure is a list of instructions performed by a tester.

Table 5: Semantic classes of Trace instructions

Semantic class Verb
Number of
instructions

%

Start and Stop
Start 193 37,1
Stop 171 32,9

70

Collect

Make/Take
screenshot

64 12,3

Save 12 2,3
Collect 12 2,3
Log 11 2,1

18,7

Perform
Perform 32 6,2
Compute 22 4,2

10,4

Total 517 99,4

We classify patterns of Trace instructions in three semantic
classes: Start and Stop, Collect and Perform. This classifi-
cation is manual and involves knowledge about the semantic
goal of the action carried by the verb.

With StanfordCoreNLP [12], a Natural Language Process-
ing toolkit, all sentence instructions are transformed in syn-
tax trees with the parser feature. Then, we used requests
syntax trees in order to classify verbs into semantic classes.
Main instructions are dedicated to start and stop a trace
tool (70% of instructions tagged by Trace). Others instruc-
tions are dedicated to collect and transform complementary
information not present in a test result analysis file.

Start and Stop.
Requests on the NLP tool permit us to notice that Start

and Stop instructions share the same structure: a verbal
group followed by a nominal group as seen in the Figure 6.
Then we added two instructions in our language: Start

[Tool*] and Stop [Tool*].

Collect.
For now, we take into consideration the action take screen-

shot with the instruction Take a screenshot of [Tool] GUI.
We asked the testers team about a unique verb to replace
occurrences of save, collect, and log. They choose the key-
word collect to save a report from a tool. The syntax of
this instruction is : Collect [Tool] report. However, in-
structions tagged by Log denote a list of variables that must
be saved in a test result analysis file. The log verb in the
context of instructions tagged by trace means that saved
elements are stored in complementary files.

Perform.
Sometimes, a processing on test data is needed before they

are stored. The Perform semantic class represents this kind
of action. The Perform instructions allow testers to perform
a dump on a tool and an optional part of the instruction is
used to decode this dump in another tool. The syntax of the
perform instruction is : Perform a [Tool] dump (and de-

code it with [Tool]). A problem arises with the semantic
of the verb compute because this verb means that a change
is performed on the data used for a test. We propose to
testers team to tag these instructions by Step.

We take into account constraints to verify the coherence
between started tools and stopped tools in a test block.

First, we propose to the test user an auto-completion menu
with the list of tools declared in the test chapter. Then, we
verify that a tool that have been started is closed before the
end of the test and that we cannot stop a tool not started.

Figure 6: Syntax tree for Stop instructions

4.4 Languages composition and extension
The structure we provide for this specific language may be

reusable for other specific domains of avionic systems. If we
put away instructions that will be specific to a domain, the
structure will be common for all domains. In order to man-
age different testing domains (network, cockpit command,
flight command . . .) specific instructions of each domain
will be isolated from the structure. We next explain how
we composed the language dedicated to the structure and
languages containing instructions.
We use the language extension feature of MPS to make

the link between structure language and instructions lan-
guages. As already seen in the Figure 4, the class hierarchy
under instructions depends on which testing domain will be
addressed. This class hierarchy is not part of the language
which supports the structure. We are not even sure that
instruction types (Reminder, Step, Check, Log and Trace)
will be reusable unaltered in other domains. The MPS lan-
guage composition feature offers an easy way to change the
set of instructions without the need of implementing a new
language from scratch. Then, we can now compose structure
language with one or more instructions languages. Instruc-
tions languages must have concepts that extend the abstract
instruction concept owned by the structure language.

5. RELATED WORKS
There are many test languages for software languages, but

not so much for critical-embedded systems. We compare
our language with some existing DSTLs. Then we explain
on what our approach contributes to make processes more
agile. And we recall the scope of our DSTL with Gherkin
language used by Behavioral Driven Development methods.

5.1 Test languages
TTCN-3 [3] (Testing and Test Control Notation-3) is aim-

ing on telecommunication protocols and distributed systems.
It is an international standard, that also fits with the prob-
lem of real-time (hard and soft) and continuous systems.

This language is dedicated to test programmers and not for
test engineers.

More generally a meta-model for tests of avionic systems
in In-the-Loop context was proposed in the Guduvan the-
sis [7]. Its goal is to produce models in graphical or tex-
tual editors in order to be transformed into executable code
with model-to-code transformations. The Model Driven Ap-
proach proposed in this context produces a complex lan-
guage that could be difficult to use efficiently. Here, we
do not want to create a language that covers all the needs
of avionic systems, but we are focusing on keeping a small
range of expressiveness in order to have a language easy to
use. Targeted users of our language are only testers.

TDL [4, 20] (Test Description Language) is a language
dedicated to the specification of functional tests. It will be
used as a basis for the future implementation of executable
tests on test frameworks. It supports a wide range of domain
testing such as conformance tests, interoperability tests, dis-
tributed and concurrent real-time systems tests . . . Since test
definition is platform independent, programmers only focus
on the right test without taking care of how the test will
run on the test bench. TDL is designed as a pivot language
between user requirements and executable tests. Our lan-
guage is concerned with the same problem. However, our
language is dedicated to non-programmers and is scenario
oriented while TDL is focused on executing tests through
an abstract test bench. Tests in system integration phase
are already complex, although we have restrict the scope
of each language in order to increase usability and decrease
learning time. We have chosen to provide a family of test
languages close to the business domain that testers have to
manage.

5.2 Agile processes for embedded systems
Other experimentations and researches come around in-

troducing agile methods in embedded system context. If we
consider the W -model and its testing activities, works we
have found only focus on Software-in-the-Loop testing and
hardware-software co-design testing. Best practices coming
from eXtreme Programming (XP) and Scrum can be reused
in embedded system development, but there are some diffi-
culties to import some of them.

The first contribution addresses small hardware-software
co-design projects [16]. They extend the CppUnit frame-
work by providing digital signal processing possibilities and
new assertions for speed and memory constraints. They
demonstrate that unit test tools can be adapted to work
in embedded environments. Other related works are only
concerned by embedded software.

Works done by Salo and al. [15] aim to show the usefulness
of XP and Scrum for embedded software developments by
studying many agile projects from European organizations.
The result of this study is that these organizations seem to
be able to apply agile methods in their projects and report
fairly positive results of their application. In this context,
a process named Safe Scrum was proposed by St̊alhane and
al. [19] to introduce agile principles in a software certifica-
tion context. Karlesky and al. [10] developed a pattern to
test embedded software in using mocks for hardware compo-
nents. They focus on testing software as soon as possible to
help programmers to produce a code easily testable. Even if
this proposition is attractive, a simulation of entire hardware
is required for Software-in-the-Loop testing in our context.

A last proposition concerns the introduction of high-speed
software engineering for embedded software [11]. They pro-
posed to mix agile practices with classical process improve-
ment activities. In particular, they introduce a test first
approach in focusing on unit testing for embedded systems.
This is exactly what we want to try in Hardware-in-the-

Loop testing activities. First, the need is to produce well
suited unit tests in order to get more relevant tests. We
hope that the tests do not uniquely serve for V&V purposes
but also help to debug systems and bring the gap between
integration tests and requirements.

5.3 Ubiquitous vs Domain Specific Language
A Domain Specific Language is very closed to an ubiqui-

tous language using by the Behavior Driven Development
(BDD) approach [18]. An ubiquitous language is a lan-
guage whose structure comes from the business model. It
contains the terms which will be used to define the behav-
ior of a system. The main idea is that customers and de-
velopers share the same language without ambiguity. In
the BDD approach, end users describe scenarios using the
Given-When-Then pattern that generates test code skele-
tons that programmers must complete. Some frameworks
assure the traceability from scenarios describing use cases
to the implementation.
Even if this idea is attractive, multiple end users can pro-

vide a too wide language for a domain. DSLs are more
restrictive and less flexible to minimize the complexity of
the language. The glue code required by the BDD approach
is encapsulated by the semantics of the DSL.
However, there are works using natural language process-

ing tools that derive test case scenarios from a specification
written in natural language [17]. We want to use the same
approach but with a different goal. In our work, starting
point is a precise description of test procedures in natural
language. We want to produce a DSTL that covers all the
need to write test procedures in a specific domain.

6. CONCLUSION
Our objective is to provide a first step in the production of

a unified language for system testing integration procedures.
This unification will be bring by a computer language that
will fit with testers concern. Sharing a common language on
a specific domain testing will facilitate the communication
between tester teams and test programmer teams involved in
tests production. Sharing a common language on a specific
domain testing will facilitate the communication between
tester teams and designer teams involved in systems design.
This common language matches with the first value of the
agile manifesto: ”Individuals and interactions over processes
and tools”. Moreover, writing tests in a computer language
rather than in a natural language implements the principle
of ”Working software is the primary measure of progress”.
Moreover, paradigm of unit testing improves the struc-

turation of integration tests. Concerning the ACOVAS project,
the next step of our work will focus on a first instructions
language dedicated to networks integration. We would like
that testers teams adopt the language by rewriting test pro-
cedures in a well-suited environment. We would like to col-
laborate with test programmers teams to give an operational
semantics on integration tests. We want to use a generic
state-machine based execution environment in order to run
some parts of test procedures.

To render the language design process less empirical, we
would like to use supervised machine learning to find do-
main ontologies. These ontologies are the basis for concrete
syntax for each avionic business. Concepts correspond to ob-
jects of our language and semantic links between concepts
correspond to an action language on those objects.

7. ACKNOWLEDGMENTS
We would like to thank all people that participate to the

ACOVAS project and especially testers that gave us feed-
backs and helped us producing a language that fit with their
business. We also would like to express our gratitude to
Thierry Millan that helped us formalizing meta-model and
producing OCL rules [13].

8. REFERENCES

[1] F. Campagne. The MPS Language Workbench,
volume 1. FABIEN CAMPAGNE, 2013-2014.

[2] F. Campagne. The MPS Language Workbench,
volume 2. FABIEN CAMPAGNE, 2015.

[3] ETSI. TTCN-3. http://www.ttcn-3.org/.

[4] ETSI. The Test Description Language (TDL); Part 1 :
Abstract Syntax and Associated Semantics, 2015. ES
203 119-1.

[5] M. Fowler. Language workbenches: The killer-app for
domain specific languages. http://www.martinfowler.
com/articles/languageWorkbench.html.

[6] M. Fowler. Domain-Specific Languages.
Addison-Wesley Signature Series (Fowler). Pearson
Education, 2010.

[7] A.-R. Guduvan, H. Waeselynck, V. Wiels, G. Durrieu,
Y. Fusero, and M. Schieber. A Meta-Model for Tests
of Avionics Embedded Systems. Proceedings of the 1st
International Conference on Model-Driven
Engineering and Software Development, pages 5–13,
2013.

[8] Itemis. XText. http://www.eclipse.org/Xtext/.

[9] Jetbrains. Meta-programming system.
https://www.jetbrains.com/mps/.

[10] M. Karlesky, W. Bereza, and C. Erickson. Effective
test driven development for embedded software. In
Proceedings of IEEE International Conference on
Electro information Technology, pages 382–387, May
2006.

[11] P. Manhart and K. Schneider. Breaking the Ice for
Agile Development of Embedded Software: An
Industry Experience Report. In A. Finkelstein,
J. Estublier, and D. S. Rosenblum, editors,
Proceedings of the 26th International Conference on
Software Engineering, pages 378–386. IEEE Computer
Society, 2004.

[12] C. Manning, M. Surdeanu, J. Bauer, J. Finkel,
S. Bethard, and D. McClosky. The stanford corenlp
natural language processing toolkit. In Proceedings of
52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 55–60, Baltimore, Maryland, 2014. Association
for Computational Linguistics.

[13] T. Millan, L. Sabatier, T.-T. Le Thi, P. Bazex, and
C. Percebois. An ocl extension for checking and
transforming uml models. In Proceedings of the 8th

WSEAS International Conference on Software
Engineering, Parallel and Distributed Systems,
SEPADS’09, pages 144–149, 2009.

[14] A. Ott. System Testing in the Avionics Domain. PhD
thesis, University of Bremen, 2007.

[15] O. Salo and P. Abrahamsson. Agile methods in
european embedded software development
organisations: a survey on the actual use and
usefulness of extreme programming and scrum.
Software, IET, 2(1):58–64, February 2008.

[16] M. R. Smith, A. K. C. Kwan, A. Martin, and
J. Miller. E-TDD - embedded test driven development
a tool for hardware-software co-design projects. In 6th
International Conference, XP 2005, Sheffield, UK,
June 18-23, 2005, Proceedings, pages 145–153, 2005.

[17] M. Soeken, R. Wille, and R. B. Drechsler. Assisted
behavior driven development using natural language
processing. Lecture Notes in Computer Science, 7304
LNCS:269–287, 2012.

[18] C. Soĺıs and X. Wang. A study of the characteristics
of behaviour driven development. Proceedings - 37th
EUROMICRO Conference on Software Engineering
and Advanced Applications, pages 383–387, 2011.

[19] T. St̊alhane, T. Myklebust, and G. Hanssen. The
application of safe scrum to IEC 61508 certifiable
software. In 11th International Probabilistic Safety
Assessment and Management Conference and the
Annual European Safety and Reliability Conference
2012, PSAM11 ESREL 2012, volume 8, pages
6052–6061. Curran Associates, Inc., 2012.

[20] A. Ulrich, S. Jell, A. Votintseva, and A. Kull. The
ETSI test description language TDL and its
application. In MODELSWARD 2014 - Proceedings of
the 2nd International Conference on Model-Driven
Engineering and Software Development, Lisbon,
Portugal, 7 - 9 January, 2014, pages 601–608, 2014.

[21] E. Visser. Spoofax. http://strategoxt.org/Spoofax.

[22] M. Völter, S. Benz, C. Dietrich, B. Engelmann,
M. Helander, L. Kats, E. Visser, and G. Wachsmuth.
DSL Engineering Designing, Implementing and Using
Domain-Specific Languages. dslbook.org, 2013.

