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Abstract

Correlation clustering is a technique for aggregating data based on
qualitative information about which pairs of objects are labeled ‘similar’
or ‘dissimilar.’ Because the optimization problem is NP-hard, much of the
previous literature focuses on finding approximation algorithms. In this
paper we explore how to solve the correlation clustering objective exactly
when the data to be clustered can be represented by a low-rank matrix.
We prove in particular that correlation clustering can be solved in polyno-
mial time when the underlying matrix is positive semidefinite with small
constant rank, but that the task remains NP-hard in the presence of even
one negative eigenvalue. Based on our theoretical results, we develop an
algorithm for efficiently “solving” low-rank positive semidefinite correlation
clustering by employing a procedure for zonotope vertex enumeration. We
demonstrate the effectiveness and speed of our algorithm by using it to
solve several clustering problems on both synthetic and real-world data.

1 Introduction
Correlation clustering is a method for partitioning a dataset based on pairwise
information that indicates whether pairs of objects in the given dataset are
‘similar’ or ‘dissimilar.’ Typically correlation clustering is cast as a graph
optimization problem where the nodes of a graph represent objects from the
dataset. In its most basic form, the graph is assumed to be complete and
unweighted, with each edge being labeled ‘+’ or ‘−’ depending on whether the
two nodes are ‘similar’ or ‘dissimilar.’ Given this input, the objective is to
partition the graph in a way that maximizes the number of agreements, where
an agreement is a ‘+’ edge that is included inside a cluster, or a ‘−’ edge that
links nodes in different clusters. An equivalent objective, though more difficult
to approximate, is the goal of minimizing disagreements, i.e., ‘similar’ nodes that
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are separated or ‘dissimilar’ nodes that are clustered together. A more general
form of correlation clustering associates each pair of objects with not only a
label but also a weight indicating how similar or dissimilar the two objects are.
In this case, the goal is to maximize the weight of agreements or minimize the
weight of disagreements.

One attractive property of this clustering approach is that the number of
clusters formed is determined automatically by optimizing the objective function,
rather than being a required input. In practice, correlation clustering has been
applied in a wide variety of disciplines to solve problems such as cross-lingual link
detection [28], gene clustering [6], image segmentation [15], and record linkage
in natural language processing [18].

Because correlation clustering is NP-hard [5], much of the previous literature
has focused on developing approximation algorithms. In this paper, we consider
a new approach, exploring instances of the problem where the weighted labels
can be represented by a low-rank matrix. Studying this case provides a new
means for dealing with the intractability of the problem, and also allows us to
apply the framework of correlation clustering in the broader task of analyzing
low-dimensional datasets.

Our Contributions: In this paper we prove that correlation clustering can
be solved in polynomial time when the similarity labels can be represented by a
positive semidefinite matrix of low rank. We also show that the problem remains
NP-hard when the underlying matrix has even one negative eigenvalue. To solve
correlation clustering problems in practice, we implement an algorithm called
ZonoCC based on the randomized zonotope vertex enumeration procedure of
Stinson, Gleich, and Constantine [26]. This algorithm is capable of optimally
solving low-rank positive semidefinite correlation clustering. It is most useful,
however, when it is truncated at a fixed number of iterations in order to quickly
obtain a very good approximation – sans formal guarantee – to the optimal
solution. We demonstrate the effectiveness of ZonoCC by obtaining clusterings
for both synthetic and real-world datasets, including social network datasets and
search-query data for well-known computer science conferences.

2 Problem Statement
We begin with the standard approach to correlation clustering by considering
a graph with n nodes where edges are labeled either ‘+’ or ‘−’. Typically
the correlation clustering objective is cast as an integer linear program in the
following way. For every pair of nodes i and j we are given two nonnegative
weights, w+

ij and w
−
ij , which indicate a score for how similar the two nodes are

and a score for how dissimilar they are respectively. Traditionally, we assume
that only one of these weights is nonzero (if not, they can be adjusted so this
is the case without changing the objective function by more than an additive
constant). For every pair of nodes i, j we introduce a binary variable dij such
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that

dij =

{
0 if i and j are clustered together ;
1 if i and j are separated .

In other words, dij = 1 indicates we have cut the edge between nodes i and j.
The maximization version of correlation clustering is given by the following ILP
(integer linear program). We include triangle constraints on the dij variables to
guarantee that they define a valid clustering on the nodes.

maximize
∑
i<j w

+
ij(1− dij) +

∑
i<j w

−
ijdij ,

subject to dij ∈ {0, 1},
dik ≤ dij + djk for all i, j, k.

(1)

The first term counts the weight of agreements from clustering similar nodes
together, and the second counts the weight of agreements from dissimilar nodes
that are clustered apart.

For convenience, we encode the weights of a correlation clustering problem
into a matrix A by defining Aij = w+

ij − w
−
ij . We think of A as the adjacency

matrix of a graph that has both positive and negative edges. We can express
the objective function in terms of A as

maximize −
∑
i<j Aijdij +

∑
i<j w

+
ij .

Since the second term is only a constant, to solve this problem optimally, we
can focus on just solving this ILP:

maximize −
∑
i<j Aijdij

subject to dij ∈ {0, 1},
dik ≤ dij + djk for all i, j, k.

(2)

We can provide an alternative formulation of the correlation clustering objective
by introducing an indicator vector xi ∈ {e1, e2, e3, . . . , en} for each node i, where
ej is the jth standard basis vector in Rn. This indicates which cluster node i
belongs to. Unless each node ends up in its own singleton cluster, some of these
basis vectors will be unused. We can then make the substitution dij = 1− xTi xj ,
since xTi xj will be 1 if both nodes are in the same cluster but will be 0 otherwise.
After making this substitution and dropping a constant term in the objective,
the problem becomes

maximize
∑
i<j Aijx

T
i xj

subject to xi ∈ {e1, . . . , en} for all i = 1, . . . , n .
(3)

3 Theoretical Results
In this section, we present new results on the complexity of correlation clustering
under low-rank assumptions. In particular, we prove the problem remains
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NP-hard when the underlying matrix has even one negative eigenvalue. We
are more concerned, however, with solving correlation clustering on low-rank
positive semidefinite adjacency matrices, in which case we give a polynomial
time solution. This scenario is analogous to results for other related optimization
problems that admit polynomial-time solutions for low-rank positive semidefinite
input matrices [10, 17], and is also a particularly natural assumption for the
correlation clustering objective. For example, if the adjacency matrix represents
a correlation matrix (i.e., each entry is the Pearson correlation coefficient between
two random variables), the input is already positive semidefinite. So taking a
low-rank approximation will yield the type input matrix studied here; we give
two examples of correlation clustering on a correlation matrix in Section 5.

Even when the input is not a correlation matrix, we note that the correlation
clustering objective does not depend on the diagonal of the input matrix, so we
are able to shift the diagonal entries until the matrix is positive definite before
taking a low-rank approximation. Though the quality of the approximation will
vary depending on how much the diagonal needs to be increased, this provides a
means to apply our methods to get an approximate solution for every full-rank
dataset.

3.1 Positive Semidefinite CC
Rank-1 Positive Semidefinite The simplest case to consider is when A is
rank-1 with one positive eigenvalue. Because A is symmetric, we can express it
as A = vvT for some v ∈ Rn. In this case a perfect clustering always exists and
is easy to find: one cluster includes all nodes with negative entries in v, while
the other includes those with positive entries. Nodes i and j are similar if and
only if Aij > 0, which is true if and only if entries i and j of the vector v have
the same sign. So this simple two clustering agrees perfectly with the similarity
labels.

In fact, the rank-1 positive semidefinite correlation clustering problem is equiv-
alent to maximizing a quadratic form xTAx in binary variables x ∈ {−1, 1}n,
under the assumption that A is rank-1. This maximization problem can be
solved in polynomial time for every fixed low rank, d [17]. While this gives us a
nice result for correlation clustering on rank-1 matrices, it does not generalize to
higher ranks as it only can partition a graph into exactly two clusters.

Rank-d Positive Semidefinite If the matrix A is positive semidefinite but
of rank d > 1, there is no guarantee that a perfect partitioning exists, and the
optimal clustering may have more than two clusters. We still begin by expressing
A in terms of low rank factors, i.e., A = V V T for some V ∈ Rn×d. Each
node in the signed graph can now be associated with one of the row vectors
v1,v2, . . . ,vn ∈ Rd×1 of V . The similarity scores between nodes i and j are
given by Aij = vTi vj , so we can view this version of correlation clustering as the
following vector partitioning problem. Separate n points, or vectors, in Rd based
on similarity scores given by dot products of the vectors:
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THEOREM 1 If A = V V T for V ∈ Rn×d, then problem (3) can be solved
by partitioning the row vectors v1,v2, . . .vn ∈ Rd×1 of V into d + 1 clusters
{C1, C2, . . . , Cd+1} to solve

maximize
∑d+1
i=1 ‖Si‖

2
2 , (4)

where we refer to the vector Si =
∑

v∈Ci
v as the sum point of the ith cluster

(in an empty cluster, defined to be the zero vector).

Proof We will show in two steps that when A = V V T , the clustering that
maximizes objective (3) also maximizes objective (4). The first step is to prove
that (3) is equivalent to maximizing the sum of squared norms of sum points,
where the maximization is taken over every possible clustering. Second, we show
that the objective function is maximized by a clustering with d + 1 or fewer
clusters.

Step 1: Maximizing a function on sum points By doubling the objective
function in (3) and adding the constant

∑n
i=1 v

T
i vi, we obtain a related objective

function that is maximized by the same clustering:

2
∑
i<j

vTi vj(x
T
i xj) +

n∑
i=1

vTi vi =

n∑
i=1

n∑
j=1

vTi vj(x
T
i xj) . (5)

Since xi and xj are indicator vectors, identifying which clusters nodes i and j
belong to, the right-hand side of equation (5) only counts the product vTi vj
when xTi xj = 1. So we are restricting our attention to inner products between
vectors that belong to the same cluster. The contribution to the objective from
cluster Ck is ∑

a∈Ck

∑
b∈Ck

vTa vb = STk Sk = ||Sk||22 .

Summing over all clusters completes step one of the proof.

Step 2: Bounding the number of clusters To see that the number of
clusters is bounded, observe that in the optimal clustering all the sum points
must have pairwise non-positive dot products. Otherwise, there would exist
distinct clusters Ci and Cj with STi Sj > 0, and therefore

(Si + Sj)
T (Si + Sj) = STi Si + 2STi Sj + STj Sj > STi Si + STj Sj .

Hence we could get a better clustering by combining Ci and Cj .
Now, if there were an optimal clustering with two sum points that are

orthogonal – STi Sj = 0, we could combine the two clusters without changing the
objective score. Therefore, among all optimal clusterings, the one with the fewest
clusters has the property that all sum points have pairwise negative dot products.

5



The bound of d+1 clusters then follows from the fact that the maximum number
of vectors in Rd with pairwise negative inner products is d + 1 (Lemma 8 of
Rankin [25]). �

It is worth noting that despite a significant difference in motivation, our new
objective function (4) is nearly identical to one used by Newman as a means to
approximately solve maximum modularity clustering [19]. This is an interesting
new connection between two clustering techniques that were not previously
known to be related. Newman and Zhang’s work contains further information
on modularity [29, 19].

The importance of Theorem 1 is that it expresses the low-rank positive
semidefinite correlation clustering problem as a convex functional on sums of
vectors in Rd. Our problem is therefore an instance of the well-studied vector
partition problem [20, 13]. Onn and Schulman showed that for dimension d and
a fixed number of clusters p, this problem can be solved in polynomial time by
exploring the O(nd(p−1)−1) vertices of a d(p − 1)-dimensional polytope called
the signing zonotope.

COROLLARY 1 Correlation clustering with rank-d positive semidefinite matrices
(PSD-CC) is a special case of the vector partition problem with d+ 1 clusters,
and is therefore solvable in polynomial time.

We later show how to construct a polynomial-time algorithm for PSD-CC
by reviewing the results of Onn and Schulman [20]. Before this, we observe a
second theorem, which highlights an important geometric feature satisfied by
the optimal clustering. It provides a first intuition as to how we can solve the
problem in polynomial time.

THEOREM 2 In the clustering Copt, which maximizes (4), the n row vectors of
V will be separated into distinct convex cones that intersect only at the origin.
More precisely, if vectors vx1

,vx2
, . . . ,vxk

are all in the same cluster Cx in Copt,
and vy ∈ Rd is another row vector that satisfies vy =

∑k
i=1 civxi for ci ∈ R+

0 ,
then vy is also in cluster Cx.

Proof First notice that in Copt, every vector v must be more similar to its own
sum point than to any sum point of a different cluster. To see this, assume that
v is in cluster Ci with sum point Si, but v is more similar to another sum point
Sj , i.e.

vTSi < vTSj .

The contribution to the objective from the two sum points is STi Si + STj Sj . If
we move v from cluster Ci to cluster Cj , the contribution to the objective for
the two new clusters is

(Si − v)T (Si − v) + (Sj + v)T (Sj + v) =

STi Si − 2vTSi + vTv + STj Sj + 2vTSj + vTv

which is a higher score since vTSi < vTSj , contradicting the optimality of the
first clustering. So in the optimal clustering every point is more similar to its
own sum point than any other sum point.
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Given this first observation we will now prove the main result of the theorem
by contradiction. Assume that we have k points vx1 ,vx2 , . . . ,vxk

that in Copt

are in cluster Cx with sum point Sx. Let vy be another point in the dataset
such that vy =

∑k
i=1 civxi where ci > 0 for i = 1, 2, · · · , k, and assume that vy

is in a different cluster Cy that has sum point Sy. By our first observation, every
point in Cx must be more similar to Sx than Sy, so for 1 ≤ i ≤ k we have that
vTxi

Sx > vTxi
Sy, which implies civTxi

Sx > civ
T
xi
Sy, for any positive scalar ci. It

follows that

vTy Sx =

k∑
i=1

civ
T
xi
Sx >

k∑
i=1

civ
T
xi
Sy = vTy Sy.

This indicates that vy is more similar to Sx than to the sum point of the cluster
to which is belongs, which is a contradiction.

�
Theorem 2 implies that we can find an optimal clustering in polynomial time

by checking every possible partitioning of the vectors into convex cones. By
Theorem 2.7 of Klee [16], every pair of cones can be separated by a hyperplane
through the origin. Furthermore, Cover [9] proved that for every set of n
points in Rd, there are O(nd−1) such hyperplanes that split the points into two
groups. This means that to cluster the points into d+ 1 convex cones, we must
choose

(
d+1
2

)
of the O(nd−1) hyperplanes so that each distinct pair of clusters is

separated by a hyperplane. This gives us a total of O(n(d−1)(
d+1
2 )) ways to cluster

the points into d+ 1 convex cones, which we can enumerate in polynomial time.
When d = 2, we can efficiently find the boundaries of the optimal convex cones
by considering the n rays that each connect the origin to one of the n points.
Since there are at most three clusters in this case, we can solve the problem by
testing O(n3) triplets of points as possible separators for the clusters, each time
evaluating the objective. A visualization of this process is shown in Figure 1.
Though we can make this procedure very efficient for the two-dimensional case,
it is significantly less efficient for dimension d greater than 2, so we resort to the
methods proposed by Onn and Schulman [20], which we review in Section 4.

3.2 Rank-1 Negative Semidefinite
When A has rank 1 and its nonzero eigenvalue is negative, we know A = −vvT
for some v ∈ Rd. This changes the objective (4) in three ways: the negative
sign converts the maximization to a minimization, the entries of v are real
numbers rather than row vectors, and the upper bound of d + 1 clusters no
longer applies. Solving the Rank One Negative Eigenvalue Correlation Clustering
problem (RONE-CC) is therefore equivalent to

min
C,k

k∑
i=1

( ∑
v∈Ci

v
)2
. (6)

The following theorem regarding RONE-CC is analogous to a result of
Papailiopoulos et al., who use a reduction from Subset Sum to prove that the
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Figure 1: The three-clustering that solves a small rank-2 correlation clustering
problem. Each cluster is shown by a different color, and can be delimited on
each side by rays through the origin. By selecting the right combination of three
points (circled in red), we will be able to find the optimal clustering.

Densest-k-Subgraph problem is NP-hard for input matrices of rank-1 with one
negative eigenvalue [22]. Our result relies on a reduction from the related
Partition problem, and accounts for the fact that in an instance of correlation
clustering we must optimize over the set of partitionings with arbitrarily many
clusters.

THEOREM 3 Rank-one Negative Eigenvalue Correlation Clustering is NP-Complete.

Proof Given that general correlation clustering is NP-Complete, we know that
the decision version of RONE-CC must also be in NP. To show the problem is
NP-hard, we can use a reduction from the Partition problem, one of the NP-hard
problems listed by Garey and Johnson [11]. For this problem we are given a
multiset of n positive integers and seek to partition the set into subsets of equal
sum.

Consider a multiset of n positive integers. Let s be the smallest integer and
B be the sum of all n integers. We assume s and B are both even–if this is not
the case we can multiply all numbers in the set by two so that this assumption is
satisfied. Letting M = B/2− s/2, we add two copies of −M to the input: now
the total sum of the input integers is s. We can show that the optimal solution
to RONE-CC on this input will perfectly partition the n positive integers into
two subsets of equal sum if such a perfect partition exists.

Assume the positive integers can be split into two subsets of sum B/2. If we
include exactly one copy of the −M values with each of these two subsets, then
each cluster sums to B/2−M = s/2. The RONE-CC objective corresponding to
this two-clustering is 2 (s/2)2 = s2/2. We now show that every other clustering
yields a worse objective value. Clearly, any clustering with one copy of −M
in each cluster that does not equally split the positives will have objective
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score > s2/2. If we cluster all integers together, the sum is s, and the objective
would be s2 > s2/2. If on the other hand we consider a two-clustering where
both −M values are in the same partition, or any clustering with more than two
clusters, then there must exist some cluster with only positive integers. This
cluster has sum at least s, leading to an objective of at least s2. The best option
is therefore to form two clusters, each of which contains one of the −M values
and a subset of the n positive integers summing to B/2. �

4 Algorithms
In this section we show how to obtain a polynomial-time algorithm for solving
PSD-CC. We first review the results of Onn and Schulman [20], which estab-
lish the existence of a polynomial-time algorithm, by analyzing the properties
of a d2-dimensional polytope called the signing zonotope. We then combine
this with a vertex-enumeration procedure developed by Stinson, Gleich, and
Constantine [26].

4.1 Signing Zonotope
A zonotope is the linear projection of a high-dimensional hypercube into a lower-
dimensional vector space. We are primarily concerned with the signing zonotope
introduced by Onn and Schulman [20], whose vertices directly correspond to
clusterings of the n vectors of a vector partition problem.

Consider a set SV of n vectors v1,v2, . . . ,vn ∈ Rd×1 in an instance of
the vector partition problem. A signing of these vectors is defined to be a
vector σ = (σia,b) ∈ {−1, 1}M , where M = n

(
d+1
2

)
. Each entry σia,b uniquely

corresponds to a triplet (vi, a, b), where vi is one of the data points we are
clustering and 1 ≤ a < b ≤ (d+ 1) are the indices for two distinct clusters in a
(d+ 1)-clustering of the n vectors. If b < a, we define σia,b = −σib,a and associate
each signing with a matrix T σ:

T σ =

n∑
i=1

∑
1≤a<b≤d+1

σia,bvi · (ea − eb)T ∈ Rd×(d+1) , (7)

where ea, eb ∈ R(d+1)×1 are the ath and bth standard basis vector, respectively.
By construction, the row sum of T σ will be the zero vector, so if we are given
the first d columns of the matrix we will be able to recover the last column
even if it is not given explicitly. We associate with each signing σ a vector Zσ
of length d2 made by stacking the first d columns of T σ on top of one another.
Here we will refer to this vector as the Z-vector of σ. A signing σ is said to
be extremal if its Z-vector is a vertex of the signing zonotope, which we define
below. Furthermore, Onn and Schulman proved that for every vertex v of the
zonotope, there exists exactly one extremal signing σ such that v is the Z-vector
of σ. In other words, the extremal signings are in one-to-one correspondence
with the vertices of the zonotope.

9



The signing zonotope Z for this instance of the vector partition problem is
defined to be

Z = conv{Zσ : σ is a signing of SV } .

In other words, Z is the convex hull of all 2M Z-vectors of signings of SV . We
now state two important results established by Onn and Schulman [20] about
the signing zonotope.

THEOREM 4 (Results from [20]) The following properties hold regarding the
signing zonotope Z introduced above:

1. Each vertex of Z can be mapped to a clustering of the n vectors in SV ,
where each cluster is contained in one of d+ 1 convex cones. Additionally,
there exists an extremal signing that maps to the clustering which optimizes
the objective of the vector partition problem.

2. Signing zonotope Z has at most O(nd
2−1) vertices.

All we need then to solve the vector partition problem, and hence PSD-CC, is
to iterate through each extremal signing of Z, obtain the clustering it corresponds
to, and evaluate objective (4) for that clustering. At the end we output the
clustering with the maximum objective value.

The procedure for associating an extremal signing with a clustering of SV is
given in Proposition 2.3 of Onn and Schulman’s work [20]. This states that for all
i = 1, 2, . . . , n, there exists a unique index 1 ≤ ci ≤ d+ 1 such that σici,k = 1 for
all k 6= ci. Thus vector vi belongs to cluster number ci in the optimal clustering.

We can interpret this fact in light of Theorem 2. Recall that according to
Klee [16], between each pair of clusters Ca and Cb there exists a hyperplane that
separates Rd into two half spaces such that Ca is in one half and Cb is in the
other. Each extremal signing σ encodes information about which side of the
separating hyperplane each vector vi is on. For example, σia,b = 1 indicates that
vector vi is the same half space as all vectors in cluster Ca. More importantly,
this tells us that vi is not in the same half space as cluster Cb, so we rule out the
possibility that vi is in cluster Cb. On the other hand, σia,b = −1 indicates that
vi is on the same side as cluster Cb, eliminating the possibility that vi is in Ca.
If we consider all entries of σ, Onn and Schulman’s proposition effectively tells
us that there is only one cluster that will not be ruled out by this process, so by
default this is the cluster where vi is located. From this elimination process we
recover a (d+ 1)-clustering of the vectors. With this, we are now able to state
the exact runtime for solving PSD-CC.

THEOREM 5 The fixed-rank positive semidefinite correlation clustering problem
can be solved in O(nd

2

) time.

Proof Relying on previous complexity and algorithmic results regarding zono-
topes, in their Corollary 3.3, Onn and Schulman establish that the (d+1)-vector
partition problem can be solved with O(nd

2−1) operations and queries to an
oracle for evaluating the convex objective functional [20]. We now show that

10



it takes O(n) operations to evaluate our specific oracle function for each of the
O(nd

2−1) extremal signings. In our case, the complexity of the oracle is the time
it takes to evaluate summation (4) for a given extremal signing σ. Treating d as
a fixed constant, this procedure involves inspecting the M = O(n) entries of σ
to identify a clustering, and O(n) operations to add vectors in each cluster to
obtain the sum points. We require only a constant number of operations to take
dot products of the sum points and add the results, so the evaluation process
takes O(n) time, and hence the overall process O(nd

2

) time.

4.2 Practical Algorithm
Though theoretically polynomial time, the runtime given above is impractical for
applications. We turn our attention to an algorithm which approximately solves
the PSD-CC objective, but is much more efficient in practice. We implement a
randomized algorithm for sampling vertices of a zonotope (that will eventually
enumerate them all), developed by Stinson, Gleich, and Constantine [26]. When
mapping a hypercube in RM onto a zonotope in RN , the basic outline of their
procedure is as follows. Form an N ×M matrix G, where each column is a
generator of the zonotope, i.e., G is the linear map that maps the hypercube into
a lower-dimensional space. Given a vector x drawn from a standard Gaussian
distribution, compute v = G sign(GTx), where sign(u) returns a vector with
±1 entries, reflecting the signs of the entries of u. The main insight of Stinson,
Gleich and Constantine is that under reasonable assumptions on G, v will be a
vertex of the zonotope. One can construct the entire zonotope by generating
vertices in this way, by checking whether a given vertex has been previously
found, and continuing until all the vertices have been returned. In practice, it is
better to just approximate the zonotope by stopping after a certain number of
vertices have been found.

We alter this procedure slightly to fit our needs. Note that the generators of
the signing zonotope come from outer products of the form vi · (er − es)T , for
i = 1, 2, . . . , n and 1 ≤ r < s ≤ d+1. This product gives a d×(d+1) matrix with
a zero row sum, so taking the first d columns and stacking them into a vector
we get one of the columns of G. Equation (7) shows that when we form a linear
combination of these generators, where the coefficients of the linear combination
are entries of a signing σ, the output is exactly the Z-vector corresponding to σ.
We are ultimately interested in extremal signings rather than actual zonotope
vertices, so we repeatedly generate vectors σ = sign(GTx). We then inspect the
entries of σ and find the corresponding clustering of n vectors and thence the
clustering’s PSD-CC objective score (4). We do this for a very large number of
randomly generated extremal signings and output the one with the highest score.
We name our algorithm based on this zonotope vertex enumeration, ZonoCC,
outlined in Algorithm 1.

Our new algorithm is significantly faster than exploring all vertices of the
zonotope. Once we have formed the n

(
d+1
2

)
columns of G, generating σ by matrix

multiplication and determining the corresponding clustering both take O(n) time
since d is a small fixed constant. The overall runtime is therefore just O(nk),

11



Algorithm 1 ZonoCC
Input: rows of V : v1,v2, . . . ,vn ∈ Rd, and k ∈ N
Form generator matrix G
Set BestClustering← ∅, BestObjective← 0
for i = 1, 2, . . . , k do

1. Generate standard Gaussian x ∈ RM
2. σ ← sign(GTx)
3. Determine clustering C and objective Cobj from σ
if Cobj > BestObjective then

Set BestClustering← C, BestObjective← Cobj
Output: BestClustering,BestObjective

where k is the number of iterations. Although ZonoCC is not guaranteed
to return the optimal clustering, Stinson, Gleich, and Constantine prove that
with high probability the zonotope vertices that are generated will tend to be
those which most affect the overall shape of the zonotope [26]. We expect such
extremal vertices of the zonotope to be associated with extremal clusterings of
the n data points, i.e., clusterings with high objective score.

5 Numerical Experiments
In this section, we demonstrate the performance of Zono-CC in a variety of
clustering applications. In order to understand how its behavior depends on the
rank, as well as the size of the problem, we begin by illustrating the performance
of Zono-CC on synthetic datasets that are low-dimensional by construction.
We then study correlation clustering in two real-world scenarios: (i) the volume
of search queries over time for computer science conferences and (ii) stock market
closing prices for S&P 500 companies. Since neither of these cases is intrinsically
low-rank, we study the performance of Zono-CC on low-rank approximations
of the data. Curiously, the best results are achieved on extremely low-rank
approximations. Our goal in both the synthetic and real-world experiments is to
compare our algorithm to other well-known correlation clustering algorithms and,
when possible, see how well our algorithm is able to approximate the optimal
solution. On the real-world data, we also run the k-means procedure and find
that it is unable to create the clustering we find via correlation clustering.

For our last experiment, we show how to cluster any unsigned network with
ZonoCC, by first obtaining an embedding of the network’s vertices into a low-
dimensional space. We use this technique to cluster and study the structure of
several networks from the Facebook 100 dataset [27]. Here we compare ZonoCC
against k-means, an algorithm that is very commonly applied to cluster data
in low-dimensional vector spaces. The goal of this final experiment is not to
show that ZonoCC is better in itself, but to analyze the results of ZonoCC
when both high-quality and low-quality embeddings of the vertices are applied.
We find that with lower-quality embeddings, ZonoCC is able to better uncover
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meaningful structure in the networks than k-means.
Our experiments revolve around the following four algorithms, three of

which are specifically intended for correlation clustering. In our experiments
we show runtimes for guidance only and note that these are non-optimized
implementations. We make code for all of our algorithms and experiments
available at https://github.com/nveldt/PSDCC.

Exact ILP For small problems, we compute the optimal solution to the
correlation clustering problem by solving an integer linear program with the
commercial software Gurobi.

CGW The 0.7664-approximation for maximizing agreements in weighted
graphs, based on a semidefinite programming relaxation, by Charikar, Guruswami,
and Wirth [8].

Pivot The fast algorithm developed by Ailon, Charikar, and Newman for
±1 correlation clustering instances [1]. It uniformly randomly selects a vertex,
clusters it with all nodes similar to it, and repeats. Depending on problem size,
we return the best result from 1000 or 2000 instantiations.

k-means The standard Lloyd’s k-means algorithm, as implemented in MAT-
LAB, with k-means++ initialization [2]. Because of its speed, we return the
best of 100 instantiations.

5.1 Synthetic Datasets
We begin by demonstrating that ZonoCC computes a very good approximation
to the optimal PSD-CC objective even though it does not test all vertices of the
zonotope. We use several synthetic datasets for a range of d values. We consider
both the scenario where there is a true planted clustering in the dataset, as well
as the case where there is no clear clustering stucture in the data. The first of
these cases tests eachs algorithm’s ability to detect a clustering when there is a
high signal to noise ratio. In the second experiment we are purely testing how
well each algorithm can optimize the objective in the absence of any particular
clustering structure in the dataset. We also compare the performance of Pivot
and ZonoCC on larger datasets in a third experiment. Finally, in experiment
four we demonstrate how ZonoCC performs for a varying number of iterations.

For the first experiment, we perform the following steps to generate a dataset
with a planted partitioning:

1. For each rank d, we set n = 10d and choose an integer k between d/2 and
d+ 1 uniformly at random to be the number of clusters to form.

2. Assign each of the n objects to one of the k planted clusters uniformly at
random.
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3. Assign to each of the planted clusters a vertex of a regular d-simplex, whose
d+ 1 vertices in Rd all have pairwise negative dot products.

4. Form W ∈ Rn×d by setting the ith row to be the coordinates of the simplex
vertex assigned to the cluster that object i belongs to. Now W defines a
correlation clustering problem with a perfect partitioning.

5. Add noise to form matrix V in the following way:

V = (1− ε)W + εE

where E is an n×d matrix of standard Gaussian noise. For our experiments
we choose ε = .15, which is enough noise to guarantee there will no longer
be a perfect clustering, but so that the structure of the planted clustering
is still detectable.

After performing the above steps, computing A = V V T gives a synthetic dataset
with an underlying clustering which will correspond to the optimal clustering
or at least approximate it very well. We then run each correlation clustering
algorithm on this dataset and compare each algorithm’s objective score against
the score of the planted clustering. This setup allows us to test how well each
method is able to perform in the high signal to noise regime. In Figure 2
we display objective scores and runtimes for different algorithms on synthetic
datasets with planted clusters for a range of d values from 2 to 20. We use 50,000
itertions of ZonoCC and 1000 instantiations of Pivot in each case.

We note that for this first experiment ZonoCC outperforms all other methods
for matrices up to rank 15. At this point CGW begins to take over in objective
score, although it does so at the expense of a much longer runtime. Recall that
we are running ZonoCC for a fixed number of iterations; we would expect to
see improved objective scores for running the algorithm longer as problem size
increases. Note that for even for rank 20, ZonoCC still achieves an objective
score that is within 85% of the score of the planted clustering.

For the second experiment we generate synthetic datasets without any under-
lying structure by forming random n× d matrices V with entries taken from a
standard Gaussian distribution. We fix n = 60, which is small enough so that we
can obtain the exact solution to the correlation clustering problem for the matrix
A = V V T by solving the ILP, though at a large computational expense. In this
case we are purely testing each algorithm’s ability to optimize the correlation
clustering objective function, as there is no true clustering structure to detect.
Figure 3 gives a visualization of the approximation ratio for ZonoCC (with
50,000 iterations), CGW, and 1000 instantiations of Pivot. We give represen-
tative runtimes for each method in Table 1. Although we expect this to be a
worst-case scenario for our algorithm, we notice that ZonoCC still outperforms
the other methods for very low-values of rank. For these experiments Pivot does
extremely well, which we expect is because there are essentially many clusterings
that acheive a good score. Just as before, even for relatively high values of rank,
ZonoCC is still able to find a clustering that is at least 85% of optimal.
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Figure 2: Results for ZonoCC (green), CGW (red), and Pivot (blue) on
synthetic datasets with a true underlying clustering structure. The left plot
gives each algorithm’s approximation to the score of the planted clustering
for d ranging from 2 to 20 and n = 10d. The right plot shows runtimes for
each method. For both plots we take the median over five trials. ZonoCC
outperforms other algorithms for all values of d up to 15. At this point CGW
finds a better clustering score, but does so at the expense of a much longer
runtime. Even for high values of rank, we note that ZonoCC achieves a score
that is 85% of the planted clustering.

In the third experiment, we wish to understand how ZonoCC compares with
Pivot as we scale the problems up in size, for a fixed rank d = 5. This setting
renders both the ILP and CGW methods infeasible, and so we show results only
for ZonoCC with 1000 iterations, and 2000 instantiations of Pivot in Figure 4.
These figures show us that ZonoCC always outperforms Pivot in objective,
with the ratio of objective scores slowly growing as the problem size increases.
We remark that the running time for each algorithm involves both generating
clusterings as well as checking the objective value for each clustering. For small
values of n, computing the objective scores becomes a more noticeable fraction
of the computation time. For this reason the runtime of ZonoCC is much faster
than Pivot for small n because we are checking half the number of clusterings.
As problem size increases, we see that both algorithms roughly scale linearly
in n.

In the final synthetic experiment, we study how the approximation changes
as the number of iterations of ZonoCC increases. The results in Figure 5 show
that the algorithm quickly attains a near-optimal solution, but moves closer to
optimality slowly, as it continues to explore more vertices of the zonotope. The
results displayed are for n = 3000 and d = 5, though this behavior is typical for
most instances.

5.2 Clustering Using Search Query Data
For our first real-world application we use ZonoCC to cluster top-tier computer
science conferences based on search query volume data. Each search term is
either a conference acronym (e.g., “ICML”), or is an acronym concatenated with
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and CGW (red) for synthetic datasets generated with no underlying clustering
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Figure 4: In the left we show the benefit of ZonoCC over Pivot in terms
of objective score on synthetic datasets of increasing size n and rank d = 5.
ZonoCC always has a higher objective value, and as problem size grows, so
does its performance over Pivot. On the right we plot corresponding runtimes.
ZonoCC is faster for problem sizes under n = 10000. For higher values, times
are comparable and scale roughly linearly in n.

“conference” (e.g., “WWW conference”). For each search term, we obtain from
Google Trends a time series of the volume of search queries for each month over
the course of a six-year period, 2010–16. This data appears to fluctuate for
repeated API calls, so before clustering we smooth out the data to capture the
overall trend in each time series (using exponential smoothing with parameter
α = 0.5). Second, we remove the trend across all time series by fitting a quadratic
polynomial to the mean volume. Finally, we ‘z-score’ normalize the time series.
We then calculate the correlation coefficient between each pair of conferences
using the processed data. This gives us a full-rank matrix of correlation values,
of which we take a low-rank approximation to feed to ZonoCC.

Using the rank-3 approximation gives us the optimal clustering (as determined
by the ILP). In this case, both Pivot and CGW also find the optimal solution.
We show the runtime and objective values in the upper part of Table 2. The
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Figure 5: Best objective value as a function of number of iterations of ZonoCC
for a synthetic dataset with n = 3000 and d = 5. ZonoCC quickly finds a
good-quality clustering, and slowly improves as we let the algorithm run longer.

Table 1: Median running time in seconds for Experiment 2, where we run
each correlation clustering method on a dataset with no underlying clustering
structure. We set n = 60 and test a range of values for the rank d.

d Exact ILP CGW ZonoCC Pivot

2 2 7 2 2
3 8 8 3 2
4 24 7 3 2
5 50 6 4 2
6 46 6 4 2
8 1060 7 7 2
10 1462 6 7 2

optimal clustering consists of three clusters: the two large clusters and an outlier
set of only one conference, the International Conference on Computer Graphics
Theory and Application.

It is interesting to observe the significance of the optimal clustering of this
dataset. In Figure 6 we plot for each cluster the smoothed search query data
for all of the conferences in the cluster. We observe that ZonoCC effectively
partitions the dataset into conferences that have increased in search query volume
over the course of the past six years, and those that have experienced an overall
decrease in search volume. We expect it to be unsurprising to our readers that
the WWW conference is in the “growing” cluster. We are unable to find any set
of three clusters from k-means that resembles the result of correlation clustering
for this problem, as k-means tends to generate three clusters of nearly equal
size.

We also run ZonoCC for 50,000 iterations on rank-d approximations of
the correlation clustering matrix, where d ranges from 2 to 15. As d increases,
ZonoCC tends to form more clusters, but is always able to identify two large
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Table 2: Objective scores and runtimes in seconds for correlation clustering
algorithms on two real-world datasets. Due to the size of the stocks dataset, we
can run only ZonoCC and Pivot on it.
Dataset ZonoCC Pivot CGW ILP

CS Conf. Obj. 7540.0 7540.0 7540.0 7540.0
n = 157 Time 7 1 1380 52

Stocks Obj. 5100.2 5099.5 — —
n = 497 Time 40 20 — —
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Figure 6: Smoothed search query data for top-tier computer science conferences.
The partition discovered by ZonoCC splits the conferences into those whose
search volume shows an overall decreasing trend (left), and an increasing trend
(right); WWW is in the increasing cluster. For each plot we show an average
of the clusters as a thick red line. There is also a third cluster with only one
outlier conference that is not shown here.

groups of conferences that are highly correlated. In terms of the correlation
clustering objective on the original (and not low-rank) matrix, ZonoCC decreases
in performance only because we must maintain a constant number of iterations for
the sake of runtime, while the number of zonotope vertices increases exponentially
in d. This behavior is illustrated in Figure 7: even though these are sub-optimal,
the clustering returned always has two large clusters and small groups of outliers.

5.3 Stock Market Data
The second study we consider is to cluster time series comprising stock market
closing prices on different days of the year. We obtain prices for 497 stocks from
the S&P 500 from Yahoo’s Finance API over the 253 trading days in a year.
We use the correlation between these time series to generate the input to our
correlation clustering experiment. In this case we are unable to run the ILP to
certify the clustering as optimal, and are unable to run the CGW algorithm due
to insufficient memory. Thus, we just compare ZonoCC against Pivot: the
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Figure 7: The left plot shows the objective scores achieved by ZonoCC for CS
conference search query data as we increase rank. The dotted line shows the
score of the optimal clustering, which ZonoCC remains very close to, regardless
of rank. The right plot shows the accuracy of the rank-d clustering, which is
computed by considering all

(
n
2

)
pairs in the clustering, and finding the fraction

of those pairs for which the decision to cluster together or cluster apart agrees
with the optimal clustering of the dataset. In all cases, the accuracy of ZonoCC
is above 90%.

resulting clusterings are very close, but ZonoCC finds the better clustering (see
the lower part of Table 2 for the objectives and runtimes).

Similarly to our previous experiment, we discover that there are two large
groups of closely correlated stocks and a third cluster with an outlier stock. The
outlier is “Public Storage” (PSA), whose stock prices are largely uncorrelated
with all other companies. For comparison, running k-means with 3 clusters
always splits up many of the closely correlated companies.

5.4 Clustering Networks via Embeddings
We can use ZonoCC to cluster any dataset where each entry is represented
by a vector in a low-dimensional vector space. This means that our algorithm
can be used to cluster unsigned network data as long as we have a way to
embed the nodes of the network in a low-dimensional space. Such embeddings
have been an active area of research recently [12, 24]. We demonstrate how to
combine ZonoCC with two different graph embedding techniques to produce
large clusterings to analyze several networks from the Facebook 100 datasets [27].

The purpose of these experiments is not to demonstrate that ZonoCC
achieves a superior clustering result given the metadata. (Indeed, there is no
one algorithm that can achieve this [23].) Rather we wish to compare ZonoCC
and k-means – in terms of how their clusters reflect the metadata – on low-
quality embeddings from the eigenvectors of the Laplacian and on a high-quality
embedding from node2vec [12].

Datasets. The datasets we use are subsets of the Facebook graph at certain
US universities on a certain day in 2005. These include an undirected graph and
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anonymized metadata regarding each person’s student-or-faculty status, gender,
major, dorm/residence, and graduation year. We run our experiments on the
following networks of different sizes: Reed, Caltech, Swarthmore, Simmons, and
Johns Hopkins. We aim to cluster this data based on friendship links in the
graph – reflected in the embeddings – and in the process see how the clusterings
might be related to different attributes.

Embeddings. We consider two different ways to embed each node into a
low-dimensional space based on the edge structure of the graph. The first is to
take a subset of the eigenvectors of the normalized Laplacian of the network:
L = I −D−1/2AD−1/2 where D is the diagonal matrix of node degrees and I is
the identity matrix. If we take the d eigenvectors corresponding to the smallest
nonzero eigenvalues of L, this gives an embedding in Rd.

The second embedding we consider comes from an algorithmic framework
developed by Grover and Leskovec [12] called node2vec for mapping nodes in a
network to a low-dimensional feature space for representational learning. The
points of the embedding lie in Rd for a user-specified d.

Results. For each of the networks studied, we obtain two embeddings into
R3, one from the normalized Laplacian and the other using node2vec. For each
embedding, we center the data by subtracting the mean point. This gives us a
set of n vectors with both positive and negative entries. We then run ZonoCC
on each embedding, and compare against running k-means for the same number
of clusters as the output from ZonoCC.

We analyze our clusterings by observing how the clusters relate to four of
the meta-data attributes: student-or-faculty status, major, dorm/residence, and
graduation year. The metric we use is the proportion of pairs of people in the
same cluster that share a given metadata attribute. Equivalently, we can think
of this as the probability that two people selected uniformly at random from the
same cluster share the attribute. We can also compute this metric for the entire
network to get a baseline score. The results for this experiment are given in
Table 3, where the “None” method places all nodes into a single cluster (which
is the baseline probability). Note that the only meaningful column across the
networks is the Year attribute. In addition, Caltech, which is a small school with
a strong residential population, shows a similar effect for the dorm attribute.
Thus, we focus our attention on the Year attribute.

The table shows that for node2vec embeddings, k-means always gives a
higher proportion than ZonoCC except for Caltech and Johns Hopkins, where
they are effectively the same. In contrast, for the embeddings from the Laplacian,
the ZonoCC always shows stronger alignment with the year attribute. At the
very least, this is a demonstration that ZonoCC and k-means can alternate
in performance on any given clustering task. However, we suspect that this is
evidence that ZonoCC is likely to be better in cases with weak features (such
as the Laplacian).
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Table 3: Proportion of pairs of people in the same cluster that share the given
attribute. All networks display a strong connection between the clusterings
and the graduation year. ZonoCC is better at detecting this trend on the
low-quality Laplacian embedding, whereas k-means performs better on the more
sophisticated node2vec embedding.
Network Emb. Method Stud. or Fac. Major Dorm Year

Reed — None 0.725 0.037 0.015 0.137

n = 962 N2V ZonoCC 0.698 0.039 0.018 0.278
k-means 0.756 0.039 0.020 0.325

Lap ZonoCC 0.744 0.038 0.018 0.298
k-means 0.745 0.038 0.018 0.290

Caltech — None 0.564 0.063 0.078 0.142

n = 769 N2V ZonoCC 0.576 0.064 0.160 0.151
k-means 0.566 0.065 0.127 0.145

Lap ZonoCC 0.601 0.065 0.087 0.166
k-means 0.578 0.064 0.080 0.146

Swarthmore — None 0.628 0.045 0.049 0.146

n = 1659 N2V ZonoCC 0.620 0.048 0.055 0.262
k-means 0.627 0.049 0.051 0.265

Lap ZonoCC 0.599 0.047 0.042 0.205
k-means 0.599 0.046 0.042 0.197

Simmons — None 0.753 0.043 0.045 0.161

n = 1518 N2V ZonoCC 0.716 0.043 0.064 0.378
k-means 0.717 0.043 0.065 0.379

Lap ZonoCC 0.763 0.044 0.047 0.167
k-means 0.761 0.044 0.045 0.162

Johns Hop. — None 0.618 0.036 0.020 0.134

n = 5180 N2V ZonoCC 0.612 0.041 0.025 0.213
k-means 0.592 0.041 0.024 0.203

Lap ZonoCC 0.632 0.046 0.026 0.229
k-means 0.608 0.042 0.023 0.187

6 Related Work
Our work builds on several years of research in correlation clustering. The
problem was originally introduced for complete and unweighted graphs by
Bansal, Blum, and Chawla [5], who proved NP-hardness and gave a PTAS for
maximizing agreements and a constant factor approximation for minimizing
disagreements. Charikar, Guruswami, and Wirth [7] later extended these results
by improving the constant factor approximation for minimizing disagreements,
and gave a 0.7664-approximation for maximizing agreements in general weighted
graphs based on a semidefinite programming relaxation. The approximation for
minimizing disagreements in unweighted graphs was improved to 2.5 by Ailon,
Charikar, and Newman [1], who at the same time developed the simplified Pivot
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algorithm. Recently Asteris et al. [3] gave a PTAS for maximizing agreements on
unweighted bipartite graphs by obtaining a low-rank approximation of the graph’s
biadjacency matrix. Our work extends these results by showing how low-rank
structure can also be exploited for general weighted correlation clustering.

Beyond the correlation clustering literature, our work shares similarities with
other results on NP-hard problems that become solvable in polynomial time
for low-rank positive semidefinite input. Ferrez, Fukuda, and Liebling gave a
polynomial time solution for maximizing a quadratic program in {0, 1} variables
on low-rank positive semidefinite matrices [10], and Markopoulos, Karystinos,
and Pados proved an analogous result for the ±1 binary case [17]. While these
results seek to optimally partition a set of vectors into two clusters, our work
can be seen as a generalization to arbitrarily many clusters.

Our approach in solving low-rank correlation clustering shares many similari-
ties as well with the spannogram framework for exactly solving combinatorially
constrained quadratic optimization problems on low-rank input [14, 4, 21]. In par-
ticular, for the NP-hard densest subgraph problem, Papailiopoulos et al. used this
framework to prove that a low-rank bilinear relaxation of the densest subgraph
problem is solvable in polynomial time for low-rank input [22].

7 Conclusions
Our results introduce a new approach to solving general weighted correlation
clustering problems by considering the rank and structure of the underlying
matrix associated with the problem. This opens a number of new directions
in correlation clustering-based approaches. The algorithm we present offers
a fast and accurate method for solving correlation clustering problems where
the input can be represented or at least well approximated by a low-rank
positive semidefinite matrix. We demonstrate a number of applications including
clustering time series data from search queries relating to top-tier computer
science conferences and stock closing prices. We also demonstrate how this
method can be used with embeddings of network data into low-dimensional
spaces.

In future work we wish to prove more rigorous theoretical approximation
results for our methods. Specifically, we would like to give an approximation
bound for k iterations of ZonoCC, and also give rigorous bounds on the
correlation clustering objective when taking a low-rank approximation.
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