
ar
X

iv
:1

60
7.

00
43

1v
1

 [
cs

.L
O

]
 1

 J
ul

 2
01

6

A

Uniqueness of Normal Forms for Shallow Term Rewrite Systems

NICHOLAS R. RADCLIFFE, LUIS F. T. MORAES, AND RAKESH M. VERMA, University of

Houston

Uniqueness of normal forms (UN
=) is an important property of term rewrite systems. UN

= is decidable for
ground (i.e., variable-free) systems and undecidable in general. Recently it was shown to be decidable for lin-
ear, shallow systems. We generalize this previous result and show that this property is decidable for shallow
rewrite systems, in contrast to confluence, reachability and other properties, which are all undecidable for
flat systems. Our result is also optimal in some sense, since we prove that the UN

= property is undecidable
for two classes of linear rewrite systems: left-flat systems in which right-hand sides are of depth at most two
and right-flat systems in which left-hand sides are of depth at most two.

CCS Concepts: •Theory of computation → Equational logic and rewriting; Computability;

Additional Key Words and Phrases: term rewrite systems, uniqueness of normal forms, decidabil-
ity/undecidability, shallow rewrite systems, flat rewrite systems

ACM Reference Format:

Nicholas Radcliffe, Luis F. T. Moraes, and Rakesh Verma, 20xx. Decidability of Unicity for Shallow Term
Rewrite Systems. ACM Trans. Comput. Logic V, N, Article A (January YYYY), 17 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Term rewrite systems (TRSs), finite sets of rules, are useful in many computer science
fields including theorem proving, rule-based programming, and symbolic computation.
An important property of TRSs is confluence (also known as the Church-Rosser prop-
erty), which implies unicity or uniqueness of normal forms (UN=). Normal forms are
expressions to which no rule is applicable. A TRS has the UN= property if there are
not distinct normal forms n, m such that n

∗
←→R m, where

∗
←→R is the symmetric closure

of the rewrite relation induced by the TRS R. There is a related property called UN→,
which is defined as: no term should have more than one normal form, i.e., if m and n
are two normal forms reachable from the same term (

∗
←− ◦ ∗−→), then R does not have the

UN→ property. This property is known to be undecidable for flat systems and also flat
and right-linear systems [Godoy and Jacquemard 2009].

Uniqueness of normal forms is an interesting property in itself and well-studied
[Terese 2003]. Confluence can be too strong a requirement for some applications such
as lazy programming. Additionally, in the proof-by-consistency approach for inductive
theorem proving, consistency is often ensured by requiring the UN= property.

We study the decidability of uniqueness of normal forms. Uniqueness of normal
forms is decidable for ground systems [Verma et al. 2001], but is undecidable in gen-
eral [Verma et al. 2001]. Since the property is undecidable in general, we would like
to know for which classes of rewrite systems, beyond ground systems, we can decide
UN=. In [Zinn and Verma 2006; Zinn 2006] a polynomial time algorithm for this prop-
erty was given for linear, shallow rewrite systems. A rewrite system is linear if vari-

A preliminary version of this paper appeared in IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2010).
Author’s addresses: Luis F. T. Moraes and Rakesh Verma, Computer Science Department, University of
Houston.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© YYYY Copyright held by the owner/author(s). 1529-3785/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

http://arxiv.org/abs/1607.00431v1

A:2 Nicholas Radcliffe et al.

ables occur at most once in each side of any rule. It is shallow if variables occur only
at depth zero or depth one in each side of any rule. It is flat if both the left- and right-
hand sides of all the rules have height zero or one. An example of a linear flat (in fact,
ground) system that has UN= but not confluence is {f(c)→ 1, c→ g(c)}. More sophisti-
cated examples can be constructed using a sequential ‘or’ function in which the second
argument gives rise to a nonterminating computation.

In this paper, we consider the class of shallow systems, i.e., we drop the linearity
restriction of [Zinn and Verma 2006], and a subset of this class, the flat systems. For
flat systems many properties are known to be undecidable including confluence, reach-
ability, joinability, and existence of normal forms [Mitsuhashi et al. 2006; Verma 2008;
Godoy and Hernández 2009]. On the other hand, the word problem is known to be de-
cidable for shallow systems [Comon et al. 1994]. This paper shows that the uniqueness
of normal forms problem is decidable for the class of shallow term rewrite systems,
which is a significant generalization of [Zinn and Verma 2006] and also somewhat sur-
prising since so many properties are undecidable for this class of systems. We also
prove the undecidability of UN= for two subclasses of linear systems: left-hand sides
are flat and right-hand sides are of depth at most two and conversely right-flat and
depth two left-hand sides, which improves the undecidability result of [Verma 2008]
for the linear, depth-two subclass and shows that our result is optimal as far as linear-
ity and depth restrictions are involved.

We would like to clarify the relationship between UN→ (see [Terese 2003] for a def-
inition) and UN=. It is well known in rewriting that UN= implies UN→ but not the
other way around. For a simple example, well-known since [Klop 1980; Klop 1992],
consider a→ b, a→ c, c→ c, d→ c, and d→ e. This example has UN→ since c is not a
normal form but does not have UN= since normal forms b and e satisfy b =R e, so UN→

does not imply UN=. However, just because property A implies property B it does not
automatically follow that if A is decidable for a class of inputs, then B is also decidable
for the same class of inputs. For this we need the concept of a reduction and in fact the
second author has shown [Verma 2009] that for variable-preserving rewrite systems
UN= reduces to UN→.

Comparison with related work. Viewed at a very high level, the proof of decidability
shows some flavor in common with that of some other decidability proofs of properties
of rewrite systems such as [Godoy et al. 2003]. The basic insight is that, just as in
algebra the terms that reduce to 0 are crucial in a sense, so in rewriting are the terms
that reduce to (or are equivalent to) constants. We see a parallel between constants,
which are height 0 terms in rewriting with the expression 0 in algebra. Of course, this
observation is about as helpful in proofs of decidability as a compass is to someone lost
in a maze. The details in both scenarios are vital and there are many twists and turns.
The proof of undecidability shows some similarity with proofs in [Verma et al. 2001;
Godoy and Tison 2007].

The structure of our decidability proof is as follows: in [Zinn and Verma 2006;
Zinn 2006] it was shown that UN= for shallow systems can be reduced to UN= for
flat systems, (ii) checking UN= for flat systems can be reduced to searching for equa-
tional proofs between terms drawn from a finite set of terms, and (iii) existence of
equational proofs between terms in part (ii) is done thanks to the decidability of the
word problem by Comon et al. [Comon et al. 1994].

Our strategy for part (ii) above, assuming a flat TRS, R, is to show that a sufficiently
small witness to non-UN= for R exists if, and only if, any witness at all exists. To see
this, say 〈M,N〉 is a minimal witness to non-UN= (in that the sum of the sizes of M
and N is minimal). We show that we can replace certain subterms of M and N that
are not equivalent to constants with variables, obtaining a witness 〈M ′, N ′〉. If the
heights of M ′ and N ′ are both strictly less than max(1, C), where C is the number of

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Uniqueness of Normal Forms for Shallow Term Rewrite Systems A:3

constants in our rewrite system, then 〈M ′, N ′〉 is sufficiently small. Otherwise, M ′ or
N ′ must have a big subterm (i.e. a subterm whose height is greater than, or equal to,
the number of constants), and this subterm is equivalent to a constant. However, in
this case (when there is a constant that is equivalent to a big subterm of a component
of a minimal witness), we can show that there is a small witness to non-UN=. So, in
all cases, we end up with a small witness.

This paper improves our previous work in [Radcliffe and Verma 2010] by strength-
ening the undecidability proof. In particular, the previous proofs work only for either
left-nonlinear or right-nonlinear systems, whereas here the reductions give linear sys-
tems of the appropriate type.

1.1. Definitions

Terms. A signature is a set F along with a function arity: F → N. Members of F
are called function symbols, and arity(f) is called the arity of the function symbol f .
Function symbols of arity zero are called constants. Let X be a countable set disjoint
from F that we shall call the set of variables. The set T (F , X) of F -terms over X is
defined to be the smallest set that contains X and has the property that f(t1, . . . , tn) ∈
T (F , X) whenever f ∈ F , n = arity(f), and t1, . . . , tn ∈ T (F , X). The set of function
symbols with arity n is denoted by Fn; in particular, the set of constants is denoted by
F0. We use root(t) to refer to the outermost function symbol of t.

The size, |t|, of a term t is the number of occurrences of constants, variables and
function symbols in t. So, |t| = 1 if t is a constant or a variable, and |t| = 1 + Σn

i=1|ti|
if t = f(t1, . . . , tn) for n > 0. The height of a term t is 0 if t is a constant or a variable,
and 1+max{height(t1), . . . , height(tn)} if t = f(t1, . . . , tn). If a term t has height zero or
one, then it is called flat. A position of a term t is a sequence of natural numbers that
is used to identify the locations of subterms of t. The subterm of t = f(t0, . . . , tn−1) at
position p, denoted t|p, is defined recursively: t|λ = t, t|k = tk, for 0 ≤ k ≤ n − 1, and
t|k.p = (t|k)|p. If t = f(t0, . . . , tn−1), then we call t0, . . . , tn−1 the depth-1 subterms of t. If
all variables appearing in t are either t itself or depth-1 subterms of t, then we say that
t is shallow. The notation g[a] focuses on (any) one occurrence of subterm a of term g,
and s{u 7→ v} denotes the term obtained from term s by replacing all occurrences of
the subterm u in s by term v.

A substitution is a mapping σ : X → T (F , X) that is the identity on all but
finitely many elements of X . Substitutions are generally extended to a homomor-
phism on T (F , X) in the following way: if t = f(t1, . . . , tk), then (abusing notation)
σ(t) = f(σ(t1), . . . , σ(tk)). Oftentimes, the application of a substitution to a term is
written in postfix notation. A unifier of two terms s and t is a substitution σ (if it ex-
ists) such that sσ = tσ. We assume familiarity with the concept of most general unifier
[Terese 2003], which is unique up to variable renaming and denoted by mgu.
Term Rewrite Systems. A rewrite rule is a pair of terms, (l, r), usually written l→ r.
For the rule l → r, the left-hand side is l /∈ X , and the right-hand side is r. Notice
that l cannot be a variable. A rule, l → r, can be applied to a term, t, if there exists a
substitution, σ, such that lσ = t′, where t′ is a subterm of t; in this case, t is rewritten
by replacing the subterm t′ = lσ with rσ. The process of replacing the subterm lσ with
rσ is called a rewrite. A root rewrite is a rewrite where t′ = t. A rule l → r is flat (resp.
shallow) if both l and r are flat (resp. shallow). The rule l → r is collapsing if r is a
variable. A term rewrite system (or TRS) is a pair, (T , R), where R is a finite set of
rules and T is the set of terms over some signature. A TRS, R, is flat (resp. shallow) if

all of the rules in R are flat (resp. shallow). If we think of→ as a relation, then
+
−→ and

∗
−→ denote its transitive closure, and reflexive and transitive closure, respectively. Also,

↔,
+
←→, and

∗
←→ denote the symmetric closure, symmetric and transitive closure, and

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Nicholas Radcliffe et al.

symmetric, transitive, and reflexive closure, respectively. We put an ‘r’ over arrows to
denote a root rewrite, i.e.,

r
←→.

A derivation is a sequence of terms, t1, . . . , tn, such that ti → ti+1 for i = 1, . . . , n− 1;
this sequence is often denoted by t1 → t2 → . . . → tn. A proof is a sequence, t1, . . . , tn,
such that ti ↔ ti+1 for i = 1, . . . , n− 1; this sequence is generally denoted by t1 ↔ t2 ↔
. . . ↔ tn. If R is a rewrite system, then a proof is over R if it can be constructed using
rules in R. If π is a proof, we say that π ∈ s

∗
←→t if π is of the form s ↔ . . . ↔ t (it is

possible for the proof sequence to consist of a single term, in which case s = t), s). We

say that π ∈ s
+
←→t if π ∈ s

∗
←→t and the proof sequence contains at least one step. We write

s
∗
←→t (resp. s

+
←→t) to denote that there is a proof, π, with π ∈ s

∗
←→t (resp. π ∈ s

+
←→t).

A normal form is a term, t ∈ T (F , X), such that no subterm of t can be rewritten. A
term that is not a normal form, i.e., one with a subterm that can be rewritten, is called
reducible. We denote the set of all normal forms for R by NFR, or simply NF . A rewrite
system R is UN= if it is not the case that R has two distinct normal forms, M and N ,
such that M

∗
←→N . If such a pair exists, then we say that the pair, 〈M,N〉, is a witness

to non-UN=. The size of a witness, denoted |〈M,N〉|, is |M |+ |N |. A minimal witness is
a witness with minimal size. Finally, we define SubMinWitR to be set of all terms M ′

such that 〈M,N〉 is a minimal witness, and M ′ is a subterm of M .

2. PRELIMINARY RESULTS

We begin with a few simple results on when rules apply. They are used throughout
the paper to show that normal forms are preserved under certain transformations.
Before we begin, notice that it is relatively simpler to preserve normal forms when
the relevant TRS is linear. For instance, imagine any flat and linear TRS such that
f(g(a), h(b)) is a normal form. Since g(a) is evidently a normal form, f(g(a), g(a)) would
also be a normal form, when the TRS is linear. If the TRS is not linear, then there could
be a rule of the form f(x, x) → t, making f(g(a), g(a)) reducible. The results below
handle such complications presented by non-linear rules.

DEFINITION 2.1.
Let R be a rewrite system, and let l → r = ρ ∈ R be a rule. The pattern of ρ, denoted

Patt(ρ), is a set of equations {i = j | l|i = l|j, l|i, l|j ∈ X}.

DEFINITION 2.2. Let t ∈ T (F , X) be a term with root(l) = root(t). If A =
{i1, i2, . . . , ik} is the set of positions that appear in equations in Patt(ρ), then the pattern
of t with respect to ρ, denoted Pattρ(t), is the set {ia = ib | t|ia = t|ib , ia, ib ∈ A}.

Note that Pattρ(t) is undefined if root(l) 6= root(t).

LEMMA 2.3.
Let R be a flat TRS. Let t ∈ T (F , X) be a term, and let l → r = ρ ∈ R be a rule. Then

ρ can be applied to t at λ if, and only if, (i) l|i = t|i whenever l|i is a constant, and (ii)
Pattρ(t) is defined and Patt(ρ) ⊆ Pattρ(t).

PROOF. Assume that (i) and (ii) are satisfied. Since (i) is satisfied and Pattρ(t) is
defined, all we have to show is that there exists a substitution, σ, such that l|iσ = t|i
whenever l|i is a variable. We would like to define xσ = t|i whenever l|i = x, but if
l|i = l|j = x, then t|i = l|iσ = l|jσ = t|j , and hence it needs to be the case that i = j ∈
Pattρ(t). But if i = j ∈ Patt(ρ) and (ii) is satisfied, then we know that i = j ∈ Pattρ(t).
So, we can consistently define σ as above. Clearly, lσ = t, and thus ρ can be applied to
t at λ.

Now assume that there exists a substitution, σ, with lσ = t. Obviously, Pattρ(t) is
defined and l|i = t|i whenever l|i is a constant, and so we need to show that Patt(ρ) ⊆

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Uniqueness of Normal Forms for Shallow Term Rewrite Systems A:5

Pattρ(t). Say i = j ∈ Patt(ρ). Then l|i = l|j , and hence t|i = l|iσ = l|jσ = t|j . Therefore,
i = j ∈ Pattρ(t), and Patt(ρ) ⊆ Pattρ(t).

Consider the term f(a, x, x, g(b)). Let’s assume that it is a normal form. We want to
know if altering depth-1 subterms can make the term reducible. Clearly, replacing x
with a constant could potentially make the term reducible, depending on the rules in
the rule set. But what about replacing any of the depth-1 subterms with a normal form
containing a fresh variable? Notice that such a replacement could not make condition
(i) of the above lemma true if it had been false. But what if condition (i) is true and
condition (ii) is false? Could replacing a depth-1 subterm, or even several depth-1 sub-
terms, with terms containing fresh variables make condition (ii) true? This question is
answered by the following proposition.

PROPOSITION 2.4.
Let R be a flat TRS, and let M = f(s1, . . . , sm) be a normal form for R. Let S =
{ti1 , . . . , tin} be a set of normal forms, where n ≤ m and each term contains at least
one fresh variable (relative to M). Further, say that tij 6= tik whenever sij 6= sik for all
ij, ik ∈ {i1, . . . , in}. If M ′ is what one obtains from M by replacing each sij with tij , then
M ′ ∈ NFR.

PROOF. We say that M ′ = f(s′1, . . . , s
′
m), where s′q =

{
tq if q ∈ {i1, . . . , in}
sq otherwise

. By

Lemma 2.3 and the above observations, we simply need to demonstrate, for an arbi-
trary rule ρ ∈ R, that if Patt(ρ) 6⊆ Pattρ(M), then Patt(ρ) 6⊆ Pattρ(M

′) (i.e. if ρ cannot
be applied to M , then it cannot be applied to M ′, making M ′ a normal form).

So, assume that Patt(ρ) 6⊆ Pattρ(M). We need to show that s′j 6= s′k whenever sj 6= sk.
We consider three cases: (i) s′j , s

′
k /∈ S, (ii) s′j ∈ S, s′k /∈ S, and (iii) s′j , s

′
k ∈ S. In case

(i), sj = s′j and sk = s′k, so clearly s′j 6= s′k whenever sj 6= sk. In case (ii), s′j contains
a fresh variable, whereas s′k = sk does not, so s′j 6= s′k. Hence, it is (vacuously) the
case that s′j 6= s′k whenever sj 6= sk. Since case (iii) is an hypothesis, we see that,
in all cases, s′j 6= s′k whenever sj 6= sk, and hence Pattρ(M

′) ⊆ Pattρ(M). Therefore,
Patt(ρ) 6⊆ Pattρ(M

′), and M ′ ∈ NFR.

LEMMA 2.5.
If R is any TRS such that f(t1, . . . , tm) ∈ SubMinWitR, then ti

∗
←→Rtj is impossible for

ti 6= tj . This is equivalent to saying that there is no term s that is equivalent to both ti
and tj via R.

PROOF. Let 〈M,N〉 be a minimal witness to non-UN= for R, and say that
f(t1, . . . , tm) is a subterm of N . Assume that the lemma is false, i.e., there is a
term, s, such that s

∗
←→Rti and s

∗
←→Rtj with ti 6= tj . Then we would have ti

∗
←→tj . Since

|ti| + |tj | < |f(t1, . . . , tm)| < |M | + |N |, we see that 〈ti, tj〉 violates the minimality of
〈M,N〉, and hence the lemma must be true.

2.1. Normal Forms Equivalent to Constants

Let E be a finite set of equations. Following the authors of [Comon et al. 1994], we

extend E to Ê by closing under the following inference rules:

(1)
g = d, l = r

dσ = rσ
if l, g /∈ X and σ = mgu(l, g)

(2)
x = d, y = r

d = r{y 7→ x}
if y ∈ X and x ∈ F0 ∪X

(3)
g[a] = d, a = b

g[b] = d
if a, b ∈ F0

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Nicholas Radcliffe et al.

Notice that if E is flat, then Ê is flat, as well.
We can think of a rewrite system as a set of equations: if s → t is a rule in R, then

s ↔ t is its corresponding equation. We write ER for the set of equations obtained in
this way from a rewrite system R. Clearly, if s and t are terms in T (F , X), then they
are R-equivalent if and only if they are ER equivalent. Also, from [Comon et al. 1994]

we know that terms are ER equivalent if, and only if, they are ÊR-equivalent. In
[Comon et al. 1994], the authors show that, if R is a shallow TRS and s, t ∈ T (F , X),
then there is a procedure that produces, for any proof, π ∈ s

∗
←→R t, over R, a new proof,

which is denoted by π1rr ∈ s
∗
←→

ÊR
t, over ÊR, such that there is at most one root rewrite

step in π1rr.
Consider the following example: R = {f(x, x) → c, f(x, x) → g(a, x), g(a, x) →

g(a, x), a → h(b), b → h(c)}. It is easy to check that ÊR = ER ∪ {c ↔ g(a, x)}. We

use ÊR to search for a minimal witness to non-UN= for R; in particular, we will use
the fact that for every proof s

∗
←→Rt, there is a proof s

∗
←→

ÊR
t with at most one root rewrite.

Clearly, c is an R-normal form, so if we are looking for a minimal witness to non-
UN= for R, 〈c, ?〉 might be a good first guess. We know that c ↔

ÊR
f(x, x), so maybe

〈c, f(u, v)〉 is a minimal witness, for some normal forms u and v. This is not possible.
First, notice that f(x, x) appears on the LHS of a rule, so f(t, t) cannot be a normal
form, for arbitrary term t. Second, notice that if f(t, t) is equivalent to another normal
form, then we can assume it is of the form f(u, v), because we have already “used up”
our only root rewrite by using c↔

ÊR
f(x, x). So, maybe we can plug some term, t, into

x, and then rewrite one instance of it to a normal form u, and another instance of it
to a normal form v, obtaining a minimal witness of the form 〈c, f(u, v)〉? This cannot
be the case, because if 〈c, f(u, v)〉 is a minimal witness, then (by Lemma 2.5 and the
fact that u

∗
←→v) 〈u, v〉 would violate the minimality of 〈c, f(u, v)〉. So, we should consider

c ↔
ÊR

g(a, x) as the (one and only) rewrite step in our proof. We know that a is not

a normal form, and must, therefore, be rewritten to one - h(h(c)). But what about x?
Should we plug anything into it? Say we were to plug t into x, and then rewrite t to
some normal form, u. This would be unnecessary, because non-linearity is not an issue
here, and so we can leave x as it is. So, 〈c, g(h(h(c)), x)〉 is a minimal witness, and the
relevant proof looks like: c↔

ÊR
g(a, x)↔

ÊR
g(h(b), x)↔

ÊR
g(h(h(c)), x).

Now, here is the interesting part. Notice that we have four R-normal forms equiv-
alent to constants, but only three constants in R, i.e, c

∗
←→

ÊR
c, h(c)

∗
←→

ÊR
b, h(h(c))

∗
←→

ÊR
a,

and g(h(h(c)), x)
∗
←→

ÊR
c. From the Pigeonhole Principle, we can conclude that there must

be some constant in R that is equivalent to two distinct normal forms (of course, we
already knew this, but in general this technique will be useful). We generalize the
lessons learned from this example in the following results.

LEMMA 2.6. Let R be a flat TRS. Let 〈M0,M1〉 be a minimal witness to non-UN=

for R, and say M = f(t1, . . . , tm) is a subterm of M0. Let c be a constant, and let
c

r
←→

ÊR
f(s1, . . . , sm)

∗
←→

ÊR
f(t1, . . . , tm) = M be a proof with a single root rewrite. If si is

not a constant, then height(ti) = 0.

PROOF. Let Sconst be the set of positive integers, i, such that si ∈ F0. If none of the
si’s is a variable, then there is nothing to show; so, assume at least one of the si’s is a
variable. Now, let

s′j =

{
sj if j ∈ Sconst

xsj otherwise
and t′j =

{
tj if j ∈ Sconst

xsj otherwise

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Uniqueness of Normal Forms for Shallow Term Rewrite Systems A:7

where xsj is a fresh variable not appearing in M0 or M1, and xsi = xsj if and only if

si = sj . We show that (i) f(s′1, . . . , s
′
m)
∗
←→

ÊR
f(t′1, . . . , t

′
m), (ii) f(t′1, . . . , t

′
m) ∈ NFR, and

(iii) for i /∈ Sconst, height(ti) = 0.
Part (i). If j /∈ Sconst, then s′j = t′j = xsj . So, say j ∈ Sconst. In this case, s′j =

sj
∗
←→

ÊR
tj = t′j . So, f(s′1, . . . , s

′
m)
∗
←→

ÊR
f(t′1, . . . , t

′
m). Part (ii). Let j, j′ /∈ Sconst, and say

tj 6= tj′ . In order to apply Proposition 2.4, we need to show that t′j 6= t′j′ . From Lemma

2.5, we know that tj
∗
←→

ÊR
sj 6= sj′

∗
←→

ÊR
tj′ , and hence t′j = xsj 6= xsj′

= t′j′ . Therefore,

we can apply Proposition 2.4 to obtain that f(t′1, . . . , t
′
m) ∈ NFR. Part (iii). Notice that,

by (i) and f(s′1, . . . , s
′
m)
∗
←→

ÊR
c , we have f(t1, . . . , tm)

∗
←→

ÊR
c
∗
←→

ÊR
f(t′1, . . . , t

′
m) = N . Also,

since N contains at least one fresh variable not appearing in M0 or M1, we know that
M 6= N and C[N] 6= M0 or M1, where C[] is a context and M0 = C[M]. Hence 〈C[N],M1〉
is a witness to non-UN=, with |C[N]| ≤ |M0|. But 〈M0,M1〉 is a minimal witness, so
|C[N]| = |C[M]| and |N | = |M |. Since |t′i| = 1 for all i /∈ Sconst, it must be the case that
|ti| = 1. Thus, we have that height(ti) = height(t′i) = 0 for all i /∈ Sconst.

COROLLARY 2.7. Under the same assumptions as Lemma 2.6 plus the assumption
that at least one of the si’s is a constant, there is a j such that sj ∈ F0 and height(tj) =
height(f(t1, . . . , tm))− 1 with 1 ≤ j ≤ m.

PROOF. Since height(ti) = 0 whenever si /∈ F0, we know that height(ti) ≤ height(tj)
whenever si /∈ F0 and sj ∈ F0. So, amongst the direct subterms of f(t1, . . . , tm) with
maximal height, there must be one, tj , such that sj ∈ F0.

PROPOSITION 2.8. Let R be a flat TRS, and let c ∈ F0. Let 〈M,N〉 be a minimal
witness, and let N ′ be a subterm of N such that height(N ′) = k. Further, let π ∈ c

∗
←→N ′

be a proof over R. Then we can find either (i) 1 + k distinct normal forms equivalent
to constants, the normal forms having heights 0, 1, . . . , k, or (ii) a witness, 〈N0, N1〉, to
non-UN=, such that N0 and N1 are flat.

PROOF. We proceed by induction on height(N ′). For the base case we assume that
height(N ′) = 0. If the proof is trivial, i.e., if c = N ′, then we have 1 = 1 + height(N ′)
normal form (with height zero) equivalent to a constant. So, assume that π has at
least one step.

We know that there is a proof, π1rr ∈ c
+
←→

ÊR
N ′, such that there is only one root

rewrite step in π1rr. Since the first step in π1rr is necessarily a root rewrite, π1rr must
have the form c

r
←→wσ = N ′, where the rule applied is c→ w or w→ c, and height(w) = 0

(notice that if c
r
←→u

∗
←→N ′ for some term u with height(u) > 0, then we would need a

second root rewrite to get back to N ′). If w ∈ X , then x↔ c↔ y, where x, y are distinct
variables. Therefore, 〈x, y〉 is a witness to non-UN= with x and y flat. If w ∈ F0, then we
have found 1 = 1+height(N ′) normal form (with height zero) equivalent to a constant.

For the inductive step, assume that height(N ′) > 0, and that the proposition holds
for any height strictly less than height(N ′). Now, π1rr has the form

c
r
←→

ÊR
f(t1, . . . , tm)

∗
←→

ÊR
f(u1, . . . , um) = N ′

and ti
∗
←→

ÊR
ui for 1 ≤ i ≤ m. We have two cases: (i) there is an i such that ti ∈ F0,

and (ii) there is no such i. For (i), by Corollary 2.7, there exists an i such that ti is a
constant and height(ui) = k − 1. So, we can apply the inductive hypothesis to conclude
that we have either (i) 1+(1+(height(N ′)−1)) = 1+height(N ′) distinct normal forms,
with heights 0, 1, . . . , height(N ′), equivalent to constants (the first height(N ′)−1 normal
forms come from the inductive hypothesis, and the final normal form is N ′ itself, which
is equivalent to c), or (ii) a witness, 〈N0, N1〉, to non-UN=, such that N0 and N1 are flat.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Nicholas Radcliffe et al.

In case (ii), if c↔
ÊR

f(s1, . . . , sm) is the rule used for c↔
ÊR

f(t1, . . . , tm), then si is a

variable for 1 ≤ i ≤ m. We need to show that f(s1, . . . , sm) ∈ NFR. From Lemma 2.5, we
know that ti 6= tj whenever ui 6= uj for 1 ≤ i, j ≤ m. Since ti 6= tj implies that si 6= sj,
we see that si 6= sj whenever ui 6= uj. We can assume that the variables s1, . . . , sm
are fresh relative to f(u1, . . . , um), and so we can replace ui with si in f(u1, . . . , um),
obtaining f(s1, . . . , sm) ∈ NFR by Proposition 2.4. Since f(s1, . . . , sm) is a normal form,
we can replace the variables appearing in f(s1, . . . , sm) with fresh variables to produce
a new normal form, f(s′1, . . . , s

′
m), such that f(s1, . . . , sm)↔

ÊR
c↔

ÊR
f(s′1, . . . , s

′
m). So,

〈f(s1, . . . , sm), f(s′1, . . . , s
′
m)〉 is our witness with f(s1, . . . , sm) and f(s′1, . . . , s

′
m) flat.

COROLLARY 2.9. Let R be a flat TRS, and let c ∈ F0. Let 〈M,N〉 be a min-
imal witness, and let N ′ be a subterm of N , with height(N ′) ≥ |F0|. Further, let
π ∈ c

∗
←→RN

′ be a proof over R. Then we can find either (i) a witness, 〈M0,M1〉, to non-
UN=, such that M0 and M1 are flat, or (ii) a witness, 〈N0, N1〉, to non-UN=, such that
height(N0), height(N1) ≤ |F0|.

PROOF. By Proposition 2.8, we know that we can find either (a) a witness, 〈M0,M1〉,
to non-UN=, such that M0 and M1 are flat, or (b) 1 + height(N ′) distinct normal forms
equivalent to constants. If (a) is the case, then we are done. So assume that (b) is
true. Since there are 1 + height(N ′) > |F0| normal forms equivalent to, at most, |F0|
constants, we know, by the Pigeonhole Principle, that a single constant is equivalent
to two distinct normal forms. From the above observation, we know that the normal
forms have heights 0, 1, 2, . . ., height(N ′). The smallest (height-wise) 1 + |F0| normal
forms each have height no more than |F0|. So, we know that we can find a witness,
〈N0, N1〉, to non-UN=, such that height(N0), height(N1) ≤ |F0|.

PROPOSITION 2.10. Let R be a flat TRS. Then, either (i) there does not exist
a constant c ∈ F0 and normal form N ∈ SubMinWitR such that c

∗
←→

ÊR
N and

height(N) ≥ |F0|, or (ii) there exists a witness, 〈N0, N1〉 to non-UN= for R such that
height(N0), height(N1) ≤ k = max{1, |F0|}. Further, there is an effective procedure to
decide whether (i) or (ii) is the case.

PROOF. Consider all ground1 normal forms over the signature of the rewrite sys-
tem, i.e., consisting of constants and function symbols appearing in the finitely many
rules of R, with height less than, or equal to, k; we use NF≤k to denote this set.
Notice that if there is a constant, c ∈ F0, and an element of SubMinWitR, N , with
height(N) ≥ |F0|, such that c

∗
←→N , then by Corollary 2.9 there is a witness, 〈N0, N1〉, to

non-UN= for R with height(N0), height(N1) ≤ k. By a result in [Comon et al. 1994],
the word problem is decidable for flat systems. So, we can construct the set of all
pairs, (s, t), such that s, t ∈ NF≤k and s

∗
←→Rt. If we do not find a witness to non-

UN= in NF≤k, then we know that there is no c ∈ F0 and N ∈ SubMinWitR such
that height(N) ≥ |F0| and c

∗
←→RN . Otherwise, we have found the witness 〈N0, N1〉 with

height(N0), height(N1) ≤ k.

2.2. Shrinking Witnesses

Say 〈f(a, g(b, f(c, x))), h(y, y, h(a, b, c))〉 is a witness to non-UN= for some TRS. Can we
replace big subterms of a component of the witness, without changing the fact that it is
a witness, i.e., if we replace g(b, f(c, x)) with a variable, z, will 〈f(a, z), h(y, y, h(a, b, c))〉
still be a witness? We show that we can replace depth-1 subterms that are not equiv-

1As in [Zinn and Verma 2006; Zinn 2006], for nonlinear rewrite systems also we can expand the signature of
the rewrite system with 3α new constants, where α is the maximum arity of a function symbol in the rules,
and focus on ground normal forms.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Uniqueness of Normal Forms for Shallow Term Rewrite Systems A:9

alent to a constant with a variable. This shrinks the size of the witness; in particular,
only depth-1 subterms of such a shrunk witness that are equivalent to a constant can
have height greater than, or equal to, the number of constants in the TRS. So, a shrunk
minimal witness either has small components, or there is a large subterm of a com-
ponent of a minimal witness that is equivalent to a constant. If the latter is the case,
then we know, by Corollary 2.9, that there is a small witness.

DEFINITION 2.11.
Let R be a rewrite system. Say X contains, for each term (up to renaming of variables),

t, a variable xt, where xs = xt if, and only if, s
∗
←→R t. Let t = f(t1, . . . , tn) be a term in

T (F , X). Then, we define φ(t) as:

φ(t) =

{
xt if t is not equivalent to a constant
t otherwise

Let u = f(u1, . . . , um) for m > 0 and v ∈ X . We define the function α that maps terms
to terms as follows: α(u) = f(φ(u1), . . . , φ(um)) and α(v) = v.

Notice that α(c) = c for c ∈ F0, since α only affects depth-1 subterms.

LEMMA 2.12. Let R be a flat TRS, and let u↔R v be a proof over R, where u ↔R v
is not a root rewrite. Then, there is a proof α(u)

∗
←→R α(v).

PROOF. Say u = f(u1, . . . , um) and v = f(v1, . . . , vm) (notice that if u ↔R v is not
a root rewrite, then neither u nor v can have height zero). Since the rewrite is not a
root rewrite, we know that there are ui and vi such that ui ↔R vi, and uj = vj for all
j 6= i. If ui, vi are equivalent to a constant, then φ(ui) = ui and φ(vi) = vi, and hence
α(u)↔R α(v). If ui, vi are not equivalent to a constant, then φ(ui) = xui

= xvi = φ(vi),
and hence α(u) = α(v).

LEMMA 2.13. Let R be a flat TRS, and let u↔R v be a proof over R, where u ↔R v
is a root rewrite. If the rewrite has the form u = wσ → xσ = v (i.e. it uses a collapsing
rule w→ x), then α(u)↔R φ(v); otherwise α(u)↔R α(v).

PROOF. In case of a collapsing rule, any instantiations of x appearing as depth-1
subterms of u are equal to v, and so they are replaced by φ(v) in α(u). Since constants
in w are never replaced, α(u) ↔R φ(v). Otherwise, if s is a depth-1 subterm of u or
v that is an instantiation of a shared variable, then every depth-1 instance of s is
replaced by φ(s) in α(u) and α(v). So, α(u)↔R α(v).

PROPOSITION 2.14. Let R be a flat TRS. Let s and t be terms not equivalent to a
constant and π ∈ s

∗
←→t be a proof over R. Then, either there is a proof α(s)

∗
←→

ÊR
y for

some variable y, or there is a proof α(s)
∗
←→

ÊR
α(t).

PROOF. We know that there is a proof, π1rr, over ÊR with at most one root rewrite.
If π1rr has zero steps, then α(s) = α(t), and so α(s)

∗
←→

ÊR
α(t). Assume that π1rr has at

least one step, and say that it has the form s = s0 ↔ÊR
. . . ↔

ÊR
sk = t for some k ≥ 1.

We consider three cases: (i) π1rr has no root rewrite; (ii) the only root rewrite in π1rr

uses a collapsing rule; and (iii) the only root rewrite in π1rr does not use a collapsing
rule.

In cases (i) and (iii), we know, by lemmas 2.12 and 2.13, that there is a proof α(si)
∗
←→

ÊR
α(si+1) for 0 ≤ i ≤ k − 1. Therefore, there is a proof α(s)

∗
←→

ÊR
α(t).

In case (ii), let wσ = sj ↔ÊR
sj+1 = xσ be the instance of the collapsing rule, w → x,

for some 0 ≤ j ≤ k − 1. For i < j, we know that there is a proof α(si)
∗
←→

ÊR
α(si+1). By

Lemma 2.13, we know that α(sj)↔ÊR
φ(sj+1), and so there is a proof α(s)

∗
←→

ÊR
φ(sj+1).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Nicholas Radcliffe et al.

Since the terms in π1rr cannot be equivalent to a constant (since s, t are not equivalent
to a constant), we know that φ(sj+1) = xsj+1

, and so the proof is complete

Remark 2.15. As mentioned above, for any term v not equivalent to a constant,
φ(v) can be chosen so that it does not appear as a subterm of any finite number of
terms. Therefore, φ(sj+1) can be chosen so that it does not appear as a subterm of
s0, s1, . . . , sk. We can always choose a fresh variable that does not appear in a finite set
of terms.

PROPOSITION 2.16. Let R be a flat TRS, and let 〈M,N〉 be a minimal witness
to non-UN= for R, with M,N not equivalent to a constant. Then either 〈α(M), y〉 or
〈α(M), α(N)〉 is a witness for some variable, y.

PROOF. We know from Proposition 2.14 that either there is a proof α(M)
∗
←→

ÊR
y for

some variable y, or there is a proof α(M)
∗
←→

ÊR
α(N). So, we need to show that (i) α(M),

α(N), and y are normal forms, and that (ii) α(M) 6= y (whenever α(M)
∗
←→

ÊR
y) and

α(M) 6= α(N).
For (i), we need to show that if s and t are depth-1 subterms of M (or N) that are not

equivalent to constants, then φ(s) 6= φ(t) whenever s 6= t. So, say that s 6= t. If s
∗
←→

ÊR
t,

then 〈s, t〉 would violate the minimality of 〈M,N〉, since |s|+ |t| < |M | ≤ |M |+ |N |. So,
we know that s and t are not equivalent, and hence φ(s) 6= φ(t). We know by Proposition
2.4 that α(M) and α(N) are normal forms, because the variables replacing subterms
of M and N can be chosen so that they are fresh. Since variables are always normal
forms, we know that α(M), α(N), and y are normal forms.

For (ii), if M is not a variable, then α(M) is not a variable, and hence α(M) 6= y. If
M is a variable, then, by Remark 2.15, we can choose y so that it does not appear as a
subterm of M . So, α(M) = M 6= y.

To see that α(M) 6= α(N), we need to consider two cases. If root(M) 6= root(N),
then clearly α(M) 6= α(N), since α does not affect the outermost function symbol. If
root(M) = root(N), then it must be the case that M |i 6= N |i for some integer, i. In
order for α(M) = α(N) to be true, M |i and N |i must be replaced by the same variable.
But this only happens when M |i and N |i are equivalent, and if M |i and N |i were
equivalent, then (setting M ′ = M |i and N ′ = N |i) 〈M ′, N ′〉 would be a witness with
|M ′| < |M | and |N ′| < |N |. This would violate the minimality of 〈M,N〉, so M |i and N |i
cannot be equivalent, and hence M |i and N |i must be replaced by distinct variables.
Therefore, α(M) 6= α(N).

3. DECIDABILITY FOR FLAT AND SHALLOW REWRITE SYSTEMS

LEMMA 3.1. Let R be a flat TRS, and say that there is no constant c ∈ F0 and nor-
mal form N ′ ∈ SubMinWitR such that c

∗
←→

ÊR
N ′ and height(N ′) ≥ |F0|. Let 〈M,N〉

be a minimal witness to non-UN= for R. Then height(α(M)), height(α(N)) ≤ k =
max{1, |F0|}.

PROOF. We know that (i) all depth-1 subterms of α(M) and α(N) that are not equiv-
alent to a constant are necessarily variables, and (ii) there is no constant c ∈ F0 and
normal form N ′ ∈ SubMinWitR such that c

∗
←→

ÊR
N ′ and height(N ′) ≥ |F0|. Hence,

the depth-1 subterms of α(M) and α(N) are either (i) variables or (ii) elements of
SubMinWitR with height strictly less than |F0|. This means that the heights of α(M)
and α(N) are at most max{1, |F0|}.

THEOREM 3.2. Let R be a flat TRS. If there is a witness to non-UN= for R, then
there exists a witness, 〈N0, N1〉, with height(N0), height(N1) ≤ k = max{1, |F0|}. Hence
UN= is decidable for R.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Uniqueness of Normal Forms for Shallow Term Rewrite Systems A:11

PROOF. By Proposition 2.10, we know that there is either (i) no constant c ∈ F0

and normal form N ′ ∈ SubMinWitR such that c
∗
←→

ÊR
N ′ and height(N ′) ≥ |F0|, or (ii)

a witness, 〈N0, N1〉 to non-UN= for R such that height(N0), height(N1) ≤ k. Further,
there is an effective procedure to decide if (i) or (ii) is the case.

If (ii) is the case, then we have our witness. So, assume that (i) is the case, and
let 〈M,N〉 be a minimal witness to non-UN= for R. If M and N are equivalent to a
constant, c, and height(M), height(N) < |F0|, then we are done. So, we assume (without
loss of generality) that M,N are not equivalent to a constant, and thus we can apply
Proposition 2.14. Hence there is either a proof α(M)

∗
←→

ÊR
y for some variable y, or a

proof α(M)
∗
←→

ÊR
α(N). By Lemma 3.1, we know that height(α(M)), height(α(N)) ≤ k.

Hence, by Proposition 2.16, either 〈α(M), y〉 or 〈α(M), α(N)〉 is a witness to non-UN=

with height(α(M)), height(α(N)), |y| ≤ k.
So, if there is a witness to non-UN= for R, then there is a witness, 〈N0, N1〉,

with height(N0), height(N1) ≤ k. The following algorithm, on input R, determines if
R is UN=: Enumerate all ground normal forms over the signature of the rewrite
system, i.e., consisting of constants and function symbols appearing in the finitely
many rules of R, with height less than, or equal to, k; say they are N0, . . . , Nn. In
[Comon et al. 1994], the authors show that the word problem is decidable for shallow
TRS. So, for 0 ≤ i < j ≤ n, check if Ni

∗
←→

ÊR
Nj . If Ni

∗
←→

ÊR
Nj for some 0 ≤ i < j ≤ n,

then R is not UN=; otherwise, R is UN=.
Now that we have shown that UN= is decidable for flat rewrite systems, we extend

this result to shallow rewrite systems. We do this by flattening a shallow rewrite sys-
tem, i.e., transforming a shallow rewrite system into a flat one in a way that preserves
UN=.

THEOREM 3.3. Let R be a shallow TRS. Then UN= is decidable for R.

4. UNDECIDABILITY FOR LINEAR AND LEFT/RIGHT-FLAT SYSTEMS

We begin by introducing a problem known to be undecidable.

4.1. Post Correspondence Problem

An instance P of the Post Correspondence Problem (PCP) is defined as follows:

Definition 4.1. Given a finite set of tiles {〈ui, vi〉 | 1 ≤ i ≤ n} where ui, vi are words
under some finite alphabet Γ, we must decide whether a sequence of indices i1 · · · ik
exists such that ui1 · · ·uik = vi1 · · · vik .

Given a PCP instance P we consider |P | to be the number of tiles defined for that
instance. If a sequence of indices is meant as a candidate solution to the PCP instance,
we call it a tile sequence. We use the convention that Γ∗ refers to the words generated
by the alphabet.

4.2. Linear and Right-Flat Construction

We will construct a linear and right-flat TRS R that reduces PCP to the UN= problem

between two normal forms: 0 and 1. Thus, if 0
∗
←→ 1 we violate UN= and there is a

solution to P ; otherwise, P has no solution and UN= is preserved. A correct reduction
implies UN= must be undecidable for this class of TRS.

Our construction will be composed of two parts. Part one will convert an arbitrary
string into a pair of identical strings. The only normal form found in part one is 0. Part
two will convert an arbitrary tile sequence into a pair of strings generated by the tiles.
The only normal form found in part two is 1. Both parts can reach a solution to P .

Thus, if a solution exists, then 0
∗
←→ 1.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Nicholas Radcliffe et al.

Since strings are central to our construction we will work with a few conventions.
The terms representing strings are sequences of unary symbols ended by ∅. Further-
more, strings and the terms that represent them are used interchangeably; we may
refer to a(b(∅)) as ab. For a string s we denote its reversal sR. Note that for s = s1s2, we
have sR = sR2 s

R
1 . We liberally use γ as a placeholder for the appropriate symbol in the

alphabet Γ.
Our initial set of rules corresponds to part one:

R0 :=

{
f(γ(x), ∅, ∅)→ 0

f(∅, x, y)→ g(x, y)

∣∣∣∣ γ ∈ Γ

}

RS :=

{
f(γ(x), y, z)→ f (γ)(x, y, z)

f(x, γ(y), γ(z))→ f (γ)(x, y, z)

∣∣∣∣∣ γ ∈ Γ

}

Since we are working with equivalences, the orientation of a rule has no bearing on
reachability. We use this to our advantage by simulating the rule f(γ(x), y, z) ←→
f(x, γ(y), γ(z)). Notice the following structure:

f(γ(x), y, z)

))
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

f(x, γ(y), γ(z))

uu❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

f (γ)(x, y, z)

In our construction, the superscripted version of a function symbol will have a re-
duced set of applicable rewrites. By making sure only two rewrites apply, these two
rewrites can be considered a single rewrite. In a derivation between non-superscripted
terms, rewriting to f (γ) fixes the next rewrite we perform. Therefore, we should view
RS as the set of rules f(γ(x), y, z)←→ f(x, γ(y), γ(z)).

The following lemmas concern R0 ∪RS unless otherwise specified.

LEMMA 4.2. f(x, ∅, ∅)
∗
←→
RS

f(∅, y, z) iff x, y, z ∈ Γ∗.

PROOF. Clearly the rules in RS only allow the removal of symbols γ ∈ Γ.

LEMMA 4.3. f(s, y, z)
∗
←→
RS

f(∅, sR(y), sR(z)) where s ∈ Γ∗.

PROOF. We proceed by induction on the length of s. For |s| = 1, the rules in RS

suffice. Suppose our lemma holds for |s| = n − 1. Given s of length n, we can write

s = γ(s′) for some γ ∈ Γ. The rules in RS allow f(γ(s′), y, z)
∗
←→ f(s′, γ(y), γ(z)). If we

consider y′ = γ(y) and z′ = γ(z) our induction hypothesis applies and we are done.

LEMMA 4.4. Let p = f(x, ∅, ∅) for some x. Let q = f(∅, y, z) for some y, z. For a pair

of terms (p, q) where p
∗
←→
RS

q then:

— ∄ p′ = f(x′, ∅, ∅) for some x′ 6= x such that p′
∗
←→
RS

q

— ∄ q′ = f(∅, y′, z′) for some (y′, z′) 6= (y, z) such that p
∗
←→
RS

q′

PROOF. We can consider RS to be {f(γ(x), y, z) ←→ f(x, γ(y), γ(z))} since we are
only interested in non-superscripted terms. Let π be a mapping from terms of the form

f(s1, s2, s3) to sR1 s2s
R
1 s3. Suppose p′

∗
←→
RS

q. By Lemma 4.2, π is well defined for p, p′,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Uniqueness of Normal Forms for Shallow Term Rewrite Systems A:13

and q. Clearly there is no p′ 6= p such that π(p′) = π(p). However, if p′
∗
←→
RS

q then

π(p′) = π(q) = π(p) since the value is conserved under RS . A similar argument applies
to q′.

Informally, we can show Lemma 4.4 holds by observing there is no choice of rewrite if
f |2 = f |3 = ∅. Once we apply that rewrite we are presented with a series of meaningless
choices: either backtrack or perform the only other rewrite. This is the case until we
reach a term where f |1 = ∅ or we get stuck on the way. The situation is the same if we
start at f |1 = ∅ and work our way toward f |2 = f |3 = ∅.

LEMMA 4.5. 0
∗
←→ g(y, z) iff (y, z) = (sR, sR) for some s ∈ Γ∗\{ε}.

PROOF. There is only one rewrite applicable at each end term: f(x, ∅, ∅) → 0 and

f(∅, y, z) → g(y, z). Thus, our proof will have the form 0 ← f(x, ∅, ∅)
∗
←→ f(∅, y, z) →

g(y, z). We know by Lemma 4.2 that x = s for some s ∈ Γ∗. Furthermore, s cannot be
the empty string due to how we constructed the rules in R0. By Lemma 4.3 we know
(y, z) = (sR, sR). By Lemma 4.4 we know ⇐= .

The first part of our construction is concluded. The second part of our construction uses
many of the same techniques.

For each tile 〈ui, vi〉 in P let it be represented by the function symbol ti : 1. Let
n = max(|ui|, |vi|). We create n rules for each tile. Note that γn

ui
and γn

vi
refer to the

nth symbol in ui and vi, respectively. If k > |ui| then γk
ui

leaves the variable unchanged
(the concrete instantiation of the rule has only the variable in that position). Same for
k > |vi|. Here are the rules:

R1 :=

{
h(ti(x), ∅, ∅)→ 1

h(∅, x, y)→ g(x, y)

}

RT :=





h(ti(x), y, z)→ h(i,0)(x, y, z)

h(i,k)(x, γk
ui
(y), γk

vi
(z))→ h(i,k−1)(x, y, z)

h(x, γn
ui
(y), γn

vi
(z))→ h(i,n−1)(x, y, z)





The rules in RT were constructed to simulate rules, much like RS . However, in RT

we fix a longer chain of rewrites so we can simulate h(ti(x), y, z)
∗
←→ h(x, uR

i (y), v
R
i (z))

for non-superscripted terms:

h(Ti(x), y, z)

))
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘

h(x, uR
i (y), v

R
i (z))

∗

uu❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

h(i,0)(x, y, z)

For example, if t1 = 〈aab, bb〉 then we would have a sequence of rules:

h(t1(x), y, z)→ h(1,0)(x, y, z)

h(1,1)(x, a(y), b(z))→ h(1,0)(x, y, z)

h(1,2)(x, a(y), b(z))→ h(1,1)(x, y, z)

h(x, b(y), z)→ h(1,2)(x, y, z)

The following lemmas concern R1 ∪RT unless otherwise specified.

LEMMA 4.6. h(x, ∅, ∅)
∗
←→
RT

h(∅, y, z) iff x = ti1 · · · tin and y, z ∈ Γ∗.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Nicholas Radcliffe et al.

PROOF. Clearly, the rules in RT only allow the removal of symbols ti from h|1 and
the removal of symbols γ ∈ Γ from h|2 and h|3.

LEMMA 4.7. h(t, y, z)
∗
←→
RT

h(∅, sRa (y), s
R
b (z)) where t = ti1 · · · tin , sa = ui1 · · ·uin and

sb = vi1 · · · vin .

PROOF. We proceed by induction on the length of t. For |t| = 1, the rules in RT

suffice. Suppose our lemma holds for |t| = n − 1. Given t of length n, we can write

t = ti(t
′) for some ti. The rules in RT allow h(ti(t

′), y, z)
∗
←→ h(t′, uR

i (y), v
R
i (z)). If

we consider y′ = uR
i (y) and z′ = vRi (z) our induction hypothesis applies and we are

done.

LEMMA 4.8. Let p = h(x, ∅, ∅) for some x. Let q = h(∅, y, z) for some y, z. For a pair

of terms (p, q) where p
∗
←→
RT

q then:

— ∄ p′ = h(x′, ∅, ∅) for some x′ 6= x such that p′
∗
←→
RT

q

— ∄ q′ = h(∅, y′, z′) for some (y′, z′) 6= (y, z) such that p
∗
←→
RT

q′

PROOF. We can consider RT to be {h(ti(x), y, z)
∗
←→ h(x, uR

i (y), v
R
i (z))} since we are

only interested in non-superscripted terms. Let πa, πb be mappings from tile sequences
ti1 · · · tin to ui1 · · ·uin and vi1 · · · vin , respectively. Let π be a mapping from terms of the

form h(t1, s2, s3) to (πa(t1))
Rs2(πb(t1))

Rs3. Suppose p′
∗
←→
RT

q. By Lemma 4.6, π is well

defined for p, p′, and q. Clearly there is no p′ 6= p such that π(p′) = π(p) (holds as long

as ti 6= tj for i 6= j). However, if p′
∗
←→
RT

q then π(p′) = π(q) = π(p) since the value is

conserved under RT . A similar argument applies to q′.

The informal argument used in part one unfortunately does not apply. Let t1 =
〈abb, ba〉 and t2 = 〈bb, ba〉. We have the following equivalence with our rules:

h(t1, ∅, ∅)
∗
←→
RT

h(∅, bba, ab)
∗
←→
RT

h(t2, a, ∅). Although it may seem like an error, the values

of all three terms under π are indeed the same.

LEMMA 4.9. 1
∗
←→ g(y, z) iff (y, z) = (sRa , s

R
b) where sa = ui1 · · ·uin and sb =

vi1 · · · vin for some nonempty tile sequence i1 · · · in.

PROOF. There is only one rewrite applicable at each end term: h(x, ∅, ∅) → 1 and

h(∅, y, z) → g(y, z). Thus, our proof will have the form 1 ← h(x, ∅, ∅)
∗
←→ h(∅, y, z) →

g(y, z). We know by Lemma 4.6 that x = t for some t = ti1 · · · tin . Furthermore, t cannot
be an empty sequence due to how we constructed the rules in R1. By Lemma 4.7 we
know (y, z) = (sRa , s

R
b). By Lemma 4.8 we know ⇐= .

LEMMA 4.10. 0
∗
←→ 1 iff P has a solution.

PROOF. Any proof of 0
∗
←→ 1 must go through some term g(x, y). Due to Lemma 4.5

and Lemma 4.9 the only term g(x, y) that both 0 and 1 can reach must have x and y as
a pair of identical strings generated by the tiles in P . Thus, P must have a solution.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Uniqueness of Normal Forms for Shallow Term Rewrite Systems A:15

0
∗
←→ f(bbaabbbaa, ∅, ∅)

∗
←→ h(∅, aabbbaabb, aabbbaabb)

∗
←→ f (b)(baabbbaa, ∅, ∅)

∗
←→ h(1,2)(∅, aabbbaabb, abbbaabb)

∗
←→ f(baabbbaa, b, b)

∗
←→ h(1,1)(∅, aabbbaabb, bbbaabb)

∗
←→ f (b)(aabbbaa, b, b)

∗
←→ h(1,0)(∅, abbbaabb, bbaabb)

∗
←→ f(aabbbaa, bb, bb)

∗
←→ h(t1, abbbaabb, bbaabb)

∗
←→ f (a)(abbbaa, bb, bb)

∗
←→ h(3,2)(t1, bbbaabb, bbaabb)

∗
←→ f(abbbaa, abb, abb)

∗
←→ h(3,1)(t1, bbaabb, baabb)

∗
←→ f (a)(bbbaa, abb, abb)

∗
←→ h(3,0)(t1, baabb, aabb)

∗
←→ f(bbbaa, aabb, aabb)

∗
←→ h(t3t1, baabb, aabb)

∗
←→ f (b)(bbaa, aabb, aabb)

∗
←→ h(2,1)(t3t1, aabb, abb)

∗
←→ f(bbaa, baabb, baabb)

∗
←→ h(2,0)(t3t1, abb, bb)

∗
←→ f (b)(baa, baabb, baabb)

∗
←→ h(t2t3t1, abb, bb)

∗
←→ f(baa, bbaabb, bbaabb)

∗
←→ h(3,2)(t2t3t1, bb, bb)

∗
←→ f (b)(aa, bbaabb, bbaabb)

∗
←→ h(3,1)(t2t3t1, b, b)

∗
←→ f(aa, bbbaabb, bbbaabb)

∗
←→ h(3,0)(t2t3t1, ∅, ∅)

∗
←→ f (a)(a, bbbaabb, bbbaabb)

∗
←→ h(t3t2t3t1, ∅, ∅)

∗
←→ 1

∗
←→ f(a, abbbaabb, abbbaabb)
∗
←→ f (a)(∅, abbbaabb, abbbaabb)
∗
←→ f(∅, aabbbaabb, aabbbaabb)
∗
←→ g(aabbbaabb, aabbbaabb)

Fig. 1. An example for P = {〈a, baa〉, 〈ab, aa〉, 〈bba, bb〉}.

Finally, we add the set of rules that guarantee 0 and 1 are the only normal forms.
These rules do not disturb any of the results above.

Rnf :=





f(x, y, z)→ f(x, y, z) h(x, y, z)→ h(x, y, z)

f (γ)(x, y, z)→ f (γ)(x, y, z) h(i,j)(x, y, z)→ h(i,j)(x, y, z)

g(x, y)→ g(x, y) γ(x)→ γ(x)

∅ → ∅ ti(x)→ ti(x)





Now that 0 and 1 are the only normal forms, their equivalence implies a violation of
UN=. Thus, our complete set of rules is: R := R0 ∪R1 ∪RS ∪RT ∪Rnf .

THEOREM 4.11. UN= is undecidable for linear TRS that are right-flat and have
left-hand sides of depth two.

PROOF. Direct consequence of Lemma 4.10, which proves our construction reduces
UN= to solving PCP.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Nicholas Radcliffe et al.

4.3. Linear and Left-Flat Construction

If we reverse the orientation of all rules in R we run into a small problem: the R nor-
mal forms 0 and 1 are no longer normal forms after reorientation. To remedy this, we
replace the rules {f(γ(x), ∅, ∅) → 0, h(Ti(x), ∅, ∅) → 1} with the following modifica-
tions:

Rj :=





j0(x)→ 0

j0(x)→ f(x, ∅, ∅)

j1(x)→ h(∅, ∅, x)

j1(x)→ 1





Thus, 0 and 1 remain normal forms after reorientation and V ar(r) ⊂ V ar(l). How-
ever, we must now disallow the empty string as a solution somewhere else in the con-
struction. To that end, we replace {f(∅, x, y) → g(x, y), h(∅, x, y) → g(x, y)} with the
following:

Rg :=

{
g(γ,γ)(x, y)→ f(∅, γ(x), γ(y))

g(γi,γj)(x, y)→ h(∅, γi(x), γj(y))

}

Any rules that have not been replaced are simply reoriented. Thus, our final rule set
is:

R := Rj ∪Rg ∪R
−1
S ∪R

−1
T

∪Rnf\{g(x, y)→ g(x, y)}

∪ {g(γi,γj)(x, y)→ g(γi,γj)(x, y)}

THEOREM 4.12. UN= is undecidable for linear TRS that are left-flat and have
right-hand sides of depth two.

PROOF. All proofs in Section 4.2 can be easily adapted for this modified TRS.

5. CONCLUSION

The UN= property of TRSs is shown to be decidable for the shallow class and undecid-
able for the class of linear TRS in which one side of the rule is allowed to be at most
depth-two and the other side is flat. Among the fundamental properties of TRSs only
the word problem and the UN= property are now known to be decidable for the shallow
class. An important direction for future research is to give a complete classification of
the basic properties for all subclasses of linear, depth-two TRSs (see also [Verma 2008]
in this regard).

Acknowledgments.

We thank Ross Greenwood and the reviewers of FSTTCS 2010 for careful readings and
constructive comments.

REFERENCES

H. Comon, M. Haberstrau, and J. Jouannaud. 1994. Syntacticness, cycle-syntacticness, and shallow theories.
Inf. Comput. 111, 1 (1994), 154–191.

Guillem Godoy and Hugo Hernández. 2009. Undecidable properties of flat term rewrite systems. Appl. Al-
gebra Eng. Commun. Comput. 20, 2 (2009), 187–205.

Guillem Godoy and Florent Jacquemard. 2009. Unique Normalization for Shallow TRS. In Rewriting Tech-
niques and Applications, 20th International Conference, RTA 2009, Brası́lia, Brazil, June 29 - July 1,
2009, Proceedings. 63–77.

Guillem Godoy and Sophie Tison. 2007. On the Normalization and Unique Normalization Properties of Term
Rewrite Systems. In Proc. Conf. on Automated Deduction. 247–262.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Uniqueness of Normal Forms for Shallow Term Rewrite Systems A:17

G. Godoy, A. Tiwari, and R. Verma. 2003. On the Confluence of Linear Shallow Rewrite Systems. Proceedings
of the Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 2607
(2003), 85–96.

J.W. Klop. 1980. Combinatory Reduction Systems. Ph.D. Dissertation. Mathematisch Centrum, Amsterdam.

J.W. Klop. 1992. Rewrite Systems. In Handbook of Logic in Computer Science. Oxford.

Ichiro Mitsuhashi, Michio Oyamaguchi, and Florent Jacquemard. 2006. The Confluence Problem for Flat
TRSs. In 8th Artificial Intelligence and Symbolic Computation Conference. 68–81.

N. Radcliffe and Rakesh M. Verma. 2010. Uniqueness of Normal Forms is Decidable for Shallow Term
Rewrite Systems. In Proc. Conf. on Foundations of Software Technology & Theoretical Comp. Sci. 284–
295.

Terese. 2003. Term Rewriting Systems. Cambridge University Press, Cambridge.

Rakesh Verma. 2009. Complexity of Normal Form Problems and Reductions for Term Rewriting Problems.
Fundamenta Informaticae 92, 1-2 (2009), 145–168.

R.M. Verma, M. Rusinowitch, and D. Lugiez. 2001. Algorithms and Reductions for Rewriting Problems.
Fundamenta Informaticae 46, 3 (2001), 257–276. Also in Proc. of Int’l Conf. on Rewriting Techniques
and Applications 1998.

Rakesh M. Verma. 2008. New Undecidability Results for Properties of Term Rewrite Systems. In Proc. (elec.)
of 9th Workshop on Rule-based Programming (RULE).

Julian Zinn. 2006. A Polynomial Algorithm for Uniqueness of Normal Forms of Linear, Shallow Term Rewrite
Systems. Master’s thesis. University of Houston.

J. Zinn and R. Verma. 2006. A Polynomial-time algorithm for Uniqueness of Normal Forms of linear, shallow
rewrite systems. In Proc. IEEE Conf. on Logic in Computer Science. short presentation.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

	1 Introduction
	1.1 Definitions

	2 Preliminary Results
	2.1 Normal Forms Equivalent to Constants
	2.2 Shrinking Witnesses

	3 Decidability for Flat and Shallow Rewrite Systems
	4 Undecidability for Linear and Left/Right-Flat Systems
	4.1 Post Correspondence Problem
	4.2 Linear and Right-Flat Construction
	4.3 Linear and Left-Flat Construction

	5 Conclusion

