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Abstract

Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the 

graph. These methods are attractive because they enable targeted clustering around a given seed 

node and are faster than traditional global graph clustering methods because their runtime does not 

depend on the size of the input graph. However, current local graph partitioning methods are not 

designed to account for the higher-order structures crucial to the network, nor can they effectively 

handle directed networks. Here we introduce a new class of local graph clustering methods that 

address these issues by incorporating higher-order network information captured by small 

subgraphs, also called network motifs. We develop the Motif-based Approximate Personalized 

PageRank (MAPPR) algorithm that finds clusters containing a seed node with minimal motif 
conductance, a generalization of the conductance metric for network motifs. We generalize 

existing theory to prove the fast running time (independent of the size of the graph) and obtain 

theoretical guarantees on the cluster quality (in terms of motif conductance). We also develop a 

theory of node neighborhoods for finding sets that have small motif conductance, and apply these 

results to the case of finding good seed nodes to use as input to the MAPPR algorithm. 

Experimental validation on community detection tasks in both synthetic and real-world networks, 

shows that our new framework MAPPR outperforms the current edge-based personalized 

PageRank methodology.

1 INTRODUCTION

The goal of graph clustering—also called community detection or graph partitioning—is to 

identify clusters of densely linked nodes given only the graph itself [15]. The vast majority 

of algorithms optimize a function that captures the edge density of the cluster (a set of 

nodes), for instance, conductance or modularity. Most methods for clustering are global and 

seek to cluster all nodes of the network. Local graph clustering—also known as seeded or 

targeted graph clustering—is a specific case of this problem that takes an additional input in 
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the form of a seed set of vertices. The idea is to identify a single cluster nearby the seed set 

without ever exploring the entire graph, which makes the local clustering methods much 

faster than their global counterparts. Because of its speed and scalability, this approach is 

frequently used in applications including ranking and community detection on the Web [13, 

16], social networks [22], and bioinformatics [24]. Furthermore, the seed-based targeting is 

also critical to many applications. For example, in the analysis of protein-protein interaction 

networks, local clustering aids in determining additional members of a protein complex [45].

The theory and algorithms for local approaches are most well developed when using 

conductance as the cluster quality measure [2, 50]. Conductance, however, is only defined 

for simple undirected networks. Using principled local clustering methods for networks 

involving signed edges, multiple edge types, and directed interactions has remained an open 

challenge. Moreover, current cluster quality measures simply count individual edges and do 

not consider how these edges connect to form small network substructures, called network 

motifs. Such higher-order connectivity structures are crucial to the organization of complex 

networks [5, 35, 48], and it remains an open question how network motifs can be 

incorporated into local clustering frameworks. Designing new algorithms for local higher-
order graph clustering that incorporate higher-order connectivity patterns has the potential to 

lead to improved clustering and knowledge discovery in networks.

There are two main advantages to local higher-order clustering. First, it provides new types 

of heretofore unexplored local information based on higher-order structures. Second, it 

provides new avenues for higher-order structures to guide seeded graph clustering. In our 

recent work, we established a framework that generalizes global conductance-based 

clustering algorithms to cluster networks based on higher-order structures [5]. However, 

there are multiple issues that arise when this framework is applied to local graph clustering 

methodologies that we address here.

Present work: Local higher-order clustering—In this paper we develop local 

algorithms for finding clusters of nodes based on higher-order network structures (also 

called network motifs, Figure 1). Our local methods search for a cluster (a set of nodes) S 
with minimal motif conductance, a cluster quality score designed to incorporate the higher-

order structure and handle edge directions [5]. More precisely, given a graph G and a motif 

M, the algorithm aims to find a set of nodes S that has good motif conductance (for motif M) 

such that S contains a given set of seed nodes. Cluster S has good (low) motif conductance 

for some motif M if the nodes in S participate in many instances of M and there are few 

instances of M that cross the set boundary defined by S. Figure 2 illustrates the concept of 

motif conductance, where the idea is that we do not count the number of edges that are cut, 

but the number of times a given network motif M gets cut. This way edges that do not 

participate in a given motif (say, a triangle) do not contribute to the conductance. Motif 

conductance has the benefit that it allows us to focus the clustering on particular network 

substructures that are important for networks of a given domain. For example, triangles are 

important higher-order structures of social networks [19] and thus focusing the clustering on 

such substructures can lead to improved results.
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Our main approach is to generalize Approximate Personalized PageRank (APPR) [2] to 

finding sets of provably small motif conductance (Theorem 4.3). The APPR method is a 

graph diffusion that “spreads” mass from a seed set to identify the cluster. It has an 

extremely fast running time, which is roughly proportional to the size of the output cluster. 

Our generalization, the motif-based APPR method, or MAPPR, uses a pre-processing step 

that transforms the original network into a weighted undirected graph where the weights 

depend on the motif of interest. This procedure finds all instances of the motif, but does not 

store the enumeration, which helps to scale to larger networks (for example, if the motif is a 

clique such as a triangle, no additional memory is needed by our method). We show that 

running APPR on this weighted network maintains the provably fast running time and has 

theoretical guarantees on cluster output quality in terms of motif conductance. An additional 

benefit of our MAPPR method is that it naturally handles directed graphs on which graph 

clustering has been a longstanding challenge. The original APPR method can only be used 

for undirected graphs, and existing local approaches for APPR on directed graphs are 

challenging to interpret [3].

We use MAPPR on a number of community detection tasks and show improvements over 

the corresponding edge-based methods. We show that using the triangle motif improves the 

detection of ground truth communities in synthetic networks. In addition, we identify 

important directed triangle motifs for recovering community structure in directed graphs.

We also show how to identify good seeds for finding local higher-order clusters when the 

motif is a clique. To do this, we develop a theory around the relationship between 1-hop 

neighborhoods, motif conductance, and a recently developed higher-order generalization of 

the network clustering coefficient. Essentially, we show that if the network has a large ℓth-

order clustering coefficient Cℓ, then there exists some node whose 1-hop neighborhood has 

small ℓ-clique conductance. We use a notion of local optimality in node neighborhood 

conductances to identify many good seed nodes for MAPPR and find that the resulting 

clusters capture global trends in the clustering structure of the graph.

In summary, our paper develops simple and flexible methods for local higher-order graph 

clustering with theoretical guarantees. By going beyond the old edge-based community 

detection objective functions, our work opens a new door to higher-order clustering and 

community detection problems that apply to a broad set of network clustering problems.

2 PRELIMINARIES

Before deriving our algorithms, we first go over the basic notation and cluster quality scores 

that we use throughout the paper. Our datasets will be simple, unweighted, possibly directed 

graphs G = (V, E) with adjacency matrix A. We denote n = |V | as the number of nodes and 

m = |E| as the number of edges. Our algorithms will sometimes use a weighted graph Gw = 

(V, E,W).

Cut, volume, and conductance—The cut of a set of nodes S ⊂ V, denoted by cut(S), is 

the number of edges with one end point in S and the other end point in the complement set S̄ 

= V \S. The volume of a set of nodes S, denoted by vol(S), is the number of edge end points 

Yin et al. Page 3

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in S, i.e. vol(S) = Σu∈S du, where du is the degree of node u. The conductance of a set of 

nodes S ⊂ V is

ϕ(S) = cut(S)
min (vol(S), vol(S)) .

Figure 2A illustrates the concept. When vol(S) ≤ vol(S̄), the conductance measures the ratio 

of the number of edges leaving S to the number of edges in S. Note that conductance is 

symmetric—ϕ(S) = ϕ(S̄) since cut(S) = cut(S̄). Conductance generalizes to weighted 

networks where cut(S) is the sum of weights cut and vol(S) is the sum of weighted degrees. 

Small conductance indicates a good cluster, and we will use this metric (and the motif 

conductance defined next) for evaluating cluster quality.

Conductance is recognized as one of the most important graph clustering criterions [39] and 

is empirically effective at capturing ground-truth communities compared to other popular 

measures used in community detection [47]. Although minimizing conductance is NP-hard 

[46], there are approximation algorithms with theoretical guarantees for finding clusters with 

small conductance [2, 9]. A known issue of using conductance as a global clustering 

criterion is cluster imbalance, i.e., the detected clusters tend to be of uneven sizes [29, 31]. 

In local clustering, we seek small clusters containing a seed node, so the imbalance works in 

our favor.

Motif cut, motif volume, and motif conductance—Benson et al. recently generalized 

the cut, volume, and conductance measures to account for network motifs [5]. For this paper, 

we define a network motif M to be any small connected graph (such as a triangle), and an 

instance of M in a graph G is some induced subgraph H of G that is isomorphic to M. Given 

a motif M, the motif cut of a set of nodes S, denoted by cutM (S), is the number of instances 

of M that have at least one end point (i.e., node) in S and at least one end point in S̄ (Figure 

2B). The motif volume of a set of nodes S, denoted by volM (S) is the number of motif 

instance end points in S, i.e., the number of times a node is in S, counted over each node in 

every instance of M. The motif conductance for a given motif M is then

ϕM(S) =
cutM(S)

min (volM(S), volM(S)) .

In the case that M is an edge, these definitions are simply the original cut, volume, and 

conductance measures described above. These definitions also accommodate mixtures of 

motifs (e.g., triangles and edges) by counting over the union of instances of each motif type.

Comparing edge and motif conductance—We often compare values of motif 

conductance to edge conductance (see Figure 2). Although these two objective functions 

measure different (but related) quantities, they both represent a probability. Edge 

conductance is equivalently the probability that traversing a random edge adjacent to a 

randomly selected node from the cluster leads outside the cluster (provided that the volume 
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of the cluster is less than half of the total graph volume). Motif conductance is the 

probability that a traversing to a random end point of a randomly chosen motif adjacent to a 

randomly selected node from the cluster leaves the cluster (provided that the motif volume 

of the cluster is less than half of the total graph volume). Thus, a motif conductance much 

smaller than an edge conductance is evidence that the higher-order structured exposed by the 

motif characterizes the cluster structure more clearly.

3 RELATEDWORK

We now summarize some additional related work. There are a few methods for global 

partitioning based on motifs [4, 5, 27, 38, 43]. This paper instead focuses on local clustering 

methods that examine local regions of the network. There are several methods for finding 

clusters containing a seed node beyond the personalized PageRank method considered here, 

including other graph diffusions [8, 26], local spectral methods [32, 33], local modularity 

maximization [10], flow-based algorithms [36], and minimum degree maximization [11, 40]. 

All of these local methods optimize edge-based criteria to find clusters, whereas we are 

focused on finding clusters based on motifs. We generalize the personalized PageRank 

method because of the algorithm’s simplicity, scalability, and theoretical underpinnings. 

Most related to our approach are a couple of local clustering methods based on triangle 

frequencies through finding k-trusses containing a seed node [20] or by greedily growing a 

cluster from a seed node to avoid cutting triangles [38]. In the latter method, the notion of 

cutting a triangle is a special case of the motif cut discussed above.

Higher-order structures (under the names motifs, graphlets, or subgraphs) are crucial in 

many domains including neuroscience [41], biology [37], and social networks [44]. Many of 

our experiments use triangle motifs, which have long been studied for their frequency in 

social networks [19]. The algorithmic problem of counting or estimating the frequency of 

various higher-order patterns has also drawn a large amount of attention [1, 6, 12, 23].

4 MOTIF CONDUCTANCE MINIMIZATION

We now develop our local higher-order clustering methodology. We begin by generalizing 

the Approximate Personalized PageRank (APPR) algorithm of Andersen et al. [2] to quickly 

find a cluster containing a given seed node with minimal motif conductance. Our algorithm 

has theoretical guarantees on cluster quality and running time. We then show how the motif 

conductance of 1-hop neighborhoods in a network can be used to identify many good seed 

nodes.

4.1 Motif-based Approximate Personalized PageRank (MAPPR)

We now adapt the classical Approximate Personalized PageRank (APPR) method to account 

for motifs. The essential idea of our approach is to transform the input graph, which is 

unweighted and possibly directed, into a weighted undirected graph where the weights 

depend on the motif [5]. We then prove that the fast Approximate Personalized PageRank 

method on this weighted graph will efficiently find a set with small motif conductance that 

contains a given seed node. We also explain how previous theoretical results are applicable 
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to this approach, which gives us formal guarantees on running time and cluster output 

quality in terms of motif conductance.

Background on APPR—The personalized PageRank (PPR) vector represents the 

stationary distribution of a particular random walk. At each step of the random walk, with a 

parameter α ∈ (0, 1), the random walker “teleports” back to a specified seed node u with 

probability 1 − α; and with probability α, the walker performs a random walk step. The key 

idea is that the stationary distribution of this process for a seed node u (the PPR vector pu ) 

will have large values for nodes “close” to u. We can write the stationary distribution as the 

solution to the following system of equations (I − αP)pu = (1 − α)eu, where I is the identity 

matrix, P is the column-stochastic transition matrix representing the random walk over the 

graph, and eu is the indicator vector for node u. Formally, P = AD−1, where A is the 

adjacency matrix, D = diag(Ae) is the diagonal degree matrix, and e is the vector of all ones.

Andersen et al. developed a fast algorithm for approximating pu by a vector p̃u where 0 ≤ D
−1pu − D−1p̃u ≤ ε component-wise [2]. To obtain a cluster with small conductance from this 

approximation, a sweep procedure is used: (i) sort the nodes by descending value in the 

vector D−1p̃u, (ii) compute the conductance of each prefix in this sorted list, (iii) output the 

prefix set with smallest conductance. Overall, this algorithm is fast (it runs in time 

proportional to the size of the output cluster) and is guaranteed to have small conductance 

provided that node u is in a set with small conductance. We will be more specific with the 

guarantees in the following section, when we derive the analogous theory for the motif-

based approach.

Adapting APPR for motifs—We now propose the motif-based APPR (MAPPR) 

algorithm that finds a cluster with small motif conductance by finding an approximate PPR 

vector on a weighted graph based on the motif. Given a motif M, MAPPR has three steps: (i) 

construct a weighted graph W, where Wij is the number of instances of M containing nodes i 
and j, (ii) compute the approximate PPR vector for this weighted graph, (iii) use the sweep 

procedure to output the set with minimal conductance. Algorithm 1 formally describes this 

method. Note that step (i) needs to be done only once, whereas steps (ii) and (iii) would be 

repeated for multiple subsequent runs.

Algorithm 1

Motif-PageRank-Nibble method for finding localized clusters with small motif conductance.

Input: Unweighted graph G = (V, E), motif M, seed node u, teleportation parameter α, tolerance ε

Output: Motif-based cluster (set S ⊂ V )

1 Wij ← #(instances of M containing nodes i and j)

2 p̃ ← Approximate-Weighted-PPR(W,u, α, ε ) (Algorithm 2)

3 DW ← diag(We)

4
σi ←ith smallest entry of DW

−1p∼

5 return S ← arg minℓ ϕM (Sℓ), where Sℓ = {σ1, … , σℓ}
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Algorithm 2

Approximate-Weighted-PPR

This method is motivated by the following result of Benson et al. [5], which says that for 

motifs on three nodes, standard conductance in the weighted graph is equal to motif 

conductance in the original graph.

Theorem 4.1 ([5], Theorem 5): Denote the edge conductance in a graph H by ϕ(H) (S). Let 
M be a motif on three nodes, and let GW be the weighted graph where Wij is the number of 

instances of M in graph G containing nodes i and j. Then ϕM
(G)(S) = ϕ

(GW)
(S).

(When the motif has more than 3 nodes, the weighted graph serves as a principled heuristic 

for motif conductance [5].) We interpret this result for our purposes: if we can find a set with 

low edge conductance in the weighted graph using APPR, then this set will have small motif 
conductance.

The APPR method is designed for unweighted graphs, whereas we want to use the method 

for weighted graphs. Mathematically, this corresponds to replacing the column stochastic 

matrix P in the linear system with the column stochastic matrix PW = WDW
−1, where DW = 

diag(We) is the diagonal weighted degree matrix. For the purposes of implementation, this 

modification is simple. We just need to change the algorithm’s push method to push residual 

weights to neighbors proportional to edge weights (instead of evenly). We state the 

procedure in Algorithm 2.

For the purposes of theoretical analysis with motifs, it is important that our edge weights are 

integers so that we can interpret an edge with weight k as k parallel edges. Since all the 

analysis of APPR permits parallel edges in the graph, we can combine previous results for 

theoretical guarantees on Algorithm 1. The following result says that our algorithm runs in 

time proportional to the size of the output set.
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Theorem 4.2: Algorithm 1, after line 1, runs in O( 1
ε(1 − α)) time, and the number of nodes 

with non-zero values in the output approximated PPR vector is at most 1
ε(1 − α) .

Proof: This follows from Andersen et al. [2, Lemma 2], where we translate Gw into a 

unweighted graph with parallel edges.

Although APPR with weighted edges has used before [3, 17], there was never a runtime 

bound. This result is the first (albeit straightforward) theoretical bound on the runtime of 

APPR with weighted edges when they arise from integers.

Our next result is a theoretical guarantee on the quality of the output of Algorithm 1 in terms 

of motif conductance. The proof of the result follows from combining Theorem 4.1 and the 

analysis of Zhu et al. [50] (an improvement over the analysis of Andersen et al.). The result 

says that if there is some set T with small motif conductance, then there are several nodes in 

T for which Algorithm 1 outputs a set with small motif conductance. For notation, let η be 

the inverse mixing time of the random walk on the subgraph induced by T.

Theorem 4.3: Let T ⊂ V be some unknown targeted community we are trying to retrieve 
from an unweighted graph using motif M. Then there exists Tg ⊆ T with volM (Tg) ≥ volM 

(T)/2, such that for any seed u ∈ Tg, Algorithm 1 with 1 − α = Θ() and 

ε ∈ [ 1
10volM(T) , 1

5volM(T)] outputs a set S with

ϕM(S) ≤ O
∼ min ϕM(T), ϕM(T)/ η .

The final piece we need to consider is the complexity of forming the weighted graph in line 

1 of Algorithm 1. For ℓ-clique motifs, we use the method of Chiba and Nishizeki to compute 

the adjacency matrix W in O(ℓaℓ−2m) time, where a is the arboricity of the graph [7] and m is 

the number of edges in the graph. This is sufficient for the motifs considered in this paper, 

and there are also efficient algorithms for counting other types of motifs [34]. Note that this 

computation can be reused for many subsequent evaluations of the clustering algorithm for 

different seeds.

Towards purely local methods—Our method precomputes the number of motif 

instances containing each pair of nodes. Computing W is a (possibly large) upfront cost, but 

subsequently finding local clusters for any given seed node is fast. The graph weighting 

procedure could also be done locally by having the push procedure compute Wvx “on the 

fly” for all nodes x adjacent to node v. This suffices for Algorithm 2, but Algorithm 1 needs 

to know the total volume of the weighted graph to compute the motif conductance scores. To 

address this, one might use recent techniques for quickly estimating the total ℓ-clique volume 

on large graphs [21]. We leave the runtime analysis of this purely local method for future 

work.
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Practical considerations—The formal theory underlying the methods (Theorem 4.3) 

requires multiple apriori unknowable parameters including the inverse mixing time η of the 

target community and the volume of the output. As practical guidance, we suggest using α = 

0.98, computing the PPR vector for ε = 10−2/d̄M, 10−3/d̄M, 10−4/d̄M, where dM = 1
nvolM(G) is 

the average motif-degree of all nodes, and outputting the set of best motif conductance. The 

reason for scaling by d̄M is as follows. Theorem 4.2 bounds the running time by volume as if 

accessing an edge (i, j ) with weight Wij takes Θ(Wij ) time (i.e., as if the edges are parallel). 

However, we merely need to access the value Wij, which takes O(1) time. Scaling ε by d̄M 

accounts for the average effect of parallel edges present due to the weights of the motifs and 

permits the algorithm to do more computation with roughly the same running time 

guarantees.

Rather than using the global minimum in the sweep procedure in the last step of the Nibble 

method, we apply the common heuristic of finding the first local minimum [47]. The first 

local minimum is the smallest set where the PageRank vector suggests a border between the 

seed and the rest of the graph. It also better models the small size scale of most ground truth 

communities that we encounter in our experiments.

4.2 Finding many good seed nodes

So far we have proposed MAPPR to find a single cluster containing a given seed with 

minimal motif conductance. Now we consider the problem of how to quickly find many 
clusters with small motif conductance. Our approach will examine small network 

neighborhoods of nodes to identify good seeds for the targeted cluster expansion of MAPPR. 

We justify the use of these neighborhoods from a technical result that establishes a 

relationship between 1-hop neighborhoods and clusters of small motif conductance.

Informally, our key theorem is: Real world graphs with large clustering coefficients have a 

1-hop neighborhood with small motif conductance for clique motifs. We can find this set 

since we can compute the motif conductance of all 1-hop neighborhoods efficiently. The 

result holds for undirected graphs only, so we will be concerned only with undirected graphs 

in this section. We establish our result in theory in this section and demonstrate the result in 

practice in Section 5.

The formal theory rests on the idea of higher-order clustering coefficients, which we 

developed in recent work [49] and briefly review below. As an extreme case of our theory, 

consider a graph with clustering coefficient 1. Then that graph will be a union of cliques, 

and any 1-hop neighborhood in that graph is a cluster with motif conductance of zero. The 

theory developed in this section relaxes this extreme setting and relates large clustering 

coefficients to finding node neighborhoods with small motif conductance. Our experiments 

in Section 5.3 show that these node neighborhoods are even better than our theory would 

predict.

Background on higher-order clustering coefficients—First, we introduce the 

definition of higher-order clustering coefficients proposed by Yin et. al [49]. The classical 

clustering coefficient is the fraction of wedges (length-2 paths) in the graph that are closed 
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(i.e., induce a 3-clique, or a triangle). We can alternatively interpret each wedge as a (2-

clique, adjacent edge) pair, where the “adjacent edge” shares a single node with the 2-clique 

(edge). The clustering coefficient is formally C = 6|K3|/|W |, where K3 is the set of 3-cliques, 

W is the set of (2-clique, adjacent edge) wedges, and the constant 6 comes from the fact that 

each 3-clique closes 6 wedges.

The generalization to higher-order clustering coefficients follows by simply looking at the 

fraction of (ℓ-clique, adjacent edge) pairs, or ℓ-wedges, that are “closed”, i.e., induce an (ℓ+1)-

clique. Formally, the ℓth-order clustering coefficient is

Cℓ = (ℓ2 + ℓ) ∣ Kℓ + 1 ∣ / ∣ Wℓ ∣ ,

where Kℓ+1 is the set of (ℓ+1)-cliques, Wℓ is the set of ℓ-wedges, and the (ℓ2 + ℓ) comes from 

the fact that each (ℓ + 1)-clique closes that many wedges. We can also measure local 

clustering with respect to a node u. Formally, the local ℓth-order clustering coefficient of 

node u is

Cℓ(u) = ℓ ∣ Kℓ + 1(u) ∣ / ∣ Wℓ(u) ∣ ,

where Kℓ+1 (u) is the set of (ℓ + 1)-cliques containing node u and Wℓ(u) is the set of ℓ-wedges 

centered at u, i.e., the set of (ℓ-clique, adjacent edge) pairs whose intersection is node u.

Theory—Next, we state our main result of this section, which says that if the network 

exhibits higher-order clustering, i.e., Cℓ is large, then there is a 1-hop neighborhood with 

small ℓ-clique conductance. For notation, let N (u) denote the nodes in the 1-hop 

neighborhood of node u, i.e., N (u) = {v ∈ V | (u,v) ∈ E} ∪ {u}.

Theorem 4.4: Let graph G = (V, E) have ℓth-order clustering coefficient Cℓ. Suppose that 
volKℓ (N (u)) ≤ volKℓ (V )/2 for each node u. Then there exists a node u ∈ V such that

ϕKℓ
(N(u)) ≤

1 − Cℓ
1 − Cℓ + [Cℓ/(1 + 1 − Cℓ)]2 (1)

≤ min {2(1 − Cℓ), 1} . (2)

The bound in Theorem 4.4 is monotonically decreasing and approaches 0 as Cℓ approaches 

1. This result is a generalization of a similar statement for edge conductance [18], but prior 

results contain only the case of ℓ = 2 and only use the weaker bound (2) of Theorem 4.4.
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We now prove this result via several technical results relating higher-order clustering 

coefficients and motif conductance, where the motif is a clique. We note that many of the 

results are generalizations of previous theory developed by Gleich and Seshadhri [18].

The following lemma relates the higher-order clustering coefficient with neighborhood cuts, 

which we use to prove Theorem 4.4.

Lemma 4.5: Σv∈V cutKℓ (N(v)) ≤ (1 − Cℓ) · |Wℓ|.

Proof: If an ℓ-clique (u1, …uℓ) gets cut from N(v), then v must directly connect with one of 

u1, … ,uℓ, say u1. Note that the clique (u1, …uℓ) and adjacent edge (u1,v) form an open (ℓ 
+ 1)-wedge since v can not connect to all of u1, … ,uℓ. Therefore, we have an injective map 

from any cut clique on the left-hand side of the inequality to an open ℓ-wedge.

Next, we define a probability distribution on the nodes, pℓ(u) = |Wℓ(u) |/|Wℓ|, which connects 

the global and local ℓth-order clustering coefficient in the following lemma.

Lemma 4.6: Σu∈V pℓ(u)Cℓ(u) = Cℓ.

Proof

∑u ∈ V pℓ(u)Cℓ(u) = ∑u ∈ V
∣ Wℓ(u) ∣

∣ Wℓ ∣ ·
ℓ · ∣ Kℓ + 1(u) ∣

∣ Wℓ(u) ∣ = ℓ
∣ Wℓ ∣ · ∑u ∈ V ∣ Kℓ + 1(u) ∣ = ℓ

∣ Wℓ ∣ · (ℓ

+ 1) ∣ Kℓ + 1 ∣ = Cℓ .

The following lemma creates a random variable whose expectation is bounded by 1−Cℓ, 

which we use in the proof of Theorem 4.4.

Lemma 4.7:  ∑u ∈ V pℓ(u)
cutKℓ

(N(u))

∣ Wℓ(u) ∣ ≤ 1 − Cℓ.

Proof: Using Theorem 4.5, 

∑u ∈ V pℓ(u)
cutKℓ

(N(u))

∣ Wℓ(u) ∣ = 1
∣ Wℓ ∣ ∑u ∈ V cutKℓ

(N(u)) ≤ 1
∣ Wℓ ∣(1 − Cℓ) · ∣ Wℓ ∣ = 1 − Cℓ.

We are finally ready to prove our main result, and we will prove the existence using the 

probabilistic method. Suppose we choose a node u according to the probability distribution 

pℓ(u). Let X = cutKℓ(N(u))/|Wl (u) | be a random variable. According to Lemma 4.7, [X] ≤ 1 

− Cℓ. Then for any constant a > 1, by Markov’s inequality, we have ℙ[X > a(1−Cℓ)] ≤ 1/a. Let 

b = (aCℓ −1)/(a − 1), and p = ℙ[Cℓ(u) < b]. Now according to Lemma 4.6, we have that

Cℓ = ∑Cℓ(u) < b pℓ(u)Cℓ(u) + ∑Cℓ(u) ≥ b pℓ(u)Cℓ(u) < bp + (1 − p) .
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Thus p < (1 − Cℓ)/(1 − b) = 1 − 1/a. By the union bound, the probability that cutKℓ(N(u))/|Wℓ
(u) | > a(1 − Cℓ) or Cℓ(u) < b is less than 1. Therefore, there exists some node u such that 

cutKℓ (N(u)) ≤ a(1 − Cℓ) · |Wℓ (u) | and Cℓ(u) ≥ b. Now we show that, for this u, we have

ϕℓ(N(u)) ≤ [1 − Cℓ]/[1 − Cℓ + (aCℓ − 1)/(a − 1)] .

We first find a lower bound on volKℓ(N(u)). First, each ℓ-clique cut would contribute at least 

one into volKℓ(N(u)). Second, each (ℓ + 1)-clique in Kℓ+1 (u) uniquely corresponds to an ℓ-
clique in N(u) which is induced by the ℓ nodes in the (ℓ + 1)-clique other than u, thus will 

contribute ℓ into volKℓ(N(u)). Note that each (ℓ + 1)-clique in Kℓ+1 (u) closes ℓ different ℓ-
wedges in Wℓ(u), and there are Cℓ(u) |Wℓ(u) | closed ℓ-wedges. Therefore, by combining all 

the observations here, we have

volKℓ
(N(u)) ≥ cutKℓ

(N(u)) + ℓ · Cℓ(u) ∣ Wℓ(u) ∣ /ℓ

≥ cutKℓ
(N(u)) + b ∣ Wℓ(u) ∣ .

Now combining that cutKℓ(N(u)) ≤ a(1 −Cℓ) · |Wℓ(u) | and our assumption that 

volKℓ
(N(u)) ≤ volKℓ

(N(u)),

ϕKℓ
(N(u)) =

cutKℓ
(N(u))

volKℓ
(N(u)) ≤

cutKℓ
(N(u))

cutKℓ
(N(u)) + b ∣ Wℓ(u) ∣

≤
a(1 − Cℓ) · ∣ Wℓ(u) ∣

a(1 − Cℓ) ∣ Wℓ(u) ∣ + b ∣ Wℓ(u) ∣ =
1 − Cℓ

1 − Cℓ +
aCℓ − 1
a(a − 1)

.

Finally, (1) is obtained by setting a = (1 + 1 − Cℓ)/Cℓ.

Local minima as good seeds—Theorem 4.4 says that there must be at least one node 

whose 1-hop neighborhood has small motif conductance for clique motifs, provided there is 

higher-order clustering in the network. We use this as motivation to consider nodes whose 1-

hop neighborhoods have small motif conductance as candidate seed nodes for MAPPR. 

Following the terminology of Gleich and Seshadhri [18], we say that a node u is a locally 
minimal if ϕM (N(u)) ≤ ϕM (N(v)) for all neighbors v of u. Between between 1% and 15% of 

nodes are local minima in the datasets we consider in Section 5.3. In that section, we verify 

that these local minima are in fact better seeds for MAPPR compared to random nodes, and 

we show that running MAPPR with all of these seeds is sufficient for reconstructing the 

global structure of the network.
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5 EXPERIMENTS

In this section, we first evaluate the performance of our MAPPR algorithm on networks with 

ground truth communities or clusters, both on synthetic networks in Section 5.1 and on real-

world networks in Section 5.2.1 Our evaluation procedure of both the edge-based APPR and 

MAPPR is the following. For each ground truth community, we use every node as a seed to 

obtain a set and then pick the set with the highest F1 score for recovering the ground truth. 

Next, we average of the F1 scores over all detected communities for the detection accuracy 

of the method. This measurement captures how well the community can be recovered, and 

has previously been used to compare seeded clustering algorithms [26].

In Section 5.3, we empirically evaluate the theory of Section 4.2 for finding good seed 

nodes. We first show the existence of 1-hop neighborhood clusters of small motif 

conductances in real-world networks, and then use this idea to find seeds upon which 

running MAPPR will output many clusters with small motif conductance.

5.1 Recovering communities in synthetic networks with MAPPR

We first evaluate our MAPPR method for recovering ground truth in two common synthetic 

random graph models—the planted partition model and the LFR model. In both cases, we 

find that using triangle motifs increases the range of parameters in which we are able to 

recover the ground truth communities.

Planted partition model—The planted partition model generates an undirected 

unweighted graph with kn1 nodes. Nodes are partitioned into k built-in communities, each of 

size n1. Between any pair of nodes from the same community, an edge exists with 

probability p and between any pair of nodes from different communities, an edge exists with 

probability q. Each edge exists independently of all other edges.

In our experiment, we examine the behavior of MAPPR and the edge-based APPR methods 

by fixing parameters n1 = 50, k = 10, p = 0.5, and takings different values of q such that the 

community mixing level μ = [(k − 1)q]/[p + (k − 1)q], which measures the fraction of 

neighbors of a node that cross cluster boundary, varies from 0.1 to 0.9. For each value of μ, 

we computed the average of the “mean best” F1 score described above over 20 random 

instances of the graph. For MAPPR, we used the triangle motif. We are motivated in part by 

recent theoretical results of Tsourakakis et al. showing that with high probability, the 

triangle conductance of a cluster in the planted partition model is smaller than the edge 

conductance [43]. Here we take an empirical approach and study recovery instead of 

conductance.

Figure 3A illustrates the results. Using triangles with MAPPR significantly outperforms the 

edge-based APPR method when μ ∈ [0.4, 0.6]. In this regime, for any given node, the 

expected number of intra-community edges and inter-community edges is roughly the same. 

Thus, the edge-based method degrades in performance. However, the number of intra-

1As part of this paper, real-world datasets and implementations of the MAPPR algorithms are available at http://snap.stanford.edu/
mappr.
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community triangles remains greater than the number of inter-community triangles, so the 

triangle-based method is able to recover the planted partition.

LFR model—The LFR model also generates random graphs with planted communities, but 

the model is designed to capture several properties of real-world networks with community 

structure such as skew in the degree and community size distributions and overlap in 

community membership for nodes [28]. For our purposes, the most important model 

parameter is the mixing parameter μ, which is the fraction of a node’s edges that connect to 

a node in another community. We fix the other parameters as follows: n = 1000 is the 

number of nodes, where 500 nodes belong to 1 community and 500 belong to 2; the number 

of communities is randomly chosen between 43 and 50; the average degree is 20; and the 

community sizes range from 20 to 50.

We again use the edge-based APPR method and MAPPR with the triangle motif. Figure 3B 

shows the results. The performance of the edge-based method decays as we increase the 

mixing parameter μ from 0.1 to 0.4, while the triangle-based method maintains an F1 score 

of approximately 0.9 in this regime. For mixing parameters as large as 0.6, the F1 score for 

MAPPR is still three times larger than that of the edge-based method, and throughout nearly 

the entire parameter space, using triangles improves performance.

To summarize, incorporating triangles into personalized PageRank dramatically improves 

the recovery of ground truth community structure in synthetic models. In the next section, 

we run experiments on both undirected and directed real-world networks.

5.2 Recovering communities in real-world networks with MAPPR

We now compare the edge- and motif-based APPR methods on real-world networks with 

ground truth communities. Although these graphs have as many as 1.8 billion edges, the 

APPR method takes at most a few seconds per seed once the graph is in memory.

Undirected graphs—We analyzed several well-known networks with ground truth 

community structure constructed from Web data: com-Amazon, com-DBLP, com-Youtube, 

com-LiveJournal, com-Orkut, and com-Friendster [47]. For each network, we examined 100 

communities whose sizes ranged between 10 and 200 nodes. Summary statistics of the 

datasets and our experiment are in Table 1. In 5 out of 6 networks, MAPPR achieves a 

higher F1 score than edge-based APPR. In 3 of the 5 networks, the F1 score provides a 

relative improvement of over 5%. In all 6 networks, the average precision of the recovered 

clusters is larger, and in 4 of these networks, the change is greater than 5%. We suspect this 

arises from triangles encouraging more tight-knit clusters. For example, dangling nodes 

connected by one edge to a cluster are ignored by the triangle-based method, whereas such a 

node would increase the edge-based conductance of the set. In 4 of the 6 networks, recall in 

the triangle-based method provides relative improvements of at least 5%.

Directed graphs—A major advantage of MAPPR is that it easily handles directed graphs; 

we simply need to specify the directed motifs. Here, we use the three different directed 

triangle motifs in Figure 1 (M1, the undirected triangle; M2, the cycle; and M3, the feed-

forward loop). We form our motif weighted matrix W with respect to general subgraphs (i.e., 
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not induced subgraphs). Thus, a triangle with all six directed edges contains 1 instance of 

motif M1, 2 instances of motif M2, and 2 instances of motif M3.

We analyze two directed networks. The first is an e-mail network between members of a 

European research institution (email-Eu), where department membership of researchers are 

the ground truth communities. The second network is the English Wikipedia hyperlink 

network (wiki-cats), where the article categories are the ground truth communities (we only 

consider 100 categories for our analysis). The datasets and recovery results are summarized 

in Table 2. For both networks, using motif M1 provides an improvement in F1 score over the 

edge-based method. The improvement is drastic in email-Eu (25% relative improvement). In 

fact, all three motifs lead to substantial improvements in this network. We also see that in 

both networks, the motifs provide additional precision but sacrifice recall. These tighter 

clusters are expected for the same reasons as for the undirected networks.

We investigate the results for email-Eu in more detail, as the use of motifs dramatically 

improves the recovery of ground truth clusters with respect to F1 score. First, we used every 

node in the network as a seed for the APPR methods with edges and the three motifs (Figure 

4A). The clusters bifurcate into small (< 100 nodes) and large (> 200 nodes) sizes. For the 

small clusters, the edge-based ones concentrate in sizes of 70–100. In this range, there are 

several clusters with much smaller motif-based conductance for all three motifs. This 

provides evidence that the 3 motifs are better models for the community structure in the 

network. We also see that of the large clusters, the edge-based ones tend to be the largest. 

Since these sets are larger than the sizes of the communities in the network, this observation 

provides evidence for why precision is better when using triangle motifs with MAPPR.

Next, we examined the sweep profile for a single seed node in the email-Eu network (Figure 

4B). The sweep profile highlights key differences between the output of the motif-based and 

edge-based algorithms. Although the general shape of the sweep profile is the same across 

the 3 motifs and edges, the minimum of the curves occurs for a smaller set and at a smaller 

conductance value for the motifs. A plausible explanation is that the edge-based and motif-

based APPR methods are capturing roughly the same set, but the constraint of triangle 

participation excludes some nodes. The smaller motif conductance values indicate that these 

motifs are better models for the cluster structure in the network.

5.3 Finding many good seed nodes

We now empirically analyze the theory of Section 4.2. The goal of our experiments here is 

(i) to demonstrate that there are 1-hop neighborhood clusters of small motif conductance as 

a test of how well Theorem 4.4 holds in practice, and (ii) to use this idea to quickly find 

many clusters with minimal motif conductance by running targeted cluster expansion around 

a subset of the 1-hop neighborhood clusters. Regarding (i), we find that real-world networks 

exhibit much better results than predicted by the theory and the 1-hop neighborhood with 

minimal motif conductance is competitive with spectral graph theory approaches. Regarding 

(ii), we show that locally minimal nodes are better seeds than random nodes. We use this 

insight to find the global structure of clique conductance clusters more quickly than 

exhaustive enumeration.
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We evaluate 1-hop neighborhood cluster quality in terms of motif conductance for 2-clique 

(edge), 3-clique (triangle), and 4-clique motifs using four undirected networks where we can 

exhaustively sample targeted clusters easily: ca-CondMat, a co-authorship network 

constructed from papers posted to the condensed matter category on arXiv [30]; fb-

Harvard1, a snapshot of the friendships network between Harvard students on Facebook in 

September 2005 [42]; email-Enron, an e-mail communication network of the employees of 

Enron Corporation and their contacts [25]; and web-Google, a Web graph released by 

Google for a programming contest [31]. Summary statistics for the networks are in Table 4.

1-hop neighborhoods have small motif conductance—Plugging the higher-order 

clustering coefficients from Table 4 into the bound from Theorem 4.4 yields weak, albeit 

non-trivial bounds on the smallest neighborhood conductance (all bounds are ≥ 0.9 for the 

networks we consider). However, the spirit of the theorem rather than the bound itself 

motivates our experiments: with large higher-order clustering, there should be a 

neighborhood with small clique conductance. We indeed find this to be true in our results.

Table 3 compares the neighborhood with smallest motif conductance for the 2-clique, 3-

clique, and 4-clique motifs with the Fiedler cluster obtained by a sweep procedure on the 

second eigenvector of the normalized Laplacian matrix [14]. Here, the Fiedler cluster 

represents a method that uses the global structure of the network to compare against the 

local neighborhood clusters. In all cases, the best neighborhood cluster has motif 

conductance far below the upper bound of Theorem 4.4. For all clique orders, the best 

neighborhood cluster always has conductance within a factor of 3.5 of the Fiedler cluster in 

ca-CondMat, email-Enron, and fb-Harvard1. With web-Google, the conductances are much 

smaller but the best neighborhood still has conductance within an order of magnitude of the 

Fiedler set. We conclude that the best neighborhood cluster in terms of conductance, which 

comes from purely local constructs, is competitive with the Fiedler vector that takes into 

account the global graph structure. This motivates our next set of experiments that uses 

nodes that induce small neighborhood conductance as seeds for the APPR method.

Local minima are good seeds—So far, we have used our theory to find a single node 

whose 1-hop neighborhood has small motif conductance for clique motifs. We examine this 

further by using nodes whose neighborhoods induce good clusters as seeds for MAPPR. 

Recall that we defined a node u to be locally minimal if ϕM (N(u)) ≤ ϕM (N(v)) for all 

neighbors v of u. To test whether local minima are good seeds for APPR, we first 

exhaustively computed MAPPR clusters using every node in each of our networks as a seed. 

Next, we used a one-sided Mann Whitney U test to test the null hypothesis that the local 

minima yield APPR clusters with motif conductances that are not less than motif 

conductances from using non-local minima as seeds (Table 5). The p-values from these tests 

say that we can safely reject the null hypothesis at significance level < 0.003 for all cliques 

and networks considered except for 2-cliques in ca-CondMat. In other words, local minima 

are better seeds than non-local minima.

Finally, we use these local minimum seeds to construct network community profile (NCP) 

plots for different motifs. NCP plots are defined as the optimal conductance over all sets of a 

fixed size k as a function of k [31]. The shapes of the curves reveal the cluster structure of 
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the networks. In practice, these plots are generated by exhaustively using every node in the 

network as a seed for the APPR method [31]. Here, we compare this approach to two 

simpler ones: (i) using the neighborhood sizes and conductances and (ii) using only local 

minima as seeds for APPR. In the latter case, between 1% and 15% of nodes are local 

minima, depending on the network, so this serves as an economical alternative to the typical 

exhaustive approach.

Figure 5 shows the NCP plots for ca-CondMat and fb-Harvard1 with the triangle and 4-

clique motifs. Seeding with local minima is sufficient for capturing the major trends of the 

NCP plot. In general, the curves constructed from neighborhood information capture the first 

downward spike in the plot, but do not capture larger sets with small conductance. Finally, 

the triangle and 4-clique NCP plots are quite similar for both networks. Thus, we suspect 

that local minima for lower-order cliques could also be used as good seeds when looking for 

sets based on higher-order cliques.

6 DISCUSSION

Our work enables fast local clustering of graphs in terms of rich, higher-order structures 

with theoretical guarantees on cluster quality. Our method is also an effective technique for 

finding clusters in directed graphs, a common data type with relatively few analytic tools, 

and we found that using directed triangle motifs provided substantial improvements in 

recovery of communities in a directed e-mail network. We also found triangles critical for 

recovery in common synthetic models. Lastly, we computed local motif-based clusters for 

clique motifs through 1-hop neighborhoods and found the centers of 1-hop neighborhoods 

with small motif conductance to be good seeds. Neighborhoods also revealed correlations 

between cliques of different orders—in several cases, the same neighborhood has the 

smallest motif conductance for different clique motifs. Exploring this structure is an 

interesting avenue for future research.
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Figure 1. 
Examples of three directed motifs: a triangle in any direction (M1), a cycle (M2), and a feed-

forward loop (M3).
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Figure 2. 
Illustration of (edge) conductance (A) and motif conductance (B) for the same set of nodes 

in the same graph, where the motif M is the triangle. Our methods finds clusters of nodes 

based on the motif conductance, where the user can decide which motif M to use for the 

clustering.
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Figure 3. 
Average F1 score on detected clusters in the planted partition model (A) and LFR model (B) 

as a function of the mixing parameter μ that specifies the fraction of neighbors of a node that 

cross cluster boundaries. We use the classical edge-based APPR and our triangle-based 

MAPPR to recover ground truth clusters. There is a large parameter regime where the 

triangle-based approach significantly outperforms the edge-based approach in both models.
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Figure 4. 
A: Distribution of set size and conductance from using each node in email-Eu as a seed for 

edge-based APPR and motif-based APPR (MAPPR) with the three motifs in Figure 1. 

Smaller edge-based cluster concentrate in sizes of 70–100, a regime where also containing 

many motif-based clusters with smaller conductance. B: Sweep profile for a single seed in 

email-Eu for edge and the same three motifs. The shape of the curves is similar, but the 

minima for the 3 motif-based curves occur for smaller set sizes and have smaller motif 

conductances compared to the curve for edges.
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Figure 5. 
NCP plots for two networks with two different clique sizes. Curves are constructed from 

MAPPR with all nodes as seeds (blue), MAPPR with just local minima as seeds (green), and 

all 1-hop neighborhoods (purple). Using local minima as seeds captures the trends of 

exhaustive PPR using only a fraction of the seeds.
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Table 5

The p-values from Mann-Whitney U tests of the null hypothesis that the motif conductances of sets from 

MAPPR seeded with local minima are not less than the motif conductances of sets from MAPPR seeded with 

non-local minima. In all but ca-CondMat with the standard edge motif, we reject the null at a significance 

level < 0.003.

motif ca-CondMat email-Enron fb-Harvard1 web-Google

edge 0.87 < 1·10−16 8.17·10−05 < 1·10−16

triangle 2.07·10−03 < 1·10−16 4.32·10−04 < 1·10−16

4-clique 7.20·10−10 < 1·10−16 1.55·10−05 < 1·10−16
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	1 INTRODUCTION
	Present work: Local higher-order clustering—In this paper we develop local algorithms for finding clusters of nodes based on higher-order network structures (also called network motifs, Figure 1). Our local methods search for a cluster (a set of nodes) S with minimal motif conductance, a cluster quality score designed to incorporate the higher-order structure and handle edge directions [5]. More precisely, given a graph G and a motif M, the algorithm aims to find a set of nodes S that has good motif conductance (for motif M) such that S contains a given set of seed nodes. Cluster S has good (low) motif conductance for some motif M if the nodes in S participate in many instances of M and there are few instances of M that cross the set boundary defined by S. Figure 2 illustrates the concept of motif conductance, where the idea is that we do not count the number of edges that are cut, but the number of times a given network motif M gets cut. This way edges that do not participate in a given motif (say, a triangle) do not contribute to the conductance. Motif conductance has the benefit that it allows us to focus the clustering on particular network substructures that are important for networks of a given domain. For example, triangles are important higher-order structures of social networks [19] and thus focusing the clustering on such substructures can lead to improved results.Our main approach is to generalize Approximate Personalized PageRank (APPR) [2] to finding sets of provably small motif conductance (Theorem 4.3). The APPR method is a graph diffusion that “spreads” mass from a seed set to identify the cluster. It has an extremely fast running time, which is roughly proportional to the size of the output cluster. Our generalization, the motif-based APPR method, or MAPPR, uses a pre-processing step that transforms the original network into a weighted undirected graph where the weights depend on the motif of interest. This procedure finds all instances of the motif, but does not store the enumeration, which helps to scale to larger networks (for example, if the motif is a clique such as a triangle, no additional memory is needed by our method). We show that running APPR on this weighted network maintains the provably fast running time and has theoretical guarantees on cluster output quality in terms of motif conductance. An additional benefit of our MAPPR method is that it naturally handles directed graphs on which graph clustering has been a longstanding challenge. The original APPR method can only be used for undirected graphs, and existing local approaches for APPR on directed graphs are challenging to interpret [3].We use MAPPR on a number of community detection tasks and show improvements over the corresponding edge-based methods. We show that using the triangle motif improves the detection of ground truth communities in synthetic networks. In addition, we identify important directed triangle motifs for recovering community structure in directed graphs.We also show how to identify good seeds for finding local higher-order clusters when the motif is a clique. To do this, we develop a theory around the relationship between 1-hop neighborhoods, motif conductance, and a recently developed higher-order generalization of the network clustering coefficient. Essentially, we show that if the network has a large ℓth-order clustering coefficient Cℓ, then there exists some node whose 1-hop neighborhood has small ℓ-clique conductance. We use a notion of local optimality in node neighborhood conductances to identify many good seed nodes for MAPPR and find that the resulting clusters capture global trends in the clustering structure of the graph.In summary, our paper develops simple and flexible methods for local higher-order graph clustering with theoretical guarantees. By going beyond the old edge-based community detection objective functions, our work opens a new door to higher-order clustering and community detection problems that apply to a broad set of network clustering problems.
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	2 PRELIMINARIES
	Cut, volume, and conductance—The cut of a set of nodes S ⊂ V, denoted by cut(S), is the number of edges with one end point in S and the other end point in the complement set S̄ = V \S. The volume of a set of nodes S, denoted by vol(S), is the number of edge end points in S, i.e. vol(S) = Σu∈S du, where du is the degree of node u. The conductance of a set of nodes S ⊂ V isFigure 2A illustrates the concept. When vol(S) ≤ vol(S̄), the conductance measures the ratio of the number of edges leaving S to the number of edges in S. Note that conductance is symmetric—ϕ(S) = ϕ(S̄) since cut(S) = cut(S̄). Conductance generalizes to weighted networks where cut(S) is the sum of weights cut and vol(S) is the sum of weighted degrees. Small conductance indicates a good cluster, and we will use this metric (and the motif conductance defined next) for evaluating cluster quality.Conductance is recognized as one of the most important graph clustering criterions [39] and is empirically effective at capturing ground-truth communities compared to other popular measures used in community detection [47]. Although minimizing conductance is NP-hard [46], there are approximation algorithms with theoretical guarantees for finding clusters with small conductance [2, 9]. A known issue of using conductance as a global clustering criterion is cluster imbalance, i.e., the detected clusters tend to be of uneven sizes [29, 31]. In local clustering, we seek small clusters containing a seed node, so the imbalance works in our favor.Motif cut, motif volume, and motif conductance—Benson et al. recently generalized the cut, volume, and conductance measures to account for network motifs [5]. For this paper, we define a network motif M to be any small connected graph (such as a triangle), and an instance of M in a graph G is some induced subgraph H of G that is isomorphic to M. Given a motif M, the motif cut of a set of nodes S, denoted by cutM (S), is the number of instances of M that have at least one end point (i.e., node) in S and at least one end point in S̄ (Figure 2B). The motif volume of a set of nodes S, denoted by volM (S) is the number of motif instance end points in S, i.e., the number of times a node is in S, counted over each node in every instance of M. The motif conductance for a given motif M is thenIn the case that M is an edge, these definitions are simply the original cut, volume, and conductance measures described above. These definitions also accommodate mixtures of motifs (e.g., triangles and edges) by counting over the union of instances of each motif type.Comparing edge and motif conductance—We often compare values of motif conductance to edge conductance (see Figure 2). Although these two objective functions measure different (but related) quantities, they both represent a probability. Edge conductance is equivalently the probability that traversing a random edge adjacent to a randomly selected node from the cluster leads outside the cluster (provided that the volume of the cluster is less than half of the total graph volume). Motif conductance is the probability that a traversing to a random end point of a randomly chosen motif adjacent to a randomly selected node from the cluster leaves the cluster (provided that the motif volume of the cluster is less than half of the total graph volume). Thus, a motif conductance much smaller than an edge conductance is evidence that the higher-order structured exposed by the motif characterizes the cluster structure more clearly.
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