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Abstract

The celebrated Cheeger’s Inequality [AM35, Al686] estsiindis a bound on the edge expansion
of a graph via its spectrum. This inequality is central toch $spectral theory of graphs, based on
studying the eigenvalues and eigenvectors of the adjacmatsix (and other related matrices) of
graphs. It has remained open to define a suitable spectralrfarchypergraphs whose spectra can
be used to estimate various combinatorial properties dfyipergraph.

In this paper we introduce a new hypergraph Laplacian opeganeralizing the Laplacian ma-
trix of graphs. In particular, the operator is induced byféudion process on the hypergraph, such
that within each hyperedge, measure flows from verticesnigamiaximum weighted measure to
those having minimum. Since the operator is non-linear, axeho exploit other properties of the
diffusion process to recover a spectral property concgrtiia “second eigenvalue” of the resulting
Laplacian. Moreover, we show that higher order spectrgb@riies cannot hold in general using the
current framework.

We consider a stochastic diffusion process, in which eadiexalso experiences Brownian noise
from outside the system. We show a relationship betweeretensl eigenvalue and the convergence
behavior of the process.

We show that various hypergraph parameters like multi-wgyaasion and diameter can be
bounded using this operator’s spectral properties. Siigleehorder spectral properties do not hold
for the Laplacian operator, we instead use the concept afgiural minimizers to consider higher
order Cheeger-like inequalities. For ahyc N, we give a polynomial time algorithm to compute
an O(log r)-approximation to thé:-th procedural minimizer, whereis the maximum cardinality
of a hyperedge. We show that this approximation factor isnmgdtunder theSSE hypothesis
(introduced byl[[RS10]) for constant valuesfof

Moreover, using the factor preserving reduction from wegbepansion in graphs to hypergraph
expansion, we show that all our results for hypergraphseie vertex expansion in graphs.

*A preliminary version of this paper appeared in STOC 2015ufl5] and the current paper is the result of a merge
with [CTZ15].

fDepartment of Computer Science, the University of Hong Kong

Princeton University. Supported by the Simons Collaboratin Algorithms and Geometry. Part of the work was done
while the author was a student at Georgia Tech and suppoyt8aitosh Vempala’'s NSF award CCF-1217793.


http://arxiv.org/abs/1605.01483v1

Contents

1 Introduction
1.1 Related Work . . . . . . . . e e e

2 Notation

3 Overview of Results

3.1 Laplacian and Diffusion Process . . . . . . . . . . . . . . e e
3.2 Diffusion Processes . . . . . . . . . . e e
3.3 Cheegerlnequalities . . . . . . . . . . e
3.4 Hardness via Vertex Expansion2¥Graphs . . . . . . .. ... ... ... . ...
3.5 Approximation Algorithms . . . . . . . . .. e
3.6 Sparsest Cutwith GeneralDemands . . . .. .. ... ... ... .........

3.6.1 Discussion . . . ... e

3.7 Organization. . . . . . . . . e

4 Defining Diffusion Process and Laplacian for Hypergraphs
4.1 Defining Diffusion Process to Construct Laplacian
4.2 ADensestSubsetProblem . . ... .. ... ... ... .. e
4.3 Densest Subset Procedure Defines Laplacian . . . . . . . ........ ... ... ...
4.4 Spectral Properties of Laplacian . . . . . . . . .. ... .. . .

5 Diffusion Processes
5.1 Stochastic Diffusion Process . . . . . . . . . . . . e e
5.2 Bottlenecks for the Hypergraph Diffusion Process . . ...... . . . . ... .. .. ..
5.3 LowerBoundsonMixingTime . . . . . . . . . . . . i i e

5.4 Hypergraph Diameter . . . . . . . . . .. e

6 Cheeger Inequalities for Hypergraphs
6.1 Basic Cheeger Inequalities for Hypergraphs . . . . . . . ... .. .. .. ... ..
6.2 Higher Order Orthogonal Minimaximizers . . . . . . . . .. . ... ... ......
6.3 Small SetExpansion . . . . . . . . . .. e
6.4 Higher Order Cheeger Inequalities for Hypergraphs . ...... . . . . . .. .. .. ..

7 Vertex Expansion in2-Graphs and Hardness

7.1 Hardness via the Small-Set Expansion Hypothesis . . . . . .. .. ... ... ...

8 Polynomial Time Approximation Algorithm for Procedural M inimizers
8.1 AnSDP Relaxation to Approximate Procedural Minimizers: ProoTokoremi 82 . . .



gl

9 Sparsest Cut with General Demands
A Hypergraph Tensor Forms 56

B Examples 57

1 Introduction

There is a rich spectral theory of graphs, based on studiimgigenvalues and eigenvectors of the adja-
cency and other related matrices of graphs [AM85, Al686, 3GBS10, LRTV11 LRTV12, LOT12].
We refer the reader to [ChuS7, MT06] for a comprehensiveesuon Spectral Graph Theory. A funda-
mental graph parameter is its expansion or conductanceedefin a graphG = (V, E) as:

- 95|
¢c = min — {vol(S),vol(5)}’

where byvol(.S) we denote the sum of degrees of the vertices'imnddS is the set of edges in the
cut induced byS. Cheeger's inequality [AM85, Alo86], a central inequalitySpectral Graph Theory,
establishes a bound on expansion via the spectrum of tha:grap

A
72 < oa < V2,

where ), is the second smallest eigenvalue of the normalized Laplagiatrix Lo := W~ 1/2(W —
A)W~1/2 andA is the adjacency matrix of the graph antis the diagonal matrix whosé, i)-th entry

is the degree of vertek This theorem and its many (minor) variants have played anraje in the
design of algorithms as well as in understanding the linfitsoonputation([SJ89, SSB6, Din07, ARV09,
ABS10]. We refer the reader to [HLWO6] for a comprehensivievey

Edge expansion can be generalized to edge-weighted hgpégrin a hypergrapd = (V, E), an edge
e € Eis a non-empty subset &f. The edges have non-negative weights indicatedwhyF — R, .
We say thatH is anr-graph (orr-uniform) if every edge contains exactiyertices. (Hence, a normal
graph is a 2-graph.) Each vertexc V' has weightw, := > _p.,c. we. A subsetS of vertices has
weightw(S) := >~ g wy, and the edges it cuts &S := {e € I : e intersects bott§ andV \ S}. The

edge expansionf S C V is defined ag(S) := ”“”w(?b:c’)). The expansion off is defined as:

O i= min max{o(S), 6(V \ 5)} (1.1)
It has remained open to define a spectral model of hypergragitse spectra can be used to estimate
hypergraph parameters. Hypergraph expansion and relggsetdraph partitioning problems are of
immense practical importance, having applications inlfrand distributed computing [CA99], VLSI
circuit design and computer architecture [KAK$99, GGLRG&jientific computing! [DBH06] and
other areas. Inspite of this, hypergraph expansion prableswen’t been studied as well as their graph
counterparts (see Sectiobnll.1 for a brief survey). Spegtagih partitioning algorithms are widely used
in practice for their efficiency and the high quality of saduis that they often providé [BS94, HL95].
Besides being of natural theoretical interest, a spedieadry of hypergraphs might also be relevant for
practical applications.

The various spectral models for hypergraphs considerdtkititerature haven’t been without shortcom-
ings. An important reason for this is that there is no caradmitatrix representation of hypergraphs. For
anr-uniform hypergrapt{ = (V, E) on the vertex se¥’ and having edge séi C (‘7{) one can define
the canonicat-tensor formA as follows:

A . 1 {i17--'7ir}€E
(3150emrir) 0 otherwise .



This tensor form and its minor variants have been exploretariterature (see Sectign 1.1 for a brief
survey), but have not been understood very well. Optimiziagr tensors is NP-hard [HL13]; even
getting good approximations might be intractable [BV09Jorgbver, the spectral properties of tensors
seem to be unrelated to combinatorial properties of hypetgy (See Appendix]A).

Another way to study a hypergraph, sBy= (V, E), is to replace each hyperedge E by a complete
2-graph or a low degree expander on the vertices tif obtain a2-graphG = (V, E’). If we letr
denote the size of the largest hyperedgéirthen it is easy to see that the combinatorial properties of
G and H, like min-cut, sparsest-cut, among others, could be segmhtay a factor of2(r). Therefore,
this approach will not be useful wheris large.

In general, one cannot hope to have a linear operator forrhsagehs whose spectra captures hypergraph
expansion in a Cheeger-like manner. This is because thieegées of such an operator will imply the

existence of a polynomial time algorithm obtainin@s(x/OPT) bound on hypergraph expansion, but

we rule this out by giving a lower bound 6f(/OPT log r) for computing hypergraph expansion, where
r is the size of the largest hyperedge (Theorem]3.18).

Our main contribution is the definition of a new Laplacian igper for hypergraphs, obtained by gener-
alizing the random-walk operator on graphs. Our operatesamt require the hypergraph to be uniform
(i.e. does not require all the hyperedges to have the samp e describe this operator in Sectidn 4
(see also Figure 3.1). We present our main results aboutypisrgraph operator in Sectibh 4 and Sec-
tion[d. Most of our results are independentrdthe size of the hyperedges), some of our bounds have
a logarithmic dependence on and none of our bounds have a polynomial dependence @l our
bounds are generalizations of the corresponding boundsdaaphs.

1.1 Related Work

Freidman and Wigdersoh [FW95] studied the canonical tengbhypergraphs. They bounded the sec-
ond eigenvalue of such tensors for hypergraphs drawn ralydoom various distributions and showed
their connections to randomness dispersers. Rodrigueddfatudied the eigenvalues of a graph ob-
tained by replacing each hyperedge by a clique (Note thatstiep incurs a loss @(r2), wherer is
the size of the hyperedge). Cooper and Dutle [CD12] studieddots of the characteristic polynomial
of hypergraphs and related it to its chromatic number. [H®HQ14] also studied the canonical tensor
form of the hypergraph and related its eigenvectors to sanégured components of that hypergraph.
Lenz and Mubayil[LM12| LM15] LM13] related the eigenvectariesponding to the second largest
eigenvalue of the canonical tensor to hypergraph quasieraness. Chung [ChuB3] defined a notion
of Laplacian for hypergraphs and studied the relationskipvben its eigenvalues and a very different
notion of hypergraph cuts and homologies. [PRT12, PR1IZRKKL14,[SKM14] studied the relation
of simplicial complexes with rather different notions offlacian forms, and considered isoperimetric
inequalities, homologies and mixing times. Ene and Ngu§h1l4] studied the hypergraph multiway
partition problem (generalizing the graph multiway p#otitproblem) and gave ?;approximation algo-
rithm for 3-uniform hypergraphs. Concurrent to this wollkM14b] gave approximation algorithms for
hypergraph expansion, and more generally, hypergrapH setaxpansion; they gave &h(k+/logn)-
approximation algorithm and af (k\/OPT log r) approximation bound for the problem of computing
the set of vertices of size at md$t| /k in a hypergraphH = (V, E'), having the least expansion.

Bobkov, Houdré and Tetali [BHT00] defined a Poincairéetyfpnctional graph parameter called,
and showed that it relates to the vertex expansion of a graphGheeger-like manner, i.e. it satisfies
%0 <¢V=0 (\/K) wheregV is the vertex expansion of the graph (see Sefioh 3.4 forefiition

of vertex expansion of a graph). [LRV/13] gave @ /OPT log d)-approximation bound for comput-
ing the vertex expansion in graphs having the largest vatégxeed. Feigeet al. [FHLO8] gave an
O (v/log n)-approximation algorithm for computing the vertex expansof graphs (having arbitrary
vertex degrees).



Perest al. PSSW09] study a “tug of war” Laplacian operator on graplas igisimilar to our hypergraph
heat operator and use it to prove that every bounded reaéddlipschitz functionF' on a subset”

of a length spaceX admits a unique absolutely minimal extensionXo Subsequently a variant of
this operator was used for analyzing the rate of convergehtmral dynamics in bargaining networks
[CDP10]. [LRTV11/LRTV12[LOT12, L M14a] study higher eigeatues of graph Laplacians and relate
them to graph multi-partitioning parameters (see Secfi@h 3

2 Notation

Recall that we consider an edge-weighted hypergfdph (V, E, w), whereV is the vertex setl is the

set of hyperedges and: E — R, gives the edge weights. We let.= |V'| andm := |E|. The weight

of avertexv € Visw, := ) cp.,c. w(e). Without loss of generality, we assume that all vertices
have positive weights, since any vertex with zero weightlmamemoved. We usg" to denote the set
of column vectors. Giverf € RY, we usef, or f(u) (if we need to use the subscript to distinguish
between different vectors) to indicate the coordinateesponding ta: € V. We useAT to denote the
transpose of a matrid. For a positive integes, we denotgs] := {1,2,...,s}.

We letl denote the identity matrix an@/ € R™*" denote the diagonal matrix who&e1)-th entry isw;.
We userpy, := min.cp |e| to denote the size of the smallest hyperedge and-use := max.cp |e|

to denote the size of the largest hyperedge. Since, mostrabaunds will only need-,.., we use

r 1= Tmax TOr brevity. We say that a hypergraphregular if all its vertices have the same degree. We
say that a hypergraph imiformif all its hyperedges have the same cardinality. Recallttieexpansion
¢y of a hypergraphH is defined in[(1.1l). We drop the subscript whenever the hypplgis clear from
the context.

Hop-DiameterA list of edgesey, . . . , ¢; such thak; Ne; 1 # () fori € [l — 1] is referred as @ath The
length of a path is the number of edges in it. We say that aqath. , e; connects two vertices, v € V
if u € e; andv € ¢;. We say that the hypergraphdennectedf for each pair of vertices, v € V, there
exists a path connecting them. Thep-diameteof a hypergraph, denoted layam(H), is the smallest
valuel € N, such that each pair of verticasv € V' have a path of length at masstonnecting them.

For anz € R, we definez™ := max {z,0} andz™~ := max {—=,0}. For a vector, we use||u| :=
||u||, to denote its Euclidean norm;|ji:|| # 0, we definei := ﬁ We usel € RY to denote the vector
having 1 in every coordinate. For a vectar ¢ RY, we define its support as the set of coordinates at
which z is non-zero, i.esupp(x) := {i : x; # 0}. We usel |-] to denote the indicator variable, i E[E]
is equal tol if event £ occurs, and is equal 1 otherwise. We usgs € RY to denote the indicator
vector of the ses C V, i.e.
1 vesS
xs(v) = {

0 otherwise’

In classical spectral graph theory, the edge expansioteiteteto thediscrepancy ratipwhich is defined
as

ZeEE We MAXy vee (fu - fv)2

zue\/ wufl% 7

for each non-zero vectgf € RY. Note that) < D.(f) < 2, where the upper bound can be achieved,
say, by a complete bipartite graph withhaving 1's on one side and1’s on the other side. Observe
that if f = xg is the indicator vector for a subsgtc V, thenD,,(f) = ¢(S). In this paper, we use
three isomorphic spaces described as follows. As we shallssgnetimes it is more convenient to use
one space to describe the results.

Du(f) =

Weighted SpaceThis is the space associated with the discrepancy Exfito consider edge expansion.
For f,g € RY, the inner product is defined &g, g),, := fTWg, and the associated norm|jg||,, :=

4



VA fw- We usef L, gto denote(f, g), = 0.

Normalized Space.Given f € RV in the weighted space, the corresponding vector in the ricreca
space isc := W%f. The normalized discrepancy ratioli¥x) := Dw(W*%x) = Dy(f)-

In the normalized space, the usdalinner product and norm are used. Observe thatahdy are the
corresponding normalized vectors fpandg in the weighted space, thén, y) = (f, 9)w-

A well-known result [Chu9l7] is that thaormalized Laplaciarfor a 2-graph can be defined &s:=
| — W3 AW "3 (where A is the symmetric matrix giving the edge weights) such #é&t) coincides
with the Rayleigh quotientf the Laplacian defined as follows:

(x, Lx)

(z,2)

R(zx) :=

Measure SpaceThis is the space associated with the diffusion processitbahall define later. Given
f in the weighted space, the corresponding vector in the meagace is given by := W f. Observe
that a vector in the measure space can have negative caeglind/e do not consider inner product
explicitly in this space, and so there is no special notaftorit. However, we use thé -norm, which is

not induced by an inner product. For vectors= W%mi, we have
VWmin - |71 — 222 < [lo1 — @2ll1 < Vw(V) - [[21 — 222,

where the upper bound comes from the Cauchy-Schwarz irigqual

In the diffusion process, we consider hgwwill move in the future. Hence, unless otherwise stated, all
derivatives considered are actually right-hand-demf% = limay o+ W.

Transformation between Different Spaces.We use the Roman lettef for vectors in the weighted
spaceg for vectors in the normalized space, and Greek lettier vectors in the measure space. Observe
that an operator defined on one space induces operators othtiretwo spaces. For instance Lifs

an operator defined on the measure space, then= W~'LW is the corresponding operator on the
weighted space and := W~2LW? is the one on the normalized space. Moreover, all three apsera
have the same eigenvalues. Recall that the Rayleigh gt®@eea defined aB,,(f) := ULlwflw gng

(fifw
R(z) := &£ Forws f = x, we haveR,,(f) = R(z).

(z,)
Given a setS of vectors in the normalized spacHg is the orthogonal projection operator onto the
subspace spanned BBy The orthogonal projection operatbiy can also be defined for the weighted
space.

3 Overview of Results

A major contribution of this paper is to define a hypergrapblaeian operato£ whose spectral prop-
erties are related to the expansion properties of the widgrhypergraph.

3.1 Laplacian and Diffusion Process

In order to gain insights on how to define the Laplacian fordwgpaphs, we first illustrate that the
Laplacian for2-graphs can be related to a diffusion process. Suppose egigbtaw of a2-graph are
given by the (symmetric) matrix.

Supposep € RY is some measure on the vertices, which, for instance, caesept a probability
distribution on the vertices. A random walk on the graph carctaracterized by the transition matrix
M := AW, Observe that each column igf sums to 1, because we apphyto the column vectop to
get the distributiorMy after one step of the random walk.



We wish to define a continuous diffusion process. Obsentgdhthis moment, the measure vecjois
moving in the direction oMy — ¢ = (M — ). Therefore, if we define an operator= 1 — M on the
measure space, we have the differential equ%ig)ﬁ: —Le.

Using the transformation into the weighted spgce- W'y and the normalized space= W_%go,
we can define the corresponding operatogs := W-'LW = | — W='4 and £ := W—2LW3 =
I—W~3 AW "3 , Which is exactly the normalized Laplacian fagraphs. In the literature, the (weighted)
Laplacian is defined ag/ — A, which isWL,, in our notation. Hence, to avoid confusion, we only
consider the normalized Laplacian in this paper.

Interpreting the Diffusion Processn the above diffusion process, we consider more careftalyrate
of change for the measure at a certain veitex

dpy B
. Z wuv(fv_fu)v (3.1)
vi{u,v}eE

where f = W1y is the weighted measure. Observe that for a stationanyilitibn of the random
walk, the measure at a vertexshould be proportional to its (weighted) degreg. Hence, given an
edgee = {u,v}, equation[(3.11) indicates that there should be a contdbutf measure flowing from
the vertex with higherf value to the vertex with smallef value. Moreover, this contribution has rate
given byce := we - | fu — fol-

Generalizing Diffusion Rule to HypergraphSuppose in a hypergrapghh = (V, E, w) the vertices have
measurep € R (corresponding to = W~1y). Fore € E, we definel.(f) C e as the vertices, in

e whosef, = £+ values are minimumg,(f) C e as those whose corresponding values are maximum,
andA.(f) = max, .cr(f, — fv) as the discrepancy within edge Then, inspired from the case of
2-graphs, the diffusion process should satisfy the follgannles.

(R1) When the measure distribution is at statéwhere f = W~1y), there can be a positive rate of
measure flow from: to v due to edge: € E only if u € S.(f) andv € I.(f).

(R2) For every edge € FE, the total rate of measure flosue to e from vertices inS.(f) to I.(f) is
Ce = We - Ac(f).

We shall later elaborate how the rateof flow due to edge: is distributed among the pairs BL(f) x
I.(f). Figurel3.1 summarizes this framework.



Given a hypergraplt{ = (V, E,w), we define the (normalized) Laplacian operator as followsg-$

posexr € RY is in the normalized space with the corresponding= W2z in the measure space and
f = W1y in the weighted space.

1. For each hyperedgec E, letl.(f) C e be the set of vertices in e whosef,, = f}—z values are
minimum andS,(f) C e be the set of vertices inwhose corresponding values are maximym.

Let A.(f) := maxy vep(fu — fo)-

2. Weight Distribution.For eache € FE, the weightw, is “somehow” distributed among pairs In
Se(f) x I.(f) satisfying(R1) and(R2). Observe that if, = S,, thenA. = 0, and it does not
matter how the weight, is distributed.

For each(u,v) € Se(f) x Ie(f), there existag, = af, (f) suchthald ., e »1, a5y = we,
and the rate of flow fromx to v (due toe) is af,, - A..

For ease of notation, we lef,, = af,,. Moreover, for other pair§v’, v'} that do not receive
any weight frome, we leta,,, = 0.

3. The distribution of hyperedge weights induces a symmetatrix A, as follows. Foru # v,
Af(u,v) = aw = ). a5, (f); the diagonal entries are chosen such that entries in the row
corresponding to vertex sum tow,,. Observe thatl ; depends orp becausef = W~1¢.

Then, the operatdr(y) := (I— A;W~!)¢ is defined on the measure space, and the diffusion prdcess
is described byt2 = —Lo.

This induces the (normalized) Laplaci@h:= W~2LW2, and the operatok,, := W~!LW on the
weighted space.

Figure 3.1: Defining Laplacian via Diffusion Framework

How to distribute the weight w, in Step (2) in Figure[3.1?In order to satisfy rul€dR1), it turns out
that the weight cannot be distributed arbitrarily. We shbat the following straightforward approaches
will not work.

e Assign the weight, to just one pair(u,v) € Se x I.. For the caseS,| > 2, after infinitesimal
time, among vertices ifi,, only ¢,, (and f,,) will decrease due te. This means will no longer be
in S, after infinitesimal time, and we will have to pick anothertearin S, immediately. However,
we will run into the same problem again if we try to pick anathertex fromsS,, and the diffusion
process cannot continue.

o Distribute the weightw, evenly among pairs irb, x Ieﬂ In Example[B.3B, there is an edge
es = {a, b, c} such that the vertex if,, = {c} receives measure from the verticesin = {a, b}.
However, vertex also gives some measure to vertehecause of the edge = {b,d}. In the
example, all vertices have the same weight. Nowydf is distributed evenly amon{u, ¢} and
{b, ¢}, then the measure af decreases more slowly than thatbdbecause loses extra measure
due toes. Hence, after infinitesimal timeé,will no longer be inS.,. This means that the measure
of b should not have been decreased at all dug t@ontradicting the choice of distributing,,
evenly.

What properties should the Laplacian operator have?Even though the weight distribution in Step 2
does not satisfy ruléR1), some operator could still be defined. The issue is whether an operator

would have any desirable properties. In particular, thetspkeproperties of the Laplacian should have
be related to the expansion properties of the hypergrapbalRébat the normalized discrepancy ratio

Through personal communication, Jingcheng Liu and Alisganclair have informed us that they also noticed that dis-
tributing the weight of a hyperedge uniformly will not worlind discovered independently a similar method for resglvin
ties.



D(x) is defined for non-zera ¢ RY, and is related to hypergraph edge expansion.

Definition 3.1 (Procedural Minimizers) Definex; := W%i, wherel € RY is the all-ones vector;
71 = D(x1) = 0. SUppose (i, i) }icjk—1) have been constructed. Defing := min{D(z) : 0
x 1 {x; :i € [k —1]}}, andxy to be any such minimizer that attaing = D(xy).

Properties of Laplacian in 2-graphskor the case of 2-graphs, it is known that the discrepandy rat
D(x) coincides with the Rayleigh quotieR®(z) := % of the normalized Laplaciad, which can be
interpreted as a symmetric matrix. Hence, it follows thatsbquencé~;} obtained by the procedural
minimizers also gives the eigenvalues/f Observe that for @-graph, the sequendey; } is uniquely
defined, even though the minimizefrs; } might not be unique (even modulo scalar multiple) in the case
of repeated eigenvalues. On the other hand, for hypergraplis uniquely defined, but we shall see in

Example B.1 thaty; could depend on the choice of minimizer.

Theorem 3.2 (Diffusion Process and Laplacian)Given an edge-weighted hypergraph, a diffusion pro-
cess satisfying rule@R1) and(R2) can be defined and uniquely induces a normalized Lapla€iéhat
is not necessarily linear) on the normalized space haviegidfiowing properties.

1. Forall0 # z € RV, the Rayleigh quotienétfm’ﬁ—mf> coincides with the discrepancy ratid(x). This
implies that all eigenvalues of are non-negétive.

2. There is an operatak := W2 LW~ 2 on the measure space such that the diffusion process can be
described by the differential equatidlf = —Lo.

3. Any procedural minimizet, attainin ;= min- R
yp 2 972 O£ lW3T

However, there exists a hypergraph (Exanipleé B.4) such ¢natif procedural minimizerdzy, 2}, any

procedural minimizer attainingys := minaﬁl{%m} D(x) is not an eigenvector d ¢, ... L.

The first three statements are proved in Lemmad 4.2, 4.8 aedr@im_ 4.1l. Example B.4 suggests that
the current approach cannot be generalized to consideehigider eigenvalues of the Laplacin
since any diffusion process satisfying ru{&l) and(R2) uniquely determines the Laplaciah

D(x) satisfiesCxy = yoxo.

We remark that for hypergraphs, the Laplaciais non-linear. In general, non-linear operators can have
more or fewer tham eigenvalues. Theorem 8.2 implies that apart from= W%i, the Laplacian has
another eigenvector,, which is a procedural minimizer attaining. It is not clear if£ has any other
eigenvalues. We leave as an open problem the task of inaéetigf other eigenvalues exist.

Diffusion Process and Steepest DesceniVe can interpret the above diffusion process in terms of
deepest descent with respect to the following quadratiergiat function on the weighted space:

Qu(f) = % > we max(fu — fu)*.

eckE

Specifically, we can imagine a diffusion process in which rination is leading to a decrease in the
potential function. FoR-graphs, one can check that in fact we h%ge: —W™V,Qu(f). Hence,
we could try to defind,, f asW—lvaw(f). Indeed, LemmB4.10 confirms that our diffusion process
implies that2.Q,,(f) = — L f]|%. However, because of the maximum operator in the definition o
Qu(+), one eventually has to consider the issue of resolving tiesder to give a meaningful definition
of V;Qu(f).

Comparison to other operators. One could ask if there can be a “better” operator? A naturatatpr

that one would be tempted to try is th&eragingoperator, which corresponds to a diffusion process
that attempts to transfer measure betwabnvertices in a hyperedge to approach the stationary dis-
tribution. However, for each hyperedgec F, the averaging operator will yield information about
E;ijce (fi — fj)Q, instead ofmax; jec. (fi — fj)2 that is related to edge expansion. In particular, the av-
eraging operator will have a gap of factdfr) between the hypergraph expansion and the square root
of its second smallest eigenvalue.



3.2 Diffusion Processes

The diffusion process described in Figlrel 3.1 is given bydifferential equationfl—f = —L¢, where

¢ € RY is in the measure space. The diffusion process is detetiina@d no measure enters or

leaves the system. We believe that it will be of independetarést to consider the case when each
vertex can experience independent noise from outside tkteray for instance, in risk management
applications[[Mer69, Mer71]. Since the diffusion processantinuous in nature, we consider Brownian
noise.

For somen > 0, we assume that the noise experienced by each verteows the Brownian motion
whose rate of variance igw,. Then, the measur®, € RY of the system is an Ito process defined
by the stochastic differential equatiai®; = —L®; dt + /7 - W2 dB;. Forn = 0, this reduces to the
deterministic diffusion process in a closed system.

We consider the transformation into the normalized spéce= W*%CI%, and obtain the corresponding
equationdX; = —LX;dt + \/ndB;, whereL is the normalized Laplacian. Observe that the random
noise in the normalized space is spherically symmetric.

Convergence Metric. Given a measure vectgr € RV, denotey* := S("“,"; . Wi, which is the cor-

respondingstationary measure vector obtained by distributing the total mea3ure, . = <i, ©)
among the vertices such that each verarceives an amount proportional to its weight.

For the normalized vectar = W*ip, observe that™* := W*ip* = % -Wz1isthe projection of:

into the subspace spanned:by:= W21. We denote byI the orthogonal projection operator into the
subspace orthogonal tq.

Hence, givenr = W*%gp, we haver = x* + 11z, wherez* is the stationary component ahtk is the
transient component. Moreover,— ¢* = WE Iz,

We derive a relationship between and the system’s convergence behavior.

Theorem 3.3 (Convergence and Spectral Gappuppose, = ming., |5, R(x). Then, inthe stochas-
tic diffusion process described above, for each 0, the random variablgI1.X, ||, is stochastically dom-
inated by]| X, |2, whereX; has distributione=72!T1.X, + \/ ok (1—e~220)- N(0,1), and N (0,1)”

is the standard:-dimensional Guassian distribution with independent douates.

Mixing Time for Deterministic Diffusion Process. For the special case = 0, one can consider an
initial probability measurepy € RY such that(1,¢,) = 1. We denote the the stationary distribution

o = ﬁ -W1. Fors > 0, themixing timetT™ () is the smallest time such that for alt: > 7,

ler — @™l < 0.

Theorem 3.4 (Upper Bound for Mixing Time) Consider the deterministic diffusion process with some

initial probability measurepo € RY. Then, for alls > 0, the mixing timetf™ (0o) < 7 log ~—L—,

min

wherey? . = min,cy ©*(u).

Observe that for a regular hypergraph (i, is the same for all. € V'), Theoren_34 says that the
mixing time can b&) (logn). We believe that this fact might have applications in caugf8ampling
problems on hypergraphs a la MCMC (Markov chain monte ¢aligorithms on graphs.

Towards Local Clustering Algorithms for Hypergraphs We believe that the hypergraph diffusion

process has applications in computing combinatorial ptegggeand sampling problems in hypergraphs.
As a concrete example, we show that the diffusion processeamseful towards computing sets of

vertices having small expansion. We show that if the diingrocess mixes slowly, then the hypergraph
must contain a set of vertices having small expansion. Béalogous to the corresponding fact for
graphs, and can be used as a tool to certify an upper boundpangmgph expansion.
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Theorem 3.5 Given a hypergrapid = (V, E,w) and a probability distributionpy : V' — [0, 1], let
¢ denote the probability distribution at timeaccording to the diffusion process (Figurel3.1) apdbe
the stationary distribution.

Letd > 0. Suppose initiallyjjpo — ¢*||; > 0 and for some tim&" > 0, ||or — ¢*||; > ¢. Then, there
exists a sef C V such thaty*(S) < 1 and

1 H“PO_“P*Hl
oS <O =In———|.
( )_ < \/lém*in'(s

As in the case of graphs, this upper bound might be betterttiaguarantee obtained using 8DP
relaxation [(3.2R) in certain settings.

One could ask if the converse of the statement of Thedrens3téue, i.e., if the hypergrapfl =

(V, E,w) has a “sparse cut”, then is there a polynomial time competplbbability distributiony :

V' — [0, 1] such that the diffusion process initialized with tiig mixes “slowly”? Theorenl 316 shows
that there exists such a distributign, but it is not known if such a distribution can be computed in
polynomial time. We leave this as an open problem.

Theorem 3.6 (Lower bound on Mixing Time) Given a hypergraphH = (V, E,w), there exists a
probability measurepy on V' such that|¢y — ¢*||; > 1, and for small enough,

£mix — Q| = p Hwmin |
5 (o) ( o )

See Theorem 55 for the formal statement of Thedrein 3.6. A thie condition in Theoreimn 3.6 that
the starting distributiopg satisfy|pg — ¢*||; > % as the analogue of a random walk in a graph starting
from some vertex.

Discretized Diffusion Operator and Hypergraph Diameter A well known fact about regulag-
graphs is that the diameter of a gra@hs at mostO (log n/ (log(1/(1 — 72))))-

We define a discretized diffusion operatdr:= | — %L on the measure space in Secfion 5.4, and use it
to prove an upper bound on the hop-diameter of a hypergraph.

Theorem 3.7 Given a hypergraph{ = (V, E, w), its hop-diametediam(H) is at mostO <—1°§éVl“),
w(V)

Wy

whereN,, := maxycy

3.3 Cheeger Inequalities
We generalize the Cheeger’s inequality [AMB5, Alb86] to asgraphs.

Theorem 3.8 (Hypergraph Cheeger Inequalities)Given an edge-weighted hypergraph its expan-
sion¢y is defined as i (1]11). Then, we have the following:

% <oy <272.

However, to consider higher-order Cheeger inequalitieshfgpergraphs, at this moment, we cannot
use the spectral properties of the LaplacianMoroever, the sequendey;} generated by procedural
minimizers might not be unique. We consider the followingapaeters.

Orthogonal Minimaximizers. Define¢y := ming, ., max;e D(z;) and(y, := min,,  ,, max{D(x) :
x € span{zy,...x}}, where the minimum is ovet non-zero mutually orthogonal vectars, . . ., zj

in the normalized space. (All involved minimum and maximuan be attained becauskis continuous
and all vectors could be chosen from the surface of a unitWalkch is compact.)

10



For 2-graphs, the three parametés= ~, = (i coincide with the eigenvalues of the normalized
Laplacian£. Indeed, most proofs in the literature concerning expansind Cheeger inequalities
(e.g., [LOT12) KLL™13]) just need to use the underlying propertiesypf &, and ¢, with respect to
the discrepancy ratio, without explicitly using the spakproperties of the Laplacian. However, the
three parameters can be related to one another in the falljplwimma, whose proof is in Sectibn6.2.

Lemma 3.9 (Comparing Discrepancy Minimizers) Suppose€{~; } is some sequence produced by the
procedural minimizers. Foreach > 1, &, < v, < {; < k&. In particular, v = (5, but it is possible
thaté, < .

Given a parameter € N, the multi-way small-set expansion problem asks to compudesjoint sets
S1,59,...,5 that all have small expansion. This problem has a close abionewith the Unique
Games Conjecture [RS100, ABS10]. In recent works, higheereiglues of Laplacians were used to
bound small-set expansion2rgraphs[[LRTV12, LOT1?2]. In particular, the following rdsis achieved.

Fact 3.10 (Higher-Order Cheeger Inequalities for 2-Graph$ There exists an absolute constant-
0 such that for an®-graphG = (V, E, w) and any integek < |V|, there exis© (k) non-empty disjoint
setsSy, ..., S|k C V such that

max ¢(S;) = O (/ylogk) .

1€[ck]
Moreover, for anyk disjoint non-empty sets;,..., S, C V
Yk
Si) > —.
max ¢(S5i) 2

We prove the following generalizations to hypergraphs (Beeoremg 616 and 6.114 for formal state-
ments).

Theorem 3.11 (Small Set Expansion)Given hypergraphd = (V, E,w) and parameterk < |V,
SUPPOSESf1, fa2, - - ., fr are k orthonormal vectors in the weighted space such thatc () Dy (fs) < €.
Then, there exists a s6tC V such that S| = O (|V| /k) satisfying

»(S)=0 <k:log/<:10glogk: -/ logr - \/E) ,

wherer is the size of the largest hyperedgeAn

Theorem 3.12 (Higher-Order Cheeger Inequalities for Hypegraphs) There exist absolute constants
¢ > 0 such that the following holds. Given a hypergrafih= (V, E, w) and any integek < |V, sup-
posefi, f2,. .., fi. are k orthonormal vectors in the weighted space such thak,cp; Dy (fs) < &.
Then, there exist® (k) non-empty disjoint setS;, ..., S|, C V such that

max ¢(S;) = O <k2 log kloglogk - \/logr - \/E) .

i€[ck]
Moreover, for anyk disjoint non-empty sets;,..., S, Cc V
Ck
Si) > =
max ¢(Si) = 5

11



3.4 Hardness via Vertex Expansion irR-Graphs

Giyen a graplG = (V, E, w) having maximum vertex degrekeand a setS C V, its internal boundary
N'"(S), and external boundary°"*(.S) is defined as follows:

N"(S) := {v € 5 : Ju € Ssuch that{u,v} € E} and

Nt (S) := {v € S : Ju € Ssuch that{u,v} € E}.

The vertex expansion" (S) of a setS is defined as

Viay . [VM(S)] + [N (S|

Vertex expansion is a fundamental graph parameter thadpisations both as an algorithmic primitive
and as a tool for proving communication lower bounds [LT8880, BTL84, AK95! SM0D].

Bobkov et al. [BHTOOQ] defined a Poincairé-type functional graph paraneis follows. Given an
undirected graplis = (V, E), denotev ~ u if {v,u} € E, and define

2
As = min Zue\/ maXv:u (fu—fo) .
feRY ZuEV f% T n (Zuev fU)

Observe that the expression to be minimized does not chdrije same constant is added to every
coordinate. Hence, without loss of generality, we can asstinat the above minimization is taken over

all non-zero vectors such th#t L 1. Therefore, we can equivalently write

Ao = min DV(f), (3.2)
0£f11

whereDV () is the discrepancy ratio for vertex expansion:

ZueV maXy~y (fu - fv)2
ZUEV fl% .

If xs is the characteristic vector of the suslseof vertices, then it follows thap" (S) = DV (xs). We
can see that there are many similarities with edge expanamhindeed a Cheeger-type Inequality for
vertex expansion in graphs was proved.in [BHTOO].

D"(f) =

Fact 3.13 ([BHTO00Q]) For an un-weighted graplr = (V, E),

%"’ <% < V2

Given the similarities between vertex expansiorR-graphs and hyperedge expansion, one could imag-
ine that a diffusion process can be defined with respect texexpansion in order to construct a similar
Laplacian operator, which would hawg, as an eigenvalue. However, instead of repeating the whole ar
gument and analysis, we remark that there is a well knownctemiufrom vertex expansion i2-graphs

to hyperedge expansion.

Reduction 3.14

Input: Undirected2-graphG = (V, E).

Output:We construct hypergrapf/ = (V, E’) as follows. For every vertex € V', we add the (unit
weighted) hyperedgév} U N°'t({v}) to F'.

12



Fact 3.15 ([LM14b]) Given a graphG = (V, E,w) of maximum degre€ and minimum degree;d
(for some constant; ), the hypergraphH = (V, E’) obtained from Reductidn_3.14 has hyperedges of
cardinality at most + 1 and,
1

c16u(S) < P $&(S) < b (S) vSCV.
Remark 3.16 The dependence on the degree in Facti3.15 is only becausx wpansion and hyper-
graph expansion are normalized differently. The vertexaegn of a sef is defined as the number of
vertices in the boundary & divided by the cardinality of', whereas the hypergraph expansion of a set
S is defined as the number hyperedges crossimlivided by the sum of the degrees of the vertices.in

Using Fact3.15, we can apply our results for hypergraph eggansion to vertex expansiondfregular
2-graphs. In particular, we relate, with the parametet, associated with the hypergraph achieved in
Reduction 3.14.

Theorem 3.17 Let G = (V, E) be a undirectedi-regular 2-graph with parameten\,, and letH =
(V, E') be the hypergraph obtained in Reduction 3.14 having paramet Then,

Y2 Ao
- < .
A =72

< >
—d

The computation of\,, is not known to be tractable. For graphs having maximum xestagreed,
[LRV13] gave a0 (log d)-approximation algorithm for computing.., and showed that there exists an
absolute constant’ such that isSSE-hard to get better than @ log d-approximation to\.,. Indeed,
such a hardness result implies that the hyperedge expaasibtihe spectral gap cannot be efficiently
approximated. See Sectibh 7 for a definitionS8E hypothesis. Specifically, we show the following
hardness results for computing hyperedge expansion (se&di_7.B) and, (see Theorerin 7.4).

Theorem 3.18 (Informal Statement) Given a hypergraphH, it is SSE-hard to get better than an
@) <\/¢H : 1"%) bound on hypergraph expansion in polynomial time. (Note thi is non-trivial

only whengy < 7))

Theorem 3.19 (Informal Statement) Whery, < % itis SSE-hard to output a numbey in polynomial
time such that, <7 = O (y2logr).

3.5 Approximation Algorithms

We do not know how to efficiently find orthonormal vectgfs fo, ..., fi in the weighted space that
attain&. In view of Theorem$-3.11 arid 3112, we consider approximadigorithms to findk such
vectors to minimizenax;e ) Du(fi)-

Approximate Procedural Minimizers. Our approximation algorithms are based on the followingltes
on finding approximate procedural minimizers.
Theorem 3.20 Suppose fok > 2, {fi}icjx—1) is a set of orthonormal vectors in the weighted space,

and definey := min{D,,(f) : 0 # f L, {fi : i € [k — 1]}}. Then, there is a randomized procedure
that produces a non-zero vectgrthat is orthogonal to{ f; };c(x—1] in polynomial time, such that with
high probability,D,,(f) = O (v logr), wherer is the size of the largest hyperedge.

Using the procedure in Theorém 3.20 as a subroutine for géngmprocedural minimizers, we can show
that the resulting vectors provide &h(k log r)-approximation tcy.
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Theorem 3.21 (Approximating &) There exists a randomized polynomial time algorithm thiaemga
hypergraphH = (V, E,w) and a parametek < |V, outputsk orthonormal vectorsfy, ..., fx in the
weighted space such that with high probability, for eaeh [£],

Algorithmic Applications. Applying Theoreni 3.21, we readily have approximation atbans for the
problems in Theorems 38, 3111 dnd 3.12.

Corollary 3.22 (Hyperedge Expansion) There exists a randomized polynomial time algorithm that
given a hypergraphd = (V, E,w), outputs a setS C V such that¢(S) = O (v/éulogr) with
high probability, where- is the size of the largest hyperedgefin

We note that Corollarly 3.22 also follows directly from [LMd}

Many theoretical and practical applications require rpliltative approximation guarantees for hy-
pergraph sparsest cut. In a seminal work, Arora, Rao andrafiz[ARV09] gave a0 (v/logn)-
approximation algorithm for the (uniform) sparsest cutqbem in graphs.[[LM14b] gave @ (\/@)
approximation algorithm for hypergraph expansion.

Corollary 3.23 (Small Set Expansion) There exists a randomized polynomial time algorithm thet¢ii
hypergraphH = (V, E,w) and parametek < |V|, produces a se$ C V' such that with high proba-
bility, |S| = O (%) and

#(S) =0 <k1'5 log kloglog k - log 7 - \/g_k) :
wherer is the size of the largest hyperedgeAn
In contrast, a polynomial-time algorithm is given in [LMJJthat returns a subset with size O (%)

whose expansion is at mo@c(k:log kloglogk - /log n) times the smallest expansion over all vertex
sets of size at most.

Corollary 3.24 (Multi-way Hyperedge Expansion) There exist absolute constants’ > 0 such that
the following holds. There exists a randomized polynonimag talgorithm that given hypergrapd =
(V, E,w) and parametek < |V|, producesO (k) non-empty disjoint sets;, ..., S|, C V such that
with high probability,

max 9(S1) = O (K> 10g kloglog k- log 7+ /&) -
1€ |C

In contrast, for2-graphs, a polynomial-time bi-criteria approximationaithm [LM14&] outputs(1 —
e)k disjoint subsets such that each subset has expansion atOn@giog nlog k) times the optimal
value.

3.6 Sparsest Cut with General Demands

An instance of the problem consists of a hypergrabk- (V, E, w) with edge weights and a collection
T = {({si,ti}, D;) : i € [k]} of demand pairs, where each péis;, ¢;} has demand;. For a subset
S C V, its expansion with respect B is

w(0S)
> e DiIxs(si) — xs(t:)]

The goal is to findS to minimize®(.S). We denoteb ;7 := mingcy @(.5).

o(9) :=

Arora, Lee and Naor [ALNQ8] gave @ (\/logklog log k)—approximation algorithm for the sparsest
cut in 2-graphs with general demands. We give a similar bdanthe sparsest cut in hypergraphs with
general demands.
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Theorem 3.25 There exists a randomized polynomial time algorithm thaggian instance of the hyper-
graph Sparsest Cut problem with hypergralih= (V, E, w) andk demand pairs i’ = {({s;,t;}, D;) :
i € [k]}, outputs a seb C V' such that with high probability,

(5) <0 <\/logklogrloglog k:) Dy,

wherer = max.cg |e|.
3.6.1 Discussion

We stress that none of our bounds have a polynomial depeadeng the size of the largest hyperedge
(Theoreni 3111 has a dependencet®fmin {r, k})). In many of the practical applications, the typical
instances have = O(n®) for somea = Q(1); in such cases having boundspafly () would not be of
any practical utility. All our results generalize the capending results for 2-graphs.

3.7 Organization

We formally define the diffusion process and our Laplaciaerafor in Sectiohl4. We prove the existence
of a non-trivial eigenvalue for the Laplacian operator iredren{4.11.

In Sectiorl 5, we define the stochastic diffusion process paoke our bounds on the mixing time (The-
orem3.4 and Theorem 3.6). We define a discrete diffusionabgeand give a bound on the hypergraph
diameter (Theorem3.7) in Sectibn.4.

In Sectior 6, we prove the basic hypergraph Cheeger inég@heoreni 3.8) and also the higher-order
variants (Theorem 3.11 and Theorem 3.12).

In SectiorL¥, we explore the relationship between hypereggansion and vertex expansion in 2-graphs.
Using hardness results for vertex expansion, we prove aankas results for computing hypergraph
eigenvalues (Theorem 3]19) and for hypergraph expansioecfen 3.18).

In Section[8, we give our approximation algorithm for prased minimizers (Theorerh 3.20). We
present our algorithm for sparsest cut with general dem@Ftsoreni 3.25) in Sectidd 9.

4 Defining Diffusion Process and Laplacian for Hypergraphs

A classical result in spectral graph theory is that f@rgraph whose edge weights are given by the adja-

cency matrix4, the parametet, := min6¢ Lwhi D(x) is an eigenvalue of the normalized Laplacian
xT

L:=1—W"3AW"2, where a corresponding minimizesg is an eigenvector of. Observe thats is
also an eigenvector on the operakgr := | — W' A4 induced on the weighted space. However, in the
literature, the (weighted) Laplacian is defined/ds- A, which isWL,, in our notation. Hence, to avoid
confusion, we only consider the normalized Laplacian is ffaper.

In this section, we generalize the result to hypergraphse®ie that any result for the normalized space
has an equivalent counterpart in the weighted space, ardrgrsa.

Theorem 4.1 (Eigenvalue of Hypergraph Laplacian)For a hypergraph with edge weights, there
exists a normalized Laplaciaf such that the normalized discrepancy rafijz) coincides with the
corresponding Rayleigh quotierR(z). Moreover, the parametefs := min- 1~ D(z) is an

. L . . ) 0Fz W21
eigenvalue ofZ, where any minimizet, is a corresponding eigenvector.

However, we show in Example B.4 that the above result for @placian does not hold foy;.

Intuition from Random Walk and Diffusion Process. We further elaborate the intuition described in
Sectior 3.1L. Given a-graph whose edge weightsare given by the (symmetric) matrik, we illustrate

the relationship between the Laplacian and a diffusiongsedn an underlying measure space, in order
to gain insights on how to define the Laplacian for hypergsaph
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Supposep € RY is some measure on the vertices, which, for instance, caesept a probability
distribution on the vertices. A random walk on the graph cartiaracterized by the transition matrix
M := AW~!. Observe that each column if sums to 1, because we applyto the column vectop to
get the distributiorMy after one step of the random walk.

We wish to define a continuous diffusion process. Obsentedhéhis moment, the measure vecfois
moving in the direction oMy — ¢ = (M — I)p. Therefore, if we define an operator= |1 — M on the
measure space, we have the differential equ%it%ﬁ: —Le.

To be mathematically precise, we are considering howill move in the future. Hence, unless other-

wise stated, all derivatives considered are actually +hgirtd-derivatived2l!) = Tim , o L300,

Using the transformation into the weighted space- W'y and the normalized space= W‘%ap,
we can define the corresponding operatiogs := W™'LW = | — W~ !4 and £ := W-2lW2 =
| — W‘%AW‘%, which is exactly the normalized Laplacian f&graphs.

Generalizing the Diffusion Rule from 2-Graphs to Hypergraphs. We consider more carefully the rate
of change for the measure at a certain veﬂe%ﬁ—“ = Zv:{u,v}eE Wuo (fo — fu), Wheref = W—lp

is the weighted measure. Observe that for a stationaryitiisn of the random walk, the measure at
a vertexu should be proportional to its (weighted) degreg. Hence, given an edge = {u,v}, by
comparing the valueg, and f,,, measure should move from the vertex with higliealue to the vertex
with smaller f value, at the rate given by, := we - |fu — fol.

To generalize this to a hypergraph= (V, E), fore € E and measure (corresponding tg = W1¢),
we definel.(f) C e as the vertices: in e whosef,, = £+ are minimum,S,(f) C e as those whose
corresponding values are maximum, akd f) := max, ,cr(f. — f») as the discrepancy within edge
e. Then, the diffusion process obeys the following rules.

(R1) When the measure distribution is at statévhere f = W~1y), there can be a positive rate of
measure flow from: to v due to edge: € E only if u € S.(f) andv € I.(f).

(R2) For every edge € E, the total rate of measure flosue to e from vertices inS.(f) to I.(f) is
ce = we + Ae(f). In other words, the weight, is distributed amongu, v) € Se(f) x I.(f)
such that for each sudtu, v), there existsiy,, = a7, (f) such thatd -, e, «;, @t = we, and
the rate of flow fromu to v (due toe) is af,, - A.. (For ease of notation, we writ€,, = a$,,.
Observe that if, = S., thenA, = 0 and it does not matter how the weight is distributed.

Observe that the distribution of hyperedge weights willuoel a symmetric matrixl, such that for

u # v, Ap(u,v) = aw = Y .cpag,(f), and the diagonal entries are chosen such that entries in the
row corresponding to vertex sum tow,,. Then, the operatdr(¢) := (I — AyW~1)¢p is defined on the
measure space to obtain the differential equa@@n: —L¢. As in the case foR-graph, we show in
Lemma 4.2 that the corresponding operdtgron the weighted space and the normalized Laplagian
are induced such th&lt, (f) = Ry (f) andD(x) = R(z), which hold no matter how the weight, of
hyperedge: is distributed among edges H(f) x I.(f).

Lemma 4.2 (Rayleigh Quotient Coincides with Discrepancy Ri&) Supposé.,, on the weighted space
is defined such that rulgf1) and(R2) are obeyed. Then, the Rayleigh quotient associatedlwyithat-
isfies that for anyf in the weighted spac®,,(f) = D, (f). By considering the isomorphic normalized
space, we have for each R(z) = D(z).

Proof: It suffices to show thatf, Ly f)w = 3 .c p We maxyvee (fu — fo)?

Recall thatp = Wf, andL,, = | —W—lAf, whereA ¢ is chosen as above to satisfy ru(@sl) and(R2).
Hence, it follows that

<f7 wa>w = fT(W - Af)f = Zuve(g) auv(fu - fv)2

= Zuve(g) ZeeE:{uv,vu}ﬂSexlﬁé@ a’ZU(fu - fU)2 = ZeeE We maxu,vee(fu - fv)27 as reqUired' u
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4.1 Defining Diffusion Process to Construct Laplacian

Recall thaty € RY is the measure vector, where each coordinate contains thastme” being dis-
persed. Observe that we consider a closed system here, arellhep) remains invariant. To facilitate
the analysis, we also consider the weighted meagure W~ .

Our goal is to define a diffusion process that obeys r(ieE) and (R2). Then, the operator on the

measure space is given by = —%ﬁf. By observing that the weighted space is achieved by the
transformationf = W1y, the operator on the weighted space is giveipy := —%.

In Figure[4.1, we give a procedure that talfes RY and returng: = % € RY. This defined., f = —r,
and the Laplacian is induced := W%LwW*% on the normalized space= W%f.

Suppose we have the measure vegtoe RY and the corresponding weighted vector= W~1y.
Observe that even though we calla measure vectoy, can still have negative coordinates. We shall
construct a vector € RY that is supposed to b% Foru € V ande € E, let p,(e) be the rate of
change of the measute, due to edge. Then,p, := )" . pu(e) gives the rate of change of,.

We show that and p must satisfy certain constraints because of r(iek) and(R2). Then, it suffices
to show that there exists a uniques R" that satisfies all the constraints.

First, since. = W92 we have for each vertexc V, r, = 2=

Wy, "

Rule(R1) implies the following constraint:
foru € V ande € E, p,(e) < 0onlyif u € S.(f), andp,(e) > 0only if u € I.(f).
Rule (R2) implies the following constraint:

for eache € £, we have}, ;. ) pule) = = Xues,.(p) Pule) = we - Ac(f).

Construction of Ay. Observe that for each € E, once all thep,(e)’s are determined, the weight,
can be distributed among edgessinx I. by considering a simple flow problem on the complete bigartit
graph, where each € S, is a source with supply”“A—(:), and eachy € I, is a sink with demand’”A(—:).
Then, from any feasible flow, we can gét, to be the flow along the edde, v) € S, x I.

Infinitesimal Considerations. In the previous discussion, we argue that if a vertds losing measure
due to edge, then it should remain iy, for infinitesimal time, which holds only if the rate of change
of f, is the maximum among vertices K. A similar condition should hold if the vertex is gaining
measure due to edge This translates to the following constraints.

Rule (R3) First-Order Derivative Constraints:

o If p,(e) <0, thenr, > r, forallv e S..
e If py(e) >0, thenr, <r,forallv e I.

We remark that rulgR3) is only a necessary condition in order for the diffusion psxto satisfy
rule (R1). Even thoughA ; might not be unique, we shall show that these rules are saitito define a
uniquer € RY, which is returned by the procedure in Figlirel 4.1.

Moreover, observe that if = ag for somea > 0, then in the above flow problem to determine
the symmetric matrix, we can still havwé; = A,. Hence, even though the resultihg (f) := (I —
W~1A;) f might not be linear, we still havie,,(cg) = aly,(g).
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Given a hypergrapiii = (V, E,w) and a vectorf € R" in the weighted space, we describe a
procedure to return € RY that is supposed to be= % in the diffusion process.

1. Define an equivalence relation dhsuch thatu andv are in the same equivalence clais

fu = fv-

2. We consider each such equivalence cldss. V' and define the values for vertices .
DenoteEy :={e€ E:Juec Uue I, US.}.

Recall thatc, := w, - maxy e (fu — fo). FOrF C E, denotec(F) := > . pce.
ForX c U, definelx :={e€ Ey:I. C X} andSx :={e € Ey : SeNX # 0}.
DenoteC(X) := ¢(Ix) — ¢(Sx) ands(X) := LX)

T ow(X)”
3. Find anyP C U such that(P) is maximized.

Forallu € P, setr, := d(P).

4. Recursively, find the values for the remaining pointé’ := U \ P usingEy := Ey \ (Ip U
Sp).

Figure 4.1: Determining the Vecter= %

Unigueness of Procedure.In step (3) of Figuré 4]1, there could be more than one chdicE to
maximized(P). In Section 4.P, we give an efficient algorithm to find suck.aMoreover, we shall
show that the procedure will return the same RY no matter what choice the algorithm makes. In
Lemmd4.8, we prove that ruléR1)-(R3) imply that% must equal to such an

4.2 A Densest Subset Problem

In step (3) of Figuré 4]1, we are solving the following vatiahthe densest subset problem restricted to
some seU of vertices, with multi-setd := {eNU :e € E,I.(f)NU # 0} andS :={enU : e €
E,S.(f)NU # 0}.

Definition 4.3 (Densest Subset ProblemYhe input is a hypergrapll;; = (U, I US), where we allow
multi-hyperedges id U S. Eachv € U has weightw, > 0, and eache € I U S has valuer, > 0.

For X C U, definelx :={e€l:eC X}andSx :={ee€ S:en X # 0}.

The output is a non-empty C U such thatd(P) := % is maximized, and we call sudh a
densest subset

We use an LP similar to the one given by Charikar [Cha00] usethk basic densest subset problem.

maximize c(x) =) c;CeTe — Y .cg Cele
subjectto Yy wyyy =1

ZTe < Yy Veel,vee
Te = Yy Vee S,v€e
Yo, Te > 0 YveU,eelUS

We analyze this LP using a similar approach given in [BBE]. Given a subseP c U, we define the
following feasible solution:” = (z¥, y").

1 .
¢ 0 otherwise.
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L. ifveP
yl = {“’(P ) .
0 otherwise.
Feasibility ofz" can be verified easily and it can be checked that the objectine isc(x?) = §(P).

Given a feasible solution = (z,y), we say that a non-empty is alevel setof z if there exists: > 0
suchthatP = {v e U : y, > r}.

The following lemma has a proof similar to [BB@5, Lemma 4.1].

Lemma 4.4 Suppose:* = (z*,y*) is an optimal (fractional) solution of the LP. Then, everprip
empty) level seP of z* is a densest set and P) = c(z*).

Proof: Suppose:* = (z*,y*) is an optimal solution. We prove the result by induction o tlumber
k of level sets of:*, which is also the number of distinct non-zero values foumithé coordinates af*.
For the base case whén= 1, z* only has one level s&® = supp(y*). Because ., w,y; = 1, it
follows that we must have* = 2, and hence” must be a densest set and the result holdg fer1.

For the inductive step, suppogé hask > 2 non-zero distinct values in its coordinates. Let:=
supp(y*) anda := min{y; : v € P}. ObserveP is a level set ok* anda - w(P) < Y~ .y woys = 1.
Moreover, observe that if; > 0, thenz} > «.

Definez = (z,y) as follows.
Tl —«a ek
f[j\e _ m |f iEe > 0
0 otherwise.

7 — 71};_;0(‘13) ifveP
v .
0 otherwise.

Hence,z* = o - w(P) - 2° 4+ (1 — a - w(P))Z, and the number of level sets dfis exactlyk — 1. In
particular, the level sets af are P together with those df.

Hence, to complete the inductive step, it suffices to shotziisaa feasible solution to the LP. To see why
this is enough, observe that the objective function is linga*) = a-w(P)-c(z?)+(1—a-w(P))-c(Z).
Hence, if bothz”” andz are feasible, then both must be optimal. Then, the indubiyyp®thesis o can
be used to finish the inductive step.

Hence, it remains to check the feasibility 0f
FirSt’ ZUEU wUﬂU - ZUEP Wy 1fyct-z_uo(éP) = 1.
Observe in the objective value, we want to increaséor e € I and decrease, for e € S. Hence, the
optimality of z* implies that
. minge.y; feel
€T =
¢ maxyee Yy ifeeS.
Forz} = 0, thenz. = 0 and the corresponding inequality is satisfied.
Otherwisex} > «, we have

Milyee Yp—a _ ~
7 — _w—a _ ] T-awP) ~ minge.y, Ifeel
¢ Tmaw(P) T | maxveey;—a

a(P) = MaXyce Yo ifees.

Thereforez is feasible and this completes the inductive step. ]

Given two densest subsels and P, it follows that that% is an optimal LP solution. Hence, by
considering its level sets, Lemral4.4 implies the followaagollary.

Corollary 4.5 (Properties of Densest Subsets) 1. Supposé’ and P, are both densest subsets. Then,
Py U P, is also a densest subset. MoreoveRii P, is non-empty, then it is also a densest subset.
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2. The maximal densest subset is unique and contains alegesigbsets.

The next two lemmas show that the procedure defined in Figdievidl return the same € RY, no
matter which densest subset is returned in step (3). Leméhiaplies that if P is a maximal densest
subset in the given instance, then the procedure will assigalues to the vertices i first and each
v € P will receiver, := 6(P).

Lemma 4.6 (Remaining Instance)Suppose in an instandé’/, I U S) with density functior, some
densest subseX is found, and the remaining instan¢&”’, I’ U S’) is defined withU” := U \ X,
I' ={enU' :eel\Ix}, S :={enU :ee S\ Sx} and the corresponding density functiéh
Then, foranyy” c U’, ¢'(Y) < §(X), where equality holdgf 6(X UY') = §(X).

Proof: Denotes,; := §(X) = <Ux)—cSx)

w(X)
Observe that(I3,) = c(Ixuy) — ¢(Ix) ande(Sy) = ¢(Sxuy) — ¢(Sx).
c(Iy)—c(Sy) _ §(XUY) w(XUY)—dprw(X)

Hence, we havé’'(Y') =

w(Y) w(XVUY)—w(X) )
Therefore, for eaclkk e {<, =, >}, we havey (Y') > ;7 iff (X UY) a1 dyy.

We next see how this implies the lemma. Borbeing “>", we know ¢§'(Y') > §(X) is impossible,
because this implies tha.X U Y) > §(X), violating the assumption th&f is a densest subset.

For being “=", this givesd’(Y) = (X)) iff 6(X UY) = §(X), as required. ]

Corollary 4.7 (Procedure in Figure[4.] is well-defined.)The procedure defined in Figure 4.1 will re-
turn the same: € RY, no matter which densest subset is returned in step (3). fiticpdar, if P is the
(unigue) maximal densest subset in the given instance,ttieeprocedure will assigm values to the
vertices inP first and eachv € P will receiver, := §(P). Moreover, afterP is removed from the
instance, the maximum density in the remaining instanceicilg less thanj(P).

4.3 Densest Subset Procedure Defines Laplacian

We next show that rule@R1) to (R3) imply that in the diffusion procesééit must equal to the vector
r € RY returned by the procedure described in Figuré 4.1.

We denote g(e) := maxyes, r, @andryr(e) := mingez, 7.

Lemma 4.8 (Defining Laplacian from Diffusion Process)Given a measure vectgr € R" (and the
correspondingf = W~y in the weighted space), ruléR1) to (R3) uniquely determine = % eRY
(andp = Wr), which can be found by the procedure described in Figure Bhls defines the operators
L, f := —randLy := —Wr. The normalized Laplacian is also inducéd= W2 LW2.

Moreover’ZeeE ce(rr(e) —rs(e)) = ZuEV PuTy = HTH%U
Proof: As in Figure[4.1, we consider each equivalence claswhere all vertices in a class have the
samef values.

For each such equivalence cld$ésC V, definelyy :={e € E: Ju e U,u € I.} andSy := {e € E :
Ju € U,u € S.}. Notice that eacla is in exactly one sucli’s and one sucl$’s.

As remarked in Sectidn 4.1, for eaete E, once allp,(e) is defined for allu € S, U I, it is simple to
determinea?,, for (u,v) € S. x I, by considering a flow problem on the bipartite grafhx I.. The
“unigqueness” part of the proof will show that= % must be some unique value, and the “existence”
part of the proof shows that thiscan determine thg, (e)’s.

Considering Each Equivalence Clas$/. We can consider each equivalence cldssdependently by
analyzingr,, andp,(e) for u € U ande € Iy U Sy that satisfy rule¢R1) to (R3).
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Proof of Uniqueness.We next show that rule@R1) to (R3) imply thatr must take a unique value that
can be found by the procedure in Figlrel4.1.

For eacte € Iy U Sy, recall thate, := w, - Ac(f), which is the rate of flow due teinto U (if e € Iy)
orout ofU (if e € Sy). ForF C Iy U Sy, denotec(F) := > - Ce.

Supposel is the set of vertices that have the maximumalues within the equivalence class, i.e., for
allu € T, r, = max,cy r,. Observe that to satisfy rulR3), for e € Iy, there is positive rate, of
measure flow intd” due toe iff I, C T'; otherwise, the entire ratg will flow into U \ 7'. On the other
hand, fore € Sy, if Se N T # (), then there is a rate. of flow out of T" due toe; otherwise, the rate,
flows out of U \ T'.

Based on this observation, we define forc U, Ix :={e€ Iy : [ C X} andSx :={e € Sy : SeN
X # 0}. Note that these definitions are consistent wWitrand.Sy;. We denote” (X)) := ¢(Ix) —c(Sx).

To detect which vertices i&F should have the largestvalues, we definé(X) := % which, loosely

speaking, is the average weighted (with respedjomeasure rate going into vertices i Observe
that if r is feasible, then the definition @f implies that for allv € T', r, = 6(T).

Corollary[4.T implies that the procedure in Figlrel 4.1 witicfithe unique maximal densest subget
with 5M = 5(P)

We next show thaf” = P. Observe that for all edges € Ip havel, c P, and hence, there must
be at least rate of(Ip) going into P; similarly, there is at most rate of Sp) going out of P. Hence,
we have)  .pwyry > c(Ip) — c(Sp) = w(P) - 6(P). Therefore, there exists € P such that
d(P) < ry < 6(T), where the last inequality holds because every vestex T' is supposed to have
the maximum rate-, = 6(7"). This implies that’(T") = dp;, T C P and the maximum- value is
dp = 6(T) = §(P). Therefore, the above inequality becomes)-6ys > >~ p wury > w(P)-0(P),
which means equality actually holds. This implies that gwartexu € P has the maximum rate
Ty = 0y, and sdl’ = P.

Recursive ArgumentHence, it follows that the séf can be uniquely identified in Figufe 4.1 as the
set of vertices have maximumvalues, which is also the unigue maximal densest subsetn, The
uniqueness argument can be applied recursively for thdenratance wittU’ .= U\T, Iy := Iy \Ir,
SU/ = SU \ ST.

Proof of Existence. We show that oncé" is identified in Figuré_4]1, it is possible to assign for each
v € T and edge: wherev € I, U S, the valueg, (¢e) such thaty, = r, = >, pu(e).

Consider an arbitrary configuratignin which edgee € I supplies a rate of, to vertices inT’, and
each edge € S demands a rate af from vertices inT". Each vertex € T is supposed to gather a
net rate ofw, - 657, where any deviation is known as therplusor deficit

Given configuratiorp, define a directed grapi, with vertices inT" such that there is an afe, v) if
non-zero measure rate can be transferred frotm v. This can happen in one of two ways: (i) there
existse € Iy containing both: andv such that, (e) > 0, or (ii) there existe € Sy containing bothu
andv such thaip,(e) < 0.

Hence, if there is a directed path from a vertexvith non-zero surplus to a vertaxwith non-zero
deficit, then the surplus at vertex(and the deficit at vertex) can be decreased.

We argue that a configuratignwith minimum surplus must have zero surplus. (Observe tiatin-
imum can be achieved becayseomes from a compact set.) Otherwise, suppose there isshtdea
vertex with positive surplus, and 1&f be all the vertices that are reachable from some vertex vaish p
itive surplus in the directed gragh,. Hence, it follows that for alé ¢ I+, for all v € T”, p,(e) = 0,
and for alle € Sy, forallu ¢ T', p,(e) = 0. This means that the rate going iritd is ¢(I7) and all
comes froml7+, and the rate going out & is ¢(S7+). Since no vertex i’ has a deficit and at least
one has positive surplus, it follows th&tl”) > §,,, which is a contradiction.
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After we have shown that a configuratiprwith zero surplus exists, it can be found by a standard flow
problem, in which eaclh € I has supply., eachv € T has demandav, - §,;, and eacke € St has
demand:.. Moreover, in the flow network, there is a directed edge) if v € I, and(v,e) if v € S..
Suppose in a feasible solution, there is a flow with magnitudiong a directed edge. If the flow is in
the direction(e, v), thenp,(e) = 0; otherwise, if it is in the directiorfv, e), thenp,(e) = —6.

Recursive ApplicationThe feasibility argument can be applied recursively to tin@lfer instance de-
fined on(U’, Iy, Sy/) with the corresponding density functieh. Indeed, Corollary_4]7 implies that
thatd’, := maxg_.ocpr 6'(Q) < 0.

Claim. > _pce(ri(e) —rs(e)) = > cv Pulu-
Consider?" defined above witldy, = §(7') = r, foru € T.

Observe thad _, . puru = (c(I1) — c(ST)) - Op = D cp, Ce " T1(€) = D ces, Ce - Ts(e), Where the
last equality is due to ruléR3).

Observe that every € V will be in exactly one sucll’, and every € E will be accounted for exactly
once in each of r and.Sy, ranging over alll's. Hence, summing over dll's gives the result. [

Comment on the Robustness of Diffusion ProcessRecall that in Sectiof 3.1, we mention that if
the weight distribution is not carefully designed in Figi&é, then the diffusion process cannot actu-
ally continue. The following lemma implies that our diffasi process resulting from the procedure in
Figure[4.1 will be robust.

Lemma 4.9 In the diffusion process resulting from Figlire 4.1 with tliféedential equationzll—{ =—Lyf,
at any timet, there exists some> 0 such that% is continuous in(ty, to + €).

Proof: Observe that as long as the equivalence classes inducéddyot change, then each of them
act as a super vertex, and hence the diffusion process gaestdn

At the very instant that equivalence classes merge into $onkegurel4.1 is actually used to determine
whether the vertices will stay together in the next moment.

An equivalence class can be split in two ways. The first catigaisthe equivalence clagsis peeled
off layer by layer in the recursive manner described abogeabse they receive differentvalues. In
particular, the (unique) maximal densest sulisét such a layer.

The second case is more subtle, because it is possible ttiaegewithinT could be split in the next
moment. For instance, there could be a proper subset7 whoser values might be marginally larger
than the rest after infinitesimal time.

The potential issue is that if the verticesihgo on their own, then the verticés and also the vertices
in T\ X might experience a sudden jump in their ratehereby nullifying the “work” performed in
Figure[4.1

Fortunately, this cannot happen, because if theXsatould go on its own, it must be the case that
v = 0(T) = 6(X). Corollary[4.T states that in this case, afféiis separated on its own, then in the
remaining instance, we must still havé7T \ X) = d,,. Hence, the behavior of the remaining vertices
is still consistent with the value produced in Figufe 4.1, and thealue cannot suddenly jump.

Hence, we can conclude that if equivalence classes mergaibatstime ¢y, there exists some > 0
such that% is continuous in(tg, to + €), until the next time equivalence classes merge or split. =

4.4 Spectral Properties of Laplacian

We next consider the spectral properties of the normalizgadcianl induced by the diffusion process
defined in Section 411.
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Lemma 4.10 (First-Order Derivatives) Consider the diffusion process satisfying ru(&l) to (R3)

on the measure space withe RY, which corresponds t¢§ = W1 in the weighted space. Suppose
L., is the induced operator on the weighted space such%tatt —Lw f. Then, we have the following
derivatives.

1A — o0 Ly f)u

2. AL = 2Ly

3. Suppos®,,(f) is the Rayleigh quotient with respect to the operdtgron the weighted space.
Then, forf # 0, Rell) — ”f2”4 (A - ILw FNI2 = (f, Lw f)2) < 0, by the Cauchy-Schwarz
inequality on the(-, >w inner preuduct, where equality hold L,, f € span(f).

Proof: For the first statementl e — o(f 46y — —9(f L, f).

For the second statement, recall from Lenima 4.2 {ifak,, )., = > .cpwe maxy pee(fu — fo)?.
Moreover, recall also thai, = w, - max,, yee(fu — fv). Recall thatr = %, rs(e) = maxyeg, ™, and
7°I(‘3) = minuele Tu-

Hence, by the Envelope Theoreﬁﬂt,f;;# =2 .cpce (rs(e) —rr(e)). From Lemmd 4]8, this
equals—2||r(|3, = —2[|Lw fII3.

Finally, for the third statement, we have

4l — (|12, D5l (f Ly fy - W) = — 2 (112 - L 113 = (F Luf)2),

where the Iast equallty foIIows from the first two statements [

We next prove some properties of the normalized Laplagiavith respect to orthogonal projection in
the normalized space.

Lemma 4.11 (Laplacian and Orthogonal Projection) SupposeC is the normalized Laplacian defined

in Lemma4.B. Moreover, denotg := Wéi, and letII denote the orthogonal projection into the
subspace that is orthogonal tg9. Then, for allz, we have the following:

1. L(x) Lz,
2. (x,Lx) = (Ilz, L1Ix).
3. For all real numbersy and 5, L(ax1 + fx) = BL(x).

Proof: For the first statement, observe that since the diffusionepn;)is defined on a closed system,

the total measure given b’ .cv ¥« does not change. Thereforeé,= (1 ,flt> <W2 1, Céf> which

implies thatlx = — ¢ | x;.
For the second statement, observe that from Lefnnmia 4.2, vee hav

(z, L) = cpWe maxy, UEQ(\}”* - %)2 = ((x+ax1), L(z + axy)), where the last equality holds

Wy

for all real numbersy. It suffices to observe th@tz = x + ax1, for some suitable reai.

For the third statement, it is more convenient to considangformation into the weighted spage=
W~2z. It suffices to show that,, (a1 + 38f) = BLw(f). This follows immediately because in the
definition of the diffusion process, it can be easily chedkmdAe(ai + Bf) = BA(S). [ ]

Proof of Theorem[4.1: Supposecl is the normalized Laplacian induced by the diffusion preces

Lemmd4.8. Lety, := m1n6¢ tw R(:c) be attained by some minimizes. We use the isomorphism

between the three spacés:” 2g0 == W%f.
The third statement of Lemnia 4110 can be formulated in terhtkeonormalized space, which states
dRz) < 0, where equality hold#f Lz € span(z).

claim thath(”) = 0. Otherwise, suppos@iﬁ% < 0. From Lemma&Z4.11, we hal = —Lz L
W%i. Hence, it follows that at this moment, the current nornelizector is at positioms, and is
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moving towards the direction given by := 9| _. such thatz’ L Wz1, and cnzgx)h:m < 0.

Therefore, for sufficiently smakk > 0, it follows thatz), := x5 + ez’ is a non-zero vector that is
perpendicular tW21 andR(z}) < R(x2) = 72, contradicting the definition of.

Hence, it follows tha@ = 0, which implies thatCzy € span(z2). Sincey, = R(z2) = %
it follows that Lx5 = 229, @s required. [ ]

5 Diffusion Processes

In Sectior[ 4, we define a diffusion process in a closed systi&émraspect to a hypergraph according to
the equation‘fi—f = —Ly, wherep € RV is the measure vector, ahds the corresponding operator on

the measure space. In this section, we consider relatagsidiff processes. In the stochastic diffusion
process, on the top of the diffusion process, each vertexbigst to independent Brownian noise. We
also consider a discretized diffusion operator, which vweetagnalyze the hop-diameter of a hypergraph.

5.1 Stochastic Diffusion Process

We analyze the process using It o calculus, and the reaueegfea to the textbook by @ksendal [Fk$14]
for relevant background.

Randomness Model We consider the standard multi-dimensional Wiener pro¢éssc R : ¢ > 0}
with independent Brownian motion on each coordinate. Ss@ple variance of the Brownian motion
experienced by each vertex is proportional to its weightbdgrecise, there exists> 0 such that for
each vertexu € V, the Brownian noise introduced totill time ¢ is /nw, - By (u), whose variance is
nwyt. It follows that the net amount of measure added to the systetime tis )" . /nwy - B (u),
which has normal distributiodV (0,7t - w(V)). Observe that the special case fpr= 0 is just the
diffusion process in a closed system.

This random model induces an Ito process on the measure gpan by the following stochastic
differential equation:

dd, = —Ld, dt + /57 - W2 dB,,
with some initial measuré

By the transformation into the normalized space= W‘%gp, we consider the corresponding stochastic
differential equation in the normalized space:

dX, = —LX, dt + \/7dB;,

where, is the normalized Laplacian from Leminal4.8. Observe thatahdom noise in the normalized
space is spherically symmetric.

Convergence Metric.Given a measure vectgr € RY, denotep* := % -W1, which is the measure
vector obtained by distributing the total measdire ., ¢, = (i, ) among the vertices such that each
vertexwu receives an amount proportional to its weight

For the normalized vectar = W‘%ap, observe that* := W‘%ap* = ivl("f; W31 is the projection of:
into the subspace spanned:by:= W21. We denote byI the orthogonal projection operator into the
subspace orthogonal tq.

Hence, to analyze how far the measure is from being stayipner consider the vectap;, — ®;, whose
¢1-norm is||®; — 7|1 < Jw(V) - ||ILX;||2. As random noise is constantly delivered to the system,
we cannot hope to argue that these random quantities appreas ag tends to infinity. However, we
can show that these random variables are stochasticallyndted by distributions with bounded mean
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and variance astends to infinity. The following lemma states that a largdugaof v, implies that the
measure is closer to being stationary.

Lemma 5.1 (Stochastic Dominance)Supposey, = ming, 1, R(z). Then, in the stochastic diffu-
sion process described above, for each 0, the random variablé|TI.X, ||, is stochastically dominated

by || X;||2, whereX, has distributione~"2/T1.X, + \/ (1 —e22t). N(0,1)V,andN(0,1)" is the
standardn-dimensional Guassian distribution with mdependent domates.

Proof: Consider the functio : RV — R given byh(z) = ||Ilz||? = |z — 2*||3, wherez* :=

—%é"f; -z andz; = Wz1, Then, one can check that the gradienVis(z) = 211z, and the Hessian is

V2h(z) = 2(1 - w(V
Define the It o proceds$ := h(X;) = (I1X,, [1X}). By the It o’s lemma, we have

dY; = (VA(Xy), dXy) + 5(dX;) TV2h(Xy) (dXy).

To simplify the above expression, we make the substituti§pn= —L£X; dt+,/m dB;. From Lemma4.11,
we have for allz, Lz L z; and(z, Lz) = (Ilz, L1]x).

Moreover, the convention for the product of differentia@$ i= dt - dt = dt - dB;(u) = dBi(u) - dB(v)
for u # v, anddB;(u) - dBy(u) = dt. Hence, only the diagonal entries of the Hessian are refevan

We havedY; = —2(I1X;, LIIX;) dt +n) oy (1 — w%)) dt + 2,/m - (ILX;,dB;). Observing that
I1X; L zq, from the definition ofy,, we have(Il.X;, LI1X;) > v - (ILXy, I1X;). Hence, we have the

following inequality: dY; < —2v.Y; dt + nndt + 2./ - (11X, dBy).

) W2 JWz) whereJ is the matrix where every entry is 1.

We next define another Ito procéss <Xt, Xt> with |n|t|al value XO = II.X, and stochastic differ-
ential equationdY; = —2v,Y; dt + nn dt + 2,/1 - (Xt, dBt>

We briefly explain whyY; is stochastically dominated wt by using a simple coupling argument. If
Y, < Yt, then we can chooséB; anddBt to be mdependent ¥, = Yt, observe thaf{I1X,, dB;) and
<Xt, dBt> have the same distribution, because hath anddBt are spherically symmetric. Hence, in
this case, we can choose a coupling betwéBnandd B, such thatTIX;, dB,) = (X;, dB;).

Using It o’'s lemma, one can verify that the above stochegterential equation can be derived from the
following equation involvingX;: dX; = —yX; dt + /ndB;.

BecauselB; has independent coordinates, it follows that the equationbe solved independently for
each vertexu. Again, using the Ito lemma, one can verify that’?! X;) = NGE et dB,;. Therefore,

we have the squtiodA(t = e*’Y?t)?O + 1 - e 2t fot e2s dﬁs, which has the same distribution as:

e 2 X + \/% (1 —e22t). N(0,1)V, as required. |

Corollary 5.2 (Convergence and Laplacian)In the stochastic diffusion process, @gends to infinity,
|®; — ®;||7 is stochastically dominated b@% -x%(n), wherex?(n) is the chi-squared distribution

nmw(V)

with n degrees of freedom. Hendan, o E[||®: — ®}1] < s

Remark. Observe that the total measure introduced into the systém), is, \/mw, - B;(u), which has

standard deviatior/nt - w(V'). Hence, as increases, the “error rate” is at m Tt

Proof: Observe that, astends to infinity,Y; = || X;||2 converges to the distributiogg—2 -x2(n), where
x2%(n) is the chi-squared distribution with degrees of freedom (having mearand standard deviation
V2n).

Finally, observing thaf®; — ®;||? < w(V) - |[TLX,||3, it follows that agt tends to infinity,|®; — ®;||?
is stochastically dominated by the distributi@i@‘;(z—v) - x%(n), which has meaﬂ%ﬁv) and standard
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oo V/nw(V)
deviation Vo [ ]

Corollary 5.3 (Upper Bound for Mixing Time for n = 0) Consider the deterministic diffusion process
with n = 0, and some initial probability measurg, < RK such that(1, ¢g) = 1. Denotey*
. W1, and @ = mingey ¢*(u). Then, for anys > 0 andt > %log #, we have

min

(V)
@ — ¢*[l1 < 6.

Proof: In the deterministic process with = 0, stochastic dominance becom@d X[, < e72t.
[[TLX ]2

Relating the norms, we hayi@; — o*||1 < Vw(V) - |[TIX|l2 < /w(V) - e 72t ||TTXg |2
Observe thaNHXoHQ <X0,X0> <QOQ,W71()00> <

ming weqy,

Hence, it follows thaf|®; — ¢*||; < e~ 72t which is at mos®, for t > 1 > log 7. |

1
- \/m gomln
5.2 Bottlenecks for the Hypergraph Diffusion Process

In this section we prove that if the hypergraph diffusiongass mixes slowly, then it must have a set of
vertices having small expansion (Theoreni 3.5).

Theorem 5.4 (Restatement of Theorerm 3.555iven a hypergraphd = (V, E,w) and a probability
distributionyg : V' — [0, 1], let; denote the probability distribution at timeccording to the diffusion
process (Figur€_3l1) ang* be the stationary distribution.

Letd > 0. Suppose initiallyjjpg — ¢*||; > ¢ and for some tim&" > 0, ||or — ¢*||; > 6. Then, there
exists a sef C V such thatp*(S) < 1 and

lpo — ¢*|l
#(S) <O < e 51>

Proof: We consider the transformatiory := W*%%. We denote by1 the orthogonal projection
operator into the subspace orthogonak:to:= W31. Consider the projectioft; := Ilx; onto the
subspace orthogonal 9. Denoter™* := W*ip* = ﬁ -Wél, which is the projection of; into the
subspace spanned by := W31,

Observe that;; = x* + 7, wherez* is the stationary component afg is the transient component.
Moreover,p; — ¢* = W23,

The diffusion process on the measure space induces thecdifif@ equation ofr; as follows:

& _ o
a ﬁxt.

By expressing Lemma4.110 (1) in terms of the normalized spaedave

d Tt o~
WL — 2R (@) - 17l
Integratlng fromt = 0 to T" and simplifying, we have
m gl = [T R(@)dt > T-R(@r),

where the last mequality holds becaugér,) is decreasing according to Lemma 4.10 (3).
Since the norms are related Pftoin - |22 < [|¢li < Vw(V) - ||z]]2, we have

Lo Bl < 1 | leo <p||
R(@r) < phjgpy < pha( o= gmpy) S 7o 1/—%1115
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Finally, observing that | x1, Propositio 6.2 implies that there exists aSet V such thaty*(S) <

3, andg(S) < O (M) <0 (%ln %). u

SOmin
5.3 Lower Bounds on Mixing Time
Next we prove Theorein 3.6.

Theorem 5.5 (Formal statement of Theoremi 316)Given a hypergraptd = (V, E, w), suppose there
exists a vectory L z; in the normalized space such thBt(y) < ~. Then, there exists an initial
probability distributiony, € RY in the measure space such thaty — ¢*||; > 3. Moreover, for any

d>0andt < % In Y-2min 4t timet of the diffusion process, we have

ler = @*[ly = 0.

We consider the diffusion process from the perspectiveehttrmalized space. Recall that := w21
is an eigenvector of the normalized Laplaci@mwith eigenvalue 0. From Lemma 4l11 (Y)(z) L x,
for all z € RY. Therefore, the diffusion process has no effect on the sutesppanned by;, and we
can focus on its orthogonal space.

Lemma 5.6 Supposey € RY is a non-zero vector in the normalized space such that z; and
R(y) = v. If we start the diffusion process withy := y, then after timet > 0, we have||y;|, >

e lyoll,-
Proof: By Lemmd4.1D (1) interpreted for the normalized space, we ha

% = —2R(y) - lwell* > —27- ||lu||*, where the last inequality holds because from Lerima 4.10 (3)

t — R(y;) is a decreasing funtion, which implies tHaty;) < R(yo) = 7.
Integrating the above gives
lyell® = e |lyol . u

The next lemma shows that given a vector in the normalizedesihet is orthogonal te,, a correspond-
ing probability distribution in the measure space that hagd distance from the stationary distribution

o* = %‘}) can be constructed.

Lemma 5.7 Supposey € RY is a non-zero vector in the normalized space such that z; and
ISP ~ 1 . -
R(y) = ~. Then, there exist§ L x; such thatR(y) < 4y and ¢y := ¢* + W2y is a probability
distribution (i.e.,00 > 0), andHW%g‘ > 1
1

Proof: One could try to considep* + W%(ay) for somea € R, but the issue is that to ensure that
every coordinate is non-negative, the scalamight need to have very small magnitude, leading to a

very smaIIHW%(ay)Hl.

We construct the desired vector in several steps. We firsgtider: := y + cx; for an appropriate scalar
¢ € R such that bothw(supp(z ")) andw(supp(z~)) are at most - w(V'), wherez* is obtained from

z by keeping only the positive coordinates, andis obtained similarly from the negative coordinates.
Observe that we have= 2" + z~.

We usell to denote the projection operator into the space orthogmnal in the normalized space.
Then, we have) = Iz = IIz" 4 I1z~. Without loss of generality, by replacingwith —z, we can
assume thatIlz*| > 1 ||y|.

Observe thafllz*t, LI1zT) = (2T, L21) < (2, Lz) = (y, Ly),

where the middle inequality follows because Lz) = > ., we maxu,vee(ﬁ;_ - \/Z;)_U)Q.

u
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Hence, we hav&R(I1:") < 4R(y), and we consider an appropriate scaled vegtoe= I1z, where
2 = ¢z for somec > 0 such that{1, Wz3) = 1.

—

Hence, it follows thafj = z — <W2( 1)Z> Wél, which implies thawéy — W32 — o*.

Therefore, we have, := ¢* + vvzg W22 > 0.
Moreover,HWE@’l > (1,W33) — w(s”wp('iﬁjﬂ) + (s‘l’u'ﬁﬁ;*)) > 1 where the last inequality follows
from w(supp(zT)) < Jw(V). ]

Proof of Theorem[5.5: Using Lemma&5J7, we can constrdgctrom y such thagy L 2y andR(y) < 4+.

Then, we can define the initial probability distributig := ¢* + Wéﬂ in the measure space with the
correspondingy, := ¥ vector in the normalized subspace orthogonatito

By Lemmd5.6, at time of the difffusion process, we havgy||, > e - ||yo|[,-
Relating the norms of the measure space and the normalized,spe have

lee ="l = Vi el > Vimin e lyolly = /pme™ o — "1 = V/oime™ " 5.
Hence, fort < ;- ln Y Zmin SO”““ , we havellp, — ¢*||; > 6, as required. ]

Remark 5.8 Observe that we do not know how to efficiently find L z; to attain R(z3) = 2.
However, the approximation algorithm in Theorem 8.2 allmsgo efficiently compute somesuch that
R(y) < O(logr) - 72

Hence, we can compute a probability distributipp in polynomial time such

. 1 (p* .
and o >0 1 min y
5 (po) > (WIOgT g =5 )

DO | —

lleo — "Iy =

5.4 Hypergraph Diameter
In this section we prove Theordm B.7.

Theorem 5.9 (Restatement of Theorem 3.75iven a hypergraphf = (V, E, w), its hop-diameter is

log N,
diam(H):(’)<0g “’),
72

whereN,, := maxycy %‘u/) and~, is the eigenvalue of the normalized Laplacian as defined goTh
rem[4.1.

We start by defining the notion of discretized diffusion ater.

Definition 5.10 (Discretized Diffusion Operator) Recalling that a diffusion process in the measure
space is defined in Sectim.l% = —L¢p, we define a discretized diffusion operator on the measure
space byM =1 — 1. L.

Moreover, using the isomorphism between the measure spattha normalized space, we define the
corresponding operator on the normalized spaeke:= | — % L.

When we consider the diffusion process, it is more converi@think in terms of the measure space.
However, the normalized space is more convenient for cerisigl orthogonality.

Next, we bound the norm of the discretized diffusion operato
Lemma 5.11 For a vectorz in the normalized space such thatl z; := Wz1, we have| Mz, <

VI— %5zl
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Proof: Fixz L z; := W21. Observe that\lz = Mz for some symmetric matrid/ := | — 1.1,
where the matrix. depends on: and has the forni := | — W‘%XW‘%A. The precise definition afl
(depending om) is given in Sectiofi 411, but the important property is thas a non-negative symmetric
matrix such that sum of entries in rawis w,,.

Standard spectral graph theory and linear algebra stat@®thaas a basis consisting of orthonormal
eigenvector§ vy, v9, ..., v, } Of L, whose eigenvalues are i, 2]. Hence, the matriX/ has the same
eigenvectors; suppose the eigenvalue;aé \; € [0, 1].

We write 2 := 3.7, c;u; for some reale;’s. Then, we have|Mz|3 = Y2 322 < Y, N =
(&, Ma) = (z,2) — 5z, L2) < (1 - ) [|z]3,

where the last inequality follows frorfx, Lz) > 2 |||, because of the definition of andz L ;.
Hence, the result follows. |

Proof of Theorem[3.7: The high level idea is based on the following observationpp®ses is
the support of a non-negative vectorin the measure space. Then, applying the discretized iffus
operatorM to ¢ has the effect of spreading the measuresdn vertices that are within one hop frof
where two vertices andv are within one hop from each other if there is an eddjgat contains both
andov.

Therefore, to prove that a hypergraph has hop-diameter stimbsuffices to show that, starting from
a measure vectap whose support consists of only one vertex, applying theaspeM to o for [ times
spreads the support to all vertices. Since we consider gotied projection, it will be more convenient
to perform the calculation in the normalized space.

Given a vertex: € V, denotey,, € RV as the corresponding characteristic unit vector in the atized
space. The goal is to show that i large enough, then for all verticasandv, we have(y,,, M!(x,)) >
0.

We usell to denote the projection operator into the subspace thathisgonal tor; := Wa1. Then,

we havey, = % ~x1 + Iy,

Lemmd4.1ll implies that for all, M(z) L x;, and for all reaky, M(azx; + ) = ax; + M(z).

o + (M, M (Ix, ). Observe that the first terin” > 3-,

Hence, we havéy,, Mly,) =

whereN,, := max,cy wlv),

For the second term, we ha{iy,, M'(Ix,)) < [Mxully-[[M (TIxy)]|, < (1—%)"/2, where the first
inequality follows from Cauchy-Schwartz and the secondiradity follows from applying Lemma5.11
for [ times.

Hence, forl larger thanlig’éij =0 <1°g7%) we have(ITy,, M!(ITy,)) > 0, as required.

6 Cheeger Inequalities for Hypergraphs

In this section, we generalize the Cheeger inequalitiey/petgraphs. For the basic version, we relate
the expansion of a hypergraph with the eigenvalyef the LaplacianC defined in Sectiohl4. However,
at the moment, we cannot exploit the higher order spectagsties ofL. Instead, we achieve higher
order Cheeger inequalities in terms of the orthogonal maximizers defined in Sectidn_3.3.

6.1 Basic Cheeger Inequalities for Hypergraphs

We prove the basic Cheeger inequalities for hypergraphs.

29



Theorem 6.1 (Restatement of Theorern 3.8%Given an edge-weighted hypergraph we have:

2 [ 2
%<¢H<72+2 TPY. < 2y/72,

whereg¢y is the hypergraph expansion and is the eignenvalue of as in Theorerh 4]1.

Towards proving this theorem, we first show thajadline-embedding of the hypergraph suffices to
upper bound the expansion.

Proposition 6.1 Let H = (V, E,w) be a hypergraph with edge weights: £ — R* and letf € RK
be a non-zero vector. Then, there exists a%ét supp(f) such that

ZeeE We MaAXy, yce |fu - fv|

2w Wufu

Proof: The proof is similar to the proof of the corresponding stagetmfor vertex expansion in
graphs [LRV13]. Observe that in the result, the upper boumdhe right hand side does not change
if fis multiplied by a positive scalar. Hence, we can assuméouttloss of generality, that € [0, 1]V.

P(S5) <

We define a family of function$#;. : [0,1] — {0,1}}, ¢ ;) as follows.

Fr(x):{l r>r

0 otherwise

Forr > 0 and a vectorf € [0,1]", we consider the induced vectdy(f) € {0,1}", whose coordinate
corresponding te is F,.(f,). Let S, denote the support of the vectdy(f). For anya € [0, 1] we have

/1 F.(a)dr=a. (6.1)
0

Now, observe that it — b > 0, thenF,.(a) — F,.(b) > 0,Vr € [0, 1]; similarly, if a — b < 0 then

F,(a) — F,(b) <0,¥r € [0,1]. Therefore,
1 1
/ F,.(a)dr —/ F,.(b)dr
0 0

/ [Fy(a) — Fy(b)] dr =

Also, for a hyperedge, if u = arg maxyc, f, andv = arg miny, e, f,, then

=la—1b|. (6.2)

|F(fo) — Fr(fo)| > |E-(fu) — Er(fu)|, Vre0,1] andva/,v' € e. (6.3)

Therefore, we have

fol Ze We maXU,UEG ‘Fr(fu) - Fr(fv)’ dr — Ze We MaXy, ,vEe fol ‘F fu) - F?"(fv)’ dr

(Using[6.3)
fol Zu wy Iy (fu)dr fo Fr(fu)dr
e NAXy, pee u dr — U dr
_ 2 We Max ; f o r(fu) fO ) (Using[6.2)
u Wu Jo
_ Y e We mZaXu{;)e;’fu _ fv‘ (Using[6.1)

Therefore, there exists € [0, 1] such that

Ze We MaXy yee ‘Fr’(fu) - Fr’(fv)’ < Ze We MAXy yee ’fu - fv‘
Zu wy Frr (fu) N Zu Wy fu .
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SinceF,. (-) takes value i{0, 1}, we have

X wematyvee | Fo(fu) ~ F(h)| _ X, we Tleiscutbysy] o |
> ey Wu L (fu) ZUEST/ Wy o

Therefore,
Ze We MaAXy, yece |fu - fv|

2w Wufu

(b(Sr/) < and Sy C SUPP(f) .

Proposition 6.2 Given an edge-weighted hypergraph = (V, E,w) and a non-zero vectof € RV

such thatf L, i, there exists a sef C V such thatw(S) < @ and
Dw
5(8) < Du(f) + 20 22U)
We MaXy,vee (Ju—Jv 2 .
WhereDw(f) = Leck DO ;Uiféf fo) andryin = mingep |€|

Proof: Letg = f + c1 for an appropriate € R such that bothu(supp(g™*)) andw(supp(g™~)) are at
most#. For instance, sort the coordinates fosuch thatf(v) < f(v2) < --- < f(v,) and pick

¢ = f(v;), wherei is the smallest index such th§§§:1 w(vj) > @

Sincef L, 1, it follows that (g, 1), = ¢(1,1),. Hence, we havéf, f), = (9, 9)w — 2¢(g, 1)w +
02<17 1>w = <g7g>w - 02<17 1>w < <g7g>w'
Therefore, we have

ecE We MaXy veelGu — Gu ecE We MaXy vee\Gu — Gv
> =9 % (90— 9

(fs - (9, 9w

Dw(f) = = Dw(.g).

For anya,b € R, we have
(aT =)+ (a” —b7)* < (a—b)2

Therefore, we have

2

Dulf) > Du(g) = 2zt e f;\j;uegg(gu )

(ZeeE We MaXy, pee (g — 93)2) + (zeeE We MaXy pee(gy — g;)z)
Zu U)U(QJ)Q + Zu Wy (gu )?

= { ZSGE e maxu,UEe(gqir - g;r)2 ZeeE We maxu,vée(gz: - 95)2 }

- > u wu(gj[)2 ’ > Wulgu )?

= min {Dy(g"),Dulyg )}

v
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Leth € {g", g~} be the vector corresponding the minimum in the previoustiakty. Then, we have

Zwemax|h2 h2|—ZwemaX|h — hy| (hy + hy)

oy u,vee )
_ Zweinvai(h — hy) —i-QZwerilelghuir’lvae)é]hu—hv\
eck eeE
€ h2
< — — M
Z W lrtnvai(h hy) 24 2\/2 We vaa)é (hy — hy) Z W - —
eclR ecE ecE
zue\/ w“h%
_Zwei%ai(h — hy) —|—2\/Zw611}1va}§(h — hy)? =,
eck eeE
where the inequality follows from the Cauchy-Schwarz'sqimaity.
UsingDy,(h) < Dy (f),
Y eck We MAXy pee |hi — h2 )12
Zu wuh% Tmln Tmin
Invoking Propositioi 6]1 with vectdr?, we get that there exists a stC supp (h) such that
Dw \%
d(S) < Dy(f) +2 # and w(S) < w(supp (h)) < #
[ ]

The “hypergraph orthogonal separators” construction djeN14b] can also be used to prove Propo-
sition[6.2, albeit with a much larger absolute constant ettbund on the expansion of the $et

We are now ready to prove Theoréml6.1.
Proof of Theorem[6.1 (and_3.8):

1. LetS C V be any set such that(S) < @ and letg € {0,1}" be the indicator vector of.

Let f be the component af orthogonal tol (in the weighted space). Thep,= f + c1, where
_ {oDw _ w(S)

(1,1) @)
Moreover, as in the proof of Proposition 6.2, we hayef)., = (g,9)w — ¢ (i, 1)y = w(S) -

(1 _ M) > w(S)

w(V) T2

Then, sincey # 1, we haved # f L,, 1 and so we have

z We MaAXy, vEe(gu gv)2
(fs Pw

= 2¢(9).

Y2 < Dy(f) =

w(0S)
~ w(9)/2

Since the choice of the sétwas arbitrary, we hav% < ¢H.

2. Invoking PropositiorEG]Z with the minimizér, such thaty, = D, (hs), we get thatpy <
Yo + 2

T‘Il’lll’l

Forv, < 1, we observe that,, > 2 and havepy < (3 +v2) - /2 < 2y/7; for 1o > 1,
observe that we havey <1 < 2,/7,.
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We remark that the constant 2 in the upper bound can be imgrshghtly by optimizing the
threshold fory, in the above case analysis, and further considering casetherr,,;, = 2 or
Tmin = 3.

6.2 Higher Order Orthogonal Minimaximizers

As mentioned in Sectidn 3.3, we do not yet know about highdeiospectral properties of the Laplacian
L. Hence, to achieve results like higher order Cheeger-lilezjualities, we consider the notion of
orthogonal minimaximizers with respect to the discrepamatip.

In Section 3.8, the parametefs and ¢, are defined in terms of the normalized space. We can equiv-
alently define them in terms of the weighted space&;as= miny, . ; max;cjy Dw(fi) and ¢y =
ming, ¢ max{D(f) : f € span{fi,..., fr}}, where the minimum is ove¥ non-zero mutually or-
thogonal vectord, fo, ..., fi in the weighted space. The proofs shall work with either thiermalized

or the weighted space, depending on which is more convenient

We do not know an efficient method to firkdorthonormal vectors that achiegg or (;.. In Sectior( 8,
we describe how approximations of these vectors can benglatai

We prove Lemm@_3]9 that compares the parametgrs, and(, by the following claims.

Claim6.2 Fork > 1, & < k.

Proof: Suppose the procedure produdes : i« € [k]}, which is attained by orthonormal vectors
X, == {x; : i € [k]} in the normalized space. Observe thatx;c(,) D(z;) = D(zk) = Yk, Sincexy,
could have been a candidate in the minimum for definingecauser;, L «;, forall j € [k — 1].

Since X}, is a candidate for taking the minimum over setg:arthonormal vectors in the definition of
&y it follows thatfk < Y. u

Claim 6.3 Fork > 1, v < (k.

Proof: Fork=1,v1 = =0.

Fork > 1, suppose thd~; : i € [k — 1]} have already been constructed with the corresponding
orthonormal minimizers\y_, := {z; : ¢ € [k — 1]}.

LetYy := {v; : i € [k]} be an arbitrary set df orthonormal vectors. Since the subspace orthogonal to
Xk—1 has rankn — k + 1 and the span df}, has rankk, there must be a non-zegos span(Yj) N XkL_l.

Hence, it follows thaty, = mlno;é ext D(r) < maxyegpan(v;) P(y)- Since this holds for any séf,
of & orthonormal vectors, the result foIIows. [ ]

Claim 6.4 Given anyk orthogonal vectorq f; : i € [k]} in the weighted space. We have,

G < kmz[LxD w(fi)-
elk
Moreover, if thef;’s have disjoint support, we have

Gk < 2max Dy (fy).
1€[k]

Proof: Here it will be convenient to consider the equivalent diparecy ratios for the weighted space.
It suffices to show that for any € span({f; : i € [k]}), Dw(h) < kmax;cy) Duw (f2)-
Suppose for some scalaig's, h = Zie[k] oy fi.
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Foru,v € V we have

(h(u) Z o (fi(u) — fi )))2
<k Z fi(v))?,

€[k]

where the last inequality follows from Cauchy-Schwarz ireddy. In the casg;’s have disjoint support,

we have
(h(w) = h(v))* <23 af(fi(u) — fi(v))*.
i€[k]
For eachte € E we have
%%i(h(u) —h(v))? < qgnvéle}ék (fz( ) — fi(v))?
’ ’ i€lk]
<k ) af max(fi(u) — fi(v))
i€[k] ’

Therefore, we have

Y e We MaXy, pee (h(w) — h(v))?

2 uey Wuh(u)?
< k Zie[k} O‘zz > e Wemaxy yee (fi(u) — fi(v))?
B Diek] O 2uev Wuli(u)?

<k Dw 1)
< kmax (fi)

D (h) =

as required. [
Claim 6.5 We havey, = (».

Proof: From Claim6.B, we already have < (5. Hence, it suffices to show the other direction. We
shall consider the discrepancy ratio for the weighted space

Supposef L, 1 attainsD,,(f) = v2. Then, we have

ZeeE We MAXy yee (gu - gv)2

2 < max
¢ g=af+bl Y vey Wog?
— max ZeeE We MAXy yee a2(fu - fv)2
g=af+bl Zve\/ Wy (afv + b)2

max zeeE We MAXy yee az(fu - fv)2
g=af+b1 Y v wy(a? f2 4+ b%) 4+ 2ab )" oy wy fo
< max Deck We maxu,vge a’ (qu — fu)?
g=af+bl ZUGV a wva

:’YQ_

6.3 Small Set Expansion

Even though we do not have an efficient method to genératethonormal vectors that attafi. As a
warm up, we show that an approximation can still give us a Hdamthe expansion of a set of size at
mostO(%).
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Theorem 6.6 (Formal Statement of 3.11)Suppose? = (V, E, w) is a hypergraph, and1, fo, ..., fx
are k orthonormal vectors in the weighted space such thak,;; D, (fs) < §. Then, a random set

. I e 24|V
S C V can be constructed in polynomial time such that Witti) probability, |.S| < % and

#(S) < C min{+/rlogk, klog kloglogk - \/logr} - /<,

whereC is an absolute constant andis the size of the largest hyperedgefn

Our proof is achieved by a randomized polynomial time Altyori[d that computes a sétsatisfying
the conditions of the theorem, given vectors whose discrgpaatios are at mosgt. We will use the
following orthogonal separatofLM14b] subroutine. We say that a s8tcutsanother set, if there
existu,v € e such thatu € Sandv ¢ S.

Fact 6.7 (Orthogonal Separator [LM14E]) There exists a randomized polynomial time algorithm that,
given a set of unit vector§u}, .., parameters3 € (0,1) andr € Z*, outputs a random sef C
{u},c\ such that for some absolute constapanda = ©(1), we have the following.

A~

1. For everyi, Pr[u € S| = a.
2. For everyu, v such that{u, v) < 3,

~ -~

Prju € Sandv € S| <

AQ

3. Foranye C {u},cy

A~

Prleis “cut” by S| <

= - arlogloglog 7/loge] - max |7 — 7]
- (T 10g T 10g 108 T og (e| - Imax (U — V|| .
Ji-p 8708108 el IR
Remark 6.8 We remark that the vectors do not have to satisfy #heonstraints in this version of
orthogonal separatord [LM14b].

Algorithm 1 Small Set Expansion

1. Spectral Embedding Let f1,..., fi be orthonormal vectors in theeighted spacesuch that
max,e(x) Duw(fs) < & We map avertex € V to a vectory; € R* defined as follows. Fare V'
ands € [k],

uz(s) = fs(l) .

In other words, we map the vertexto the vector formed by taking the coordinate corresponding
to vertexu from f1, ..., f. We consider the Euclideats norm inRR*.

2. Normalization. For everyi € V, leta; = =

(sl

3. Random Projection. Using Fact 6.J7 (orthogonal separator), sample a randord Betm the set
of vectors{i; },.,, with 3 = 99/100 andr = k, and define the vectak € R" as follows.

X, s | ifaie.§.
0 otherwise

4. Sweep Cut Sort the coordinates of the vect&rin decreasing order and output the prefix having
the least expansion (See Proposifiod 6.1).
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We first prove some basic facts about the spectral embeddemra 6.9), where the analogous facts
for graphs are well known.

Lemma 6.9 (Spectral embedding)We have the following.

1.
2
W. MAaX; . U; — U4
ZeGE e z,jeeH; JH < max Dy, (fs)
Siev wi ] el
2.
Zwi il = k.
eV
3.
> owilugu) = ul*, ViV
eV
4,
S ] s — ) < - fra D7)
> s€[k]
Proof:

1. For the first statement, we have

Y eer Wemaxijeellui—usl>  Deepwe maxijce Yoo (fs (1) —fs(5))?

Ziev wZHuZHQ o ZzEV wiq Zse[k] fs()2

Zse[k] 2 eer Wemax; jee(fs()—fs ()2
= S et ey Wils ()2 < maxe(r) Dw(fs)-

2. The second statement follows because gadtas norml in the weighted space.

3. For the third statement,

Zwi<uj,ul sz (Z fs fs )

i€V eV s€lk]

— Zwi Z fs ] fs ? ft ])ft(z)

i€V sitelk]

= Z fs ft szfs ft

s, te(k] eV

= S LG G) - s fi

s, telk]

= > f()AG) - I[s =1

s,t€[k]

= uy(s)?
s€[k]

2
= [luyl”-

4. For the fourth statement, using the Cauchy-Schwarz algéguwve have

36



2
g we max ||u; || - max [Ju; — uj|| < \/g We Max ||u; | \/E wemaxHuZ — uj|?
1€e 1,7€€e 1€e

ecE eck eel
2
We MAX; jee ||Ui — U;j
= 3w - | e e e [t ]
ecE v=e > ecr We MaXiee [lug]
< ZwemaXHqu maXD w(fs),
eck €1k

where the last inequality follows from the first statement.
To finish with the proof, observe that

e p We maxiee [|u]|> < 3oy wi ||ui]|* = k, where the last equality follows from the second
statement.

We denoteD := el log 7loglog 7 - \/log r.

Main Analysis To prove that Algorithn 1 outputs a set which meets the reguénts of Theorein 6.6,
we will show that the vectoX meets the requirements of Propositionl 6.1. We prove an uppand

on the numerato} . , w. max; je. |X; — X;| in Lemma6.1l and a lower bound on the denominator
> icy wiX; in Lemmd6.1B. We first show a technical lemma.

Lemma 6.10 For any non-zero vectors andv, ||a — 9| < 2%.
u v

Proof: Denotea := ||u||, b := ||v|| andd := (@, v). Then, we have

1 =3l (flull® + [lo]]*) = (2 — 26)(a® + 0?)
< 4(a® — 2ab0 + b?) = 4 ||lu —v||*,

where the inequality is equivalent to + 0)(a? + b) — 4abf > 0.

To see why this is true, consider the functib®) := (1 + 0)(a® + b?) — 4abd for 6 € [-1,1]. Since
h'(0) is independent of, / is either monotonically increasing or decreasing. Henzshbw thath is
non-negative, it suffices to check that bath-1) andhi (1) are non-negative. |

Lemma 6.11 We haveE[}" ., we max; je. | X; — X;|] < O(D) - VE.

Proof: For an edge € E we have

E[max | X — X[ < max‘HuZH - HUJH -Prli; € SVi € €] —i—max |[ug||® - Prle is cut byS]. (6.4)
1,]€e

By Fact 6.7 (1), the probability in the first term is at m@s(t%). Hence, the first term is at most
(1 O(1 O(1
O el — 7] < 2w s — -+ ) < @ s — me ]

’ (6.5)
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To bound the second term in (6.4), we divide the edgdJseto £; and E» as follows.

2
Ey = {eEE. H ZH 2} and E, := {eeE max H ZH >2} .
e ||u;|2 ijee |lug|®

E is the set of those edges whose vertices have roughly eqgithkeandE; is the set of those edges
whose vertices have large disparity in lengths.

Claim 6.12 Supposd+; and E,, are as defined above. Then, the following holds.
(a) Fore € Fy, we have
Prle is cut byS] < O(aD) - Rtiiceluiu;l,

max;ee||uil

(b) Fore € Ey, we havanaxiee HU,ZHQ < 4maxz~e€ HulH maX; jee Hul — UJH
Proof: We prove the two statements.

(a) Fore € Ey, using Lemm&6.10 and F4ctB.7, the probability thatcut by S is at most

llui — ujl| max; jee ||u; — uy|

O(aD) - max

< D) -
i,j€e < O(aD)

)
2 2 max; U;
[Jwal| ™ 4 flusll iee [lui

where the inequality follows becauses E;.

(b) Fixanye € E5, and suppose the verticesdn-= [r] are labeled such thfiti; || > |Jue| > ... > ||u,]|.
Then, from the definition of», we have

2
[ |

2
[l

Hencemax; jce [|u; — uj|| > |lur — up|| > (1—%)||u1\| Thereforemax;c. ||u]|* < 4 maxiee |Jug| max; jee ||t — u
|

For a hyperedge € E, using Claim 6.1 (a), the second term[in {6.4) is at most
AL maxice [luil| mai jee |Jui — ;.
Fore € E», in the second term of(6.4), we can just upperbound the pitilyatrivially by 1 < %,
and use Clairh 6.12 (b) to conclude that the second term isaalsmst

D) maxiee |Jus|| max; jee lui — ;|-

Hence, |nequallty{]B]4) becomes:

O(D)
Elmax|X; — X} < == maxJu; | max[|u; — uj]l.

Summing over all hyperedgesc F, we have

Zwen;aX|X - Xj|] < (T ZwemaxHuZH maxHul ujl|

ecE ecl
where the last inequality follows from Lemra6.9 (4). ]



Lemma 6.13 We have

1
Pry wiX; > 5] > =
[y w >2]

eV

Proof: We denoteY” := >, ., w; X;. We first computéE[Y'] as follows.

=" wi us]|* Prli € §]

eV

= willu|® a (From FacE&l7 (1))
i€V

= ka (Using Lemma 6.9 (2))

Next we give an upper bound &fY2].

E[Y?] = Z wiwj ||ug]|? Jus]|* Prlis, a; € S]

< Y wawy flwall? fuy | Priis, iy € S+ Y wiwy [lug) [fug]|* Prlai, @; € S].
7.7 7-7
<ul7uj><6 <uzvuj>>5

We use Fact 617 (2) to bound the first term, and use the trivaaht of% (Fact[6.7 (1)) to bound
Prla;, @; € S]inthe second term. Therefore,

(u7u>2
E[y?] < Z wiw; |luil| us —+ Z wiw il ugl|* - -7 - a

7-]
<uuu]><6 <uuu]>>6

- Z A <M + % (umuﬁg)
- % (Z w; Huz'H2> T % > wiw (i, uj)?
: 0

1
2 _ < :
k kT4 ﬁQ k=ak(l+ 52) < 3ka. (Using Lemma6.9)

SinceY is a non-negative random variable, we get using the Paleyrmd inequality that

Prly > 1IE[Y]] > <l>2 E[Y]" =

11 1
=2 2) E[y? 4 3 12°

This finishes the proof of the lemma. ]
We are now ready to finish the proof of Theorem 6.6.

Proof of Theorem[6.6:
(1) We first show that Algorithrall giveS C V' such thatS| = O(%) and¢(S) = O(klog k log log k -

VElogr).
By the definition of AlgorithnilL,

Therefore, by Markov’s inequality,

Prl|supp(X)| < ——]>1— . (6.6)



Using Markov’s inequality and Lemnia 6]11, for some largeugioconstant; > 0,

1
;weglva}g)( —X,|<CI1D- /€ >1— 5 (6.7)
e

Therefore using a union bound over(6.6), {(6.7) and Lemma, Gve get that with probability at least

48, the following happens.

(1) Zesetmomae NNl < 0(D) -, and

(2) |supp(X)| < 2.

When these two events happen, from Propositioh 6.1, Alyorfill outputs a se$ such thatp(S) <
O(D) - v€and|S| < [supp(X)| = O(%), as required.

(2) We next show that algorithmic version [LRTV12, LOT12] of F&1Q for 2-graphs can give us
S c V such tha{S| = O(%) and¢(S) = O(v/rélog k).

Given edge-weighted hypergraph = (V, E, w), we define an edge-weighted 2-gragh= (V, E’) as
follows. For eacke € £, wherer. = |e|, add a complete graph erwith each pair having weight“<;.
Observe that eventually a pdit, v} in G has weight derived from atl € E such that both: andv are
in e. In this construction, each vertexhas the same weight il andG.

We first relate the discrepancy ratios of the two graphs bysiwpthatD& (f) < 5 DI(f). Since the
denominators are the same, we compare the contributioncbflegperedge < E to the numerators.
Fore € E with r. = |e], its contribution to the numerator &S (f) is -2 Z{u U}e(e)(fu —f)? <

€ K 2
We - 5 - Maxy yee( fu — f)?, which is ¢ times the contribution of to the numerator oD (f).

Hence, Fadt 3.10 for 2- graphs implies that given vectotsogianal vectors, f, ..., fi in the weighted
space (wherenax;c|y) DE(f;) < 7“25), there is a procedure to retu such that/S| = O(3) and

¢%(8) = O(V/r€logk).
Therefore, it suffices to prove that’ (S) < ¢“(S). Again, the denominators involved are the same.

Hence, we compare the numerators. For each hyperedgés, suppose. = |e| anda, = |e N S|,
where0 < a. < .. Then, the contribution of to the numerator op“(S) i —1 (re — ae) > we,

which is exactly the contribution afto the numerator of’ (S). Hence, the result follows.

6.4 Higher Order Cheeger Inequalities for Hypergraphs

In this section, we achieve an algorithm that, giveorthonormal vectorgy, fs, .. ., fr in the weighted
space such thahax,c ) Dy (fs) < &, returns® (k) non-empty disjoint subsets with small expansion.

Theorem 6.14 (Restatement of Theorem 3.12fupposed = (V, FE,w) is a hypergraph. Then, we
have the following.

(@) Supposy, fa, .. ., fi arek orthonormal vectors in the weighted space such thatc (i) Do (fs) <
¢. There is a randomized procedure that runs in polynomiaetsuch that for every > L, with
Q(1) probability, returns| (1 — €)k] non-empty disjoint setSy, . .., S|1_ex C V such that

k? k k
) =0 = log = loglog ~+/log r - .
e H(5:) = O (61_5 og —loglog —/log \/5>
(b) For anyk disjoint non-empty set$;,..., S, C V

Sk

27

S;) >
Qaﬁ( ) >

40



where(,, is defined in Sectidn 3.3.

Proof of Theorem[6.14 (b):
For an arbitrary collection ok disjoint non-empty set$S;};, let f; be the corresponding indicator
function S;. Then, the vectorg;’s have disjoint support, and by Clalm 6.4, we have

Ck

== < max Dy (f;) = max ¢(S5)).

le[k] le[k]
|

For statement (a), the proof is similar to Secfiod 6.3, andilse have a similar sampling algorithm.

Algorithm 2 Sample algorithm

1: Supposefy, ..., fi, are orthonormal vectors in the weighted space suchithatc(; Dy (fs) < &.
We map a vertex € V to a vectoru; € R* defined as follows. Farc V ands € [k],

u;i(s) = fs(i).
2: Foreach € V, normalizeu; + HZ—H
3: Using Fac{ 6.7 (orthogonal separator), saniple= % independent subsets,..., St C V
with the set of vector§i; },.,, 8 = 1 — 5 andr = 16,
4: Define measurg(S) := >, g w; g |
For eachl € [T, definesS] as follows:

g[S sy <ieg
: @ otherwise.

5. Foreachl € [T7, let S = S)\(Ujei—15})-

6: Arbitrarily merge sets fror S;’} to form sets having-measure irﬁ, 1+ £] (while discarding sets
with total measure at mogf). We name the resulting sets to Be= { B, ..., B;}.

7: For eachyj € [t], setB; = {i € B;: [ ug]|* > r;}, wherer; is chosen to minimize)(B;).

8: Output the non-empty sefs; with the smallest expansion(B;), for j € [t].

Forming Disjoint Subsets. The algorithm first uses orthogonal separator to generdisesss;'s inde-
pendently. If theu-measure of a subset is larger thiam £, then it is discarded. We first show that with
high probability, each vertex is contained in some subsstishnot discarded.

Lemma 6.15 (Similar to [LM14a, Lemma 2.5]) For every vertex € V, and! € [T], we have
Prfi € SJ] > %

Proof: Recall that we sampl§; using Fact 6.7 withf = 1 — =5 andr = 16k

€
Fixi e V. If i € 5, theni ¢ Sl’ unlessu(S;) > 1+ ¢- Hence , we only need to show that
PY[M(SZ) >1+4 i’l S Sl] < %

Define the set¥; andV; as follows
Vi={jeV:(uu) >p}

and
Vo = {] eV: <€Li,ﬂj> < ,8}
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We next give an upper bound fpfV7). From FacE6.9 (3), we have
1= wj usl? (s, @)% > 8% Y wj us||* = 8- (V).
JjeVv JjEVL

Henceu(Vh) < 872 <1+ &.
For any;j € V5, we have(u;, u;) < . Hence, by Fa¢t 617 (2) of orthogonal separators,

1
Pr[j € Sili € S]] < e
Therefore, (
, p(Va) _ pu(V) e
E < < = —
(Sinva)lie s < B2 < Bt =
where the equality holds becays@/’) = k andr = %
By Markov's inequality,Pr[n(S; N 'V2) > £|i € 9] < 1.
Sincep(S;) = u(S; N Vi) + (SN Vz), we get
Pr{u(S)) > 1+ £|i € 5] < Pr[u(S;NVa) > £li € 9] < 3, as required. [ ]

Lemma 6.16 With probability at Ieast%, every vertex is contained in at least ofie Moreover, when
this happens, Algorithil 2 returns at least | k(1 — €) | non-empty disjoint subsets.

Proof: From Lemmd6.15, the probability that a vertex is not inctudes; for all I € [T is at most
(1-— %)T < exp(—%) < ﬁ. Hence, by the union bound, the probability that there sxstertex not
included in at least ong] is at most;.

When every vertex is included in son$g, then the totaj-measure of thes}”’s is exactlyu (V) = k.
Since we merge ths;"’s to form subsets ofi-measure in the rang{é, 1 + ¢], at most a measure éf
will be discarded.

[un

kf
r
because < e < 1. m

L > (1 — e)k, where the last inequality holds

Hence, the number of subsets formed is at least

o)

Bounding Expansion. After we have shown that the algorithm returns enough nurobsubsets (each
of which havingu-measure at leasy), it remains to show that their expansion is small. In additio
measure:, we also consider measure

2 2 2
v(S) = Zecswe maXi,jEe(HuiH - HUJH )+ Zeeas We Maxjesne ||| -

The next lemma shows that there is a non-empty subsg&talving expansion at mo%%.

Lemma 6.17 Supposes is a subset of/. For r > 0, denoteS, := {i € S : ||u;||* > r}. Then, there

existsr > 0 such thatS,. # 0 and¢(S,) < ;E§§

Proof: Suppose- is sampled uniformly from the interva, M), whereM := max;cg ||u;]|*. Observe
that forr € (0, M), S, is non-empty.

Then, it follows that an edgecan be indS,. only if e C Sore € 95.
Fore C S, e € 95, iff there exists, j € e such that|u;||* < r < [|u;|*.
On the other hand, if € 85, thene € 85, iff r < max;esne ||uil|>.
Hence E[w(0S,)] = %

Similarly,i € Sisin S, iff 7 < |ju||*. HenceE[w(S,)] = 452,
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) _ w(0Sy) < Elw(dSr)] _ v(S)
w(Sp) = Ew(Sy)] — w9’
In view of Lemmd 6.1l7, it suffices to show that the algorithmeyates subsets with smalmeasure.

Therefore, there existd > p > 0 such thaty(S,

Lemma 6.18 Algorithm[2 produces subseis;’s such that

E[max v(B;)] < O(D) - kv/€,

le[t]

whereD = \/1T—76 -log T loglog 7/log r, andr = max.cg |e|.
Proof:
Let Eeut := Uie[10B, be the set of edges cut i3, ..., B;. Then, for alll € [t],

2 2 2
V(BI) < X eep, WemaXiee [[uill™ + 2 e p we max; jee([Jusl|” = [luy|[%)-

Hence maxc |, v(B;) also has the same upper bound. Taking expectation, we have

E[Ilnaxy (Bj) Z wemaxHqu Zwemax (||ug]|* — ||uj|| ). (6.8)
E[t} eeEcut eck

,J

The second term if (6.8) is

Zwemax (lull® = llug®) < we ma [fu; — ugl| - [lu; + ;|
eckE I ecE J€e

<2§ wemaXHul uj||maXHuZ||
VIS
ecl

To bound the first term in(6.8), we divide the edge Behto two partsF;, and F5 as follows

E,={ecE: maxH il 5 <2} and E;={ecE: maxH il
f.j€e [|uj]|” Ba€e luyll

7 > 2}

The first term in[(6.B) is

BL Y wemax il < 3 Prle € Uieg0B] - max [l + 3 wemasc . (69
e€FEcut = eckEq =e e€FEy =

We next bound the contribution from edgesAh. Fix an edges € E;. Recall that forl € [T, the set
S; is generated independently by the orthogonal separatonifia6.7). Foi € [T, we definef; to be
the event that fot’ € [l — 1], Sy Ne = @ ande € 95;.

Observe that € Ujc;0B; implies that there existse [T'] such that the everd; happens. Next, i is

sampled from the orthogonal separator in Lenima 6.7, themha&B 15 implies thaPr[§m e=10] <
1 — £, and Claini6.I? (a) states that

Prle € 85] < O(aD) - MXueclui—u;l,

max;ee || uq|

Therefore, we have
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Prle € Uje t]ﬁBl Z Pr[&)]
le[T]

< Z —)=1. Pr[e € 98]

le[T]
2

< Z . Prle € 85]
e

max; jee || — uy|

<0(D)-

maxiee [|ug|

Hence, the first term in(6.9) is

> ccr, Prle € Uieg0B)] - we maxie, lJug)|? < Y ek, We MaX; jee ||ui — uj| - max;ee [Juql| -
Fore € F5, Claim[6.12 (b) implies that the second term[in{6.9) is

e, wemaiee [[uil® < 3, dwe maxice [ugl| max; jee ||ui — ;]

Therefore, it follows that

E[%%?V(Bz)] =O0(D)-> we max [|us | o max [l — |
ecE

< O(D) : kj1 lgé?]i}{ Dw(fs)
< O(

where the second to last inequality comes from Lernmla 6.9 (4). [ ]
Proof of Theorem[6.6 (a): We run Algorithm[2. By Lemm&_6.16, with probability at Iea}:,t it
produces at least> (1 — €)k subsetsBy, ..., B, each of which hag-measure at Iea%t.

Using Markov’s inequality and Lemnia 6]18, with probabilay least2, we havemax;c v(B;) <
AE[maxer v(By)] = O(Dk) - V&,

By union bound, with probability at Ieaét the algorithm produces at ledst (1 — ¢)k disjoint subsets
B, each of which satisfies(B;) = O(Dk) - /€ andu(B;) > 1.

Hence, Lemm& 6.17 implies that each su8hcontains a non-empty subs&; such thatqb(Bj) <

Zgﬁ% = O(Dk) - /¢, as required.

7 Vertex Expansion in2-Graphs and Hardness

As mentioned in Section 3.4, vertex expansiorigraphs is closely related to hyperedge expansion.
Indeed, Reduction_3.14 implies that vertex expansiodt-iagular graphs can be reduced to hyperedge
expansion. We show that this reduction also relates thenmtea )\, (see [(3.2)) defined by Bobkaat

al. [BHTOQ] with the parametety, associated with the Laplacian we define (in Sedtioh 4.1) ymeh
graphs.

Theorem 7.1 (Restatement of Theorem 3.17)etG = (V, E) be a undirectedl-regular 2-graph with
parameter\.., and letH = (V, E’) be the hypergraph obtained in Reduction 3.14 having paramgt

Then,

Y2 )\oo
— << =K .
4 =g ="
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Proof: Using Theorenh 4]1 for hypergraphs, the parametesf H can be reformulated in terms of the
weighted space as:

o — min eV () (fi = fi)”
Ji1 dY uev fi

Therefore, it follows thatse < 7.

Next, using(z + y)? < 4max {22, y?} foranyz, y € R, we get

. Zuev max; je({u}UN (u)) (fz — fut fu— fj)2 < i ZuEV dmaxy~y (fv - fu)2 B 4o
Y2 = Mmin d D) < min d D) = d .
Fi1 Zuev fu fL1 Zue\/ fu

[ ]
7.1 Hardness via the Small-Set Expansion Hypothesis
We state the Small-Set Expansion Hypothesis proposed blgavagdra and Steurer [RS10].

Hypothesis 1 (Small-Set Expansion§SE) Hypothesis) For every constanty > 0, there exists suffi-
ciently smalld > 0 such that, given a grap&’ (with unit edge weights), it is NP-hard to distinguish the
following two cases:

YES:. there exists a vertex sstwith § < % < 104 and edge expansiof(S) < n,

No: all vertex setsS with § < % < 106 have expansion(S) > 1 —n.

Small-Set Expansion Hypothesis Apart from being a natural optimization problem, the snsafl-ex-
pansion problem is closely tied to the Uniqgue Games ConjectRecent work by Raghavendra-Steurer
[RS10] established the reduction from the small-set expamsoblem to the well known Unique Games
problem, thereby showing that Small-Set Expansion Hymighenplies the Unique Games Conjecture.
We refer the reader to [RST12] for a comprehensive discaossmiahe implications of Small-Set Expan-
sion Hypothesis. We shall use the following hardness rdsulvertex expansion based on Small-Set
Expansion Hypothesis.

Fact 7.2 ([LRV13]) For everyn > 0, there exists an absolute constdrit such thatve > 0 it is SSE-
hard to distinguish between the following two cases for &gigraphG = (V, E, w) with maximum
degreed > 100/ and minimum degree, d (for some absolute constaat).

YES : There exists a sef C V of size|S| < |V| /2 such that

¢V(S) <e

No : ForallsetsS CV,

$V(S) > min {10_10,Clx/€log d} —n.

Reduction3.14 implies that vertex expansion2igraphs is closely related to hyperedge expansion.
Therefore, the hardness of vertex expansion as stated iff ashould imply the hardness of hyperedge
expansion. We formalize this intuition in the following tirems.

Theorem 7.3 (Formal statement of 3.18)For everyn > 0, there exists an absolute constatitsuch
that for all € > 0 it is SSE-hard to distinguish between the following two cases fonegihypergraph
H = (V, E,w) with maximum hyperedge sizeuch thatr log r € [n%, c2] (for some absolute constant
c9) andryi, > cir (for some absolute constant).
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YES : There exists a sef C V such that
ou(S) <€

No : ForallsetsS CcV,

1
om(S) > e 2L,

r

Proof: Given an undirected graph with maximum degred and minimum degre€(d) as in Fact 7.2,

we apply Reductiof 3.14 to obtain a hypergratwith maximum edge cardinality = d + 1. Then,

Facf3.15 implies that for any subsgbf verticesc; - ¢ (S) < %ﬁf‘f) < o (9).

100 _ 100
Fix some small enough > 0 and corresponding’; > 0 as in Fact 7. Let > =5 = ==,
Under the s case of vertex expansion in Fact]7.2, there is some subseth that S| < % and

o%(S) < e. This implies thatp (S) < -=, and we denoté := -= > 100

= cir!? c17“ c1r?

Under the M case of vertex expansion in FActl7.2, we have the fact thafany/ has vertex expansion

$%(S) > min {10719, Cy/elogd} — 1.

This implies that for some constafit depending or”; andcy,

¢H(S) > & > min{$7cl z. logr} _ g

T
Observe that this lower bound is non-trivial under the case

10 P> C'\/E- IOgT > 2.1, which is equivalent trlog r € [1?, 2], for some constant, depending

~ logr
e - pranl

onC; andc;. Hence, under this case, we hawg(S) > % .

Hence, theSSE-hardness in Faft1.2 finishes the proof. ]
Theorem 7.4 (Formal statement of 3.19)For everyn > 0, there exists an absolute constafritsuch
that Yz > 0 it is SSE-hard to distinguish between the following two cases for\gegihypergraph

= (V, E,w) with maximum hyperedge sizsuch thagr log r € [1?, c2] (for some absolute constant
¢9), rmin > c17 (for some absolute constant) and~, < % where~y, is the parameter associated with

H asin Theorem 611.

YES : v <E.

NO : 72 > CElogr.

Proof: We shall use the hardness result in Thergerh 7.3, and the &hieegjuality for hyeprgraphs in
Theoreni 6.1l and Propositién 6.2.

Given a hypergraplif, we have

2 < ¢H < v+ 2\/> < O( \/7 ), where the last inequality follow becausg;, = Q(r) and
72 < 5

Hence, the ¥s case in Theoremn 7.3 implies that < 22.

The No case in Theorem 7.3 implies that = Q(log ).

Therefore, the hardness result in Theofem 7.3 finishes thad.pr ]
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8 Polynomial Time Approximation Algorithm for Procedural M inimiz-
ers

Observe the procedures in Sectidn 6 takerthonormal vectorss, fo, ..., fx in the weighted space
such thatmax;c ) Dy (f;) is small. However, we do not know of an efficient algorithm émgrate such
k vectors to attain the minimuig),. In this section, we consider an approximation algorithmrduce
these vectors.

Theorem 8.1 (Restatement of Theorern 3.21There exists a randomized polynomial time algorithm
that, given a hypergraptf = (V, E,w) and a parametert < |V|, outputsk orthonormal vectors
f1,--., fr in the weighted space such that with high probability, focteac [£],

Observe that Theorem 8.1 gives a way to genetabethonormal vectors in the weighted space such
that the maximum discrepancy rafy,(-) is at mostk log r - £,. Hence, these vectors can be used as
inputs for the procedures in Theoréml|6.1 (more preciselyyseean approximatg, in Propositiorl 6.11),
Theorem§ 616 arid 6.114 to give approximation algorithms ssriteed in Corollaries 3.2P, 3.23 and 3.24.

—

The approximate algorithm in Theordm18.1 achievesktivectors by starting withf; € span(1), and
repeatedly using the algorithm in the following theoreméoegrate approximate procedural minimizers.

Theorem 8.2 (Restatement of Theorerm 3.20puppose fok > 2, { f};c—1) is a set of orthonormal
vectors in the weighted space, and define= min{D,,(f) : 0 # f L, {f; : i € [k — 1]}}. Then,
there is a randomized procedure that produces a non-zerorgchat is orthogonal tof f; }ic (-1 i
polynomial time, such that with high probability,,(f) = O (v log r), wherer is the size of the largest
hyperedge.

Proof of Theorem[8.1: On a high level, we start withf; := —— Forl < i < k, assuming that

[,

orthonormal vector§ f; : | € [i — 1]} are already constructed, we apply Theofem 8.2 to gengyate
Hence, it suffices to show th&x,(f;) < O (ilogr - &;).

We prove that i := min{D,,(f) : 04 f Ly, {fi:leli—1]}}, then <i-¢&;. Hence, Theorein 8.2
implies thatD,,(f;) < O ({logr) < O (ilogr - &;).

Therefore, it remains to shogv< i - &;. Supposey, gs, . . . , g; are orthonormal vectors in the weighted
space that attaigy (which is defined in Sectidn 8.2).

Sincespan({g1, 92, - ., g:}) has dimension, there exists non-zeme span({g1, g2, - - ., g; }) such that
g Lw {f1, fo,..., fi_1}. By the definition of¢;, we haveD,,(g) < (; < i&;, where the last inequality
follows from Claim(6.4. Hence, we have< i¢;, as required. [ ]

We next give arsDP relaxation [(8.8) and a rounding algorithm (Algoritiun 3) t@ye Theorem 812.
8.1 AnSDP Relaxation to Approximate Procedural Minimizers: Proof of Theorem[8.2

We present SDP 8.3 to compute a vector in the weighted spatéstbrthogonal tof, .. ., fx_1 hav-

ing the least discrepancy rat®,(-). In the SDP, for eachk € V, the vectorg,, represents the-th
coordinate of the vectof € R" that we try to compute. The objective function of the SDP amaae
tion (8.1) seek to minimize the discrepancy rdlig(-). We shall see that equation_(B.2) ensures that
after rounding, the resulting vectgris orthogonal tof, ..., fr—1 in the weighted space and achieves
O (log r)-approximation with constant probability.
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SDP 8.3 2
SDPval := minz We qgflvfieﬁ ng - gvH

eckE
subject to
> w g | =1 (8.1)
veV
Y wfi(v)gy =0  Vielk—1] (8.2)

veV

Algorithm 3 Rounding Algorithm for Computing Eigenvalues

1: SolveSDP 8.3 to generate vectogs, € R" forv € V.
2: Sample a random Gaussian vector N(0,1)". Forv € V, setf (v) := (gv, z).
3: Outputf.

Lemma 8.4 (Feasibility) With probability 1, Algorithni 3 outputs a non-zero vecjosuch thatf L,
{f1. foso oo frmn}

Proof: Because of equatiof (8.1), there existe V such thatg, # 0. Hence, wher¥ is sampled
from NV(0,1)", the probability thatf (v) := (z, g,) is non-zero is 1.

For anyi € [k — 1], we use equation 8.2 to achieve:

B = 3 w0 () £i(0) = <zwvfi<u>g;,a> 0.

veV veV
| |

Lemma 8.5 (Approximation Ratio) With probability at Ieastzi, Algorithm[3 outputs a vectof such
that D, (f) < 384logr - SDPval.

Proof: To give an upper bound o, (fx), we prove an upper bound on the numerator and a lower
bound on the denominator in the definition®f(-).

For the numerator, we have

E | > w(e) max(f(u) - f(v))2] = w(e)-E [maX(f(U) ~ f(v))?

u,vee u,vee
eceE ecl

< 8logr Z w(e) max ||gu — §V|’2 (Using Faci8.b)
u,vee
eeE
= 8logr - SDPval,

where the inequality follows from FaCi 8.6 in the followingammer. For eack € FE, observe that

the max, yc. iS over a set of cardinality;) < . Moreover foru,v € e, f(u) — f(v) = (gu —

gv,z) is a normal distribution with variancgg;, — gi,HQ and mean 0. Hence, F4ciB.6 implies that
— - 12

E [maxu,UEe(f(u) - f(v))2] < 8logr - maXy, vee ng - gVH .

Therefore, by Markov’s Inequality,

Pr ;w(e) max(f(u) = f(v))* < 192logr - SDPval| > 1 — i. (8.3)
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For the denominator, using linearity of expectation, we get

[Z wy f(v ] > w,E { gv,iﬂ =) w, lgv|*=1  (Using Equation8l1)

veV veV veV

Now applying Fadt 8]7 to the denominator we conclude

Pr LEZV wy f(v)* > 5] > 1—12 (8.4)
Using the union bound on Inequalify (8.3) and Inequality(8ve get that
Pr[Dy(f) < 384logr - SDPval] > i
[ ]
Fact 8.6 (Variant of Massart’s Lemma) Supposé?, Ys, ..., Y, are normal random variables that are

not necessarily independent. For eacke [d], supposeE [Y;] = 0 andE [Y;?] = ¢7. Denoteo :=

max;c(q 0. Then, we have

1. E [maxie[d} YZQ] < 40%Ind, and

2. E [max;erq [Vil] <20 - Vind.
Proof: Fori € [d], we writeY; = 0,Z;, whereZ; has the standard normal distributidvi(0,1).
Observe that for any real numbers, z2, . .., z4, for any positive integep, we havemax;c|q) z? <
Cicw 22)7 . Hence, we have

E [maXY ] < E|| D> vF <(EDv» (by Jensen’s Inequality, becauses ¢» is concave )
i€ld] 1€[d]
1 1
P p
2p)! (2p)!
< 2p — 2 ( D o 2p _ \4p)-
< Z;MZ o %;l] o (For Z; ~ N'(0,1), E [ZZ } )
< opv. (using 2l < (2p))

Picking p = [logd] gives the first resulif [max;c(q ¥;?] < 40?logd. Moreover, the inequality

E[Y]] < +/E[Y?] immediately gives the second result. u
Fact 8.7 Let Y7,...,Y,, be normal random variables (that are not necessarily inaglgat) having

mean 0 such tha [}, Y;?] = 1 then

Proof: We will bound the second moment of the random variable= Y, Y;? as follows.
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B (7] - B [12v7)
i,j
<> (E [Yi‘*])% (E [Yj“])% (Using Cauchy-Schwarz Inequality)
,J
=> 3E[Y?]E[Y}] (UsingE [2] = 3 (E [22])* for Gaussiar?)
5] )
=3 (ZE [Yf]) = 3.

By the Paley-Zygmund inequality,

Pr [Rz

9 Sparsest Cut with General Demands

In this section, we study the Sparsest Cut with General Demproblem (defined in Sectién 8.6) and
give an approximation algorithm for it (Theorém 3.25).

Theorem 9.1 (Restatement of Theorerh 3.25There exists a randomized polynomial time algorithm
that given an instance of the hypergraph Sparsest Cut pmolith hypergraphd = (V, E,w) and k
demand pairs i’ = {({s;,t;}, D;) : ¢ € [k]}, outputs a seb C V such that with high probability,

< H»
(5) <0 (x/logklogrloglog k:) )

wherer = maxecp |e|.

Proof: We prove this theorem by giving @8DP relaxation for this problem (SOP_9.2) and a rounding
algorithm for it (Algorithm(4). We introduce a variabiefor each vertex. € V. Ideally, we would want

all vectorsi to be in the sef0, 1} so that we can identify the cut, in which casex, ,c. || — 9]|* will

indicate whether the edgss cut or not. Therefore, our objective function will be, _ ., w(e) max, vee |2 — ol
Next, we add[{9]1) as a scaling constraint. Finally, we é&gdttiangle inequality constraint§ (9.2) be-
tween all triplets of vertices, as all integral solutionshaf relaxation will trivially satisfy this. Therefore,
SDP[9.2 is a relaxation of the problem and its objective v mostd ;.

SDP 9.2
min Z we Max |z — |2
eck ’
subject to
Y Di-llsi—t)*=1 (9.1)
1€[k]
la—o|® + o - a|? > la-al>  VevweV 9.2)

Our main ingredient is the following result due to [ALNOS].

Fact 9.3 ([ALNO8]) Let (V,d) be an arbitrary metric space, and Iét C V' be anyk-point subset. If
the spacgV,d) is a metric of the negative type, then there existslapschitz mapf : V' — /5 such
that the mapf |y : U — ¢, has distortionO (1/log & log log k).
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Algorithm 4 Rounding Algorithm for Sparsest Cut

1: Solve SDROP.

2: Compute the may : (V,/3) — R" using Fac[ 913, witl/ being the set of vertices that appear in
the demand pairs iffi.

3: Samplez ~ N(0,1)" and definer € RV such thate(v) := (z, f(v)) for eachv € V.

4: Arrange the vertices of asvy, . .., v, such that:(v;) < z(v;41) for eachl < j <n — 1. Output
the sparsest cut of the form

({v1, .. v} {vigr, . on)) .

Without loss of generality, we may assume that the rfiag such thatf|;; has the least distortion (on
vertices in demand pairs) among &Lipschitz mapsf : (V,¢3) — {5 (JALNOS8] gives a polynomial
time algorithm to compute such a map.) For the sake of brdeitph = O (\/@log log k:) denote the
distortion factor guaranteed in Fact.3. Since $DP 9.2 édaxation ofd 7, we also get that objective
value of theSDP is at most® ;7. Supposer € RY is the vector produced by the rounding algorithm.

We next analyze the following quantity. The numerator iswed to the objective function, and the
denominator is related to the expressioninl(9.1):

- ZeEE We MaXy pee |2(uw) — (V)]

p(x) = Dicp Di - lx(si) — a(t)] 7

The following analysis is similar to the proof of Leminal8.5.

For each edge, obsever that fot, v € e, x,, — z,, is @ random variable having normal distribution with
mean 0 and variandgf (1) — f(v)||*. Hence, using FaEt8.6 (2), we get

E |max |z(u) —xz(v)|| <4 logrmafo( |<4\/logrmax\|u—v\|

u,vee

where the last inequality follows becauge (V, £3) — {5 is 1-Lipschitz.
The expectation of the numerator pf (9.3) is

E [ZeeE We MAXy pee |2 (1) — x(v)]] < 4y/logr - Py.

Using Markov’s inequality, we have

1
Zwemax|:6 —z(v)| <96+/logr - | > 1—ﬂ (9.4)
ecl

For the denominator, observing thafs;) — x(¢;) has a normal distribution with mean 0 and variance

1/ (s;) — f(t:)||* and a random variabl& having distribution\'(0, 1) satisfiesE [| Z|] = 2, we have
B\ Dilr \fZansz— 1) ||>\f > Drrllsi — il = \f
i€k 1€[k] 1€[k]

where the inequality follows from the distortion ¢f;; as guaranteed by FdctB.3, and the last equality
follows from (9.1).

We next prove a variant of Fdct 8.7.
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Claim 9.4 LetYy,...,Y,, be normal random variables (that are not necessarily indeleait) having
mean 0. Denoté := ), |Y;|. Then,

Proof: For each, leto? = E[Y;]. ThenE[R] = /2", 0:.

Moreover, we have

B[R] = T B 5] < Ty B 1P -E V7] = 00, = 3 BLAP
where the inequality follows from Cauchy-Schwarz.
Finally, using the Paley-Zygmund Inequality, we have

1 1\?> E[R? _ 1
> . > (= . > —.
Prlnz 5B > (3) iy > 1o
| |
Hence, using Fa€t 8.7, we get
P[> D fo(si) — 2(ts)] > /o= - ~] > = 9.5)
LI Y= Vor AN T2

i€[k]

Using [9.3) and[{9]5), we get that with probability at legst

_ Ze We MaAXqy vee ’w(u) — 1‘(?})’
o(x) = Zz‘e[k] D; - |z(s:) — (&) <0 (x/logr) - ADy.

We next apply an analysis that is similar to Proposilion &dr.r € R, defineS, := {v € V : z(v) <
r}. Observe that if- is sampled uniformly at random from the intervalin, z(v), max, x(v)], then
two verticesu andv are separated by the c{f,, S,.) with probability proportional tdz(u) — z(v)|.

Hence, an averaging argument implies that there exist& such thatb(S,) < ¢(z) < O (vIogklogrloglog k) ®,
as required in the output of Step 4. [ ]
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A Hypergraph Tensor Forms

Let A be anr-tensor. For any suitable north|-, e.g. |.||3, ||, we define tensor eigenvalues as
follows.

Definition A.1 We define\{, the largest eigenvalue of a tensdras follows.

)\ ‘= max Zil,’iz,...ﬂ'T Ailig...irXilXiQ e Xi'r
t= XeRn HXHD ,

i1 vigoiy Aivio.in Xiy Xig - Xi
1 X o

T

V1 1= argmaxycgn

We inductively define successive eigenvalues A3 > ... as follows.

Z’il,ig,...,’ir Ailig...irXilXi X

A 1= max
X 1{v1,vi_1} HXHD 7
‘ Zh,ig,...,ir Ailiz.--iq'XilXi2 s Xir
Uk = argmaXg | (v, .op_1} X
(]

Informally, the Cheeger’s Inequality states that a graphdaparse cut if and only if the gap between
the two largest eigenvalues of the adjacency matrix is singhlarticular, a graph is disconnected if and

only if its top two eigenvalues are equal. In the case of theelgraph tensors, we show that there exist
hypergraphs having no gap between many top eigenvalues siililbeing connected. This shows that

the tensor eigenvalues are not relatable to expansion ireadé-like manner.

Proposition A.1 For anyk € N, there exist connected hypergraphs such that ... = Ag.
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Proof: Letr = 2% for somew € Z*. Let H; be a large enough completeuniform hypergraph. We
constructH, from two copies ofH;, sayA and B, as follows. Letu € E(A) andb € E(B) be any two
hyperedges. Let; C a (resp.b; C b) be a set of any /2 vertices. We are now ready to defifg.

Hy := (V(Hy) UV (Hy), (E(Hy) \{a}) U (E(H2) \ {b}) U{(a1 Ub1), (az U b2)})
Similarly, one can recursively defing; by joining two copies ofH;_; (this can be done as long as

r > 22). The construction off;, can be viewed as laypercube of hypergraphs

Let Ay be the tensor form of hypergrapti. For Ho, it is easily verified thaty, = 1. Let X be the
vector which hast1 on the vertices corresponding foand—1 on the vertices corresponding & By
construction, for any hypereddé, ... ,i.} € E

and therefore,
Diviinnoir Aivin e Xiy Xiy . X5

T= ).
1 Xl
Since(X,1) = 0, we geths = A\; andve = X. Similarly, one can show that; = ... = \; for H.
This is in sharp contrast to the fact thd}, is, by construction, a connected hypergraph. [

B Examples

We give examples of hypergraphs to show that some propeatesot satisfied. For convenience,
we consider the properties in terms of the weighted space.refark that the examples could also
be formulated equivalently in the normalized space. In o@ngples, the procedural minimizers are
discovered by trial-and-error using programs. Howeveromly describe how to use Mathematica to
verify them. Our source code can be downloaded at the faligwnk:

http://i.cs.hku.hk/ ~algth/project/nyper_lap/main.htmi
Verifying Procedural Minimizers. In our examples, we need to verify that we have the correcteval

for v := min- D and a certain non-zero vectfy attains the minimum.
Ve =G ey Do) o

We first check thaf is perpendicular td f1, . .., fr—1} in the weighted space, af, (f;.) equalsys.

Then, it suffices to check that for aﬁl;é fLw {f1,f2,- -+, fx—1}, Duw(f) > k. As the numerator in
the definition ofD,,(f) involves the maximum operator, we use a program to consitleases of the
relative order of the vertices with respectfto

For each permutation : [n] — V, fore € E, we defineS,(e) := o(max{i : o(i) € e}) and
I,(e) := o(min{i : o(i) € e}).

We consider the mathematical progratfy) := min >, we-(f(So(€))—f (I5(€)))* =D ey Wu f (u)?
subject tof (o(n)) > f(o(n —1)) > --- f(o(1)) andVi € [k — 1], (fi, f) = 0. Since the objective
function is a polynomial, and all constraints are lineag Mathematica functioMinimize can solve
the program.

Moreover, the following two statements are equivalent.

1. For alla 7é f iw {f17f27 .. '7fk71}1 Dw(f) Z Y-
2. For all permutations, P(c) > 0.

Hence, to verify the first statement, it suffices to use Mathtéra to solveP (o) for all permutationss.
Example B.1 The sequencéy; } generated by the procedural minimizers is not unique.

Proof: Consider the following hypergraph withvertices and hyperedges each with unit weight.
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We have verified that different minimizers fgs can lead to different values fog.

i £ . 5T

1] 0 (1,1,1,1,1) 0 (1,1,1,1,1)

2| 56 (1,1,1,-4,-4) | 56  (2,2,-3,-3,-3)
3| 113/99 (2,2,-6,3,—6) | 181/165 (4,—5,~5,5,5)

Example B.2 There exists a hypergraph such tifat< ~s.

Proof: Consider the following hypergrapi = (V, E) with V' = {a,b,c,d} andE = {e; : i € [5]}.
Fori # 3, edgee; has weight 1, and edgg has weight 2. Observe that every vertex has weight

We can verify thaty, = % with the corresponding vectgh := (1,1, -1, —1)T.
Recall thats = ming, 4, max;c (g Dw(gi), where the minimum is over all non-zege andg, such that

g1 Lw g2. We can verify thaty, < % by considering the the two orthogonal vectgis= (0,0,1,1)T
andgs = (1,1,0,0)T in the weighted space. [ ]

Example B.3 (Issues with Distributing Hyperedge Weight Evaly) Supposel,, is the operator on
the weighted space that is derived from the Figurd 3.1 byibigtng the weightw. evenly among
Se(f)xI.(f). Then, there exists a hypergraph such that any minimfizattaining~, := mina#l 3 Du(f)

is not an eigenvector df,, or evenll®”, L,,.

- Lw

1

Proof: We use the same hypergraph as in Exarhplé B.2. Recalhthat % with the corresponding
vector fo := (1,1, —1,—1)T.

We next show thaf, is the only minimizer, up to scalar multiplication, attaigiy-.

According to the definition,

o= min  @TDPH (G- d)P 42— d) + maxgyees(@ —y)°
(a,b,c,d) Lol 3(a? +b% + 2 + d?)
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Without loss of generality, we only need to consider theokwlhg three cases:

1. a > b > c: Then, by substituting = —b — ¢ — d,

(a=b)2+(b—d)?+2(c—d)?+ (a—c)? S 2
3(a® + 0% + 2 + d?) —3
= (c—d)?*+20b+c)? >0,
and the equality is attained only when=b = —c = —d.
2. a > ¢ > b: Then, by substitutingl = —a — b — ¢,
(a—b)2+(b—d)?+2(c—d)?+ (a—b)? L2
3(a? +b% + 2 + d?) —3
> (a+2b+c)* +8c% +4(a —c)(c—b) >0,
and the equality cannot be attained.
3. b > a > c¢: Then, by substitutingd = —a — b — ¢,
(@a—0)2 4+ (b—d)?+2(c—d)?+ (b—c)? - 2
a2+ b2+ 2+ d?) — 3

= A4b+ce) +2a+c)? +20b—a)(a—c) >0,

and the equality is attained only when=b = —c = —d.

Therefore, all minimizers attaining, must be inspan( f2).
We next showt thaf, is not an eigenvector di“, _ L,,. Observe that only the hyperedge= {a, b, c}

—lw

involves more than 2 vertices. In this case, the weight;of distributed evenly betweefu, ¢} and
{b,c}. All other edges keep their weights. Hence, the resultingghted adjacency matrixl and
| — W~1A4 are as follows:

3 1 1 1 1
2 1 20 PR S
— 1 1 1 7 — 1 5 _ 1 _1
A=17 7 2 andl—-W='A=| § § 6 3
7 3 02 S T
01 20 0 —3 -2 1
Hencel,f, = (I-W™'A)fy = (3,1,—%,—3)T & span(f2). Moreoverl1¥, L,f, = (3,1,—-3,-3)T ¢
1
span(fa2).

In comparison, in our approach, sinkés already connected @ with edgee, of weight 1, it follows
that the weight ot should all go to the paifa, c}. Hence, the resulting adjacency matrix is:

1 11 0
1 1 01
A= 1 0 0 2
01 2 0
One can verify thak,, f> = (I — W™ A) f, = 2 f», as claimed in Theorem4.1. -

Example B.4 (Third minimizer not eigenvector of Laplacian) There exists a hypergraph such that
for all procedural minimizer((f;,:)}icj3 Of Dw, the vectorfs is not an eigenvector df,, or even
Hl}?@w L., whereL,, is the operator on the weighted space defined in Lemma 4.8Fand { f1, f2}.

2
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Proof: Consider the following hypergraph withvertices an@ hyperedges each with unit weight.

€1

We can verify the first 3 procedural minimizers.

i Vi I

1] 0 (1,1,1,1)

2 5—4\/5 (\/5_173—2\/57_17_1)
3| U5 ((F1,-1,4—5,-1)
3| U5 ((F1,-1,-1,4— /5)

We next show thafs; and f5 are the only minimizers, up to scalar multiplication, atiag ;.
According to the definition,

o = min (a— b)2 + MaXy yeen (v — y)z
(abe,d) Lol a? 4 2b2 + 2 4 d?

Observe that andd are symmetric, we only need to consider the following twaesas

1. ¢ > b > d: Then, by substituting = —2b — ¢ — d,

(@ —b)2+ (c—d)? -1
a2+ 22+ c2+d? ~
= 5b% +2(c —b)(b—d) > 0.

2. b > ¢ > d: Then, by substituting = —2b — ¢ — d,

(a—b)°+(b—d? _5-5
a2 4202 +c24+d2 — 4
— (5+3V)*+ (V5 -3)? + (V5 -1

)d? + (2V/5 + 2)be + (2v/5 — 2)bd + (V5 — 1)ed > 0.

Let f(b, c,d) denotes the function above. Sinfés a quadratic function of and the coefficient

of ¢? is negative, the minimum must be achieved whkes b or d. In other wordsf (b, c,d) >
min{ f(b,b,d), f(b,d,d)}. Note that

f(b,b,d) = (6v5 + 4)b* + (3V5 — 3)bd + (V5 — 1)d* > 0
andf(b,d,d) = (5 + 3V5)b* + 4V5bd + (3v/5 — 5)d? > 0.

and the equality holds only when=d = —3+2—‘/gb.

Therefore;y, = %,f? = (V5 -1, 3*2\/5, —1,-1).
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Now we are ready to calculatg.

Ny = min (a—b)*+ maXy yee, (T — y)?
(a,b,c,d) Luwl, fa a? + 2b% + 2 + d?

Note that,

. 2d d= =(1—+5)b
(a,b,c,d)iwl,fz:»{a+ Fetd=0 {a (1= V5)

(V5—1a+B—-vV5)b—c—d=0 c+d=(v5-3)b
1. ¢ > b > d: which is equivalent te@ > —@(Hd) > d, then

(a=b)2+(c—d)? _11++5
>
a? + 202 +c2 +d?2 — 8

\/54+3(C+d))(d_ \/54+3

— (c—

(c+d)) <o.

2. b> ¢ > d: which is equivalent td4 — v/5)b+d > 0 > (3 — v/5)b + 2d, then
(a — D)%+ (b—d)? . 11++5
a?+202+c2+d? — 8
= (4= VB +d)((3+V5)((3—=V5B)b+2d) — (V5 —1)((4 — V5)b +d)) <0.

Thereforey; = ”Lg‘/g and the corresponding = (v5—1,—1,4—+/5,—1) or (v/5—1,—1,—1,4—
V5).

Weletf = f3 = (v/5—1,-1,4 —+/5,—1)T, and we apply the procedure described in Lerhmh 4.8 to
computel,, f.

Observe thatv, = w. = wg = 1 andw, = 2, andf(b) = f(d) < f(a) < f(c).
Foredge:;, Ay = f(a)—f(b) = V5 ande; = wi-A; = /5. Foredges, Ay = f(c)—f(b) = 5—/5,
andcy = ws - Ay = 5 — /5. Hencey, = — <L, 1, = —& andry, = rg = 2

T we? wptwg "

Thereforel, f = —r = (v/5,-3,5 - v/5,-3)T.
Moreover 1%, Ly f = (=5 + § - V5, —5 — §- V5,5 — 13- V5, =1 + 13 - V5)T & span(f).

2

The case wherf; = (v5 — 1, -1, —1,4 — /5)T is similar, with the roles of andd reversed. [
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