
ar
X

iv
:1

80
9.

00
83

2v
1 

 [
cs

.L
G

] 
 4

 S
ep

 2
01

8

Improving the Expressiveness of

Deep Learning Frameworks with Recursion†

Eunji Jeong∗, Joo Seong Jeong∗, Soojeong Kim, Gyeong-In Yu, Byung-Gon Chun‡

Seoul National University

{ejjeong, joosjeong, soojeong kim, gyeongin, bgchun}@snu.ac.kr

Abstract

Recursive neural networks have widely been used by re-

searchers to handle applications with recursively or hierarchi-

cally structured data. However, embedded control flow deep

learning frameworks such as TensorFlow, Theano, Caffe2, and

MXNet fail to efficiently represent and execute such neural net-

works, due to lack of support for recursion. In this paper, we add

recursion to the programming model of existing frameworks by

complementing their design with recursive execution of dataflow

graphs as well as additional APIs for recursive definitions. Un-

like iterative implementations, which can only understand the

topological index of each node in recursive data structures, our

recursive implementation is able to exploit the recursive rela-

tionships between nodes for efficient execution based on parallel

computation. We present an implementation on TensorFlow and

evaluation results with various recursive neural network models,

showing that our recursive implementation not only conveys the

recursive nature of recursive neural networks better than other

implementations, but also uses given resources more effectively

to reduce training and inference time.

1 Introduction

Recursive neural networks have widely been used by researchers

to handle applications with recursively or hierarchically struc-

tured data, such as natural language processing [27, 25, 3] and

scene parsing [23, 25, 22, 13].

In order to implement such models, embedded control flow

deep learning frameworks (in short, embedded control flow

frameworks), such as TensorFlow [1], Theano [30], Caffe2 [6],

and MXNet [4], embed control flows within dataflow graphs,

i.e., the control flow is represented as a type of operation of

the dataflow graph, which can trigger conditional execution or

iterative computation. However, the programming model pro-

posed by such frameworks fails to efficiently represent and ex-

ecute neural networks with recursive structures. The designs

of these frameworks do not consider recursive models and in-

stead urge users to either write their models with iterative con-

† Appeared in EuroSys ’18

* Both authors contributed equally to the paper

‡ Corresponding author

structs [29] or completely unroll models without exploiting con-

trol flow at all [28, 18]. Meanwhile, non-embedded control flow

deep learning frameworks (in short, non-embedded control flow

frameworks) such as PyTorch [20] or DyNet [19] allow users to

define control flows from the client-side, creating new computa-

tion graphs for all possible control flow paths of a model. This

approach trades performance for programmability, losing opti-

mization opportunities because each graph is usually executed

only once.

An important example of recursive neural networks is the

TreeLSTM [27] model, a tree-shaped network with recur-

sively definable nodes, demanding complicated execution mech-

anisms. In existing frameworks, the TreeLSTM network is han-

dled by either statically unrolling the full network graph before-

hand [20, 19], or using a single LSTM cell to iteratively com-

pute all intermediate nodes [1, 30]. For the former case, it is

difficult to process multiple data instances together because the

tree structure differs for each instance. For the latter case, the

iterative execution is inherently sequential and thus is incapable

of computing multiple nodes in parallel.

In this paper, we introduce recursive definitions into the pro-

gramming model of existing embedded control flow frame-

works [1, 6, 4, 30], adding first-class support for recursion. By

allowing users to directly express recursive definitions in appli-

cation code with enhanced programmability, models with recur-

sive data structures such as trees or graphs can be written with-

out requiring users to use a separate complex API to express

the control flow [15]. Also, optimization opportunities can be

exploited to boost performance, such as concurrently executing

child nodes in tree structures that have no dependencies between

each other.

We make recursive definitions possible by introducing a spe-

cial graph operation, InvokeOp, that abstracts the execution of

a SubGraph. Users can incorporate recursion in models by

invoking a SubGraph within the InvokeOp that abstracts the

same SubGraph. The framework handles the execution of an

InvokeOp as the initiation of a new SubGraph containing a bun-

dle of inner operations, which are treated the same as the original

running operations.

We implemented support for recursively defined dataflow

graphs on TensorFlow [1], a widely used deep learning (DL)

1

http://arxiv.org/abs/1809.00832v1


framework. To show the expressive power and the performance

of recursive graphs, we implemented three applications using

our framework: sentiment analysis with the TreeRNN [25],

RNTN [26], and TreeLSTM [27] models. For every model, we

succeeded in capturing the recursive semantics of the computa-

tion graph, and achieved competitive performance compared to

other state-of-the-art deep learning frameworks such as Tensor-

Flow [1] and PyTorch [20].

The rest of the paper is organized as follows. Section 2 ex-

plains the limitations of existing embedded control flow frame-

works regarding recursive models, and Section 3 provides a

high-level API for efficiently representing such recursive mod-

els. Section 4 describes the design aspects of our framework,

and Section 5 presents the implementation details. Section 6

presents evaluation results on various applications. Section 7

covers related work and Section 8 concludes.

2 Motivation

2.1 Embedded Control Flow Frameworks and

Their Limitations

Modern deep learning frameworks use directed acyclic graphs

(DAGs) to represent mathematical computations of deep learn-

ing applications and the execution order of such computations.

The vertices of graphs represent the mathematical operations,

while the edges represent the dependencies between two oper-

ations. An edge from operation a to operation b implies that

the output of a is fed into b as the input value. As the execu-

tion order between any two operations in the computation graph

is statically determined, it is a non-trivial task to represent dy-

namic control flow within computations, such as conditionally

executing only a part of the graph, or jumping to a nonadjacent

operation.

Based on how to handle dynamic control flow, we can di-

vide deep learning frameworks into two categories: embedded

control flow frameworks and non-embedded control flow frame-

works. Embedded control flow frameworks such as Tensor-

Flow [1] and Theano [30] include control flow concepts inside

the computation graph. They define special kinds of control flow

operations to embed the control flow within the graph. This way,

a single computation graph is able to express multiple control

flow paths. Since these frameworks can build a single graph and

execute it repeatedly, aggressive performance optimization can

be done while hiding the optimization overhead.

On the other hand, non-embedded control flow frameworks

including PyTorch [20], DyNet [19], and Chainer [31] do not

represent the control flow inside the computation graph. Instead,

they create a new static computation graph for every activated

control flow. This approach enables fast prototyping and easy

development of various deep neural networks. However, this

approach leaves little room to optimize the performance of com-

putation graph execution, because each graph gets executed only

once.

Embedded control flow frameworks. In embedded control

flow frameworks, graph vertices represent not only arithmetic

operations (e.g., Add or MatMul) and data transformations (e.g.,

Concat), but also data-dependent control flow mechanisms.

Conditional expressions are often made available by many em-

bedded control flow frameworks. A predicate is expected as the

first input argument, and two other operation groups as the true

and false inputs. Based on the predicate value, only one of

the two operation groups are executed and passed to the out-

put operation. Another useful control flow construct in existing

deep learning frameworks is the iterative loop construct, namely

the while loop operation in TensorFlow and the Scan operator

in Theano. This kind of API enables adding a group of opera-

tions, referred to as a loop body, to be executed multiple times

iteratively. Conditional expressions are usually used with loop

constructs to denote the termination condition of the loop body.

By planting dynamic control flow inside the computation

graph and thus decoupling the client-side code execution from

computation graph execution, frameworks can exploit paral-

lelism while executing jobs by handling mutually independent

operations in a concurrent manner, and can also exploit graph

optimization techniques for faster execution that would other-

wise be impossible for non-embedded control flow frameworks.

This paper will focus on embedded control flow frameworks,

building up on the provided optimizations to produce maximum

performance.

Limitations of embedded control flow frameworks. The

computation graphs of embedded control flow frameworks do

not fully cover every possible control flow construct, however.

Designing recursive neural networks efficiently using embedded

control flow of iterative loop constructs is difficult. Not only

is it unclear how to parallelize independent operations with it-

erative loops, recursion and iteration are fundamentally differ-

ent and thus converting one into another involves a nontrivial

conversion process [14, 8, 7]. The following subsection shows

an example demonstrating the difficulties of designing recursive

neural networks with just loop constructs.

2.2 Example: TreeLSTM

The long short-term memory [9] (LSTM) cell is a block of func-

tions that is well-known for its ability to “remember” past com-

putations of a neural network, and is often used for networks that

process data of sequential characteristics such as text data with

sentence structures.

TreeLSTM [27] is a widely used recursive neural network

based on LSTMs that is known to perform well for applications

with tree-shaped data instances such as parse trees for natural

language processing and hierarchical scene parsing [25]. In an

ordinary linear recursive neural network, LSTM cells are placed

sequentially regardless of the input data structure. On the other

hand, in the TreeLSTM model, LSTM cells are combined to

form a tree, mimicking the shape of the input data tree. Sen-

timent analysis is often used as an application of the TreeLSTM.

For example, with movie review sentences and the correspond-

ing ratings as training input data and labels, the TreeLSTM net-

work can be trained to predict the sentiment of each movie re-

view sentence.

2



1 states = array()

2

3 def compute leaf(idx):

4 curr state = lstm(embed(tree.leaves[idx]))

5 states.insert(idx, curr state)

6

7 def compute internal(idx):

8 left idx , right idx = tree.children[idx]

9 left state = states.get(left idx)

10 right state = states.get(right idx)

11 curr state = lstm(left state , right state)

12 states.insert(idx, curr state)

13

14 for loop(range(num leaves), compute leaf)

15 for loop(range(num internals), compute internal)

16

17 root state = states[root idx]

Figure 1: Iterative implementation of the TreeLSTM model in

pseudocode.

There are two approaches to implement this TreeLSTM net-

work with current deep learning frameworks, both having its

own limitations.

The first approach is unrolling the whole tree structure to the

computation graph, so that LSTM cells are duplicated for each

tree node. To train multiple trees with this approach, however, a

new graph must be created for all input training instances. Not

only does this result in an excessive amount of graph objects

and significant construction overhead, the effect of compile-time

graph optimization is near zero as all graphs are used only once.

The second approach is using iterative control flow operations

provided by frameworks. Figure 1 shows pseudocode of an it-

erative implementation of the TreeLSTM model. In this imple-

mentation, a single LSTM cell can be used multiple times for

multiple input data instances. After the leaf nodes are processed

sequentially in Line 14, the internal nodes with their dependen-

cies resolved get processed in Line 15. In order for this ap-

proach to work, the input tree must be preprocessed so that its

nodes are assigned with topologically sorted indices, i.e., exe-

cuting the tree nodes in an iterative manner does not violate the

computational dependencies. Since the recursive nature of the

tree structure cannot be directly represented by iteration, it is

difficult to write and understand this code.

The process of topologically sorting the tree nodes loses the

parent-child node relationships of the tree, and thus the iterative

implementation can only view the tree nodes as a linearly or-

dered list. A recursive formulation, on the other hand, would

be able to utilize the information on parent-child relationships to

concurrently execute nodes, and is inherently more suitable for

representing recursive neural networks, preserving their recur-

sive nature.

2.3 Recursion in Embedded Control Flow

Frameworks

The drawbacks of the unrolling method and the iterative method

suggest the need for a more effective and intuitive solution to

implement TreeLSTMs, and recursive neural networks in gen-

eral. We propose that recursively defining and executing recur-

sive neural networks is a simple yet powerful approach.

Recursive execution of computation graphs has many similar-

ities with recursive invocation of functions in general program-

ming languages. Recursive function invocation in programming

languages is supported by allowing a function to call itself inside

the function body. This is usually more complicated than exe-

cuting non-recursive functions, since when parsing the source

code of a recursive function, the recursive function call must be

processed before the parsing of the function gets finished.

Inspired by the concept of functions and function invocations,

we propose to design similar ideas in embedded control flow

frameworks to support recursive execution. First, a program-

ming interface for defining a subset of the computation graph

that will be executed recursively is required. Then, an invoca-

tion operation inside the graph subset is also needed, to trigger

the recursive execution of the graph subset. No modern embed-

ded control flow framework supports these functionalities and,

at the same time, is able to train a recursive neural network, to

the best of our knowledge.

Our observations above suggest that an implementation of re-

cursion, for embedded control flow frameworks, must satisfy

two conditions. First, recursion must be expressible as part of a

valid computation graph. Despite the fact that recursion implies

the usage of a call stack of arbitrary length, the graph representa-

tion of recursion must be finite and executable by the framework.

The graph representation of recursion corresponds to the recur-

sive function definition; the definition simply denotes what com-

putation is involved and how the recursion occurs, while not ac-

tually running the function. Moreover, this representation must

be usable together with other non-recursive parts of the compu-

tation graph (Section 3.1).

Second, an operation included in a recursive computation

graph must be able to trigger the surrounding computation graph

recursively. The operation triggering the recursive graph execu-

tion corresponds to the function invocation, which can further

unfold the computation until the recursion termination condition

is satisfied (Section 3.2).

3 Programming Model

In this section, we describe our modifications to the program-

ming model of existing embedded control flow frameworks, as

well as how they are translated into dataflow graph components.

3.1 Unit of Recursion: SubGraph

It is infeasible to implement the dynamism and recurrences of

recursive computations using the static components of dataflow

graphs provided by existing embedded control flow frameworks.

3



In response to this shortcoming, we first propose an abstrac-

tion, SubGraph, that represents basic recursive blocks and, at

the same time, can be used in conjunction with existing opera-

tions to create a dataflow graph with recursive computations.

SubGraphs are created by grouping operations of a given

computation graph that will be executed recursively. SubGraphs

represent fractions of a dataflow graph. Executing a SubGraph

refers to executing the operations that belong to that SubGraph.

The inputs and outputs of operations that are connected to

outer operations (operations that reside outside of the current

SubGraph) are assigned as inputs and outputs of the SubGraph

itself. During execution, the inputs of a SubGraph are passed to

the corresponding inner operations, while operation outputs that

must be shipped out to outer operations are passed as SubGraph

outputs. A SubGraph can be regarded as a function in general

programming languages.

Additionally, we allow SubGraphs to invoke other Sub-

Graphs. A SubGraph invocation within an outer SubGraph is

connected to the other inner operations to form an inner dataflow

graph, just as the outer SubGraph is connected to outer oper-

ations. A SubGraph invocation in a SubGraph simply implies

that there is yet another group of operations to be executed at that

particular graph position. Coming back to the function analogy,

placing a SubGraph invocation within a SubGraph is identical

to calling a function within another function.

More importantly, a SubGraph may recursively invoke itself.

This aspect makes possible the definition of a recursive compu-

tation; we define a recursive block as a SubGraph and insert a

invocation to itself in the same SubGraph.

Figure 2 shows the recursive implementation of the Tree-

LSTM model, with details omitted for brevity. After defining

a SubGraph for the TreeLSTM model in Line 2, we reuse the

definition in Lines 10-11 to complete the recursive tree structure

of the model. Notice how a conditional expression is used (if in

Line 14) to separate the base case from the recursive case. Com-

paring with Figure 1, this recursive version follows the definition

of the TreeLSTM model more clearly; the recursive nature of the

tree structure is explicitly represented in this implementation.

3.2 Recursion in Dataflow Graphs: InvokeOp

While SubGraphs provide a convenient way to define recursive

computations, the framework is still left with the task of actually

executing the operations gathered as SubGraphs. However, as

SubGraph operations are expected to be executed in a recursive

fashion, an additional mechanism for “re-executing” the opera-

tions of SubGraphs repeatedly (until some termination condition

is met) is required. To this end, we introduce a new operation

named InvokeOp.

An InvokeOp is an operation that takes a set of tensors as

input, runs an associated SubGraph (i.e., executes the inner op-

erations of the SubGraph) with the provided inputs, and returns

the resulting tensors as output. InvokeOps are execution ob-

jects instantiated from SubGraph invocations; as SubGraphs

are semantically close to function definitions, InvokeOps can

be considered as function calls to the functions specified by

1 # TreeLSTM: index(int32) −> hidden state(Tensor)

2 with SubGraph() as TreeLSTM:

3 idx = TreeLSTM.input(int32)

4

5 def compute leaf node():

6 return LSTM(embed(tree.leaves[idx]))

7

8 def compute internal node():

9 left idx , right idx = tree.children[idx]

10 left state = TreeLSTM(left idx)

11 right state = TreeLSTM(right idx)

12 return LSTM(left state , right state)

13

14 TreeLSTM.output(if(is leaf node(idx),

15 compute leaf node ,

16 compute internal node))

17

18 root state = TreeLSTM(root idx)

Figure 2: Recursive implementation of the TreeLSTM model

with SubGraph definitions. After declaring the start of a

SubGraph in Line 2, we indicate the inputs of the SubGraph

in Line 3. The body of the SubGraph is defined in Lines 5-

16, while recursive calls are made on Lines 10-11. Note that

SubGraph outputs must be given as in Lines 14-16. The com-

pleted SubGraph definition can now be used in Line 18.

SubGraphs. As such, it is possible for a single SubGraph to

be associated with more than one InvokeOp.

Despite the special property of having an associated

SubGraph, an InvokeOp is fundamentally the same as other op-

erations such as Add or MatMul, and is generally treated as an

ordinary operation. The difference with other operations comes

from the operation kernel implementation; instead of performing

a mathematical calculation, an InvokeOp abstracts the execution

of an entire SubGraph. This difference also affects a process

called automatic differentiation, a core functionality provided by

modern deep learning frameworks for training models. Instead

of calculating mathematical derivates of some numerical func-

tion like other operations, the framework must take into account

the associated SubGraph of an InvokeOp. We will discuss this

further in Section 4.2.2.

3.3 TreeLSTM with SubGraphs & InvokeOps

Figure 3 portrays an example on how InvokeOps are used to

represent the TreeLSTM (Section 2.2) model with recursion. A

completely unrolled depiction of the model for a full binary tree

is shown in Figures 3(a) and 3(b). It is not hard to observe that

the model can be expressed using recursion: the embed oper-

ation and the LSTM cell at the leaves form the base case (Fig-

ure 3(a)), while the two-input LSTM cell at the intermediate notes

corresponds to the recursive case (Figure 3(b)).

Merging the base case and the recursive case into a SubGraph

with a conditional branch (if), we now have a concise represen-

4



tation of the TreeLSTM model, as shown in Figure 3(c). Note

that the condensed SubGraph is able to represent TreeLSTMs of

arbitrary height or shape, and not just a single particular struc-

ture. InvokeOps are inserted at all inner recursive call points.

4 System Design

In this section, we discuss various system design aspects for sup-

porting the recursive programming model of the previous sec-

tion.

Our design complements existing embedded control flow

frameworks with additional APIs for declaring recursive graphs

and core changes for executing such recursive graphs. Mod-

els declared using the SubGraph API from Section 3 are trans-

formed into a dataflow graph containing InvokeOps. In turn,

the framework core engine runs the resulting graph with the

same mechanism used to run non-recursive graphs, accessing

additional graph and value cache structures when dealing with

InvokeOps. The design does not involve any implementation

details of a particular framework, and can be applied to any

DL framework that incorporates control flows in computation

graphs.

4.1 Graph Execution

4.1.1 Background: Execution Model of Existing Frame-

works

The execution model of embedded control flow frameworks can

be characterized by three components: the client who builds and

submits dataflow graphs to the framework, the master which

parses the given graphs and schedules the execution of opera-

tions, and one or more workers that carry out the actual compu-

tation of the operations. The master coordinates the execution

of operations on the workers, running operations in an order that

respects the inter-operation dependencies.

Steps (1)-(3) of Figure 4 displays an illustration of the execu-

tion model, with only one worker shown for simplicity. When

the master first analyzes the input dataflow graph, operations that

require no inputs are enqueued directly into the ready queue of

the worker, whereas operations that need at least one input are

put on standby. Next, execution threads of the worker’s execu-

tion thread pool grab operations from the operation queue and

perform the computation for those operations in parallel. When

an execution thread finishes running an operation, the master

checks the waiting operations that have a dependency on the

completed operation, and enqueues operations whose dependen-

cies have all been resolved to the ready queue. This process is

repeated until all operations have been processed.

4.1.2 Recursive Execution

The execution mechanism for executing a recursively defined

dataflow graph is no different from the mechanism for execut-

ing non-recursive graphs. This is possible because the execution

of an InvokeOp mimics the initiation of a new dataflow graph,

with the exception of reusing the same master scheduler as well

LSTM

LSTM

LSTM

embed

LSTM

embed

LSTM

LSTM

embed

LSTM

embed

(a)

LSTM

LSTM

LSTM

embed

LSTM

embed

LSTM

LSTM

embed

LSTM

embed

(b)

InvokeOp

InvokeOp InvokeOp

LSTMLSTMLSTM

ifleaf?

T F

embed

(c)

Figure 3: An illustration of how an unrolled computation graph

of the TreeLSTM model (a, b) can be transformed into a recur-

sive graph with InvokeOps (c). The base case, depicted in the

boxes of (a), and the recursive case, indicated by the boxes in

(b), can be combined to succinctly describe the model as a re-

cursive SubGraph as shown in (c). InvokeOps have been added

at the appropriate places to mark the points where a recursive

function call to the SubGraph must occur.

5



Operation

InvokeOp

Master

Graph Parser

Execution

Thread Pool

Waiting

Operations

Ready

Queue

Worker

Client

(1)

(2)

(3)

(4)

(2)

SubGraph

Figure 4: The execution model of embedded control flow frame-

works with InvokeOps. (1) After the client initiates the job with

a dataflow graph, (2) the master decomposes the graph into op-

erations and places them into either the ready queue or the wait-

ing line of the worker, depending on the number of unresolved

inputs. (3) Operations are dequeued from the queue by idle ex-

ecution threads, while new operations are enqueued when input

dependencies are resolved. (4) When an InvokeOp gets exe-

cuted, its associated SubGraph is passed to and processed by

the master, similar to step (1). Only one worker is shown for the

sake of clarity.

as the same worker ready queues, as illustrated in step (4) of Fig-

ure 4. When an InvokeOp becomes executable and is dequeued

by an execution thread, the graph associated with the InvokeOp

is processed by the master, similar to how a graph submitted by

the client is parsed by the master. Operations that are immedi-

ately ready to be run are enqueued into the ready queue, behind

the existing operations. Likewise, operations that have at least

one unresolved input dependency are added to the waiting list,

together with other previous standby operations.

This design allows recursive dataflow graphs to be processed

on existing embedded control flow frameworks without dras-

tic changes. Recursive graphs can enjoy graph optimizations

supplied by such frameworks and achieve good performance

while providing intuitive, recursive APIs at the same time. In

fact, from the framework’s point of view, a recursive graph is

the more general representation, while non-recursive graphs are

simply special cases which have no recursive SubGraphs and

InvokeOps.

It is also worth noting that performing priority scheduling

of operations instead of simple FIFO scheduling may possibly

yield significant effects on the execution time of recursive com-

putation graphs, depending on the inter-operation dependencies

of the given recursive model. For example, if the model con-

tains a SubGraph whose inner operation must be processed in

order for many outer operations to be enqueued into the ready

queue, then a scheduling decision of processing inner operations

before others would lead to a shorter execution time overall. Al-

though this is an interesting problem, it is usually not an issue

for servers with many parallel computation threads to spare and

thus we leave this as future work.

Graph execution stack. When a function is invoked in pro-

gramming languages, the language runtime maintains a call

stack to record the call history and relevant information. This

enables the program to correctly return from the callee function

to the corresponding caller function, and also provides help-

ful information to programmers such as backtrace information

when an exception occurs while executing the function. A simi-

lar process of keeping track of the SubGraph invocation history

is required for the recursive graph execution engine. However,

the caller-callee relationship of InvokeOps cannot be managed

with a linear stack, because an InvokeOp can branch out into

multiple child InvokeOps in parallel. Rather, the relationship is

maintained as a tree, where each InvokeOp holds a pointer to its

parent InvokeOp (i.e., return location).

4.2 Graph Backpropagation

4.2.1 Background: Automatic Differentiation

Neural networks are normally trained via the backpropagation

algorithm [21]. Backpropagation calculates the errors of all op-

eration output values, by first comparing the final outputs of

a neural network with expected ground-truth values (labels) to

compute output errors, and then propagating the output errors

all the way back up to the input according to the chain rule. The

calculated errors – often referred to as gradients – are used to

update model parameters so that operation outputs are pushed

towards the expected values.

Backpropagation of a simple linear network is shown in Fig-

ure 5(a). Starting from operation op1, all forward operations

op1, op2, and op3 are computed in succession to produce val-

ues a, b, and c, respectively. The final output c is checked with

the expected value c* to produce the loss value E, as well as

the gradient of E with respect to c, denoted as dE/dc. Next,

the other gradients are generated one by one, this time through

the backpropagation line of operations, op3-grad, op2-grad, and

op1-grad.

Note that in order to calculate a certain gradient, both the pre-

vious gradient and the corresponding forward value are required.

For instance, the gradient dE/db is computed with the previous

gradient dE/dc and the forward value b (op3-grad). Likewise,

dE/db and a are used to compute dE/da (op2-grad). This results

in a final dataflow graph where a forward operation shares its in-

puts with its backpropagation equivalent (e.g. op2 and op2-grad

both take a as input). As a precaution to prevent values from be-

ing invalidated (released from memory) before being consumed

by all dependent operations, DL frameworks always keep all op-

eration outputs as valid data until that particular iteration termi-

nates.1

Automatic differentiation. Deep learning frameworks re-

lieve users from the burden of manually inserting backpropaga-

1Technically, we could recompute the forward operation values during

backpropagation instead of retaining them to save memory. However, this in-

curs a significant increase in training time and is generally not preferred.

6



a

b

c

Feedforward Backpropagation

c*

dE / dc

op1

op2

op3

op2-grad

op1-grad

op3-grad

losslabel

dE / db

dE / daa

b

(a)

Feedforward Backpropagation

op1

op2

op3

op2-grad

op1-grad

op3-grad

InvokeOp InvokeOp

(b)

Figure 5: Backpropagation of dataflow graphs with and with-

out InvokeOps. (a) A simple linear feedforward network is

shown on the left, while the backpropagation side of the same

network is shown on the right. All gradient operations receive

previous gradient values from its gradient predecessor as well

as the original feedforward value from the feedforward network.

(b) An InvokeOp and its gradient operation for backpropaga-

tion are shown on the left and right, respectively. Notice how

(a) and (b) are structurally very similar, except for the enclosing

InvokeOps.

tion operations, with the help of a process called automatic dif-

ferentiation. In the case of embedded control flow frameworks,

after a user submits a feedforward neural network to the frame-

work, the framework automatically adds all operations required

for computing gradients to the given dataflow graph. Maintain-

ing a catalogue of predefined gradient operations, the framework

backtracks along the feedforward path and adds the correspond-

ing gradient for each and every feedforward operation. The re-

sulting computation graph can then be processed by the frame-

work for execution. As setting up the backpropagation path is

usually much more tedious than defining the forward path, the

automatic differentiation process is very helpful for users and

currently supported by all deep learning frameworks.

4.2.2 Recursive Backpropagation

Backpropagation of a recursive dataflow graph is similar to

backpropagation of a non-recursive dataflow graph. The only

nontrivial issue is how to define and calculate gradients for

InvokeOps. As the feedforward output of an InvokeOp is the

execution output of its associated SubGraph, naturally the gra-

dient of an InvokeOp is also generated from the gradients of the

associated SubGraph.

During automatic differentiation, we inspect the SubGraphs

associated with InvokeOps and perform automatic differentia-

tion on them as well. For each SubGraph, we collect the gradi-

ent operations that were inserted by automatic differentiation. At

this point, it is possible to simply add the inserted gradient op-

erations to the backpropagation path of the computation graph.

However, in case the SubGraph was used for recursion, the gra-

dients for the inner recursive computations would not be gen-

erated and thus backpropagation would be returning incorrect

results.

Instead, we wrap each set of gradient operations from

SubGraphs with yet another SubGraph. If a feedforward

SubGraph contains a recursive invocation to itself, then its cor-

responding backpropagation SubGraph will also hold a recur-

sive invocation, at the same position. Later, InvokeOps are in-

serted at SubGraph invocation points for both the feedforward

SubGraph and the backpropagation SubGraph to complete the

computation graph.

Figure 5(b) illustrates how a gradient operation of an

InvokeOp is formed. The associated SubGraph is shown in

the inner side of the feedforward InvokeOp, while the corre-

sponding gradient operations of the SubGraph are shown inside

the backpropagation InvokeOp. Carrying over operation out-

puts from the feedforward phase to the backpropagation phase

is done by connecting the outputs and inputs of the relevant op-

erations, same as in Section 4.2.1.

5 Implementation

We implemented our framework atop TensorFlow [1] 1.3.0.

Framework changes, including the kernel implementation of

InvokeOp as well as internal data structures, were done in the

C++ core, while client-side APIs for recursive definitions are

exposed in Python. Here, we describe several implementation

issues of our framework.

Forward declaration. In embedded control flow frame-

works, all operations must have well-defined inputs and out-

puts before they are used (comparable to function signatures in

programming languages). InvokeOps are not exceptions; the

framework does not allow the creation of a recursive InvokeOp

unless the operation definition for the recursive call is speci-

fied beforehand. This rule can be bypassed by using forward

declarations for InvokeOps that are recursively defined; when

a SubGraph is defined, we first predeclare an empty InvokeOp

that has the same signature as the SubGraph, and later “register”

the SubGraph definition to the empty InvokeOp. Note that this

procedure is automatically done by the framework, and is not

exposed to users. Gradients for backpropagation are defined in

a similar manner, with the operation declaration coming before

the actual definition.

Backpropagation cache implementation. As described in

7



Invoke

Op

Invoke

Op

LSTMLSTM

Feedforward Backpropagation

HashTable

concurrent

addition

concurrent

retrieval

Invoke

-grad
Invoke
-grad

LSTM-
grad

InvokeOp InvokeOp

Figure 6: Concurrent hash table being used between multi-

ple forward and backward executions of the same operation

(InvokeOp).

Section 4.2, operation output values from the feedforward phase

must be retained until backpropagation and be fed into the cor-

responding gradient operations. For non-recursive computation

graphs, embedded control flow frameworks would accomplish

this simply by holding a feedforward value entry for each re-

quired operation and later passing the values to the appropriate

gradient operations. Unfortunately, for recursive graphs, an op-

eration within a SubGraph may be called more than one time

across multiple recursions. Multiple output values generated

during multiple executions must all be passed to the correspond-

ing gradient operation, without losing their topological position

information.

We resolve this issue by maintaining a concurrent hash table

for storing and fetching operation output values of SubGraphs.

Figure 6 describes the whole procedure of passing multiple feed-

forward output values from InvokeOps. A hash table is exter-

nally generated and managed per SubGraph, and a unique hash

entry key is used to distinguish table entries. During the feed-

forward phase, we store all output values of InvokeOp instances

that come from the SubGraph in the table. An InvokeOp’s key

is defined by combining the InvokeOp’s topological position

within the SubGraphwith the key of the parent InvokeOp, guar-

anteeing uniqueness. By using a concurrent hash table, multiple

instances of the same operation in the graph can concurrently

access and update the hash table.

Next, during backpropagation, we perform a hash table

lookup for each gradient operation of the InvokeOp instances

and feed the stored value as input. This enables feedforward

output values to be retained and correctly retrieved for backprop-

agation. While the concurrent insert operations may incur minor

overhead, the lookup operations are thread-safe and are negli-

gible. Is it notable that using a simple queue or stack to store

activation values is inadequate, as the order of enqueue and de-

queue operations or push and pop operations is not deterministic

and thus output values may be directed to the wrong gradient

operation.

Outer reference. It is common for a recursive SubGraph to

not refer to the external input values explicitly, but rather im-

plicitly. For instance, a static value that is required for all lev-

els of recursion of a SubGraph should not be included as an

input of the SubGraph, as the value does not change anyway.

Nonetheless, the TensorFlow framework regards a SubGraph

and the outer graph as two separate graphs and is unable to

understand the identities of such implicit external values un-

less they are specified as actual operation inputs. Therefore,

when a SubGraph is created, we analyze the operations to check

whether there are any external inputs that have not already been

specified as the SubGraph’s inputs and add them to the input

list.

Implementation on other frameworks. Recursively defined

SubGraphs and InvokeOps can be implemented on not only

TensorFlow but any other embedded control flow DL frame-

works as well, with the computation graph and the operations as

its elements. A SubGraph can be provided as an abstraction that

is similar to the framework’s original graph structure but con-

tains only a subset of all operations to mark a recursion block.

An InvokeOp can be implemented as a new kind of user-defined

operation type, which recursively executes a SubGraph.

For instance, Caffe2 [6] uses a NetDef protocol buffer as

its computation graph, and allows feeding NetDefs as inputs

to operators. By extending NetDefs to recursively represent

subgroups of operators, we can create a Caffe2 version of

InvokeOp that receives such subgroups as inputs and executes

them. Theano [30] provides the Scan operator which abstracts

the execution of a loop in a single operator. Although the Scan

operator is usually used to express iterative control flow, the con-

cept of maintaining a separate graph isolated from the main com-

putation graph fits well with SubGraphs and is a good starting

point for implementing recursive computations.

6 Evaluation

We evaluate our framework while focusing on the performance

benefits of the recursive nature of the framework, mostly made

possible by exploitation of parallelism in recursive neural net-

works.

6.1 Experimental Setup

Applications. We implemented a variety of neural network

models from the recursive neural network family, namely

the aforementioned TreeLSTM [27] model as well as the

TreeRNN [25] and the RNTN [26] model. All models were

trained and tested to perform sentiment analysis on the Large

Movie Review [16] dataset, where data instances are sentences

in the form of binary parse trees. For this dataset, we used a pre-

trained network (for each model) to label all nodes. For all mod-

els, we used the same hyperparameters as the ones suggested

in the original papers. We also considered smaller batch sizes

to investigate the performance trends of our framework without

mixing in additional performance gains obtainable from batch-

ing instances.

Frameworks. Along with our implementation of recursive

dataflow graphs (built on TensorFlow 1.3.0), we also imple-

mented neural networks on other frameworks, including Tensor-

Flow [1] (TF 1.3.0) without recursive graphs, which allows an

8



1 10 25

Batch size

0

50

100

150

T
h
ro

u
g
h
p
u
t
(i
n
st
a
n
c
e
s/

s)

4
6
.
6

1
2
5
.
2

1
2
9
.
7

1
7
.
3 3
8
.
1 5
5
.
9

4
.
1

4
.
3

4
.
3

(a) TreeRNN

1 10 25

Batch size

0

20

40

60

T
h
ro

u
g
h
p
u
t
(i
n
st
a
n
c
e
s/

s)

2
3
.
4

3
9
.
2

4
4
.
8

8
.
1

2
6
.
8

4
0
.
8

1
.
5

1
.
5

1
.
5

(b) RNTN

1 10 25

Batch size

0

2

4

6

T
h
ro

u
g
h
p
u
t
(i
n
st
a
n
c
e
s/

s)

4
.
8

4
.
2

3
.
6

2
.
5

4
.
0

5
.
5

2
.
0

2
.
0

2
.
0

(c) TreeLSTM

Recursive Iterative Unrolling

Figure 7: Training throughput for the TreeRNN, RNTN, and TreeLSTM models with the Large Movie Review dataset. Numbers

are shown for our recursive implementation, TensorFlow’s iterative implementation, and PyTorch’s static unrolling implementation.

Our recursive implementation outperforms the other frameworks for all models and all batch sizes except when training TreeLSTM

with a batch size of 25, at which point the amount of system resources is insufficient to completely parallelize the computation. We

did not observe any significant performance gain for the static unrolling approach when the batch size was increased.

1 10 25

Batch size

0

200

400

600

800

T
h
ro

u
g
h
p
u
t
(i
n
st
a
n
c
e
s/

s)

1
5
9
.
0

5
5
2
.
0 6
9
3
.
9

9
5
.
8

2
7
0
.
3 4
2
7
.
3

6
.
5

7
.
6

6
.
8

(a) TreeRNN

1 10 25

Batch size

0

100

200

300

400

500

T
h
ro

u
g
h
p
u
t
(i
n
st
a
n
c
e
s/

s)

9
8
.
7

3
2
1
.
6 3
9
9
.
4

1
9
.
2

6
9
.
1 1
3
1
.
4

2
.
6

2
.
5

2
.
7

(b) RNTN

1 10 25

Batch size

0

100

200

300

T
h
ro

u
g
h
p
u
t
(i
n
st
a
n
c
e
s/

s)

8
1
.
4

2
1
7
.
9

2
6
9
.
9

1
9
.
2

4
9
.
3

7
2
.
1

3
.
5

3
.
5

2
.
8

(c) TreeLSTM

Recursive Iterative Unrolling

Figure 8: Inference throughput for the TreeRNN, RNTN, and TreeLSTM models with the Large Movie Review dataset. Mea-

surements are presented for our recursive implementation, TensorFlow’s iterative implementation, and PyTorch’s static unrolling

implementation. Our recursive implementation outperforms the other frameworks for all models and all batch sizes.

iterative way of programming, and PyTorch [20] (PTH 0.3.1),

which only supports the static unrolling technique. Since na-

tive TensorFlow does not support recursive definitions, we used

TensorFlow’s control flow operators to train the neural networks

in an iterative fashion, as shown in Section 2. For PyTorch,

we dynamically create a new graph structure for each sentence.

Although implementing the static unrolling technique on Ten-

sorFlow is possible, the graph generation overhead tends to be

very large; instead, we use PyTorch for the unrolling technique,

which incurs negligible graph construction overhead.

Hardware specification. All numbers reported in this pa-

per were retrieved from experiment results on a single machine

of two 18-core Intel Xeon E5-2695 @ 2.10 GHz processors

with 256GB RAM, unless otherwise specified. We also used an

NVIDIA Titan X GPU for certain models. Unlike other common

neural networks such as convolutional models, the unstructured

input data of recursive neural networks makes it difficult to ex-

ploit the full computational power of GPUs. Thus, we use GPUs

only if they introduce performance gain compared to CPU-only

execution. Our implementation and TensorFlow showed greater

performance on CPUs, while PyTorch performed better on a

GPU.

6.2 Throughput and Convergence Time

We start our analysis by measuring the training and inference

throughputs with the recursive, iterative, and static unrolling im-

plementations.

Training throughput. Figure 7 shows the throughput of

training the TreeRNN, RNTN, and TreeLSTM models using the

Large Movie Review dataset with recursive, iterative, and static

unrolling implementations. The models were trained with batch

sizes of 1, 10, and 25.2

Thanks to the parallelism exploited by recursive dataflow

graphs, our implementation outperforms other implementations

for the TreeRNN and RNTN models at all batch sizes, by up to

2The original TreeRNN, RNTN, and TreeLSTM papers state that using a

batch size of 25 yielded the best model.

9



0 1774460

Time (s)

50

60

70

80

90

100

A
c
c
u
ra

c
y
(%

)
(a) Validation accuracy for TreeRNN

Recursive

Iterative

0 77832208

Time (s)

50

60

70

80

90

100

A
c
c
u
ra

c
y
(%

)

(b) Validation accuracy for RNTN

Recursive

Iterative

0 18701372

Time (s)

50

60

70

80

90

100

A
c
c
u
ra

c
y
(%

)

(c) Validation accuracy for TreeLSTM

Recursive

Iterative

Figure 9: Validation accuracy for the binary sentiment classification task with (a) TreeRNN, (b) RNTN, and (c) TreeLSTM models.

Results are shown for training each model with the recursive and iterative implementations, using the Large Movie Review dataset.

The time to reach 93% accuracy for each setup is also plotted, showing that the recursive implementation converges faster for all

models.

3.3x improved throughput over the iterative implementation, and

30.2x improved throughput over the static unrolling approach.

Note that the performance gap between the recursive and itera-

tive approach for the TreeRNN model is bigger than that of the

RNTN model. This is due to the fact that the TreeRNN model

involves much less computation in its recursive function body

compared to the RNTN model, therefore having bigger room for

performance optimization via computation parallelization. We

will further discuss the effectiveness of parallelization in Sec-

tion 6.3.

For the TreeLSTM model, our implementation performs bet-

ter than other frameworks at batch sizes 1 and 10. On the other

hand, at a batch size of 25, our implementation is slower than

the iterative implementation. Generally, recursion has additional

overheads compared to iteration, including passing around argu-

ments and return values, caller and callee context setup, etc. We

also have additional overheads related to backpropagation, as

discussed in previous sections. Consequently, our recursive im-

plementation exhibits excessively high resource utilization for

computing large batches, making the throughput lower than the

iterative computation.

Inference throughput. Inference refers to the process of

computing the operation output values of the feedforward phase,

stopping before backpropagation. Aside from training through-

put, inference throughput is also a useful metric for computing

the performance of a neural network, indicating how quickly a

deployed model can process unseen data, e.g., in serving sys-

tems.

Figure 8 shows the inference throughput, with identical envi-

ronments with the previous experiments on training throughput.

Our framework demonstrates throughput up to 5.4x higher than

the iterative implementation, and 147.9x higher than the static

unrolling approach. Unlike training throughput, our recursive

implementation greatly dominates other implementations, since

our framework can fully utilize the given resources and the addi-

tional overheads introduced by backpropagation are not present.

Convergence. We also measured how the accuracy of the

model increases as the training progresses, in Figure 9. Since our

implementation calculates numerically identical results as the it-

1 2 4 8

Number of machines

0

10

20

30

T
ra

in
in
g
th

ro
u
g
h
p
u
t

(i
n
st
a
n
c
e
s/

s)

1.00x

1.85x

3.65x

7.34x

Figure 10: Training throughput for the TreeLSTM model on our

recursive implementation, using varying numbers of machines

for data parallelism. The performance increases almost linearly

as more machines are used for training.

erative implementation, the accuracy improvement per epoch is

the same. However, thanks to our higher throughput, training

with our framework results in faster convergence than the itera-

tive implementation.

Training throughput with multiple machines. One way to

overcome the resource limitations is scaling out to multiple ma-

chines. Figure 10 shows how the training throughput for the

TreeLSTM model on our recursive implementation changes, as

the number of machines used in training gradually grows from 1

to 8. Utilizing the well-known data parallelism technique [12],

the training throughput improves almost linearly up to 8 ma-

chines.

6.3 Analysis of Recursive Graphs:

Parallelization

The performance difference between the iterative and recursive

implementation of the same recursive neural network mainly

comes from the parallelization of recursive operations. In this

subsection, we analyze how the performance varies depending

on various aspects related to parallelization.

10



0 100 200

Number of words

0

50

100

150

200

250
T
ra

in
in
g
ti
m
e
(m

s)

Recursive

Iterative

0 100 200

Number of words

0

10

20

30

40

50

60

In
fe
re
n
c
e
T
im

e
(m

s) Recursive

Iterative

Figure 11: Time taken for processing each data instance, in the

TreeLSTM model using the Large Movie Review dataset. The

bold lines represent the average time for each specific sentence

length in the whole dataset, and the enclosing colored areas rep-

resent the range of time taken to process the specific length of

sentences. No batching is used for this experiment. As the num-

ber of words inside a data instance increases, our recursive im-

plementation outperforms the iterative implementation thanks to

the parallelized execution of tree cells. For inference, the com-

putation load is low enough for the framework to utilize system

resources without hitting the resource limit, and the processing

time of the recursive implementation is O(logN), where N is the

number of words.

Sentence length. A close inspection of the training time per

data instance sorted by sentence length gives us interesting re-

sults. As shown in Figure 11, the time required for processing a

single sentence generally increases as sentences become longer,

regardless of whether the implementation is based on native Ten-

sorFlow or our recursive implementation. This is an expected

phenomenon, because longer sentences form larger tree struc-

tures consisting of more cells which require more computation.

However, there is a clear difference in the increasing slope;

the training time grows at a steeper slope for TensorFlow than

that of our implementation. This is because the recursive im-

plementation allows tree cells to be processed concurrently,

whereas the iterative TensorFlow implementation is only capa-

ble of processing one tree cell at a time. Theoretically, our im-

plementation is able to process a tree structure consisting of N

cells in O(logN) time (native TensorFlow requires O(N) time),

though the parallelization effect is diminished by the framework

overhead and therefore the performance is more close to a linear

trend rather than a logarithmic trend. On inference workloads

with much less resource needs, the trend is clearly closer to a

logarithmic scale.

Balancedness of trees. To analyze the influence of tree bal-

ancedness on training throughput on our recursive implementa-

tion, we prepared several modified versions of the Large Movie

Review dataset, that contain the same sentences as the original

dataset but have different parse tree shapes. Specifically, we pre-

pared 1) a balanced dataset consisting of only complete binary

trees, 2) a moderate dataset that contains moderately balanced

binary trees, and 3) a linear dataset comprising only extremely

unbalanced binary trees.

Batch size
Throughput (instances/s)

Balanced Moderate Linear

1 46.7 27.3 7.6

10 125.2 78.2 22.7

25 129.7 83.1 45.4

Table 1: Throughput for the TreeRNN model implemented with

recursive dataflow graphs, using datasets of varying tree bal-

ancedness. The balanced dataset exhibits highest throughput

thanks to the high degree of parallelization, but at the same time

does not improve as well as the linear dataset when the batch

size increases from 1 to 25, because there is only a small room

of performance improvement left, w.r.t parallelization.

Table 1 shows the throughput of training the TreeRNN model

using these three datasets. For all batch sizes, the training

throughput on the balanced dataset is the highest, while the

throughput on the linear dataset is the lowest. This trend oc-

curs because the maximum possible execution concurrency of a

tree is affected by the balancedness of the tree. A full binary

tree of N cells can be processed concurrently with at most N+1
2

threads, because all N+1
2

leaf nodes are mutually independent.

On the other hand, an extremely unbalanced binary tree can be

processed with only one or two threads at a time due to the lin-

earity of the tree. As a result, our implementation can train input

data of balanced trees with greater throughput than input data of

unbalanced trees.

Resource Utilization. Another interesting fact in Table 1 is

that the training throughput on the linear dataset scales better

than the throughput on the balanced dataset, as the batch size

increases. For the balanced dataset, the recursive implementa-

tion efficiently utilizes many threads to process the data even at

a small batch size of 1, and thus increasing the batch size leads

to a relatively small speed boost. On the contrary, for the linear

dataset, the recursive implementation fails to efficiently make

use of CPU resources and thus the performance gain provided

by increasing the batch size is relatively high.

6.4 Comparison with Folding

The performance improvement of our recursive framework dis-

cussed in previous subsections comes from executing multiple

tree nodes in parallel. On the other hand, another approach for

efficiently executing recursive neural networks exists: identify-

ing concurrently executable nodes and batching them into a sin-

gle node to be run on GPUs. We refer to this technique as fold-

ing, following the name of a framework, TensorFlow Fold [15],

that implements this technique.

The folding technique hardly suffers from resource limita-

tions, as GPUs are very efficient in batching computations.

However, batching multiple nodes leads to overheads that are not

present in other approaches. Due to the various tree structures

in the input data, the batching decision must be done in a depth-

wise manner, thus the ungrouping and regrouping of tree nodes

across multiple depths lead to numerous memory reallocations

11



Batch

size

Throughput (instances/s)

Inference Training

Iter Recur Fold Iter Recur Fold

1 19.2 81.4 16.5 2.5 4.8 9.0

10 49.3 217.9 52.2 4.0 4.2 37.5

25 72.1 269.9 61.6 5.5 3.6 54.7

Table 2: Throughput for processing the TreeLSTM model on

our recursive framework, Fold’s folding technique, and Tensor-

Flow’s iterative approach, with the Large Movie Review dataset.

The recursive approach performs the best on inference with ef-

ficient parallel execution of tree nodes, while the folding tech-

nique shows better performance on training thanks to its GPU

exploitation.

and copies. Moreover, folding is applicable only if the tree struc-

ture of the input data is known before executing the computation;

for dynamically structured models the folding technique cannot

be implemented. Here, we discuss and compare our recursive

framework with the folding technique. Experiment results for

folding were obtained using the TensorFlow Fold framework.

6.4.1 Statically Structured Models

Table 2 compares the throughput of performing inference and

training on the TreeLSTM model using our implementation, the

iterative approach, and the folding technique. The amount of

resources is sufficient for executing forward computations, and

therefore our framework outperforms the folding technique for

the inference task with up to 4.93x faster throughput. Unlike

folding, the recursive approach does not have any overheads re-

garding batch regrouping, since the calculated values can be di-

rectly passed between caller and callee SubGraphs.

However, when the resource usage is high, not every sched-

uled tree node in the worker ready queue can be executed con-

currently, even if the dependencies have been fully resolved.

While the scalability of the recursive approach is limited by this

drawback for the training task, the folding technique can exploit

the GPU and scales better. As a result, the folding technique per-

forms better than the recursive approach for the training task. We

can improve the performance of the recursive approach by con-

ditionally deciding whether to batch the operations or not similar

to the folding technique, and we leave this as future work.

6.4.2 Dynamically Structured Models

While the models presented in the previous sections demand

support for dynamic control flow, there is yet another collection

of models that boast an even greater degree of dynamism, in

which the model structure is gradually formed depending on in-

termediate values calculated from prior steps. Top-down TreeL-

STM [33] (TD-TreeLSTM) is a dynamic model proposed for

sentence completion and dependency parsing. When a trained

model receives root node information as an input, the model

can generate child nodes based on the information and com-

Batch size
Throughput (instances/s)

Iterative Recursive Folding

1

64

0.30

0.34

5.59

9.30
Not supported

Table 3: Throughput for evaluating the TD-TreeLSTM model

on our recursive framework and TensorFlow’s iterative imple-

mentation, on batch sizes of 1 and 64.3 Being able to execute

tree nodes in parallel lets our framework perform better than the

iterative approach. Fold’s folding technique is inapplicable to

the TD-TreeLSTM model.

pletes the rest of the tree sentence. The decision of generating

a child node or stopping tree expansion is conditionally made

based on the computed value of the current node at runtime, so

the structure of the complete tree is not known before actually

executing the graph. DRNN [2] is a neural network model that

can generate tree-structured data from sequences, and therefore

the tree structure in unknown before graph execution, similar to

TD-TreeLSTM. The Hierarchical Mixtures of Experts [11, 24]

model has a similar structure, where the whole tree structure is

decided at runtime. The network structure of HMRNN [5] is

also dynamically determined by the intermediate computation

values.

Our framework performs well for such dynamic models. Ta-

ble 3 shows the throughput of the sentence completing task with

the TD-TreeLSTM model. Our implementation performs better

than the iterative approach by up to 18.6x, since multiple tree

nodes are executed in parallel. For this kind of model, tech-

niques that rely on heavy preprocessing of input data to batch

operations (folding) are ineffective because the model structures

are unknown until the main computation. We note that it is im-

possible to express such models using the API provided by the

Fold framework.

7 Related Work

Embedded control flow frameworks. DL frameworks with a

computation graph comprised of control flow operators along

with the mathematical operators to represent a DL job are called

embedded control flow frameworks [1, 30, 6, 4]. This class of

frameworks does not use the programming language’s control

flow support (e.g., Python’s if clause) for representing dynamic

control flow. Instead, they provide certain primitives for embed-

ding dynamic control flow in the dataflow graph; the framework

cores evaluate a boolean expression and decide what to apply for

the next operation at graph execution time.

Although our implementation is based on the embedded con-

trol flow framework TensorFlow [1], the key difference is the

ability to express recursive functions. In our implementation, a

user can define an arbitrary function and use it as an operation to

compose a graph. The arbitrary function can call another func-

tion including itself without restriction, allowing recursive defi-

3We follow the suggestions of the original TD-TreeLSTM paper to use a

batch size of 64.

12



nitions of functions. TensorFlow and Theano [30] also let users

write user-defined functions, but do not support recursion; the

user must not create a cycle of dependencies between functions.

Non-embedded control flow frameworks. Unlike embed-

ded control flow frameworks, PyTorch [20], DyNet [19], and

Chainer [31] do not embed control flow operators inside their

computation graphs. Rather, the computation occurs along with

the dynamic control flow of the host language, removing the

need to embed the control flow operators inside the computation

graph. In other words, these non-embedded control flow frame-

works behave just like numerical computation libraries such as

NumPy [32] and MKL [10], so one can directly exploit the un-

derlying language’s abilities for handling conditional branches,

loops, and recursive functions. Thanks to this behavior, a user

can easily build a prototype of a new neural network architecture

or optimization algorithm.

However, since neural networks are usually trained for numer-

ous steps until they converge, non-embedded control flow frame-

works suffer from repetitive construction of graphs composed

of hundreds or thousands of nodes, resulting in substantial ob-

ject creation and removal overhead. More importantly, embed-

ded control flow frameworks employ graph compilation tech-

niques like operation fusion or in-place operation conversion to

optimize execution, but non-embedded control flow frameworks

cannot since they do not reuse the graphs.

Recursive dataflow graphs are designed to provide a similar

level of programmability to non-embedded control flow frame-

works, without losing optimization opportunities by using an

embedded control flow framework (TensorFlow) to declare com-

putations with recursion.

Other frameworks with recursion support. TensorFlow

Fold [15], a library for handling models with dynamic computa-

tion, allows recursion for writing computation graphs. Fold pro-

vides a number of new APIs for creating and managing blocks

(sets of low-level operations). A block behaves as a scheduling

unit to enable dynamic batching of different computation graphs.

Using these blocks, Fold constructs an execution loop that re-

sembles recursion and starts running the loop from base cases,

wiring intermediate results to the appropriate positions for sub-

sequent recursive cases. From the perspective of programmabil-

ity, Fold provides a whole new set of functional programming

style APIs to preprocess input data and build the computation

graph. It is required to mix the control flow API of Fold and the

computational API of TensorFlow to represent a complete DL

job, which is not a trivial task. Also, since the structure and exe-

cution order of the computation graph becomes completely dif-

ferent after graph preprocessing, it becomes impossible to pin-

point the location of errors on failures, resulting in poor debug-

gability.

On the other hand, our framework adds a simple abstrac-

tion, SubGraph, to the programming model to support recur-

sion. SubGraphs can be used with existing operations anal-

ogously and does not import any additional execution details

other than those already provided by the underlying embed-

ded control flow framework. Moreover, the final computation

graph of InvokeOps retains the original position information of

SubGraphs, allowing the same debugging experience as the un-

derlying framework.

CIEL [17] is a dynamic task (operator) creation framework

that allows users to declare data processing jobs recursively. The

operators of CIEL are relatively more coarse-grained compared

to DL frameworks, which means the number of recursion calls

is not large. The different granularity comes from the character-

istics of the target domain; CIEL targets batch processing appli-

cations, whereas recursively defined graphs were designed for

deep learning. More fundamentally, CIEL cannot be integrated

with modern DL frameworks because CIEL does not consider

DL-specific mechanisms such as backpropagation or typed op-

erator definitions, which are highly important for DL applica-

tions.

8 Conclusion

In this paper, we have introduced recursive declarations and re-

cursive execution mechanisms for running recursive neural net-

works on top of existing embedded control flow frameworks.

With recursively defined computation graphs, recursive neural

networks can be implemented in a fashion that better portrays

the recursion aspect, and be executed efficiently by letting the

framework exploit parallel execution of computations, both of

which were very difficult to achieve on existing frameworks due

to the lack of support for recursion. To achieve this goal, we

designed and implemented a programming model and a run-

time execution model, including automatic differentiation sup-

port for deep learning jobs. We have demonstrated the expres-

sive power and performance of recursive graphs by implement-

ing various recursive neural network models using our program-

ming model and comparing them with iterative and unrolling im-

plementations, showing that recursive graphs outperform other

approaches significantly.

Acknowledgement

This research was supported by the MSIT (Ministry of Science

and ICT), Korea, under the SW Starlab support program (IITP-

2018-R0126-18-1093) supervised by the IITP (Institute for In-

formation & communications Technology Promotion), and by

the ICT R&D program of MSIT/IITP (No.2017-0-01772, De-

velopment of QA systems for Video Story Understanding to pass

the Video Turing Test).

References

[1] M. Abadi et al. TensorFlow: A system for large-scale ma-

chine learning. In OSDI, 2016.

[2] D. Alvarez-Melis and T. S. Jaakkola. Tree-structured de-

coding with doubly-recurrent neural networks. In ICLR,

2017.

[3] S. R. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C. D.

Manning, and C. Potts. A fast unified model for parsing

and sentence understanding. In ACL, 2016.

13



[4] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,

B. Xu, C. Zhang, and Z. Zhang. MXNet: A flexible and

efficient machine learning library for heterogeneous dis-

tributed systems. In Workshop on Machine Learning Sys-

tems in NIPS, 2015.

[5] J. Chung, S. Ahn, and Y. Bengio. Hierarchical multiscale

recurrent neural networks. In ICLR, 2017.

[6] Facebook. Caffe2, 2017. https://caffe2.ai.

[7] A. Filinski. Recursion from Iteration, 1994. Lisp and Sym-

bolic Computation, 7, 1, 11-37.

[8] D. P. Friedman and M. Wand. Essentials of Programming

Languages. MIT Press, 2008.

[9] S. Hochreiter and J. Schmidhuber. Long Short-Term Mem-

ory, 1997. Neural Computation, 9, 8, 1735–1780.

[10] Intel Corporation. Intel Math Kernel Library Reference

Manual. 2009.

[11] M. I. Jordan and R. A. Jacobs. Hierarchical Mixtures of

Experts and the EM Algorithm, 1994. Neural Computa-

tion, 6, 2, 181–214.

[12] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,

V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling

distributed machine learning with the parameter server. In

OSDI, 2014.

[13] L. Lin, G. Wang, R. Zhang, R. Zhang, X. Liang, and

W. Zuo. Deep structured scene parsing by learning with

image descriptions. In CVPR, 2016.

[14] Y. A. Liu and S. D. Stoller. From recursion to iteration:

What are the optimizations? In PEPM, 2000.

[15] M. Looks, M. Herreshoff, D. Hutchins, and P. Norvig.

Deep learning with dynamic computation graphs. In ICLR,

2017.

[16] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng,

and C. Potts. Learning word vectors for sentiment analysis.

In ACL, 2011.

[17] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith,

A. Madhavapeddy, and S. Hand. CIEL: A universal execu-

tion engine for distributed data-flow computing. In NSDI,

2011.

[18] MXNet. RNN Cell API, 2018. https://mxnet.

incubator.apache.org/api/python/rnn.html.

[19] G. Neubig et al. DyNet: The Dynamic Neural Network

Toolkit, 2017. arxiv preprint arXiv:1701.03980.

[20] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,

Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer.

Automatic differentiation in pytorch. In Autodiff Workshop

in NIPS, 2017.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-

ing Representations by Back-propagating Errors, 1986.

Nature, 323, 6088, 533–536.

[22] A. Sharma, O. Tuzel, and D. W. Jacobs. Deep hierarchical

parsing for semantic segmentation. In CVPR, 2015.

[23] A. Sharma, O. Tuzel, and M.-Y. Liu. Recursive context

propagation network for semantic scene labeling. In NIPS,

2014.

[24] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le,

G. Hinton, and J. Dean. Outrageously large neural net-

works: The sparsely-gated mixture-of-experts layer. In

ICLR, 2017.

[25] R. Socher, C. C.-Y. Lin, A. Y. Ng, and C. D. Manning.

Parsing natural scenes and natural language with recursive

neural networks. In ICML, 2011.

[26] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning,

A. Ng, and C. Potts. Recursive deep models for semantic

compositionality over a sentiment treebank. In EMNLP,

2013.

[27] K. S. Tai, R. Socher, and C. D. Manning. Improved

semantic representations from tree-structured long short-

term memory networks. In ACL, 2015.

[28] TensorFlow. Recurrent Neural Networks, 2018.

https://www.tensorflow.org/versions/master/

tutorials/recurrent.

[29] TensorFlow Whitepaper. Implementation of Control Flow

in TensorFlow. 2017.

[30] Theano Development Team. Theano: A Python Frame-

work for Fast Computation of Mathematical Expressions,

2016. arXiv preprint arXiv:1605.02688.

[31] S. Tokui, K. Oono, S. Hido, and J. Clayton. Chainer: a

next-generation open source framework for deep learning.

In Workshop on Machine Learning Systems in NIPS, 2015.

[32] S. V. D. Walt, S. C. Colbert, and G. Varoquaux. The

NumPy Array: a Structure for Efficient Numerical Com-

putation, 2011. Computing in Science & Engineering, 13,

2, 22-30.

[33] X. Zhang, L. Lu, and M. Lapata. Top-down tree long short-

term memory networks. In NAACL, 2016.

14


	1 Introduction
	2 Motivation
	2.1 Embedded Control Flow Frameworks and Their Limitations
	2.2 Example: TreeLSTM
	2.3 Recursion in Embedded Control Flow Frameworks

	3 Programming Model
	3.1 Unit of Recursion: SubGraph
	3.2 Recursion in Dataflow Graphs: InvokeOp
	3.3 TreeLSTM with SubGraphs & InvokeOps

	4 System Design
	4.1 Graph Execution
	4.1.1 Background: Execution Model of Existing Frameworks
	4.1.2 Recursive Execution

	4.2 Graph Backpropagation
	4.2.1 Background: Automatic Differentiation
	4.2.2 Recursive Backpropagation


	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Throughput and Convergence Time
	6.3 Analysis of Recursive Graphs: Parallelization
	6.4 Comparison with Folding
	6.4.1 Statically Structured Models
	6.4.2 Dynamically Structured Models


	7 Related Work
	8 Conclusion

