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ABSTRACT

Blockchain-based cryptocurrencies secure a decentralized consen-

sus protocol by incentives. The protocol participants, calledminers,

generate (mine) a series of blocks, each containing monetary trans-

actions created by system users. As incentive for participation,

miners receive newly minted currency and transaction fees paid

by transaction creators. Blockchain bandwidth limits lead users to

pay increasing fees in order to prioritize their transactions. How-

ever, most prior work focused on models where fees are negligible.

In a notable exception, Carlsten et al. [17] postulated that if incen-

tives come only from fees then a mining gap would form —miners

would avoid mining when the available fees are insufficient.

In this work, we analyze cryptocurrency security in realistic set-

tings, taking into account all elements of expenses and rewards. To

study when gaps form, we analyze the system as a game we call

the gap game.We analyze the gamewith a combination of symbolic

and numeric analysis tools in a wide range of scenarios.

Our analysis confirms Carlsten et al.’s postulate; indeed, we

show that gaps formwell before fees are the only incentive, and an-

alyze the implications on security. Perhaps surprisingly, we show

that different miners choose different gap sizes to optimize their

utility, even when their operating costs are identical. Alarmingly,

we see that the system incentivizes large miner coalitions, reduc-

ing system decentralization. We describe the required conditions

to avoid the incentive misalignment, providing guidelines for fu-

ture cryptocurrency design.
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1 INTRODUCTION

Since their introduction in 2008 [51], blockchain protocols are se-

curing rapidly increasing amounts of money in the form of so-

called cryptocurrencies. As of today, the market cap of the first

cryptocurrency, Bitcoin, is estimated at $160B [10, 18], and themar-

ket cap of all cryptocurrencies, most of which are secured with

blockchain protocols, is estimated at $350B [10, 18].

Cryptocurrencies facilitate users transactions of a currency in-

ternal to the system. The underlying protocol, the blockchain, is

operated by independent principals called miners. Miners collect

transactions in blocks and append them to the blockchain, form-

ing a globally-agreed order of transactions. Instead of relying on

a central control, the most prominent blockchain-based cryptocur-

rencies [7, 16, 46, 51, 59] rely on utilizing incentives to secure the

system. They use proof of work (PoW ) [24, 39, 51], requiring partic-

ipants to solve moderately-difficult cryptographic puzzles to gen-

erate blocks. The idea is that to successfully attack the system, one

would need to control resources proportional in amount to those

of all participating miners. To motivate miner participation, cryp-

tocurrencies incentivize them with block rewards comprising sub-

sidy, newly minted currency created at the generation of each new

block, and transaction fees, paid by the transactions. Preliminaries

on cryptocurrencies and blockchain protocols are in Section 2.

In the dominant operational cryptocurrency systems [16, 51],

the subsidy is the substantial part of the incentive as of today. And

indeed, despite the breadth of research on blockchain security [14,

20, 50, 61], and despite the significance of incentives for blockchain

security, most prior work studied the incentives scheme when the

reward comes only from subsidy [29, 31, 33, 44, 53, 58, 60]. How-

ever, as a cryptocurrency gains traction, the incoming load of trans-

actions increases [12, 28]. Since transaction bandwidth is limited,

a fee market forms – users offer higher fees to motivate miners

to place their transaction quickly [13, 27]. Moreover, in Bitcoin

and several other cryptocurrencies minting rate decays over time.

Hence, fees are on the path to become a substantial part of cryp-

tocurrency rewards.

Carlsten et al. [17] postulated that in a certain scenario, amining

gap would form. Their model assumes only operational expenses

and no subsidy, and that block size is unbounded, so miners place

all pending transactions when mining a block. Therefore, once a

block is generated, there are no unclaimed transactions and there-

fore no unclaimed fees, and so no incentive to mine the next block

until sufficient fees have accrued, resulting in a gap in mining pe-

riod. In Section 3 we review previous work.

http://arxiv.org/abs/1805.05288v2
https://doi.org/10.1145/3243734.3243737
https://doi.org/10.1145/3243734.3243737
https://dl.acm.org/citation.cfm?id=3243737


In this work, we analyze the incentives and equilibrium of

blockchain-based PoW cryptocurrency systems, taking into ac-

count rewards from both subsidy and fees, and both capital and

operational expenses. We present our model in Section 4.

This model gives rise to a game we call the gap game (Section 5).

It is played among the miners, which compete on finding blocks –

the first to find a block gets rewarded, while all suffer expenses. It is

a one-shot game, where the miners decide when to start their min-

ing rigs, and strive to optimize their average revenue, maximizing

the difference between their income and expenses.

To study the game properties we first develop some tools (Sec-

tion 6). We develop expressions for the average time to find a block

and the average revenue of a miner given the start times of all play-

ers. Our results match scenarios analyzed in prior art for subsidy-

only rewards [51, 53] and fee-only rewards [17], and an indepen-

dent simulation for scenarios not previously analyzed, where min-

ers choose different mining gaps. We then proceed to derive the

utility function of each player, and a numerical analysis tool to

find equilibria in the game. Since the expressions for miner util-

ity do not lend themselves to symbolic analysis, we use numerical

analysis to find ε-Nash Equilibria over a wide range of parameters.

Our analysis reveals several things (Section 7). As predicted [17],

a mining gap does form when subsidy is sufficiently small and op-

erational expenses are large. Unexpectedly, we show that mining

gaps varies between miners based on size, even if their per-rig

properties are identical. Additionally, we show that by forming

coalitions miners increase their gains. The implication is that in

a system where fees are sufficiently large miners are incentivized

to form coalitions, leading centralization and defeating the basic

premise of a blockchain system. We therefore find the required

system parameters to ensure the avoidance of a mining gap and

its detrimental effects. These values can be used to inform the de-

sign of incentive mechanisms in current and future cryptocurrency

systems. We conclude by estimating when Bitcoin will be prone to

these effects.

We conclude in Section 8 with a discussion on the implications

of our results on operational cryptocurrencies and on future cryp-

tocurrency design. Note these results apply for active cryptocur-

rency systems, such as Bitcoin, Zcash, Litecoin and so forth, while

also very much relevant for the design of new systems.

In summary, we make the following contributions:

• Derive expressions for miner revenue with gaps,

• Define the gap game, played among miners,

• Analyze equilibria in a variety of settings,

• Find that gaps differ among miners,

• Find that miners profit by forming coalitions,

• Estimate when Bitcoin will be affected, and

• Show how to prevent those predicaments.

2 BACKGROUND

Blockchain-based cryptocurrency systems [16, 46, 51, 59] allow

users to exchange currency via in-system transactions, without

the verification of a centralized authority. Such systems use a pub-

lic distributed ledger, named the blockchain, to record all inter-

nal transactions performed. When a user creates a transaction,

it is propagated across the cryptocurrency network, and eventu-

ally all other users are familiar with it. The ledger is composed

of blocks, a set of transactions grouped together. Participants who

run the blockchain protocol, named miners, add new blocks to the

blockchain.

The aforementioned cryptocurrency systems operate in a per-

missionless setting, allowing any participant to join or leave the

network. A challenge of operating in this setting is to keep secu-

rity and fairness, as malicious participants can join the network

and might deviate from honest behavior. Hence, as part of their

protocol, systems use different methods to ensure the desired hon-

est behavior of their participants. A popular method is proof of

work [24, 39] that requires a miner to solve a moderately-difficulty

cryptographic puzzle in order to create a valid block. By solving

such puzzle, a miner proves she invested computational work. Sys-

tems that use proof of work rely on the assumption that at least

50% of computational work invested on mining is by honest par-

ticipants [51]. If malicious users control more than 50% of the com-

putational power, they can employ double-spending attacks [40].

The system is designed to assure that participants are incentivized

to follow the protocol rules, and failing to do so will result in de-

creased profit.

The mining process for a new block goes as follows. A miner

groups a set of transactions to be included in the new block and

validates them using the blockchain. Then, she looks for a solu-

tion for a cryptographic puzzle, which is based on the of selected

transactions, the last block added to the blockchain and the cryp-

tocurrency protocol. Attached a valid solution, the block is prop-

agated in the network and other miners agree to add it to their

blockchains. When a miner adds a new block to her blockchain,

she restarts the mining process with respect to that new block.

In a permissionless setting, computational power may join and

leave the system. Therefore, the block time interval might vary,

which is undesired. To avoid this predicament, the system’s pro-

tocol defines a fixed block time interval, and adjusts a difficulty

parameter, which determines the difficulty of the cryptographic

puzzles. If blocks are created at higher (lower) rate than desired,

the protocol sets the difficulty to increase (decrease) the time re-

quired for solving the cryptographic puzzle.

Miners attempt to create a valid block by iteratively guessing

solutions for the cryptographic puzzle. The process of guessing a

solution can bemodeled as a Bernoulli trial — a solution is guessed,

randomly resulting in a ’success’ if the solution fits (and then a

valid block is created), or by a ’failure’ if it doesn’t. The success

rate of each trial is fixed and determined by the aforementioned

difficulty parameter. Observing a series of such trials, the required

number of trials for a success result is geometrically distributed.

Therefore, the time required for a successful result is drawn from

the exponential distribution.

Note that both the geometric and the exponential distributions

are memoryless, so the number of previously failed trials or the

time that already passed do not change future probability of suc-

cess. As a result, miner’s chance of finding a valid solution is

not changed by how many solutions it had attempted previously1 .

Hence, if a miner re-picks the set of transactions to be included in

1This holds for any practical matter as the solutions space is practically infinite.



the block, and by doing so restarts the mining process, her chances

of mining the next block are not decreased.

Mining blocks comes with a cost. Mining rigs, the machines

used for the mining process, require electricity for their opera-

tion [22, 23]. Hardwaremaintenance, network connection and real-

estate, all are required to operate rigs and all carry expenses for

miners [15, 21, 62]. To incentivize participants to mine, systems of-

fer rewards in the form of currency. The rewarded currency comes

from two sources — newly minted currency that’s created as a part

of a valid block, and transaction fees paid by transactions included

in the block. The amount of minted currency is determined by the

cryptocurrency protocol, and the amount of fees is determined by

the set of transactions the miner included in the block. Each allo-

cated transaction may offer a different fee, and miners get to pick

which transactions they want to include in their blocks.

In two of the most popular cryptocurrency system nowadays,

Ethereum and Bitcoin, the reward is dominant by the minted cur-

rency. In Ethereum, roughly 20k new Ethers are minted daily [26]

while fees pay about 2k daily [27]. In Bitcoin, the expected daily

subsidy is B12.5 · 24 · 6 = B1800, as average of 6 blocks are gen-

erated every hour, each minting B12.5. The daily paid fees varies

and averages around a few hundreds BTCs a day [13].

This trend will eventually change, as allocated transaction fees

are on the rise. Blocks are bounded, and miners have to pick the

set of transactions to include. Many transactions end up not being

picked at all. Users who wish to get their transactions picked by

miners increase the paid fees to incentivize picking their transac-

tions. Another cause for the expected trend change is that many

cryptocurrencies, including Bitcoin, are designed to mint a finite

supply of currency. Themonetary idea of the finite supply is to pre-

vent inflation. In Bitcoin for example, approximately every four

years, the amount of of newly minted coins from new blocks is

halved. The expected number of total Bitcoins is estimated to be

roughly 21 millions [8, 19, 57].

3 RELATED WORK

Most of the previous work on cryptocurrencies incentives focused

on models where the block reward is composed mostly of sub-

sidy. In the original Bitcoin white paper [51], fees are mentioned

briefly and an intuitive reasoning about incentives is presented.

Kroll et al. [43] analyze Bitcoin as a consensus game when fees

are sufficiently low and conclude their impact is negligible. Eyal

and Sirer [33] show a deviant mining strategy named selfish min-

ing, by which an attacker increase her relative reward. Sapirshtein

et al. [58] and Nayak et al.[52] both show more sophisticated vari-

ations of the original selfish mining attack that increase the at-

tacker’s reward when applied. Other work by Eyal [29] shows min-

ing pools are incentivized to allocate some of their mining rigs to

infiltrate other mining pools. Once an infiltrating rig finds a block

for the attacked pool, it withholds rather than publishing it. The

work shows that an equilibrium exist where two pools infiltrate

one another, in which they both end up losing compared to if they

were not attacking to begin with. Kwon et al. [44] combine the

infiltration attack with selfish mining. In their work, the infiltrat-

ing rig selectively alternates between performing withholding and

selfish mining attacks. All these works consider a model where the

subsidy is the dominant incentive formining and expenses are neg-

ligible. In this work we use a different model, where miners have

expenses that differ according to their mining strategy. We also

consider the profit of a miner is comprised of both subsidy and

fees.

Babaioff et al. [3] discuss incentives for propagating transac-

tions in a cryptocurrency network. They offer and analyze several

reward schemes to incentivize participants to distribute transac-

tions in the network. In this work we analyze systems with the tra-

ditional reward scheme, where participants are rewarded for min-

ing blocks. Transaction propagation is not incentivized, as in the

classical reward scheme.

Möser and Böhme [49] review and analyze the history of trans-

action fees in Bitcoin. They conclude that historicallyminers prefer

to follow the protocol rules rather than optimize their gains. They

predict such state is sustainable only when fees are a negligible

part of the incentive. In our work, we analyze systems where fees

are not negligible and show how such systems incentivize partici-

pants to undesired behavior.

Carlsten et al. [17] analyze Bitcoin when the mining incentive

comes solely from fees, in a model where the number of transac-

tions that can be placed in a block is unbounded. In their model

there is no residual fee after block generation as all transactions

are included in the previous block, and so the block reward imme-

diately after a block is found is zero. They analyze mining strate-

gies and show how miners are incentivized to fork the main chain,

disturbing security and liveness. They also revise selfish mining

and show an improved version suited dominant fees incentive. An

interesting conjecture briefly presented in their work is of the for-

mation of a mining gap, a period of time in which miners turn their

mining rigs off to reduce mining expenses. When such mining gap

exists, the mining power utilization of the network is suboptimal.

In proof of work scheme the immediate implication is that the sys-

tem is less resilient to attacks. In this work, we present a model to

analyzeminers’ profits and use it to show thatmining gaps do form.

Our model holds for both bounded and unbounded blocks, as well

as for combinations of subsidy and fees as part of the block reward.

In their work, the mining gap conjecture was for a set of identical

miners that all stop and start mining simultaneously. In contrast,

we show that different miners prefer different mining gaps. We

also show that rational miners are ought to form coalitions to in-

crease their gains, leading to a centralized system. We analyze loss

of resilience to attacks. We conclude by showing that with suffi-

cient initial block reward, all miners are incentivized to resort to

the default mining strategy.

Biais et al. [5] analyze the investment in mining equipment re-

quired by miners in proof of work cryptocurrencies. They show

that miners require excessive acquisition of mining equipment to

stay competitive with other miners. In this work we assume the

mining equipment acquired is fixed for the network, yet we con-

sider it as part miners’ expenses.

Fruitchain [55] is a protocol that is ϵ-Nash incentive compatible

against any minority coalition. It shows that if fees are evenly dis-

tributed across different blocks as fees are smeared, the potential

increase from deviating from the protocol is bounded. Hybrid Con-

sensus [54], Sleepy consensus [56] and Solida [1] are all newer pro-

tocols for implementing distributed consensus with blockchains.



They presume an altruistic majority of participants and do not

consider incentives. Algorand [36] is another such protocol that

use proof of stake instead of proof of work. It explicitly does not con-

sider incentives, which call for a different definition in the proof

of stake scheme. Ouroboros Praos [42] is also a proof of stake

blockchain protocol. It uses a new rewardmechanism aimed tomit-

igate block withholding attacks. Bitcoin-NG [32] is a new protocol

with the intentions of scaling Bitcoin. It utilizes proof of work for

picking a leader, who creates microblocks to validate transactions.

Rewards are distributed by consecutive leaders, yet it also assumes

both negligible fees and miner expenses. Lavi et al. [45] consid-

ers two new bidding schemes for Bitcoin’s fees market, while fo-

cusing on incentivizing miners to offer their true bids rather than

strategically bid. Our results focus on Bitcoin-like cryptocurrency

protocols and with Bitcoin’s current incentive scheme, and do not

trivially apply to these other protocols.

4 MODEL

We present a realistic model of cryptocurrency systems that we

use throughout the rest of this work. As commonly done in

blockchains analysis [17, 33, 34, 55], we model systems in a quasi-

static state. That means no miners join or leave [37, 43], existing

miners maintain their behavior and the system reached equilib-

rium. Therefore, in our model the system comprises a fixed set of

miners and a fixed set of mining rigs. Each miner controls at least

one rig and each rig is controlled by exactly one miner. We assume

for simplicity that mining rigs are identical [17]. Rigs have two

states — off, the default state, and on. Each miner assigns a start

time for each of her controlled rigs, in which the rig is turned on.

We often refer to a turned-on rig as an active rig.

Once a rig is turned on, the time it takes to find a valid block

is exponentially distributed with a fixed rate parameter, which is

shared among all rigs [33, 51, 52, 58]. Therefore the time to find the

first block by any of the rigs is the minimum of all finding times by

all different rigs. The value of the rate parameter is determined by

the cryptocurrency protocol such that the expected block time in-

terval is of a constant value that is also determined by the protocol.

The rate parameter represents the difficulty of the cryptographic

puzzle, and we use the terms difficulty and rate interchangeably.

The assigned start times of rigs by miners affect the value of the

rate parameter. If blocks are found too fast (too slow), then the

difficulty parameter value is changed by the protocol to decrease

(increase) the rate of each individual rig. In equilibrium, the rate

parameter is of a fixed value.

The rig that finds the block first awards its controlling miner

the block reward, which is comprised of two parts. The first part

is fees reward that comes from aggregation of newly introduced

transactions to the system. This reward is time-dependent, as the

time progresses there are more pending transactions in the system,

and the potential fees reward grows. The second part is a subsidy

we refer to as base reward, which to the contrary of the fees reward

is fixed over time. This reward is comprised of the minting of new

currency with the creation of each block, as well as the expected

reward from transaction fees considering the expected initial set

of pending transactions. Note that the finding of a new block does

not reward any other miners except the miner who found it.

To participate in the system miners expend resources, and we

differentiate two types of such resources. First, miners have cap-

ital expenses (capex), which are for owning a rig [21, 62] and

apply whether the rig is active or not. Miners also have opera-

tional expenses (opex), which are paid for having a rig actively

mining [22, 23] i.e. owning an active rig. Note that these expenses

apply for all miners and not just on those who manage to success-

fully mine blocks.

Once a block is found, all miners move on to find the next block.

This process is repeated indefinitely. The profit of a miner for each

block is the difference between her total expenses and her total

reward. Rational miners strive tomaximize their profits, giving rise

to a game.

5 THE GAP GAME

The repeated search for the blocks becomes a series of independent

one-shot competitions, in each only one miner gets the reward but

allminers pay expenses. To reason about expected revenues, rather

than considering the individual iterations we consider a one-shot

game played by theminers. A player’s strategy is the choice of start

times of all of her rigs – when each rig is turned on. The choice of

start times are made a-priori by all players. We define the utility

of a player to be her expected profit, which is her expected income

minus her expected expenses.

The system comprises k mining rigs controlled by n players.

Player i controls the set of rigs with indices Ri . Note that ∀Ri :

Ri , ∅, ∀i , j : Ri ∩ Rj = ∅ and
⋃n
i=1 Ri = {1, 2, . . . ,k}. De-

note the expected block time interval achieved by the protocol

by Block_Interval. The start time of each rig j is s j , and we denote

the normalized start time s̃ j =
s j

Block_Interval
. Once a rig is turned

on, the time it requires to find a block is exponentially distributed

with a rate parameter µ (s̄).

For simplified writing in the following section, we denote s̄ as

the vector of increasing order k rigs’ start times.

All rigs are identical – Each mining rig costs ccap per time unit

for ownership and cop per time unit if it is turned on.

The utility of player i , denoted utilityi , is its expected profit,

namely its expected rewards minus its expected expenses. We de-

rive an expression for the utility function in the following section.

The utility is affected by the strategies of all players. As is com-

mon in miner behavior analysis [30, 33, 43, 44, 58], our solution

concept is myopic — each player chooses her best-response strat-

egy based on the current strategies of other players. Players do not

take into consideration how other players will adapt based on their

new choice of strategy.

Strategy space. Note that the strategy space does not include

turning rigs off, as this is an irrational behavior. Block finding time

of an active rig is drawn from the exponential distribution, which is

memoryless. That means the probability for a rig to find the block

in some time interval is not affected by how much time had al-

ready passed since that rig began mining. Therefore, a single rig’s

chances of finding a block are not decreasing over time. Recall that

the total reward also increase over time. Hence, if at some point in

time the reward justified turning a rig on, then this justification

holds from that time until the block is found.
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Figure 1: Fees in most rewarding 1MB block accumulation

in Bitcoin’s mempool.

5.1 Parameters Analysis

The parameters values are affected by awide range of factors, stem-

ming from different sources. The fees are affected by the system

users and the market [6, 10, 13, 25, 41, 49]. The base reward is also

affected by systems user and market, as these affect the residual

fees, but also by the minting rate, which is defined by the cryp-

tocurrency protocol. Capex is affected by factors such as technolog-

ical advancements of mining rigs efficiency [5], personnel wages,

and real estate costs [21, 47, 63]. Opex is affected primarily by the

electricity costs [15, 21–23, 47] for operating the mining rigs. That

includes both the actual puzzle solving process as well as cooling

expenses. These parameters are therefore not only difficult to es-

timate, but they vary between different currencies, and also over

time for the same currency. Hence, we analyze the system for a

range of parameters values to make general observations, focus-

ing on trends that are robust across the parameter range.

We begin by analyzing how fees accumulate in the system, and

then move towards determining parameter values which we’ll be

used throughout the rest of this work.

5.1.1 Fees Reward Accumulation over Time. Accurately predicting

the fees accumulation function of the pending transactions is out of

the scope of this work, andwe resort to an educated approximation.

We measure how fees accumulate over time in the Bitcoin network

and apply our findings to the general model.

We conducted the following measurement at February 2018. Us-

ing a Bitcoin node connected to the Bitcoin network, we monitor

the pending transactions awaiting to be included in blocks. At fixed

time intervals of one second, we find the most rewarding set of

transactions to include in a valid 1 MB Bitcoin block. We record

the fees that transactions in this set offer. The values recorded cor-

respond to blocks 509426 up to 509605 and span about 30 hours of

measurements.

In Figure 1 we present the potential fees reward as a function of

time, during the time it took to mine a specific block, for some arbi-

trarymeasured blocks. The vertical dashed line shows the expected

block time interval, which is 600 seconds in Bitcoin. As expected,

some blocks required more (less) time than the expected interval.

Using linear regression on all the measured blocks, we calculate

the squared correlation value and get an average of R2 = 0.96. We

Name cop ccap
high_op 0.02 0.00

med_op 0.01 0.01

low_op 0.00 0.02

Table 1: Opex and capex settings.

conclude a linear approximation is reasonable and therefore treat

the fees reward as if it increases linearly.

We also note that immediately after a block is found, there are

still pending transactions awaiting to be included in future blocks.

We can consider the expected fees of these pending transactions

as if they were part of the fixed base reward out of the total block

reward.

Hence, we model the total block reward as a linear function,

where the slope is the expected fees accumulation rate, and the in-

tercept is the sum of the newly minted currency and the expected

fees available immediately after a block is found.We repeated these

measurements at other dates for different periods of time and re-

ceived similar results. We denote λt as the fees accumulation rate

and λ0 as the base reward.

5.1.2 Analysis Parameters. We denote by Expected_Total_Fees the

expected total fees accumulating during the expected time to find

a block, namely, Expected_Total_Fees = Block_Interval · λt . Denote

by EBRR the ratio of the expected base reward and the expected

accumulated fees, so EBRR =
λ0

Expected_Total_Fees
. Throughout the

following sections we present results for different values of EBRR.

For all experiments we choose the following parameters arbi-

trarily: Fees increase rate is set to λt = 1, the expected block inter-

val to Block_Interval = 10000, and the number of rigs to k = 128.

Recall we analyze systems at a quasi-static state and miners do

not join or leave the system. The profit for miners should there-

fore be slightly more than the interest rate plus associated risk.

For simplicity, to avoid introducing unnecessary parameters, we

set the expense parameters such that the expected profit of miners

will be zero. Therefore, we choose values so cop + ccap is of a fixed

value.

The ratio between of the two types of expenses, opex and capex,

can vary considerably among cryptocurrencies. Different cryp-

tocurrencies use different proof of work [2, 35, 38, 48, 65] with dif-

ferent computational costs, varying mining technology [5, 21, 62],

and varying electricity expenses [15, 47]. Therefore, we use three

different settings that are of interest for the ratio of capex and opex

parameters values, which are detailed below and summarized in

Table 1. Two settings describe extreme cases, where in one all the

expenses are opex, and in the other all the expenses are capex. The

third setting describes the average case of the first two, where the

opex and capex are equal.

The system’s properties are determined by the parameters ra-

tios — the ratio of expected fees reward and the base reward, the

ratio of opex and opex and so forth. Throughout the rest of this

work we cover a wide range of these ratios that demonstrate the

important trends.We emphasize that different values satisfying the

same ratios yielded the same qualitative results.



6 GAME ANALYSIS

To find the utility of each player, we start by analyzing the block

finding time probability distribution. This is a function of the play-

ers’ selection of start times. We model the block finding time as a

random variable denoted B with cumulative distribution function

(CDF) and probability density function (PDF) denoted FB(t ; s̄, µ (s̄))

and fB(t ; s̄, µ (s̄)), respectively.

We begin by discussing the difference of the probability distri-

butions in our model distributions from ones considered in prior

art. We present three different scenarios of rigs’ start time choices

and the derived probabilities of the system. Table 2 lists the values

used in each scenario and Figure 2 depicts the resultant distribu-

tions. Figure 2a shows the ratio of active rigs as a function of time,

while Figures 2b, 2c show the PDF and CDF of the block finding

time B, respectively. In this example the expected block interval

is set to be Block_Interval = 1. Each scenario has four equal-size

players, each controlling 32 out of the total k = 128 rigs in the

system.

In the classical scenario, all players set their rigs’ start times to 0.

This is the scenario commonly analyzed in the literature [33, 51,

52, 58]. In Figure 2a we see a constant ratio of 1 as all rigs are set

to have t = 0. From Figures 2b, 2c we learn that fB(t ; s̄, µ (s̄)) >

0, FB(t ; s̄, µ (s̄)) > 0 for all t , which is expected as all rigs are active

throughout the entire scenario. As all block finding times of single

rigs are exponentially distributed, the block finding time is also

exponentially distributed. The rate parameter is 1
Block_Interval

such

that the expected time will be Block_Interval.

In the uniform gap scenario, all players set their rigs’ start times

to 0.5. This is scenario is analyzed in [17]. In Figure 2a we can

see that all the ratio is 0 while t < 0.5 and to 1 while t ≥ 0.5 ,

as all rigs are set to have s = 0.5. In Figures 2b, 2c fB(t ; s̄, µ (s̄)) =

0, FB(t ; s̄, µ (s̄)) = 0while t < 0.5 as no rigs are active.When t ≥ 0.5

, all rigs are turned on and fB(t ; s̄, µ (s̄)) > 0, FB(t ; s̄, µ (s̄)) > 0.

In this case, the block finding times of single rigs are shifted-

exponentially distributed, the block finding time is also shifted-

exponentially distributed. The shift is of 0.5 time units and the rate

parameter is doubled 2
Block_Interval

to compensate. Notice that the

expected block time interval is still Block_Interval.

In the arbitrary gap scenario, each player set her rigs’ start times

to a different value. To the best of our knowledge, this scenario is

first analyzed in this work. In Figure 2a we can the ratio increases

as time progresses. The spikes occur at the times where rigs are

turned on. Notice that for t < 0.2 all the rigs are still turned off and

the ratio is 0. At t = 0.2, 0.4, 0.6, 0.8 , the change in the number of

turned on rigs causes the CDF in Figure 2c to be semi-differentiable,

resulting in the jump discontinuities of the PDF in Figure 2b. As ex-

pected, fB(t ; s̄, µ (s̄)) = 0, FB(t ; s̄, µ (s̄)) = 0 while t < 0.2 as no rigs

are turned on. Note that for all scenarios limt→∞ fB(t ; s̄, µ (s̄)) = 0,

FB(0; s̄, µ (s̄)) = 0 and limt→∞ FB(t ; s̄, µ (s̄)) = 1.

The rest of this section is organized as follows. In Section 6.1

we derive an expression for the distribution based on the selected

values of s̄ , and proceed to derive an expression for utilityi in Sec-

tion 6.2. Then, in Section 6.3 we present a simulator designed to

confirm our theoretical analysis. We conclude in Section 6.4 by pre-

senting an optimizing tool created to find equilibria in the game.

Rigs Quarter

Scenario Q1 Q2 Q3 Q4

classical [33, 51, 52, 58] 0 0 0 0

uniform gap [17] 0.5 0.5 0.5 0.5

arbitrary gap 0.2 0.4 0.6 0.8

Table 2: Rigs Start Times.
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Figure 2: System properties for different scenarios.

6.1 Distribution Analysis

The first step towards analyzing the system is to derive an ex-

pression for the distribution, namely FB(t ; s̄, µ (s̄)) and fB(t ; s̄, µ (s̄)),

based on players’ strategies. We begin by deriving the distribution

of a single rig. Observe any single rig j that with start time s j . De-

note the time this rig requires for finding a block as a random vari-

able Bj . Recall that the rate of a single rig is µ (s̄), which is set by



the protocol. The value of Bj is drawn from the shifted exponential

distribution, with a shift of s j and rate µ (s̄).

The PDF of Bj is

fBj (t ; s j , µ (s̄)) =



0, t ≤ s j

µ (s̄) · exp
(
−µ (s̄) (t − s j )

)
t > s j

and its CDF is

FBj (t ; s j , µ (s̄)) =



0, t ≤ s j

1 − exp
(
−µ (s̄) (t − s j )

)
t > s j

.

As FBj (t ; s j , µ (s̄)) = Pr(t ≥ Bj ) = 1 − Pr(t ≤ Bj ) we get that

Pr(t ≤ Bj ) =



1, t ≤ s j

exp
(
−µ (s̄) (t − s j )

)
t > s j

.

All rigs are competing on finding the next block. The rig that

finds the next block first is the rig with the minimal value of Bj .

Therefore, the time required for finding the next block is B =

minj∈{1,2, ...,k } Bj .

We define for any time t and any player i the set activei (t ) to

be all player i’s rig indices that are active at time t : activei (t ) ={
j | j ∈ Ri ∧ s j ≤ t

}
. We define active(t ) to be the set of all active

rigs at time t . Note that active(t ) =
⋃n
i=1 activei (t ).

The probability that none of the rigs have found a block by

time t , Pr(t ≤ B), is the product of Pr(t ≤ Bj ) for all j (as rigs

are independent of another one). This probability is given by

Pr(t ≤ B) =
⋂

j∈{1,2, ...,k }

Pr(t ≤ Bj ) =

k∏
j=1

Pr(t ≤ Bj ) = exp
©­
«
−µ (s̄) ·

∑
j∈active(t )

(t − s j )
ª®¬
.

The CDF of B is therefore

FB(t ; s̄, µ (s̄)) = 1 − Pr(t ≤ B) = 1 − exp
©­
«
−µ (s̄)

∑
j∈active(t )

(t − s j )
ª®
¬
(1)

and the derivative is its PDF,

fB(t ; s̄, µ (s̄)) = µ (s̄) · |active(t )| · exp
©­
«
−µ (s̄) ·

∑
j∈active(t )

(t − s j )
ª®
¬
.

(2)

As expected, when |active(t )| = 0 then
∑
j∈active(t )

(t − s j ) =

0 which results in FB(t ; s̄, µ (s̄)) = 0 and fB(t ; s̄, µ (s̄)) = 0.

We can verify that fB(t ; s̄, µ (s̄)) is a valid PDF by checking that∫ ∞

−∞
fB(t ; s̄, µ (s̄))dt = 1 holds. We prove this is in fact the case in

Appendix A. We also find the value of µ (s̄) at equilibrium. This

process is presented in Appendix B and utilized when required

throughout this work.

6.2 Utility

We are now ready to express utilityi . Recall that utilityi is the ex-

pected profit of player i . We define three new random variables —

Incomei , Expensesi , Profiti , representing the income, expenses and

profit of player i , respectively. Throughout the rest of this section,

we assume the value of B is t , and use it to find the expected profit

of player i that is denoted as E
(
Profiti | B = t

)
. We then use the law

of total expectation and the PDF of B from Equation 2 to derive an

expression for E
(
Profiti

)
, which is by definition utilityi .

6.2.1 Income Function. We model the income function linearly

with a slope of λt and an intercept of λ0. Therefore, the total avail-

able reward at time t is λ0 + λt · t .

Recall that once a rig is turned on, the time it requires to find a

block is drawn from the exponential distribution. The exponential

distribution is memoryless, meaning the time that passed does not

affect the chances of a rig to find the block. Since the rate parameter

µ (s̄) is shared among all rigs, at any given time all the active rigs

have the same chance to find the block, regardless of how much

time they had been active for already.

Observe the set of active rigs at the time the block is found

active(t ). The probability of a specific active rig to find the block

is one divided by the total number of active rigs. Note that since

the block was found at time t , then ∃j ∈ {1, 2, . . . ,k} such that

s j ≤ t and therefore |active(t )| > 0. Players control many rigs, so

the probability that player i controls the rig that found the block is

the number of her controlled active rigs divided by the total num-

ber of active rigs. We denote the ratio of player i’s active rigs out

of all the active rigs at time t as αi (t) =
|activei (t ) |
|active(t ) |

. The ratio αi (t)

is therefore the expected factor of player i’s portion of the total

reward.

We conclude that if a block was found at time t , then the ex-

pected income of player i is

E (Incomei | B = t ) = αi (t)(λ0 + λt · t) . (3)

6.2.2 Expenses Function. Recall that players have two kind of ex-

penses. The first, capex, for owning a rig. The second, opex, for

having a rig active.

Capex applies for all rigs controlled by the player, whether they

are turned on or not. For each rig, the capex it imposes by time t

is the product of ccap and t . Recall that Ri is the set of rig indices

that player i controls, which totals with |Ri | rigs. The total capex

of player i by time t are therefore ccap · |Ri | · t .

Opex applies only for active rigs. For each active rig, the ex-

penses it imposes by time t is the product of cop and the time dura-

tion this rig is turned on already. At time t , active rig j with s j has

been active for t − s j time. Summing for all rigs of player i results

that by time t the total opex are cop ·
∑
s ∈activei (t )

(t − s ).

Combining both of these expenses, if a blockwas found at time t

then the expected expenses of player i are

E
(
Expensesi | B = t

)
= ccap · |Ri | · t + cop ·

∑
s ∈activei (t )

(t − s ) . (4)

6.2.3 Profit Function. The expected profit of a player is her ex-

pected income minus her expected expenses. Using Equations 3

and 4, we get that if a block was found at time t then the expected



profit of player i is

E
(
Profiti | B = t

)
=

E (Incomei | B = t ) − E
(
Expensesi | B = t

)
. (5)

6.2.4 Utility Function. To get the expected profit of a player, we

use the law of total expectation (sometimes referred to as the

smoothing theorem). We use the PDF of B that from Equation 2.

Therefore, the expected profit of player i , which is also defined as

her utility, is

utilityi = E
(
Profiti

)
= E

(
E

(
Profiti | B = t

) )
=∫ ∞

−∞

(
E

(
Profiti | B = t

)
· fB(t ; s̄, µ (s̄))

)
dt . (6)

6.3 Cryptocurrency System Simulator

In addition to the theoretical analysis, we implemented a cryp-

tocurrency system simulator. It is built as an event driven simula-

tion and operates at the continuous time space. It includes a set of

miners that control mining rigs. Each miner keeps a private copy

of the blockchain and compete with the other miners on finding

the next block. We use exponentially distributed random events to

simulate block mining intervals. The rate parameter of the expo-

nential distribution is set such that the mean block time interval

is kept at a fixed value. When a miner finds a block, he announces

it to the rest of the miners. Each miner sets a-priori a start time

for each of her controlled rigs, which refers to required time to

pass since the finding of the previous block so this specific rig will

become active. Active rigs keep on mining until the next block is

found by any rig. Transactions accumulate over time and found

blocks include the allocated fees as a reward, as well as a base re-

ward for each block. Miners also pay expenses as a function of

their controlled rigs (capex) and the time those rigs were turned

on (opex).

We emphasize that the theoretical analysis yields the expected

profit for a player from a single block, while simulations create a

long blockchain containing many blocksmined by all participating

miners. Hence, when referring to the results of the simulator, we

refer to mean profit of a miner over time.

6.4 System Equilibrium Search

The utility presented in Equation 6 is derived given all players’

strategies. If a player changes her strategy, then the utility of all

the other players is also affected. We are interested in finding equi-

libria, i.e. strategies of all players such that no player can improve

her utility by changing her strategy.

The utility of a player is infeasible to express in a symbolic man-

ner. It is a function of all player strategies as well as the difficulty

parameter, which can be expressed only as an implicit function (in

any case where there are at least two distinguished start times).

Therefore, we use numerical analysis to find equilibria in the sys-

tem.

We implemented an equilibrium-search-tool — a tool we use to

numerically search for an equilibrium, and that works in the fol-

lowing manner. The equilibrium-search-tool receives as an input

the system income and expenses parameters, as well as a list of

tuples representing all players’ strategies. Each tuple of that list is

in the form of {i, j, s }, where i is a player’s index, j is a rig index

that are controlled by player i and s is a start time selected for rig

j. Note that {j1, . . . , jm} ⊂ {1, 2, . . . ,k}.

Iteratively, the equilibrium-search-tool chooses at random an

input tuple {i, j, s }, and searches what value of a new start time

for rig j will result in maximal utility for player i . This process is

repeated until no player increases her utility by changing any of

her rigs, meaning an equilibrium is reached.

Note that all equilibria found by such process are only ϵ-Nash-

equilibria, as they are limited by the numerical precision of the

calculation. To counter that predicament, we repeat the search pro-

cess with different random start times and different optimizing or-

der. In all conducted experiments, the randomness introduced had

no effect on the output equilibrium. That strengthens our analysis

of an equilibria.

7 ANALYSIS RESULTS

We study the system behavior in a wide range of scenarios, de-

tailed in Section 5.1 – from the common case in today’s operational

currencies where subsidy dominates rewards to the extreme case

where fees dominate rewards, and with varying expenses distribu-

tions. We proceed to verify our analysis tools using the cryptocur-

rency system simulator, compare it to known results, and observe

some predictable trends (Section 7.1).

In Section 7.2 we present the first trend that was not predicted

in prior art – even when rig parameters are identical, players of

different sizes choose different gap sizes in equilibrium. We also

present the utility of a single player as a function of other players’

strategies and show players are expected to optimize. Then, in Sec-

tion 7.3, we analyze the game with equal-size players of varying

size, showing how the gap game encourages equilibria that affect

the security of the system.

Wewant to compare the utility of players in systems with differ-

ent reward schemes. To eliminate the effect of players having high

utility as they are in systems that offer high rewards, we instead

consider on the utility of players out of the total utility available

in the system. We also want to eliminate the effects of bigger play-

ers having more utility and therefore we actually consider the util-

ity normalized by size. More formally, we use normalized utility

of players, that is defined to be the utility presented in Equation 6,

normalized by two factors. The first factor is λt ·Block_Interval+λ0
that represents the total expected income from a block in the sys-

tem. In our experiments this factor varies as a function of λ0. This

normalization allows us to compare systems with different λ0. The

second normalization factor is the number of rigs each player con-

trols, which varies for each player.

7.1 Analysis Tools Validation

We validate our analysis by comparing our theoretical results with

both simulated and previously known results. In Section 7.1.1

we compare with the classical scenario discussed in previous

work [33, 51, 52, 58], when there are no gaps. Next, in Section 7.1.2,

we present and analyze a scenario with arbitrary gaps. For this sce-

nario there is no previous work to compare with, so we compare

our theoretical results only against the simulation.



Portion of
player 1’s rigs

Normalized
start time

0.2 0.1

0.7 0.3

0.1 0.9

Portion of
player 2’s rigs

Normalized
start time

0.2 0.2

0.4 0.5

0.4 0.6

Table 3: Normalized start times for players’ rigs.

7.1.1 Scenario One – No Mining Gap. We analyze a simple sce-

nario where the system is comprised of two miners, both mine

without a mining gap, and with no expenses. We use the ana-

lytic expression and the simulator to obtain the relative utility of

player 1 – the ratio of a her utility out of the utility of all play-

ers. We vary the player 1’s relative mining power and plot its rel-

ative utility. This is the common metric that was used in previous

work [33, 51, 52, 58]. In those previous works, reward from fees is

negligible, meaning the relative utility is the ratio of blocks mined

by a player. It is also themetric used for the scenario where there is

no reward from minting, all transactions are identical in their fees,

and blocks are unbounded — the relative utility is the ratio of trans-

actions included by blocks mined by the player [17]. In both cases

the expected result is for a player with α relative mining power to

have a relative utility of α . All of these works neglect the expenses

of players. Hence, for comparison purposes we nullify these ex-

penses in this particular scenario by setting cop = ccap = 0.

We compare the relative utility according to the game analysis,

the simulated results, and the expected result. For the simulated

results, we use the average of 10 different runs with different ran-

dom seeds. We use several values for EBRR and, as expected, the

results match.

7.1.2 Scenario Two – Arbitrary Mining Gap. We analyze a differ-

ent scenario with arbitrary mining gaps. The game consists of two

players that choose arbitrary start times for arbitrary portions of

their rigs. Each player partitions her controlled rigs into three sets,

each with a different start time. We choose the start times arbitrar-

ily, and their values are presented in Table 3. Recall that s̃ j is the

start time of rig j normalized by the expected block time interval.

We use the game analysis and the simulator to obtain the normal-

ized utility of player 1, and plot it as a function of her relative min-

ing power. The values of cop and ccap are presented in Table 1. We

repeat the analysis for different values of EBRR.

Results are presented in Figure 3. As in the previous experiment,

for the simulated results, we use the average of 10 different runs

with different random seeds. The error bars show the highest and

lowest values.

This comparison demonstrates the effect of the EBRR value. For

the low values of EBRR, player 1 has negative utility. As player 1

controls more rigs (i.e., has higher relative mining power), her per-

mining-rig utility is decreasing with her total mining power. Even

though player 1 has higher probability to get rewarded as she con-

trols more mining power, the increase in her expenses is more sig-

nificant, resulting in lower utility. For the higher values of EBRR,

the opposite occurs. As player 1 controls more rigs, her per-rig-

utility is increasing with her total mining power. The increase in

the probability to get rewarded surpasses the increase in expenses,
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Figure 3: Comparison of the normalized utility of player 1 —

game analysis and simulation.

resulting in higher utility. This trend is maintained for all settings

of opex and capex ratios.

Another interesting result shows the impact of the opex-capex

ratio. For any player 1 relative mining power and any EBRR, the

utility of player 1 where capex is dominant (low_op, Figure 3a) is

lower than when capex and opex and equal (med_op, Figure 3b)

and when opex is dominant (high_op, Figure 3c). Player 1’s choice



Number of players

Normalized start times 0.1 0.5 0.9

Strategy 1 4 0 3

Strategy 2 7 0 0

Strategy 3 0 7 0

Strategy 4 0 0 7

Table 4: Normalized start times of the other players.

of start times that are greater than 0 is an optimization. By doing so,

she reduces her expected opex as her controlled rigs are expected

to be active for less time. The more rigs she controls, the more

impactful this effect is. Hence, this suggests that at when opex is

at play (med_op ,high_op), mining gap formation is beneficial.

We conclude the simulations discussion with the following ob-

servation. Recall the analysis is for the expected behavior and

hence considers the expected pending transaction fees as part of

the base reward. The simulations confirm the results predicted by

the expected-case analysis, despite the fact the reward varies be-

tween individual blocks.

7.2 Case Studies

We present two insights regarding the optimal start time of players.

The first reviews, through an example, the effects of other players’

start time strategies on the normalized utility of a player. The sec-

ond reviews optimal start times of players of different sizes.

7.2.1 Case Study One — Effects of Other Players’ Strategies. In our

example we use a game with 8 players, controlling 16 rigs each,

where each player selects a single mutual start time for all of her

rigs. We use EBRR = 2 for this example. In Figure 4 we present the

normalized utility of player 1 as a function of her rigs start time

for different start times of the other players. The maximal value

of each curve is marked. Start times strategies of the other players

are listed in Table 4. In strategy 1, four of the players choose nor-

malized start time of 0.1 while the remaining three choose 0.9. In

strategies 2,3 and 4, all the other seven players choose normalized

start times of 0.1, 0.5 and 0.9, respectively.

An increase in player’s normalized utility is achieved by two

means — increasing her chance of being rewarded and therefore

increasing her expected reward, and by reducing her expenses.

When a player chooses an early start time, she prefers to increase

her chance for the reward, at the cost of increasing her expenses.

When a player chooses a late start time, she prefers to decrease her

expenses, at the cost of lowering her chances to be rewarded.

Notice strategy 4, where all other seven players choose normal-

ized start time of 0.9. At the low_op setting, where cop = 0, player 1

can increase her chances of being rewarded without an increase

in her expenses. Hence, the optimal normalized start time as seen

in Figure 4a is zero. At the med_op and high_op settings, where

cop > 0, the conflict described above comes in play. Choosing nor-

malized start time of zero will cause unnecessary expenses, result-

ing in sub optimal normalized utility. Choosing a relatively late

normalized start time, such as 0.9, will also result in sub optimal

normalized utility, as now player 1 has much lower chances to be

rewarded and therefore much lower normalized utility. The opti-

mal normalized start time is therefore a time that balances the two
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Figure 4: Normalized utility of player 1, for different strate-

gies of other players.

conflicting interests. From Figures 4b and 4c we can learn the op-

timal normalized start time in this case is in the range of [0.2, 0.5].

At strategy 4, player 1 has relatively long period of time where

she was the only player with active rigs. This leads to relatively

high chance for her to be rewarded, which she could forfeit to re-

duce her expenses. When the other players use strategy 2 for ex-

ample, this privilege doesn’t exist anymore, and player 1 shouldn’t



Relative Size, Normalized Start Time

# Player 1 Player 2 Player 3 Player 4

1 0.125, 0.157 0.125, 0.157 0.250, 0.261 0.5, 0.452

2 0.250, 0.261 0.250, 0.261 0.500, 0.452 -, -

3 0.125, 0.131 0.375, 0.350 0.500, 0.452 -, -

4 0.125, 0.131 0.250, 0.261 0.625, 0.452 -, -

Table 5: Case study of different size players.

forfeit any chance she can get to win the reward. Hence, in all set-

tings, her optimal normalized start time is 0. Strategy 3 is in a sense

the average case. The other players start at 0.5. This start isn’t too

early yet not too late, and player 1 can optimize. As expected, the

optimal time is also dependent on the opex value.

Strategy 1 demonstrates the opposite case, where player 1 is bet-

ter off waiting to decrease her expenses. When cop > 0, player 1

minimizes her expenses by choosing fairly late start times. When

cop = 0, player 1 can’t reduce expenses by choosing later start

times, and therefore the optimal choice is normalized start time of

zero.

7.2.2 Case Study Two — Different-Size Players. We now use the

equilibrium-search-tool to analyze a scenario with players of differ-

ent sizes. In this scenario we use the high_op setting with EBRR = 2.

We present the equilibria obtained by the equilibrium-search-tool

for some arbitrary sets of players. Sets at examination and the re-

sulting equilibria start times are presented in Table 5.

We note that players with the same size choose same start times,

such as player 1 and player 2 in scenario 1. We also note that play-

ers with higher relative size choose higher start times. Another re-

sult is that the bigger player in each scenario picks the same start

time, even when the smaller other players choose different start

times.

We now present an intuition for these results. Consider a player

of 1 − ϵ relative mining power for some infinitely small ϵ . This

player is practically guaranteed to find the block and get the re-

ward, whether she chooses early or late start times for her rigs.

Such player will then prefer to cut her expenses by choosing later

start times, as her chances of winning are practically unaffected

by such choice. Now consider the opposite case, with a player of

ϵ relative mining power. This player has low chance to win the re-

ward and she cannot afford to dwindle it any further. Hence, such

player will choose start time 0, to maintain what low chances of

getting a reward she has. Intuitively, the higher relative power a

player controls, the later the start time she prefers for her rigs.

We now move to analyze simpler settings, where all players are

of equal sizes.

7.3 Equal-Size Miners Equilibria

We proceed to analyze equilibria where all miners are of equal

sizes. For a varying number of players, we divide the k mining

rigs among the players evenly, creating a set of equal-size players.

For the different settings presented in Table 1, and different values

of EBRR, we use the equilibrium-search-tool to find equilibria start

times for the players.
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Figure 5: Convergence of normalized start times of equal-

size players.

We visualize, as an example, some of the equilibria search pro-

cesses for a system comprised of 4 equal-size players, control-

ling 32 rigs each. In Figure 5, for the three different settings and

different EBRR values, we plot at each iteration of the equilibrium-

search-tool the normalized start times of all of the 4 players.We get

the same qualitative results for any different numbers of players,

and for different random initial start times.



We first notice that for all settings and for all values of EBRR,

each player eventually converges to the same start time. We con-

clude symmetry holds. We also notice that some settings require

only one iteration before reaching the equilibrium start time, while

other settings require a few iterations. This strengthens the analy-

sis result that the start times of other players affect the optimal

strategy. Another result is that different settings and values of

EBRR lead to different optimal start times. We discuss these result

thoroughly in the following section.

7.3.1 Start Times at Equilibria. In Figure 6 we present the normal-

ized start times at equilibrium of all miners as a function of the

number of miners. For the low_op setting, presented in Figure 5a,

the equilibrium is at start time zero for all values of EBRR. This is

expected, as cop = 0 and players do not suffer an increase in ex-

penses by turning their rigs on earlier. By setting their rigs’ start

times to zero, the players maximize their probability of getting

rewarded, hence increasing their utility. For the med_op and the

high_op settings, presented in Figures 5b and 5c respectively, start

times at equilibrium are zero only for the higher values of EBRR.

When EBRR is low, the base reward is not substantial enough to

incentivize players to choose start time zero, as they rather turn

their rigs on at a later time and decrease their expected expenses.

Therefore the expenses prevented due to the optimization aremore

significant than the loss of potential reward. When EBRR is high

the base reward becomes more substantial and the opposite opti-

mization takes place. Players prefer start time zero, as the increase

in probability to get the reward and therefore the expected reward

are more significant than the increase in expenses.

Another interesting result is that players with higher relative

power prefer later start times. An intuition for that was presented

in Section 7.2. For example, in a system with only 2 players, each

player has a relative mining power of 0.5, these players choose the

latest start time. For systems with more players, say 16, each has

relative mining power of 0.0625 and choose an earlier start time.

7.3.2 Utility Increase from Optimization. In Figure 7 we present

the normalized utility increase of players from optimization. We

measure the utility of players at the optimal and zero start times

and subtract the latter from the former.

Recall that for the low_op setting, the equilibrium start time is

zero, hence there is no increase in utility. This result is presented

in Figure 7a, For the med_op and the high_op settings, equilib-

rium start time is zero only for the higher values of EBRR. The

results of such optimization are presented in Figures 7b and 7c.

When players optimize, they gain a substantial increase in their

utility. Notice that three factors contribute to an increase in util-

ity — low EBRR, high cop and a small number of players. All these

three make optimizationmore profitable, by reducing the expected

reward from finding a block and increasing the potential gain of

saving expenses.

7.3.3 Mining Power Utilization. Equilibria with positive gap sizes

negatively affect system security by reducing the amount of re-

sources protecting the system. Recall that in proof of work systems,

the security of the system relies on the honest miners’ mining

power. When less mining power takes part, the system becomes

less resilient to attacks, as now attackers require less resources.
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Figure 6: Normalized start times of equal-size players.

The mining power utilization [31] is the ratio of mining power that

effectively secures the blockchain out of all mining power in the

hands of well-behaved miners. If the mining power utilization is

smaller than one, then an attacker can perform a 51% attack with

less than 51% of the mining power, and selfish mining becomes

easier to achieve. Figure 8 show the mining power utilization in

various scenarios. In Figure 8a, when the low_op setting applies,
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Figure 7: Utility increase from optimization.

all players choose start time zero, and the mining power utiliza-

tion is not affected. In Figures 8b and 8c, when the med_op and

the high_op settings apply, players use mining gaps, leading to de-

crease in the mining power utilization. Note that at the most ex-

treme scenario of two players, high opex and low base reward, the

mining power utilization drops to about 10%.
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Figure 8: Mining power utilization.

7.3.4 EBRR for a Limited Mining Gap. We have seen the implica-

tions on security from mining gaps, therefore we explore the ques-

tion of how to avoid such gaps. We find the minimal EBRR to limit

the size of a mining gap. Assume we want to limit the start time of

players at equilibrium to be a factor of x from the Block_Interval.

Therefore, we look for the minimal EBRR value such that the start

time at equilibrium will be less than x · Block_Interval.
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Figure 9: Minimal EBRR for a limited gap.

We use binary search over a wide range of EBRR values and

mark the lowest EBRR that bounds the gap by x · Block_Interval,

for three different factors ∀x ∈ {0.01, 0.05.0.1}. We repeat this ex-

periment for various number of players as well as different opex

and capex values. We present the results in Figure 9.

As expected, for the low_op setting, the start time at equilibrium

is zero as mining is free, and even EBRR = 0 suffices. As optimiza-

tion becomes more profitable due to the aforementioned reasons,

higher EBRR values are required to limit start times at the equi-

librium. When the EBRR is higher, the total reward from finding

the block is higher. Hence, it incentivizes miners to prefer increas-

ing their chances of winning the reward over decreasing their ex-

penses, which ultimately leads to a limited mining gap.

Note that even as the number of players grows, the curves con-

verge to a fixed value of EBRR. We deduce that even in a system

with many small miners, a gap still forms in the presence of opex.

7.4 Case Study: Bitcoin

We now make an educated estimation to when Bitcoin becomes

prone to the undesired effects of mining gaps. There are many op-

erational cryptocurrency systems, all vary in minting, fees, market

cap, and expenses. Given such parameters for any cryptocurrency,

a similar estimation can be performed using ourmodel.We present

a case study of Bitcoin.

We consider the popular mining rig Antminer s9 [9] with

an estimated life expectancy of one year. Its required power is

about 1.3kW and average cost about $1000. Electricity cost is

about $0.1/kWh [64]. In one year the electricity expenses of one

miner sum up to $876, which means the system falls in the area of

med_op.

In Bitcoin today there are 7 mining pools [11] controlling

about 85% of the mining power, while the rest is divided among

many smaller mining pools. Although they vary in size, we ap-

proximate that situation by assuming 8 equal-size miners.

Using results of Section 7.3.4, we deduce that EBRR ≈ 1 is re-

quired to maintain a small gap. Currently, the rewards from mint-

ing and fees are B12.5 and about B1, respectively. Therefore cur-

rently EBRR ≈ 12.5, so gaps are not profitable. However, in about

ten years the minting reward drop will drop to about 1, which

means EBRR ≈ 1 and the system will be in a state where gaps

are profitable.

The ten-year estimate is an optimistic one, as it assumes the

reward from fees does not increase. Different mining hardware,

change in electricity costs, and changes in the currency market,

all might lead to different results. We emphasize that our estima-

tion does not consider incentives external to our model resulting

in seemingly altruistic behavior [4].

8 CONCLUSION

We defined and analyzed the gap game exploring howmining gaps

form as a function of subsidy and fees, capex and opex.We showed

that once fees become significant gaps form, though not uniformly

as previous believed, and their effect on blockchain security is sig-

nificant, decreasing mining utilization by up to 90% in extreme sce-

nario, and leading to centralization incentives.

This means that base rewards are critical for system security,

and should be achieved either by subsidy, fee backlogs, or alter-

native fee schemes [45, 55]. We show that EBRR ≈ 6 is sufficient

to avoid mining gaps in presented scenarios; we expect Bitcoin to

drop below this threshold within a decade.

Establishing that gaps occur is an early and important step in

the security analysis of cryptocurrency systems. This work is a

step in that direction, demonstrating that gap analysis is critical

for amore complete security analysis of blockchains. Such analysis

can be used to inform the design of future and current cryptocur-

rencies.
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We are now ready to present the full verification process, which

is detailed in Equation 8.

B DIFFICULTY PARAMETER VALUE AT
EQUILIBRIUM

In this section we show how to find the value of µ (s̄) at equi-
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(b) Difficulty parameter µ (s̄) at equilbria constraint.
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