

Edinburgh Research Explorer

Ouroboros Genesis: Composable Proof-of-Stake Blockchains
with Dynamic Availability

Citation for published version:
Badertscher, C, Gazi, P, Kiayias, A, Russell, A & Zikas, V 2018, Ouroboros Genesis: Composable Proof-of-
Stake Blockchains with Dynamic Availability. in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. CCS '18, ACM, New York, NY, USA, pp. 913-930, 25th ACM
Conference on Computer and Communications Security, Toronto, Canada, 15/10/18.
https://doi.org/10.1145/3243734.3243848

Digital Object Identifier (DOI):
10.1145/3243734.3243848

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Sept. 2024

https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848
https://www.research.ed.ac.uk/en/publications/7f97233f-23d4-4568-87bc-254875f7a34c

Ouroboros Genesis: Composable Proof-of-Stake Blockchains
with Dynamic Availability

Christian Badertscher

ETH Zurich

badi@inf.ethz.ch

Peter Gaži

IOHK

peter.gazi@iohk.io

Aggelos Kiayias
∗

University of Edinburgh and IOHK

akiayias@inf.ed.ac.uk

Alexander Russell
†

University of Connecticut and IOHK

acr@cse.uconn.edu

Vassilis Zikas

University of Edinburgh and IOHK

vzikas@inf.ed.ac.uk

ABSTRACT

We present a novel Proof-of-Stake (PoS) protocol, Ouroboros Gene-

sis, that enables parties to safely join (or rejoin) the protocol execu-

tion using only the genesis block information. Prior to our work,

PoS protocols either required parties to obtain a trusted “check-

point” block upon joining and, furthermore, to be frequently online

or required an accurate estimate of the number of online parties

to be hardcoded into the protocol logic. This ability of new par-

ties to “bootstrap from genesis” was a hallmark property of the

Bitcoin blockchain and was considered an important advantage

of PoW-based blockchains over PoS-based blockchains since it fa-

cilitates robust operation in a setting with dynamic availability,

i.e., the natural setting—without external trusted objects such as

checkpoint blocks—where parties come and go arbitrarily, may join

at any moment, or remain offline for prolonged periods of time. We

prove the security of Ouroboros Genesis against a fully adaptive

adversary controlling less than half of the total stake in a partially

synchronous network with unknown message delay and unknown,

varying levels of party availability. Our security proof is in the

Universally Composable setting assuming the most natural abstrac-

tion of a hash function, known as the strict Global Random Oracle

(ACM-CCS 2014); this highlights an important advantage of PoS

blockchains over their PoW counterparts in terms of composability

with respect to the hash function formalisation: rather than a strict

GRO, PoW-based protocol security requires a “local” random oracle.

Finally, proving the security of our construction against an adaptive

adversary requires a novel martingale technique that may be of

independent interest in the analysis of blockchain protocols.

CCS CONCEPTS

• Security and privacy→Distributed systems security; Cryp-

tography; Formal security models;

∗
Partially supported by H2020 Project PRIViLEDGE #780477.

†
Partially supported by NSF grant CCF-1717432.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’18, October 15–19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5693-0/18/10.

https://doi.org/10.1145/3243734.3243848

KEYWORDS

Distributed ledgers, Blockchain, Proof-of-Stake

ACM Reference Format:

Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell,

and Vassilis Zikas. 2018. Ouroboros Genesis: Composable Proof-of-Stake

Blockchains with Dynamic Availability. In 2018 ACM SIGSAC Confer-

ence on Computer and Communications Security (CCS ’18), October 15–19,

2018, Toronto, ON, Canada. ACM, New York, NY, USA, 18 pages. https:

//doi.org/10.1145/3243734.3243848

1 INTRODUCTION

The primary real-world use of blockchains, thus far, has been to

offer a platform for decentralized cryptocurrencies with various

capabilities [7, 32]. A unique feature of blockchain protocols (in

contrast to, say, classical consensus protocols) is the fact that the

parties running the protocol may engage only in passing with the

protocol and need not identify themselves to other protocol par-

ticipants. In fact, the Bitcoin blockchain protocol remains robust

in the presence of a Byzantine adversary even if parties arbitrarily

desynchronise, join at any moment of the execution or go offline

for arbitrary periods of time, as long as a majority of hashing power

is always following the protocol. We refer to this desirable set

of execution features as dynamic availability. Motivated by this

novel setting, several applications have recently emerged that use

blockchains (or the cryptocurrencies that build on top of them) as en-

ablers for cryptographic protocols. For example, a number of recent

works [1, 2, 6, 27, 28] describe how blockchain-based cryptocurren-

cies can be used to obtain a natural notion of fairness in multi-party

computation against dishonest majorities; or to allow parties to

play games of chance—e.g., card games like poker—without the

need of a trusted third party [15, 29]; or how to use blockchains as

bulletin boards in electronic voting [30]. Such developments—in

conjunction with the direct applicability to cryptocurrencies—have

motivated general, formal security analysis of the functionality that

blockchain protocols provide, undertaken in steps of successive

refinement in [4, 18, 19, 33].

However, blockchain protocols such as Bitcoin and Ethereum

have led to concerns regarding their extraordinary energy demands

as they rely on proof-of-work (in short, PoW), a cryptographic

puzzle-solving procedure that increases in difficulty as more parties

https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848

join the system.
1
The desire for more efficient blockchain solu-

tions gave rise to an exciting recent line of work that proposes

to use alternative resources to achieve consensus and maintain a

robust ledger. A popular such resource is stake in the system it-

self [5, 13, 26]. Informally, instead of requiring a party to invest

computing power in order to be allowed to extend the blockchain,

parties are given the chance to do so according to their stake in

the system, e.g., the number of coins they own. This paradigm,

referred to as proof-of-stake (in short, PoS), has yielded a num-

ber of proposals for PoS-based blockchains, including several sup-

ported by formal analysis: Algorand [21], Snow White [14], and

Ouroboros/Ouroboros Praos [16, 25], which is implemented as part

of the Cardano blockchain.
2
Additionally, Ethereum—a noted PoW

scheme—aims to transition to PoS in the future [8].

Despite the clear advantages of PoS blockchains in terms of en-

ergy efficiency, their suitability as PoW blockchain replacements

has been uncertain; see, e.g., [35]. Notably, such protocols restrict

the dynamic availability of participants: for instance, Casper [8],

Snow White [14], and Ouroboros/Ouroboros Praos [16, 25] require

parties to maintain a “moving checkpoint”—specifically, new par-

ties must receive trusted “advice” when they join and otherwise be

frequently online—while Algorand [21] requires that a good esti-

mate of the number of online parties is hardcoded in the protocol;

in case the estimate becomes incorrect, due to some parties going

offline, the protocol will halt, even when an active honest majority

is present (while protocols like [14, 16] will merely slow down).

All the above point to the following open, and fundamental,

question: Is it possible for PoS-blockchains to provide the same

functionality guarantees as PoW-blockchains in the setting of full

dynamic availability without access to any information beyond a

trusted initialisation string (the “genesis block”)?

Our Contributions. We propose a new protocol which features a

novel chain selection rule that enables joining parties to “bootstrap

from genesis”, i.e., to safely join an operating blockchain protocol

without any information other than the genesis block. In partic-

ular, this provides the joining party a blockchain possessing all

the favorable properties (e.g., a large common prefix with other

honest parties) that would be guaranteed if the party had fully par-

ticipated during the entire history of the protocol. We then prove

that the protocol implements the natural ledger functionality pro-

posed in [4]—the very same functionality shown to be possessed

by Bitcoin—under the assumption of standard cryptographic primi-

tives. Our formalisation captures explicitly the setting of dynamic

availability: parties are allowed to join and leave the system at will,

as well as lose their network and/or clock synchronisation. We

describe these contributions in more detail below.

Our primary contribution is the construction and analysis of a

new protocol, Ouroboros Genesis, which builds on a recent PoS

protocol, Ouroboros Praos [16]; the main novelty of the new proto-

col is a (significantly) differing chain selection rule—instantiating

the so-called maxvalid procedure in [4, 16, 18, 25]—which allows

parties to identify a chain that shares a large common prefix with

1
Currently each single Bitcoin block requires more than 2

72
operations to be performed,

cf. https://en.bitcoin.it/wiki/Difficulty.

2
Cardano, https://whycardano.com, is currently the largest pure PoS cryptocurrency

according to market capitalisation, cf. https://coinmarketcap.com.

a recent honest chain, using only knowledge of the genesis block.

The protocol is organized around epochs, periods of the execution

during which the stake distribution is treated as constant by the

protocol. We prove that Ouroboros Genesis realizes the ledger func-

tionality originally proposed in [4] to model the Bitcoin protocol

under an appropriate honest stake majority assumption: specifi-

cally, the majority of stake in each epoch—as defined by the stake

distribution in a recent previous epoch—favors the honest parties

in a precise sense that reflects the dynamic availability setting. In

order to express this guarantee formally, we refine the model of

[4] to include the following events: (i) parties may be spawned

and join the network at any time, (ii) parties may lose or regain

their network connection at any time, and (iii) parties may lose or

regain access to the random oracle (that in [4] models the hash-

ing operation of the party) and/or clock functionality at any time.

The honest parties that retain their network connection, clock and

random oracle access for a sufficient amount of time—linear in the

network delay—are called alert, while the set of alert and adver-

sarial parties are called active. On the other hand, the parties that

have lost synchronisation with the clock or are not connected to

the random oracle are called stalled; such parties still have an active

network connection and when they regain access to the clock and

the random oracle are guaranteed to receive all pending messages.

The set of stalled parties is a refinement of the concept of sleepy

parties that appeared in [14, 34].

Using this fine grained formalisation of party behavior, we can

express explicitly the dynamic availability guarantees under which

Ouroboros Genesis is shown secure: (i) The ratio α of the stake of

alert parties to that of the active parties is above 1/2; the difference

is by a constant that is sufficiently large to appropriately absorb the

partial synchrony delay parameter ∆. In particular (and similarly

to the Bitcoin blockchain [18, 33]) the protocol will use a “active

slots coefficient” f and provide meaningful security guarantees for

a range of ∆ below 1/f . (ii) The ratio β of the stake of the active

parties to the stake of all parties is bounded below by some arbitrary

constant that is unknown to the protocol participants.

The constraints above are arguably optimal (that is, necessary)

in the dynamic availability setting. First, if the alert to active stake

ratio α drops below 1/2, it indicates that (despite a possible honest

majority), the effective participating honest parties form a stake mi-

nority once we account for the honest players that are either offline

or have so recently joined that they are not yet fully synchronised

with the rest of the honest parties (due to message delays). Second,

if the active to total stake ratio β approaches 0, this indicates that

while there might be honest stake majority, almost all honest par-

ties are stalled and thus the protocol cannot support “liveness”, i.e.,

the guaranteed processing of newly submitted transactions.

Our analysis is in the (partial) synchronous model of universally

composable (UC) functionalities [9, 11, 22] that was also used in [4]

to analyze the bitcoin protocol. A significant improvement in our

analysis, which highlights the higher composability potential of PoS

protocols over their PoW counterparts, is that we are able to prove

security in the strict global random oracle (sGRO or simply GRO)

setting [12], which is the most natural random oracle abstraction of

hash functions; this contrasts with the hash function formalisation

of [4] that restricts access to the hash function in each protocol

session. This latter limitation appears to be an inherent barrier

https://en.bitcoin.it/wiki/Difficulty
https://whycardano.com
https://coinmarketcap.com

of the PoW setting since universal composition of a PoW-based

blockchain would require that computational effort expended in

the environment is inherently independent of the current session,

something known to be untrue (for instance, merged mining, cf.

[23], exploits exactly the transfer of computational effort across

protocol sessions).

On the necessity of novel techniques. The formal security ar-

guments supporting Ouroboros Genesis—as with other rigorously

analysed blockchain protocols—ultimately rely on definition and

analysis of a stochastic process that abstracts the underlying dynam-

ics of block creation and dissemination. The Ouroboros Genesis sto-

chastic process is given by a coupled pair of discrete random walks,

very like the underlying process associated with the Ouroboros

Proas protocol. However, the Ouroboros Genesis analysis must

contend with a significant new analytic challenge: the “steps” of

the random walk are not simply given by independent random

variables (as in previous analyses), but may be correlated by the

adaptive behavior of the adversary. The stake constraints, fortu-

nately, provide limits on the worst-case correlation of these random

variables, and our analyses shows that this can be advantageously

expressed as a martingale to which powerful classical concentra-

tion results apply. This permits us to dovetail our development

with the “forkable strings” analysis of [36] which, fortunately, can

also be cast in a martingale setting. These techniques may have

independent interest, as they can apply to quite general blockchain

dynamics and thus may prove useful for analyzing other PoS-based

blockchains.

Related Work. A number of recent works have studied—in a rig-

orous cryptographic manner—the security of several blockchain

protocols adopting both PoW-based (e.g, [4, 18, 33]) and PoS-based

(e.g., [14, 16, 21, 25, 34]) consensus mechanisms. In the PoW-based

setting, [4] describes and proves the composable security guar-

antees of the most representative protocol, namely Bitcoin; fur-

thermore, the security proof tolerates an adaptive adversary and

achieves optimal resilience—the adversary can control any per-

centage less than 50% of the network’s total computing power. In

contrast, in the PoS-based setting, no simulation-based (UC) proof

existed, and various proposed schemes tolerate different types of

adversaries in terms of adaptivity. For example, Ouroboros [25]

achieves only “semi-adaptive” security (corruptions with delay),

whereas among the adaptively secure ones, Algorand [21] requires

less than 1/3 of the stake of the system to be held by malicious par-

ties; ShowWhite [14] and Ouroboros Praos [16] achieve the optimal

1/2 bound, at the cost of needing a checkpointing functionality to

accommodate joining parties.

The idea of parties that are muted for some time but do receive

their messages was first proposed in [34] where those parties were

referred to as sleepers. Our modeling of such parties differs from

that of [34] in various ways: first, instead of describing them by

means of whether they are paused or not, we characterize them by

means of the availability of their resources, making clear how those

parties enter this state. Furthermore, our notion only affects the PoS

session that is being executed and thus, in our composable setting,

such parties are not restricted as to how they should behave within

other protocols that they concurrently participate in. To emphasize

this distinction and the fact that they may be continuing to operate

in other protocol sessions we use the term “stalled” for these par-

ties. In addition to the modeling distinctions, our model allows us

to obtain more general statements regarding the adaptivity of the

adversary. Concretely, we can tolerate fully adaptive adversaries

and worst-case registration/deregistration scheduling. In contrast,

[14] tolerates semi-adaptive adversaries, whose corruption only

takes effect after a certain number of rounds. Interestingly, there is

no need for distinguishing a class of parties called deep-sleepers

in [14] (i.e., those that are in sleepy mode for a prolonged time) that

required a safe initialisation string in [14]. Taking advantage our

bootstrapping from genesis chain selection rule, all parties that are

stalling, even for prolonged periods of time, can safely resynchro-

nise without the assistance of a trusted initialisation exactly as in

the case of PoW-based protocols.

Outline of the remainder of the paper. In Section 2 we pro-

vide a formal description of our model of computation, including

our real and ideal world functionalities and setups. In Section 3

we describe Ouroboros Genesis as a (G)UC protocol. The security

analysis of the protocol, i.e., the proof that it UC-securely realizes

the ledger functionality, is given in Section 4. The proof begins by

considering the interaction of the old chain selection procedure

from [16] (this rule is called maxvalid-mc here; the protocol us-

ing it is dubbed Ouroboros-Praos) with online and stalled parties

only (Section 4.2); then the proof gradually incorporates the new

maxvalid-bg procedure which allows the protocol to bootstrap from
the genesis block (Section 4.3), and establishes that this procedure

is sufficient to provide all appropriate guarantees to newly joining

and temporarily offline parties (Section 4.4). Finally, the results are

transformed into the full UC statement in Section 4.5.

2 THE DYNAMIC-AVAILABILITY MODEL

This section presents the main components of the security model.

We work in the universal composability (UC) framework [9] and as-

sume some basic familiarity with the core concepts. The full version

of this paper [3] includes a more detailed introduction. Following a

modular approach, we make use of a number of functionalities in

our descriptions and explain their behavior whenever needed to

follow this exposition.

UC defines security via the simulation paradigm: the protocol

execution in the real world is compared to an ideal execution, where

the parties have access to an ideal functionality F which abstracts

the goals of the protocol. In the ideal world, honest parties act as

simply relayers between their environmentZ and the functionality

F (i.e., they run the so called dummy protocol [9]). Informally,

security requires that the attack of any adversary A against the

(real-world) protocol can be simulated in the ideal world.

Typically, a protocol is given access to so-called hybrid function-

alities, which capture the resources that parties have available, e.g.,

their communication network or shared randomness. Our results

are in the GUC setting which allows parties access to Global setups

that capture settings where different protocols might share a com-

mon state, e.g., a common hash-function [10]. On a more technical

note, in order to preserve full UC composability in our statements,

as in [4] we capture assumptions/restrictions on the UC adversary

and environment as functionality wrappers that explicitly restrict

their access to certain functionalities.

A significant extension in the model of computation in our work

is the high-resolution treatment of the protocol participant’s avail-

ability, which we term (full) dynamic availability. Concretely, as

in [4] all functionalities, protocols, and global setups have a dynamic

party set: they all include special instructions allowing parties—and

in case of global setups also ideal functionalities—to register, dereg-

ister, and allow the adversary to learn the current set of registered

parties. These registration commands are part of the specification

of all (hybrid and ideal) functionalities and setups considered in

this work. For simplicity, we will not write them explicitly in the

pseudo-code of the functionalities.

Dynamic availability requires special care in the blockchain

setting. For example, in [4] it is observed that due to network delays

newly joining Bitcoin miners might be temporarily desynchronized,

i.e., be tricked into working on a fake (adversarial) chain in the

first time period after joining the network. As discussed in the

end of this section (cf. Figure 1) our work goes one step further in

modeling fine-grained, i.e., full, dynamic availability patterns of

parties and capturing their respective security guarantees in the

blockchain setting.

It is important to point out that a fine-grained availability model

offers the capability to precisely model a wide range of real-world

concerns. For example, it allows to reason about a protocol’s re-

silience against networks failures or arbitrary message delays. The

reason is that such scenarios can be reflected by a particular pattern

of stalled and/or disconnected parties for an adversarially chosen

amount of time.

The remainder of this section describes, in the dynamic availabil-

ity model, the real-world resources that Ouroboros Genesis requires

and describes the ideal-world functionality that is achieved by the

protocol.

2.1 The Real World Execution

Protocol participants are represented as parties in a multi-party

computation. The main aspects of this computation are as follows:

Communication. The parties communicate over a network of

eventual delivery unicast channels [4]—informally, every party

Up has an open incoming-connections interface where he might

receive messages from other parties. This captures the joining pro-

cedure of real-world blockchains where new parties find a point

of contact and use it to communicate with other parties by means

of gossiping. As shown in [4], assuming the honest parties are

strongly connected, this setup can realize the multicast network

with eventual delivery [18, 25, 33]. The abstraction of this network

as a (local)
3
UC functionality is given in the full version [3]. For the

remainder of this work we will assume parties have direct access

to such a multicast network, denoted F ∆
N-MC

, with an upper bound

∆ in the delay that the adversary can incur on the delivery of any

message. Note that our protocol is oblivious of ∆ and this bound

in only used in the security statement. Hence from the protocol’s

point of view the network is no better than that of an eventual

delivery network (without a concrete bound on delivery time).

3
It is natural to capture network functionalities as local UC functionalities, since

networks are often ad-hoc tailored to a specific task.

Synchrony. Known PoS-based blockchains, including Ouroboros

Genesis, are (partially) synchronous, i.e., they proceed in synchro-

nized rounds with either a known (or an unknown, in the case of

partial synchrony) message delay. We model synchronous compu-

tation using the synchronous-UC paradigm introduced in [24] and

adapted to GUC in [4]. Concretely, the parties are assumed access

to a global clock setup, denoted as Gclock which roughly works as

follows: Each registered party can signal the clock that it is done

with the current round, and once all honest registered parties (and

functionalities) in this session have done so, the clock advances its

time counter. In addition, every party can query the clock to read

the (logical) time.

As observed in [4], to obtain UC realization in such a globally

synchronized setting, the target ideal functionality must keep track

of the number of activations that an honest party gets—it can then

enforce consistent clock “pace” in the ideal world and real world.

This can be achieved by describing the protocol so that it has a

predictable pattern of activations before it sends the clock an update

command. The precise definition is given in [3] since the exact

details are not needed to follow the rest of this paper.

Hash functions as global random oracles. Ouroboros Gene-

sis assumes that parties can query a hash function. As typical in

cryptographic proofs, the queries to hash function are modeled as

queries to a random oracle (functionality): Upon receiving a query

(eval, sid,x) from a registered party, if x has not been queried

before a value y is chosen uniformly at random from {0, 1}κ (for

security parameter κ) and returned to the party (and the mapping

(x ,y) is internally stored). If x has been queried before, the corre-

sponding y is returned.

The common abstraction of random oracles as UC functionalities

raises issueswith respect to its accuracy for capturing reality [12]. In

this work, we adopt the more faithful abstraction given by a global

random oracle (GRO) GRO. The fact that Ouroboros Genesis can be

proved secure under such an assumption serves as an indication of

the augmented composability that PoS can bring to the blockchain

ecosystem. As mentioned before, Bitcoin cannot be proved secure

in the GRO model.

The genesis block generation and distribution. Agreement

on the first, so-called genesis block, is a necessary condition in all

common blockchains for the parties to achieve eventual consensus.

In Ouroboros Genesis, this block includes the keys and initial stake

distribution of the parties that are present at the beginning of the

protocol. This assumption—i.e., that the genesis block is properly

created, reliably distributed to the initial parties, and that it is prop-

erly communicated to anyone who joins later—is captured in [16]

by assuming access to a (local) functionality FINIT. For each stake-

holder registered at the beginning of the protocol, FINIT records his

key in the genesis block; this block is distributed to anyone who

requests it in any future round. To simplify the protocol description,

we will assume throughout the paper that the first round—i.e., the

genesis round—of the protocol occurs when the global time is τ = 0.

This is w.l.o.g., as the actual genesis-round index is written on the

genesis block and all parties have access to the global clock.

Hybrids used (only) in the security proof. Ouroboros Genesis

requires as setup only the above local and global functionalities

F ∆
N-MC

,FINIT,Gclock, and GRO. However, for the sake of a clean

modular treatment, we also assume hybrid access to two more

functionalities from [16], capturing verifiable random functions

(VRF) FVRF and key-evolving signature schemes (KES) FKES. These

functionalities (which we recall in Appendix A) are UC-realizable

by cryptographic constructions [16]; therefore, they can be safely

replaced by virtue of the UC composition theorem.

2.2 The Ideal World Execution

We next turn to the functionalities available in the ideal-world.

In this world, the parties execute the so-called dummy protocol.

Since the clock and the random oracle are modeled as global setups,

they are available also in the ideal world. However, the Ouroboros

Genesis protocol (and the corresponding network and initialization

functionality) are replaced by the ideal functionality that abstracts

the protocol’s goals. We call this functionality the (ideal) ledger and

specify it below.

Overview. The ledger that Ouroboros Genesis realizes is almost

identical to the one proposed in [4] and shown to be implemented

by (the UC adaptation of) Bitcoin. Concretely, the ledger of [4] is

parameterizable by a collection of four algorithms, and the ledger

implemented by Ouroboros Genesis is effectively derived by appro-

priately instantiating these algorithms. This similarity can be seen

as a confirmation of the ledger abstraction, and as an affirmation

that Ouroboros Genesis meets strong composable security. We start

with a brief recap of the abstract ledger from [4] and then show

which ledger functionality Ouroboros Genesis realizes. The full

description of the ledger as pseudo-code is found in [3].

The ledger from [4] maintains a central and unique ledger state

denoted by state. Each registered party can request to see the state,
but is guaranteed to receive a only a sufficiently long prefix of it; the

size of each party’s view of the state is captured by (monotonically)

increasing pointers that definewhich part of the state each party can

read; the adversary has a limited control on these pointers. These

dynamics can be seen as a sliding window over the sequence of

state blocks, with width wSize and starting at the head of the state,

and each party’s pointer points to a location within this window

(the adversary can control the exact position). As is common in UC,

parties advance the ledger when they are activated with specific

maintain-ledger input by their environment Z. The ledger uses

these queries along with the function predict-time(·) to ensure that
the ideal world execution advances with the same pace (relatively

to the clock) as the protocol does.
4

Ledger inputs and state update. Any party can input a transac-

tion to the ledger once instructed byZ. The ledger first validates

transactions using a predicate Validate and if valid, these are added
to a buffer. Each new block of the state consists of transactions from

the buffer. To give protocols syntactic freedom of defining their

state block format, a vector of transactions, say N⃗i is mapped to

the ith state block via function Blockify(N⃗i). Validate and Blockify
are two of the ledger’s parametrization algorithms.

4
Recall that the clock waits (also) for the ledger to check-in to advance its time/round

index.

One crucial property to specify a realistic ledger is the procedure

to define when/how to extend state, as one needs to find the bal-

ance between allowing the adversary certain influence (to reflect

real world impacts), and to enforce certain ideal policies/restrictions

regarding state updates. For example, our ledger enforces a mini-

mum chain growth rate, a certain chain quality level, and liveness

of transactions. The procedure ExtendPolicy is responsible for en-

forcing such a policy. In nutshell, to enable adversarial influence,

ExtendPolicy takes as an input a proposal from the adversary for

extending the state, and can decide to follow this proposal if it sat-

isfies its policy; if it does not, ExtendPolicy can ignore the proposal

and enforce a default extension.

Ledger Parameters. To specify the ledger achieved by Ouroboros

Genesis, we need to instantiate the relevant parameters and proce-

dures from above. Blockify, Validate, and predict-time are chosen
to mimic the input/output format restrictions of the protocol; con-

cretely, Blockify := blockifyOG, predict-time := predict-time
OG

(defined in the full version [3]), and

Validate(BTX, state, buffer) := ValidTxOG (tx, state),

where blockifyOG, predict-time
OG

, and ValidTxOG are identical to

what the real protocol prescribes (cf. Section 3).

The procedure ExtendPolicy is trickier. It enforces the following

properties:

1. All blocks of state are semantically valid.

2. The state grows at a minimal rate of blocks over a time interval.

This is formalized by specifying a value maxTimewindow inwhich
at least wSize blocks have to be inserted into the ledger state.

3. A certain fraction of blocks in a sequence of wSize blocks have
to be honestly generated. This is enforced by requiring a limit

advBlckswindow of adversarial blocks in each window of wSize
blocks.

A detailed specification of the concrete ExtendPolicy is given in [3].

Guarantees for dynamic availability. The ideal guarantees

of [4] separates the active honest parties into two categories, called

synchronized and desynchronized. Desynchronized denotes those

parties that have registered with the protocol within the last Delay
rounds, where Delay (usually a multiple of the network delay) is a

parameter of the ledger that expresses how long a newly joining

party is not considered synchronized. Because we cannot guarantee

that these parties’ view is consistent with the rest of the honest

network, the ledger treats them as adversarial. However, as soon as

the interval of Delay rounds from registration passes, they become

synchronized and enjoy all guarantees for honest parties.

In this work, our goal is to achieve the highest granularity w.r.t.

capturing the security of parties depending on their availability

status. We go beyond the coarse-grained model of [4], where honest

parties are either offline or otherwise fall into two categories, and

separate honest parties into the following classes: offline parties

are honest parties that are deregistered from the network function-

ality. We further separate parties which are not offline into two

(sub-)categories, called (fully) online—parties which are registered

with all their setups and ideal resources—and (online but) stalled—

parties that are registered with their local network functionality,

but are unregistered with at least one of the global setups Gclock

Honest Parties

offline (have network)

(online, but) stalled

stalled

desynchronized

stalled

synchronized

(fully) online

online

desynchronized
alert

Honest party
“Synchronized”

state

Registered with

Gclock and GRO

Registered with

FN-MC

- alert ✓ ✓ ✓
- synchronized ✓ ? ✓
- online ? ✓ ✓
- stalled ? × ✓
- offline ? ? ×

Figure 1: Classification of honest parties. Based on access

to resources (clock Gclock, random oracle GRO, network

FN-MC) and presence in their current non-offline status for

more than Delay rounds (synchronized or desynchronized).

and GRO. Each of these (non-offline) subclasses is further split into

two subcategories along the lines of [4]: those that have been in

their current (non-offline) state for more that Delay rounds are

synchronized, whereas the remainder are desynchronized. This clas-

sification is illustrated in Figure 1. We will call a party active if it is

either online (and hence honest) or adversarial.

As in [4], the ledger keeps an updated track of registered parties

with all global setups and knows which category each party belongs

to. Desynchronized parties are treated as adversarial, whereas, of-

fline and stalled parties remain silent (i.e., the ledger produces no

output for them). We note in passing that, although not included

in [4], this level of granularity is an interesting extension to the

existing Bitcoin analysis.

PoS vs. PoW Ledgers. There is one minor point where the

PoS ledger needs to deviate from the Bitcoin one. In Bitcoin the

contents of the genesis block are irrelevant (i.e., the ledger can

simply have this block hardwired). However, in PoS it is inher-

ent that the initial stake distribution is reliably reflected (and

recall that parties associated to this setup register in the very

first round in the protocol execution). As we will see, to ensure

that the ledger execution is indistinguishable from the real-world

Ouroboros Genesis, we equip the ledger with an additional parame-

ter, the initial stakeholders set and corresponding stake distribution

S
initStake

:= {(U1, s1), . . . , (Un , s1)}. If some honest stakeholder ab-

stains from registering in the first round, the ledger stops execution.

For the formal specification of the concrete ledger that Ouroboros

Genesis realizes we refer to the full version [3].

3 OUROBOROS GENESIS AS A UC-PROTOCOL

The protocol Ouroboros-Genesis resembles the structure of its pre-

decessor Ouroboros Praos [16], but differs drastically in its core,

as it invokes a novel chain selection rule. This allows, for the first

time in the PoS literature, parties to come and go (and loose and

regain access to their resources) at any point without the need

of external checkpointing. As already discussed, the protocol as-

sumes access to the network functionalities and global setups, i.e.,

F ∆
N-MC

,FINIT,Gclock, and GRO. Due to space limitation, we give a

detailed protocol overview in this section that is sufficient to follow

and evaluate the protocol and the results, and we refer to [3] for

the full specification.

Terminology and notation We start with some notation. We

use x ≺ y to indicate that the string x is a prefix of the string y.
Consider an arbitrary partitioning of the time axis into subsequent,

non-overlapping, equally long intervals called slots. For the purpose

of this section, a block is an arbitrary piece of data that contains an

identification of a time slot to which it belongs. A blockchain (or

chain, for short) is a sequence of blocks with increasing time slots,

starting with a special genesis block and with each subsequent block

containing a hash of the previous one. A more concrete description

of blocks and chains created by the Ouroboros Genesis protocol

will be given in Section 3.

We denote the length of a chain C (i.e., the number of its blocks)

by len(C). For a chain C and an interval of slots I ≜ [sli , slj], we
denote by C[I] = C[sli : slj] the sequence of blocks in C such that

their slot numbers fall into the interval I . We replace the brackets

in this notation with parentheses to denote intervals that do not

include endpoints; e.g., (sli , slj] = {sli + 1, . . . , slj }. Finally, we

denote by #i :j (C) ≜ #I (C) ≜ |C[I]| the number of blocks in C[I].
Before giving the formal specification we introduce some nec-

essary terminology and notation. Each party U stores a local

blockchain C
Up
loc—Up ’s local view of the blockchain.

5
Such a local

blockchain is a sequence of blocks Bi (i > 0) where each B ∈ Cloc
has the following format: B = (h, st, sl, crt , ρ,σ). The first block
B0 is special and is referred to as the genesis block G. In each fol-

lowing block Bi , i > 0, h is a hash of the previous block, st is the
encoded data of this block, and sl is the slot number this block

belongs to. The value crt = (Up ,y,π) certifies that the block was

indeed proposed by an eligible slot leader Up for slot sl by provid-

ing the output y of Up ’s VRF evaluation for this slot, along with

the corresponding VRF proof π . Additionally, ρ = (yρ ,πρ) is an
independent VRF output—along with its proof—that is also inserted

into the block by Up and is later used to derive the future epoch

randomness. Finally, σ is the signature by Up on the entire block

(using a key-evolving signature scheme).

If Cloc = B0 | | · · · | |Bℓ is a (local) chain, we define its associated
encoded state s⃗t as the sequence st0 | | . . . | |stℓ , where each sti—
referred to as the ith state block of the state—is the encoded data

stored in block Bi . (The genesis data is defined to be st0 := ε .)

The exported state is then a specific prefix s⃗t
⌈k

of this state (we

define this expression to be ε if k is larger than the size of the

chain). The exact format of the state blocks depends on the actual

implementation and is enforced by use of the function blockifyOG.
Concretely, each state block st is formed by applying this predicate

on a vector N of transactions to derive an appropriately formatted

version of the block. This parameterization allows flexibility in the

way the exported state is formatted.

5
For brevity, wherever clear from the context we omit the party ID from the local

chain notation, i.e., write Cloc instead of CUloc .

To enable dynamic availability every party stores in a variable

ton (initially set to 1) the time/slot it was last online (and not stalled).

It also store in a variable t
work

(initially set to 0) the last time when

the staking procedure run to completion. Every protocol machine

also stores the current (local) state s⃗t encoded in the chain Cloc
and the local buffer buffer (corresponding to the transactions seen
so far on the network and not added on the blockchain); s⃗t,Cloc
and buffer are all initially empty.

For brevity, whenever in the protocol we say that a party uses

the clock to update, τ , ep, and sl we mean the following step:

Send (clock-read, sidC) to Gclock; receive the current time

τ and update ep := ⌈τ/R⌉ and slot index sl = τ , accordingly.6

Handling interrupts in a UC protocol. A protocol command

might consists of a sequence of operations. In UC, certain opera-

tions, such as sending a message to another party or outputting

a message to the environment, result into the protocol machine

loosing the activation. Thus, one needs a mechanism for ensuring

that a party that looses the activation in the middle of such a multi-

step command is able to resume and complete this command. Such

a mechanism is implicitly described in [24]. This mechanism can

be made explicit by introducing an anchor a that stores a pointer

to the current operation; the protocol associates each anchor with

such a multiple command and an input I , so that when such an

input is received it directly jumps to the stored anchor, executes

the next operation(s) and updates (increases) the anchor before

releasing the activation. We refer to execution in such a manner as

I-interruptible.

For clarity we include an example of an interruptible execution.

Assume that the protocol mandates that upon receiving input I ,
the party should run a command that consists ofm steps Step 1,

Step 2, . . . , Step m, but some of these steps might result in the

executing party releasing its activation. Running this command

in an I -interruptible manner means executing the following code:

Upon receiving input I if a < m go to Step a and increase a = a + 1
before executing the first operation that releases the activation;

otherwise go to Step 1 and set a = 2 before executing any operation

that releases the activation.

Protocol overview. The protocol execution proceeds in disjoint,

consecutive time intervals called slots. Importantly, time is divided

in such a way that all parties know when a new slot starts—in

our specification, every slot is one round, hence the parties can

compute the current slot by comparing the round, i.e., clock value,

recorded on the genesis block with the current round. Without loss

of generality we will assume that the protocols starts when the

global time is τ = 0; in this case the current slot index will be τ .
In each slot sl, the parties execute a so-called staking procedure

to extend the blockchain. At a high level, the staking procedure

consists of the following steps: First, the parties execute an implicit

lottery to elect a slot leader from a distribution which, roughly, is

biased by the stake distribution—the more stake a party has in the

system, the more likely he is to be elected slot leader.

In any given slot, the elected slot leaders are in charge of extend-

ing the blockchain. Concretely, slot leaders are allowed to propose

6
Recall that we assume for simplicity that the protocol starts when τ = 0 and that R
is a protocol parameter defining the duration of an epoch (in rounds).

an updated blockchain. To this end, the slot leader creates and signs

a block for the current slot. Each such block contains transactions

that may move stake among stakeholders. The slot leader then

multicasts the new, extended (by one block) chain to its peers. We

remark that, as in [16], in order to achieve adaptive security the

blocks are signed using a key-evolving signature scheme FKES in-

stead of a standard signature, and honest parties are mandated to

update their private key in each slot.

A chain proposed by any party might be adopted only if it satis-

fies the following two conditions: (1) it is valid according to a well

defined validation procedure, and (2) the block corresponding to

each slot is signed by a corresponding certified slot leader.

To ensure the second property we need the implicit slot-leader

lottery to provide its winners (slot leaders) with a certificate/proof

of slot-leadership. For this reason, we implement the slot-leader

election as follows: Each partyUp checks whether or not it is a slot

leader, by locally evaluating a verifiable random function (VRF, [17],

modeled by FVRF) using the secret key associated with its stake,

and providing as inputs to the VRF both the slot index sl and the

so-called epoch randomness η (we will discuss shortly where this

randomness comes from). If the VRF output y is below a certain

threshold Tp—which depends onUp ’s stake—thenUp is an eligible

slot leader; furthermore, he can use the verifiability of the VRF to

generate a proof π of the function’s output, thereby certifying his

own eligibility to act as a slot leader. In particular, in addition to

transactions, each new block broadcast by a slot leader also contains

the VRF output y and a proof π of its validity to certify the party’s

eligibility to act as a slot leader.

Using the output of a VRF to identify the slot leaders as above not

only allows for certifying the winner, but it also ensures that slot

leaders are chosen from the appropriate distribution. In a nutshell,

this is achieved as follows: Multiple slots are collected into epochs,

each of which contains R ∈ N slots.
7
The idea of having epochs

is that it allows to use stake reference points that are old enough

to be stable—with high probability—and are therefore appropriate

to be used in a universally verifiable proof. Concretely, during an

epoch ep, the stake distribution Sep that is used for deriving the

threshold T ep
p used for the slot-leader election corresponds to the

distribution recorded in the ledger up to the last block of epoch

ep − 2. Additionally, the epoch randomness ηep for sampling slot

leaders in epoch ep is derived as a hash of additional VRF-values

yρ that were included (together with their respective VRF-proofs

πρ) into blocks from the first two thirds of epoch ep − 1 for this

purpose by the respective slot leaders. (To unify block structure,

our protocol includes these values into all blocks, but this would

not be necessary in practice.) The values Sep and ηep are updated
at the beginning of each epoch.

A delicate point of the above staking procedure is that there will

inevitably be some slots with zero or several slot leaders. This means

that the parties might receive valid chains from several certified

slot leaders. To determine which of these chains to adopt as the new

state of the blockchain, each party collects all valid broadcast chains

and applies a chain selection rulemaxvalid-bg. In fact, the power of

the protocolOuroboros-Genesis and its superiority over all existing

7
Unlike [16], where R is fixed, in this work we treat R as a protocol parameter, which

will be bounded appropriately by our security statements.

PoS-based blockchains stems from this new chain-selection rule

which we discuss in detail below.

The formal structure of the Ouroboros Genesis protocol is given

in Figure 2. For completeness, the description includes a block of

commands (in the bottom of the description) which specify what

parties do when they receive external, protocol-unrelated queries

to their setups, such as independent queries to the global random

oracle. Because the ideal-world (dummy) parties would forward

such queries to their setups, the protocol needs to do the same.

Registration/Deregistration (cf. Section 3.1):
Upon receiving input (register, R), where
R ∈ {Gledger, Gclock, GRO } execute protocol

Registration-Genesis(Up, sid, Reg, R).
Upon receiving input (de-register, R), where
R ∈ {Gledger, Gclock, GRO } execute protocol

Deregistration-Genesis(Up, sid, Reg, R).

Interacting with the Ledger (cf. Section 3.2):
Upon receiving a ledger-specific input

I ∈ {(submit, . . .), (read, . . .), (maintain-ledger, . . .) } verify first

that all resources are available. If not all resources are available, then

ignore the input; else execute one of the following steps depending on

the input I :
If I = (submit, sid, tx) then set buffer← buffer | |tx, and
send (multicast, sid, tx) to F ∆

N-MC
.

If I = (maintain-ledger, sid, minerID) then invoke protocol

LedgerMaintenance(Cloc, Up, sid, k, s, R, f); if
LedgerMaintenance halts then halt the protocol execution (all

future input is ignored).

If I = (read, sid) then invoke protocol

ReadState(k, Cloc, Up, sid, R, f).

Handling external (protocol-unrelated) calls to the clock and

the RO:

Upon receiving (clock-read, sidC) forward it to Gclock and

output Gclock’s response.

Upon receiving (clock-update, sidC), record that a clock-update
was received in the current round.

Upon receiving (eval, sidRO , x) forward the query to GRO and

output GRO’s response.

Prot. Ouroboros-Genesisk (Up, sid; Gledger, Gclock, GRO, F ∆
N-MC

)

Figure 2: The Ouroboros Genesis Protocol

3.1 Registration and Deregistration

The first thing a party needs to do in order to have any role in

the protocol is register with its resources. Registration (and dereg-

istration) is dictated to the (honest) parties by the environment.

This captures the fact that resource availability is not something

controlled by the protocol itself. For example, a crash of the tim-

ing or hashing process of the party’s computer is captured by the

environment instructing the party to deregister from the clock or

the GRO, respectively. To capture our high-resolution (dynamic)

availability, the environment is allowed to register and deregister

parties from any of the resources at will.

In the following we describe the protocol that the parties exe-

cute upon receiving a registration/deregistration request. For clar-

ity, we assume that every party keeps a local registry, denoted

by Reg, that includes a registration-flag for each of the function-

alities (local and global) the party is connected to; whenever the

party registers or deregisters with some functionality/setup the

corresponding flag is updated accordingly. Since the registration

and deregistration commands are addressed to setups or to the

ledger, they only affect the real-world protocol if they are addressed

to one of the functionalities/setups that are present, i.e., to some

G ∈ {Gclock,GRO,Gledger}. Any registration input with session

ID different than that of those three functionalities will be ignored

by the protocol. W.l.o.g., we do not write the session IDs of global

setups and refer to them simply with their name.

The registration with any of the global setups GRO and Gclock

is straightforward. However, registering with the ledger is a little

more complicated: Upon receiving a ledger-registration query from

the environment, the party first checks that it is registered with the

global functionalities GRO and Gclock. If not, then it ignores the

input (and is still considered offline). Otherwise, it registers with

each functionality—excluding the already registered-to global setup

functionalities GRO and Gclock. Moreover, once a party registers

with its network it also stores the current time in variable ton. (Recall
that ton stores the last time the party was online, i.e., connected to

all its resources.) The deregistration is performed analogously.

Note that the registration to and from the global functionalities

has to stay under the control of the environment. Only once this pro-

cedure is completed, the party becomes operational and otherwise

is considered de-registered and does not answer any ledger-specific

queries (i.e., it is offline). The activation after any (de)registration

goes back to the environment. The registration and deregistra-

tion processes Registration-Genesis and Deregistration-Genesis
are specified as pseudo-code in [3].

3.2 Interacting with the Ledger

At the core of the Ouroboros Genesis protocol is the process that

maintains the ledger. There are three types of processes that are

triggered by three different commands provided that the party is

already registered to all its local and global functionalities—if this

in not the case, the corresponding command is ignored.
8

The command (submit, sid, tx) is used for sending a new

transaction to the ledger (to be included in one of the up-

coming blocks). It results in the party storing the submitted

transaction in its local transaction buffer and multicasting it

to the network so that other parties also add it to their buffers.

The command (read, sid) is used for the environment to ask

for a read of the current ledger state. It results in the party

outputting a prefix s⃗t
⌈k

of the state s⃗t extracted from its most

recently updated (local) blockchain. As we argue, any such

output will be a prefix of any output given by any other party

(this will follow from the common-prefix property).

8
Recall that our ledger functionality ensures that a parties input is considered—not

ignored—only if this party is registered with all its global inputs.

The command (maintain-ledger, sid,minerID) triggers the
main ledger update and maintenance procedure which is the

most involved part. A party receiving this command first

fetches from its network all information relevant for the cur-

rent round, then it uses the received information to update

its local data—i.e., asks the clock for the current time τ , up-
dates its epoch counter ep, its slot counter sl, and its (local

view of) stake distribution parameters, accordingly; and fi-

nally it invokes the staking procedure unless it has already

done so in the current round. If this is the first time that the

party processes a (maintain-ledger, sid,minerID) message

then before doing anything else, the party invokes an initial-

ization protocol to receive the initial information it needs to

start executing the protocol—in particular, the genesis block.

Furthermore, in order accommodate stalled parties, if the party

is registered with the network but not with all other setups,

this stalled party remembers the time it was stalled and re-

turns the activation back to the environment. Also, since a

stalled party remembers the last time it was online—thereby

also the time it became stalled—in variable ton, once such a

party gets reconnected—i.e., re-registers with the ledger in the

ideal world (resp. with the network, the VRF and the KES in

the real world)—then upon its next activation to maintain the

ledger, the party fetches all messages it has missed by com-

paring the current time τ to ton and querying the network the

corresponding number of times. The relevant sub-processes

involved in the handling of a maintain-ledger query are de-

tailed in [3]. Here we provide a high-level description and

discussion of these protocols.

3.2.1. Party Initialization A party that has been registered with

all its resources and setups becomes operational by invoking the

initialization protocol Initialization-Genesis upon processing its

first maintain-ledger command (see Figure 3 for detailed descrip-

tion). As a first step the party receives its keys from FVRF and FKES.

Subsequently, protocol Initialization-Genesis proceeds in one of

the following two modes depending on whether or not the current

round is the genesis round. Concretely:

In the genesis mode, which is only executed during the gen-

esis round τ = 0, the party interacts with the initialization

functionality FINIT to claim its stake.

In the non-genesis mode, i.e., when τ > 1, the protocol

Initialization-Genesis queries FINIT to receive the genesis

block and uses the received stake distribution to determine

the initial threshold T ep
p for each stakeholder Up . Addition-

ally, in order for the party to receive transactions and chains

that were circulated over the network prior to this current

round, the party multicasts a special message hello upon

its first maintain-ledger activation (in addition to its normal

round messages). Looking ahead, anyUp receiving this mes-

sage will set a special welcome flag to 1 and will trigger (at

first chance)Up to multicast his local buffer and chain; receiv-

ing these messages will enable the newly joining party to get

up to speed. Recall that in order to ensure that the genesis

round has been completed (and all initial stakeholders have

claimed their stake) before the protocol starts advancing, the

functionality FINIT throws an exception (halts with an error) if

the environment does not allow all stakeholders to claim their

stake in the genesis round. If this occurs, the calling protocol

(i.e., Ouroboros Genesis) also halts (cf. Figure 2).

Independent of the round, the protocol concludes with the party

setting isInit← true (to make sure that it is never re-initialized)

and ton ← τ to remember the last time it became online—which in

this case is also the first one.

The following steps are executed in an

(maintain-ledger, sid, minerID)-interruptible manner:

1: Send (KeyGen, sid, Up) to FVRF and FKES; receiving
(VerificationKey, sid, vvrf

p) and (VerificationKey, sid, vkes

p),
respectively.

2: Use the clock to update τ , ep← ⌈τ /R ⌉, and sl← τ .
// The following brunch in only executed if this is the genesis

round

3: if τ = 0 then execute the following steps in an

(maintain-ledger, sid, minerID)-interruptible manner:

4: Send (ver_keys, sid, Up, vvrf

p , vkes

p) to FINIT to claim stake

from the genesis block.

5: Send (clock-update, sidC) to Gclock.
6: Use the clock to update τ , ep← ⌈τ /R ⌉, and sl← τ . and give

up the activation.

7: while τ = 0 do

8: Use the clock to update τ , ep, and sl and give up the

activation.

end while

// The following executed if this is a non-genesis round

9: else

10: Send (genblock_req, sid, Up) to FINIT. If FINIT signals an er-

ror then halt. Otherwise, receive from FINIT the response

(genblock, sid, G = (S1, η1)), where

S1 =
(
(U1, vvrf

1
, vkes

1
, s1), . . . , (Un, vvrf

n , vkes

n , sn)
)
.

11: Set Cloc ← (G).

12: Set T ep
p ← 2

ℓVRFϕf (α
ep
p) as the threshold for stakeholder Up

for epoch ep, where α ep
p is the relative stake of stakeholderUp

in Sep and ℓVRF denotes the output length of FVRF.

13: Send (hello, sid, Up, vvrf

p , vkes

p) to F new
N-MC

.

end if

14: Set isInit← true and ton ← τ .

Global variables: The protocol stores the list of variables

vvrf

p , vkes

p , τ , ep, sl, Cloc, T
ep
p , isInit, ton to make each of them

accessible by all protocol parts.

Protocol Initialization-Genesis(Up, sid, R)

Figure 3: The initialization protocol of Ouroboros Genesis

(run only the first time a party joins).

3.2.2. Fetching Information from the Network The first thing

that an already initialized (and fully online) party does is to attempt

to read its incoming messages. Recall that in our network setting, a

party accesses its network interface by sending a fetch command

The following steps are executed in an (maintain-ledger, sid, minerID)-interruptible manner:

// Determine leader status

1: Send (EvalProve, sid, ηj ∥ sl ∥ NONCE) to FVRF, denote the response from FVRF by (Evaluated, sid, yρ , πρ).
2: Send (EvalProve, sid, ηj ∥ sl ∥ TEST) to FVRF, denote the response from FVRF by (Evaluated, sid, y, π).
3: if y < T ep

p then

// Generate a new block

4: Set buffer′ ← buffer, N⃗ ← txbase-txUp
, and st← blockifyOG (N⃗)

5: repeat

6: Parse buffer′ as sequence (tx1, . . . , txn)
7: for i = 1 to n do

8: if ValidTxOG (txi , s⃗t | |st) = 1 then

9: N⃗ ← N⃗ | |txi
10: Remove tx from buffer′

11: Set st← blockifyOG (N⃗)
end if

end for

until N⃗ does not increase anymore

12: Set cr t = (Up, y, π), ρ = (yρ , πρ) and h ← H (head(Cloc)).
13: Send (USign, sid, Up, (h, st, sl, cr t, ρ), sl) to FKES; denote the response from FKES by (Signature, sid, (h, st, sl, cr t, ρ), sl, σ).
14: Set B ← (h, st, sl, cr t, ρ, σ) and update Cloc ← Cloc ∥ B .

// Multicast the extended chain and wait.

15: Send (multicast, sid, Cloc) to F
bc
N-MC

and proceed from here upon next activation of this procedure.

end if

16: while A (clock-update, sidC) has not been received during the current round do

Give up activation. Upon next activation of this procedure, proceed from here.

end while

Protocol StakingProcedure(k, Up, ep, sl, buffer, Cloc)

Figure 4: The Ouroboros Genesis staking procedure. The value y is used to evaluate slot leadership: if y < T ep
p then the party is

a slot leader and continues by processing its current transaction buffer to form a new block B. Aside of this application data,

each block contains control information, for example the proof of leadership (y,π) and the additional VRF-output (yρ ,πρ)
that influences the future epoch-randomness.

to its network. A network latency of, say, ∆ rounds, in the delivery

of any given messages is then captured by the network withholding

this message until ∆ fetch commands are issued (cf. [24]). In order

to ensure that parties which have been stalled (but were not taken

offline) can catch up with the messages sent to them while they

where stalled, we use the following mechanism. The party first

gets the current time τ from the clock, and then sets a counter

fetchcount to τ − ton. (Since ton stores the last round that the party

was online, fetchcount will be the number of rounds this party was

stalled.) Subsequently the party issues fetchcount fetch-queries to
its network. Recall that a party that was offline and becomes online

is considered de-synchronized for (at least) as many rounds as it

needs for that party to receive all the relevant information and for

the chain-selection rule to bootstrap it
9
—by detecting a chain that

is guaranteed to originate from an honest and synchronized party.

This party does not get to retroactively receive messages sent to

it while it was offline, which is is reflected in our protocol by the

fact that this party will execute the network-registration procedure

from scratch and will therefore set ton = τ .

9
We give concrete bounds on the time it needs to become synchronized in Section 4.

3.2.3. The Staking Procedure The next part of the ledger-

maintenance protocol is the staking procedure—denoted by

StakingProcedure and found in Figure 4—which is used for the

slot leader to compute and send the next block.

Recall that a party Up is an eligible slot leader for a particular

slot sl in an epoch ep if its VRF-output (for an input dependent on

sl) is smaller than a threshold value T ep
p . We next discuss how this

threshold is computed for the party’s current (local) blockchain,

where we use the following notation: ℓVRF denotes the VRF output

length in bits. The (local) stake distribution Sep at epoch ep corre-

sponding to the (local) blockchain Cloc is a mapping from a party

(identified by its public keys) to its stake and can be derived solely

based on encoded transactions in Cloc (and the genesis block).
10

The relative stake of Up in the stake distribution Sep, denoted as

αepp ∈ [0, 1], is the fraction of stake that is associated with this party

(more precisely, its public key) in Sep out of all stake. The mapping

ϕf (·) is defined as

ϕf (α) ≜ 1 − (1 − f)α (1)

10
The exact encoding is not of primary relevance. A possible, straightforward encoding

is given in [16].

and is parametrized by a quantity f ∈ (0, 1] called the active slots

coefficient [16], which is an important parameter of the protocol

Ouroboros-Genesis (and its predecessor).

Given the above, the threshold T ep
p is determined as

T ep
p = 2

ℓVRFϕf (α
ep
p) . (2)

Note that by (2), a party with relative stake α ∈ (0, 1] becomes

a slot leader in a particular slot with probability ϕf (α), indepen-
dently of all other parties. We clearly have ϕf (1) = f , hence f
is the probability that a hypothetical party controlling all 100%

of the stake would be elected leader for a particular slot. Further-

more, the function ϕ has an important property called “independent

aggregation” [16]:

1 − ϕ *
,

∑
i
αi+
-
=

∏
i
(1 − ϕ (αi)) . (3)

In particular, when leadership is determined according to ϕf , the
probability of a stakeholder becoming a slot leader in a particular

slot is independent of whether this stakeholder acts as a single party

in the protocol, or splits its stake among several “virtual” parties.

Therefore, we can conclude that under arbitrary stake distribution,

a particular slot has some slot leader with probability f (if every-

one is participating), giving the active slots coefficient its intuitive

meaning.

Transaction Validity. Blockchain ledgers typically put restric-

tions on transactions that can be added to a block. For example,

Bitcoin only allows transactions that are properly signed and are

spending an unspent coin. Although this is not directly related to

the consistency guarantees, similarly to [4], our ledger also has such

a transaction filter in place (this makes it suitable for applications

like cryptocurrencies). This filter is implemented by means of a

predicate ValidTxOG. To decide which transactions can be included

in the state of a new block, the party checks for each transaction

contained in its buffer whether it is valid, according to ValidTxOG,
with respect to the current state of the chain. Note that to allow for

full generality we leave ValidTxOG as a protocol/ledger parameter

(the same for both); this will allow to use the same protocol and

ledger for different definitions of transaction validity.

The transaction validity predicate ValidTxOG induces a natural

transaction validity on blockchain-states. This is captured by the

predicate isvalidstate(s⃗t) that decides whether a state consists of
valid transactions according to ValidTxOG. The predicate simply

checks that each transaction tx of any state-block sti included in

the state s⃗t = st0 | | . . . | |stℓ includes transactions that are valid

with respect to the state st0 | | . . . | |sti−1 | |st
−tx
i , where st−txi is the

i-th state block sti with tx removed.

Remark 1 (Building a Cryptocurrency Ledger). Consistently

with the cryptographic literature on blockchains, we use the term

transaction to refer to input values tx given to the ledger protocol

(and the ledger functionality). It is important to recall that in order to

achieve the standard ledger functionality of this work, where weak

transaction liveness is enforced, transactions need not be signed (cf.

[4, 18]).
11

Using composition, a protection to amplify the liveness

11
More technically speaking, whether transactions are signed or not is completely

orthogonal to the security proof in this paper. The reason is that the main honest-

stake-majority condition refers to the stake-distribution and hence is a property of the

of transactions can be applied as a next modular step, on top of our

ledger functionality. We note in passing that such an amplification

has been achieved assuming a signature scheme combined with an

explicit encoding of transactions to contain the source and destination

addresses of the involved parties that relate to their public keys and/or

identities; an honest protocol participant would consequently only

sign its transactions but no others, and signature verification would be

part of the validity check ValidTxOG. We refer to [4] for details on how

to build a UC cryptocurrency ledger on top of a generic transaction

ledger using the composability guarantees of the UC framework.

3.2.4. Chain Selection Themost novel component of our protocol

is the way in which a party decides which chain to adopt given a

set of alternatives it (repeatedly) receives over the network. The

chain selection protocol is invoked once a party has collected all

chains from a given round—denote the set of all these chains by

N = {C1, . . . ,CM }—and must decide whether to keep his current

local chain Cloc, or adopt one of the newly received chains in N .

As we prove, the power of the new rule lies in the fact that it allows

a desynchronized or even a newly joining party—whose Cloc is

empty—to eventually converge to a good chain. We refer to this

process as bootstrapping from genesis, and denote the new chain

selection algorithm as maxvalid-bg.
The chain selection process proceeds in three steps: First the

party Up uses the clock to make sure the time-relevant parame-

ters, i.e., τ , ep, and sl, are up-to-date, and updates its local state

accordingly (see below). Second, Up filters all the received chains,

one-by-one, to keep only the ones that satisfy a syntactic validity

property. Informally, those are chains whose signatures are consis-

tent with the genesis block, and their block-contents are consistent

with the keys recorded in KES, the VRF, and the global random

oracle. The filtering of any given chain C is done by an invocation

of protocol IsValidChain described in Figure 5. Finally, the party

applies our new chain selection rule maxvalid-bg on the filtered

list of chains to (possibly) update its local chain. The above three

steps are detailed in the following.

Step 1: Updating the local state. Every time a party fetches new

information from the network, it needs to refresh its local view,

and in particular to update the current epoch counter ep using

the current clock time, as well as its view of the state parameters:

the current epoch stake distribution Sep, the relative stake αepp ,

and epoch randomness ηep, and the staking threshold T ep
p . This is

achieved by the protocolUpdateLocal (see Figure 6). The algorithm
used to update the stake parameters, in particular the threshold

T ep
p , was discussed in Section 3.2.

Step 2: Filtering out invalid chains. The protocol IsValidChain
which filters out invalid chains is the same as the corresponding

protocol from [16] (cf. [3] for the full specification.)

Step 3: The new chain selection rule. The chain selection rule

maxvalid from [16] (which, to avoid confusion, we hereafter refer

to as maxvalid-mc for “moving checkpoint”, cf. Section 4) prefers

longer chains, unless the new chain Ci forks more than k blocks

relative to the currently held chain Cmax (in which case the new

basic content of the blockchain (and the corruption state of the miners) and therefore

under the control of the environment providing the contents via inputs to the protocol.

if C contains future blocks, empty epochs, starts with a block other

than G, or encodes an invalid state with isvalidstate(s⃗t) = 0 then

return false
end if

for each epoch ep do

// Derive stake distribution and randomness for this epoch from

// chain C

Set SCep to be the stakeholder distribution at the end of epoch

ep − 2 in C.

Set α ep,C
p′ to be the relative stake of any party Up′ in SCep and

T ep,C
p′ ← 2

ℓVRFϕf (α
ep,C
p′).

Set ηCep ← H (ηCep−1 ∥ ep ∥v) where v is the concatenation of the

VRF outputs yρ from all blocks in C from the first 16k/f slots

of epoch ep − 1, and ηC
1
≜ η1 from G.

for each block B in C from epoch ep do
Parse B as (h, st, sl, cr t, ρ, σ).
// Check hash

Set badhash← (h , H (B−1)), where B−1 is the last block in

C before B .
// Check VRF values

Parse cr t as (Up′, y, π) for some p′.
Send (Verify, sid, ηep ∥ sl ∥ TEST, y, π , vvrf

p′) to FVRF,

get response (Verified, sid, ηep ∥ sl ∥ TEST, y, π , b1).
Send (Verify, sid, ηep ∥ sl ∥ NONCE, yρ , πρ , vvrf

p′) to FVRF,

get response (Verified, sid, ηep ∥ sl ∥ NONCE, yρ , πρ , b2).

Set badvrf ←
(
b1 = 0 ∨ b2 = 0 ∨ y ≥ T ep,C

Up ′

)
.

// Check signature

Send (Verify, sid, (h, st, sl, cr t, ρ), sl, σ , vkes

p′) to FKES,

get response (Verified, sid, (h, st, sl, cr t, ρ), sl, b3).
Set badsig← (b3 = 0).
if (badhash ∨ badvrf ∨ badsig) then

return false
end if

end for

end for

return true

Protocol IsValidChain(Up, k, C, h, f , R)

Figure 5: The chain validation (filtering) protocol

chain would be discarded). This so-called moving checkpointing

is crucial for the security proof in [16]; indeed, maxvalid-mc only
guarantees satisfactory blockchain properties when coupled with

a checkpointing functionality that provides newly joining, or re-

joining, parties with a recent trusted chain. In particular, such

checkpointing provides resilience against so-called “long-range

attacks” (see [20] for a detailed discussion).

Our new chain selection rule, formally specified as algorithm

maxvalid-bg(·) (see Figure 7), adaptsmaxvalid-mc by adding an ad-

ditional condition (Condition B). When satisfied, the new condition

can lead to a party adopting a new chain Ci even if this chain did

fork more than k blocks relative to the currently held chain Cmax.

Specifically, the new chain would be preferred if it grows more

1: Use the clock to update τ , ep← ⌈τ /R ⌉, and sl← τ .
2: Set Sep to be the stakeholder distribution at the end of epoch

ep − 2 in Cloc.
3: Set α ep

p to be the relative stake of Up in Sep and

T ep
p ← 2

ℓVRFϕf (α
ep
p).

4: Set ηep ← H (ηep−1 ∥ ep ∥v) where v is the concatenation of the

VRF outputs yρ from all blocks in Cloc from the first 2R/3 slots of
epoch ep − 1.

Output: The protocol outputs τ , ep, sl, Sep, α
ep
p , T ep

p , and ηep to its

caller (but not to Z).

Protocol UpdateLocal(k, Up, R, f)

Figure 6: The protocol for updating the local stake distribu-

tion parameters.

quickly in the s slots following the slot associated with the last

block common to both Ci and Cmax (here s is a parameter of the

rule that we discuss in full detail in the proof). Roughly, this “local

chain growth”—appearing just after the chains diverge—serves as

an indication of the amount of participation in that interval. The

intuition behind this criterion is that in a time interval shortly after

the two chains diverge, they still agree on the leadership attribu-

tion for the upcoming slots, and out of the eligible slot leaders, the

(honest) majority has been mostly working on the chain that ended

up stabilizing.

// Compare Cmax to each Ci ∈ N

1: Set Cmax ← Cloc.

2: for i = 1 to M do

3: if (Ci forks from Cmax at most k blocks) then
4: if |Ci | > |Cmax | then // Condition A

Set Cmax ← Ci .

end if

5: else

6: Let

j ← max

{
j′ ≥ 0 | Cmax and Ci have the same block in slj′

}

7: if
���Ci [0 : j + s]

��� >
���Cmax[0 : j + s]

��� then // Condition B

Set Cmax ← Ci .

end if

end if

end for

8: return Cmax.

Algorithm maxvalid-bg(Cloc, N = {C1, . . . , CM }, k, s, f)

Figure 7: The new chain selection rule.

Thus the new rule substitutes a “global” longest chain rule with a

“local” longest chain rule that prefers chains that demonstrate more

participation after forking from the currently held chain Cmax. As

proven in Section 4, this additional condition allows an honest party

that joins the network at an arbitrary point in time to bootstrap

based only on the genesis block (obtained from FINIT) and the

chains it observes by listening to the network for a sufficiently long

period of time. In prior work, a newly spawned party had to be

assumed to be bootstrapped by obtaining an honest chain from an

external, and fully trusted, mechanism (or, alternatively, be given a

list of trustworthy nodes from which to request an honest chain);

our solution does not rely on any such assumption. We refer to

this process/assumption as checkpointing; provably avoiding this

process by means of an updated chain selection rule is one of the

major contributions of our work.

The protocol executed by the parties to select a new chain, de-

noted as SelectChain, can be found in Figure 8.

// Step 1: Updating the local state

1: Invoke protocol UpdateLocal(k, Up, R, f) and denote the output

as τ , ep, sl, Sep, α
ep
p , T ep

p , and ηep.
// Step 2: Filter out invalid chains

2: Initialize N
valid
← ∅

3: for i = 1 . . .M do

Invoke Protocol IsValidChain(Ci); if it returns true then update

N
valid
← N

valid
∪ Ci

end for

// Step 3: Applying the chain selection rule.

4: Execute Algorithm

maxvalid-bg(Cloc, Nvalid
= {C1, . . . , CM }, k, s, f) and receive its

output Cmax.

Output: The protocol outputs Cmax to its caller (but not to Z).

Protocol SelectChain(Cloc, N = {C1, . . . , CM }, k, s, R, f)

Figure 8: The protocol for parties to adopt a (new) chain.

The main ledger-maintenance protocol LedgerMaintenance
which stitches together the previously introduced sub-processes

can be found in Figure 9.

3.2.5. Reading the State The last command related to the interac-

tion with the ledger is the read command (read, sid) that is used to
read the current contents of the state. Note that in the ideal world,

the result of issuing such a command is for the ledger to output a

(long enough prefix) of the current state of the ledger. Analogously,

in the real world, the result is for the party receiving it to execute

protocol ReadState which works as follows: the party, first, gets

up to speed with time, and updates its local blockchain using the

blockchains that have been sent to it,
12

and then it computes and

outputs the prefix of its local chain (chopping of k blocks.) The

protocol ReadState is detailed in Figure 10.

12
Observe that a stalled party that returns to the alert status will fetch all messages

sent to it while it was stalled.

The following steps are executed in an

(maintain-ledger, sid, minerID)-interruptible manner:

1: if isInit is false then invoke Initialization-Genesis(Up, sid, R);
if Initialization-Genesis halts then halt (this will abort the

execution); otherwise, use the list of initialized variables

vvrf

p , vkes

p , τ , ep, sl, Cloc, T
ep
p , isInit, ton for the ongoing

computations.

end if

2: Execute FetchInformation to receive the newest messages for this

round; denote the output by (C1, . . . , CM), (tx1, . . . , txk), and
read the flag welcome.

3: if welcome = 1 then

4: Send (multicast, sid, Cloc) to F
bc
N-MC

.

5: for each tx ∈ buffer do

Send (multicast, sid, tx) to F tx
N-MC

.

end for

end if

6: Use the clock to update τ , ep← ⌈τ /R ⌉, and sl← τ .
7: Set buffer← buffer | |(tx1, . . . , txk), ton ← τ , N ← {C1, . . . ,

and CM }

8: Invoke Protocol

SelectChain(Cloc, N = {C1, . . . , CM }, k, s, R, f).
9: if t

work
< τ then

10: Invoke protocol StakingProcedure(k, Up, ep, sl, buffer, Cloc)
(in a (maintain-ledger, sid, minerID)-interruptible manner).

11: Set t
work

← τ and send (clock-update, sidC) to Gclock.
end if

Protocol LedgerMaintenance(Cloc, Up, sid, k, s, R, f)

Figure 9: The main ledger maintenance protocol.

1: if isInit is false then invoke Initialization-Genesis(Up, sid, R);
if Initialization-Genesis halts then halt (this will abort the

execution); otherwise, use the list of initialized variables

vvrf

p , vkes

p , τ , ep, sl, Cloc, T
ep
p , isInit, ton for the ongoing

computations.

end if

2: Execute FetchInformation to receive the newest messages for this

round; denote the output chains by (C1, . . . , CM) (the list of
transactions (tx1, . . . , txk) and the flag welcome can be

ignored).

3: Invoke protocol UpdateLocal(k, Up, R, f) and denote the output

as τ , ep, sl, Sep, α
ep
p , T ep

p , and ηep.
4: Use the clock to update τ , ep← ⌈τ /R ⌉, and sl← τ .
5: Set ton ← τ , N ← {C1, . . . , CM }.
6: Invoke Protocol

SelectChain(Cloc, N = {C1, . . . , CM }, k, s, R, f).
7: Extract the state s⃗t from the current local chain Cloc.

8: Output (read, sid, s⃗t
⌈k
) (to Z). // s⃗t

⌈k
denotes the prefix of s⃗t

with the last k state blocks chopped off

Protocol ReadState(k, Cloc, Up, sid, R, f)

Figure 10: The protocol for parties to adopt a (new) chain.

4 SECURITY ANALYSIS

After introducing the main desiderata for blockchain protocols in

Section 4.1, the security analysis proceeds in four modular steps.

In Section 4.2, we present the results of analyzing the predecessor

protocol, namely Ouroboros Praos, in a setting where parties could

potentially be stalled dynamically. As outlined above, the analysis

of this setting requires fundamentally new techniques. For the same

setting, the analysis of Ouroboros Genesis follows in Section 4.3 by

adopting the new chain selection rule (which is the difference be-

tween Praos and Genesis) and analyzing the impact of this change.

In Section 4.4 we extend the analysis of Ouroboros Genesis to the

setting where new parties can join (and leave) the protocol execu-

tion at any time. Finally, in Section 4.5, we establish UC-security,

i.e., that Ouroboros Genesis realizes the ledger functionality in a

setting with dynamic availability.

4.1 Blockchain Security Properties

We first define the standard security properties of blockchain pro-

tocols: common prefix, chain growth and chain quality. While the

security guarantees we prove in this paper are formulated in the

UC setting, these standalone properties will turn out to be useful

tools for our analysis.

Common Prefix (CP); with parameters k ∈ N. The chains

C1,C2 possessed by two alert parties at the onset of the slots

sl1 < sl2 are such that C
⌈k
1
⪯ C2, where C

⌈k
1

denotes the

chain obtained by removing the last k blocks from C1, and

⪯ denotes the prefix relation.

Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Con-

sider a chain C possessed by an alert party at the onset of

a slot sl. Let sl1 and sl2 be two previous slots for which

sl1 + s ≤ sl2 ≤ sl, so sl2 is at least s slots ahead of sl1.
Then |C[sl1 : sl2]| ≥ τ · s . We call τ the speed coefficient.

Chain Quality (CQ); with parameters µ ∈ (0, 1] and k ∈ N.

Consider any portion of length at least k of the chain pos-

sessed by an alert party at the onset of a slot; the ratio of

blocks originating from the adversary is at most 1 − µ. We

call µ the chain quality coefficient.

Note that previous work identified and studied a stronger version

of chain growth (denoted below asCG2), which controls the relative
growth of chains held by potentially distinct honest parties.

(Strong) Chain Growth (CG2); with parameters τ ∈ (0, 1], s ∈
N. Consider the chains C1,C2 possessed by two alert parties

at the onset of two slots sl1, sl2 with sl2 at least s slots
ahead of sl1. Then it holds that len(C2) − len(C1) ≥ τ · s .

We remark that the notion of chain growth CG2 follows from CP
and CG (with some appropriate decay in parameters). However,

it appears that CG is a preferable formulation in our setting, as it

can be established with stronger parameters than CG2 and more

naturally dovetails with several aspects of the security proofs.

Finally, we will also consider a slight variant of chain quality

called existential chain quality:

Existential ChainQuality (∃CQ); with parameter s ∈ N.Con-

sider a chain C possessed by an alert party at the onset of

a slot sl. Let sl1 and sl2 be two previous slots for which

sl1 + s ≤ sl2 ≤ sl. Then C[sl1 : sl2] contains at least one
honestly generated block.

As a side remark, theCG (resp.CQ) property follows from ∃CQ and

an additional property called honest-bounded chain growth HCG
(resp. honest-bounded chain quality, HCQ). We define HCG and

HCQ and establish these relationships as part of our full analysis

given in [3].

Note that typically these security properties for blockchain pro-

tocols are formulated so that they grant the above-described guar-

antees to all honest parties. However, in our more fine-grained

modeling of parties’ availability, a natural choice is to analyze these

properties for the alert parties only.

4.2 Security of Ouroboros Genesis with

maxvalid-mc
The original Ouroboros Praos protocol given in [16] differs from

Ouroboros Genesis in its chain selection rule, which we call

maxvalid-mc here and outline below. For the sake of better com-

parison, we show maxvalid-mc in Appendix B. The difference in

maxvalid-mc compared to maxvalid-bg is that if the considered

chain Ci forks from the current chain Cloc more than k blocks in

the past, it is immediately discarded, without evaluating Condi-

tion B as inmaxvalid-bg. This can be seen as a “moving checkpoint”

k blocks behind the current tip of the chain, which is what the suffix

-mc stands for. To preserve clarity, we will use Ouroboros-Praos
to refer to the protocol that is identical to the one given in Sec-

tion 3 except that is uses maxvalid-mc instead of maxvalid-bg as

its chain-selection rule.

Our first goal is to establish that the useful properties of com-

mon prefix, chain growth, and chain quality are achieved by

Ouroboros-Praos, when executed in a slightly restricted environ-

ment. Namely, we start by assuming that all parties participate in

the protocol run from the beginning and never get deregistered

from the network FN-MC (i.e., honest parties are either online or

stalled); we refer to this setting as the setting with static FN-MC-

registration. We will drop this assumption later.

The desired statement for this limited environment is given in

Theorem 4.3, the rest of Section 4.2 will be dedicated to sketching

its proof, which is fully spelled out in [3]. First, we need to define

some relevant quantities.

Definition 4.1 (Classes of parties and their relative stake). Let P[t]
denote the set of all parties at time t , and let Ptype[t] for any type
of party described in Figure 1 (e.g. alert, active) denote the set of all

parties of the respective type in time t . For a set of parties Ptype[t],
let S (Ptype[t]) ∈ [0, 1] denote the relative stake of the parties in
Ptype[t] with respect to the stake distribution used for sampling

stake leaders in time t .

Definition 4.2 (Alert ratio, participating ratio). At any time t dur-
ing the execution, we let: (1) the alert stake ratio be the fraction

S (Paler t [t])/S (Pactive [t]) of the alert stake out of all active stake;
and (2) the participating stake ratio be the fraction S (Pactive [t]) of
all active stake out of all stake. Note that in the setting with static

FN-MC-registration, the set of active parties consists only of alert

and adversarial parties, while in general it also contains honest

parties that are online but desynchronized (we will discuss these in

detail in Section 4.4).

Theorem 4.3. Consider the execution of Ouroboros-Praos with
adversary A and environment Z in the setting with static FN-MC-

registration. Let f be the active-slot coefficient, let ∆ be the upper

bound on the network delay and let Q be an upper bound on the total

number of queries issued to GRO. Let α , β ∈ [0, 1] denote a lower

bound on the alert ratio and participating ratio throughout the whole

execution, respectively. Let R and L denote the epoch length and the

total lifetime of the system (in slots), If for some ϵ ∈ (0, 1) we have

α · (1 − f)∆+1 ≥ (1 + ϵ)/2 , (4)

and R ≥ 36∆/ϵβ f thenOuroboros-Praos achieves the following guar-
antees:

Common prefix. The probability that Ouroboros-Praos vio-
lates the CP property with parameter k is no more than

ϵCP (k) ≜
19L

ϵ4
exp(∆ − ϵ4k/18) + ϵlift ;

Chain growth. The probability that Ouroboros-Praos violates
the CG property with parameters s ≥ 48∆/(ϵβ f) and τCG =
β f /16 is no more than

ϵCG (τCG, s) ≜
sL2

2

exp

(
−(ϵβ f)2s/256

)
+ ϵlift ;

Existential chain quality. The probability that the protocol

Ouroboros-Praos violates the ∃CQ property with parameter

s ≥ 12∆/(ϵβ f) is no more than

ϵ∃CQ (s) ≜ (s + 1)L2 exp
(
−(ϵβ f)2s/64

)
+ ϵlift ;

Chain quality. The probability that Ouroboros-Praos violates
the CQ property with parameters k ≥ 48∆/(ϵβ f) and µ =
ϵβ f /16 is no more than

ϵCQ (µ,k) ≜
kL2

2

exp

(
−(ϵβ f)2k/256

)
+ ϵlift ;

where ϵlift is a shorthand for the quantity

ϵlift ≜ QL ·

[
R3 · exp

(
−
(ϵβ f)2R

768

)
+
38R

ϵ4
· exp

(
∆ −

ϵ4β f R

864

)]
.

Proof Overview. We give here a proof overview and refer to

the full version of this work [3] for the complete analysis. The proof

is inspired by the proof of property-based security of Ouroboros

Praos given in [16]; however, a major extension of the techniques

is necessary. To appreciate the need for this extension, let us first

recall in very broad terms how the proof in [16] proceeds:

1. First, the above security properties (or slight variations of them,

cf. Section 4.1) are proven for a single epoch. For this, the dy-

namics of the protocol execution is abstracted into combina-

torial objects called forks, while the slot leader selection (as-

suming static corruption) is captured by sampling a so-called

characteristic string.

2. A recursive rule is given that identifies whether a character-

istic string allows for “dangerous” forks, and a probabilistic

analysis shows that under static corruption, leader schedules

corresponding to such characteristic strings are extremely rare.

3. Given the rarity of such undesirable characteristic strings, the

CP, CG, and CQ properties are established for a single epoch

and a static-corruption adversary.

4. The analysis is generalized to fully adaptive corruption by

showing a static-corruption adversary that dominates any adap-

tive one.

5. The analysis is extended to an arbitrary number of epochs by

analyzing the subprotocol for generating new randomness to

be used in the following epoch to sample the leader schedule.

The main improvement of Theorem 4.3 over the analysis in [16] is

that it captures stalled parties (and making honest parties stalled

is a fully adaptive decision of the environment). Unfortunately,

this makes it impossible to start with a static analysis of the slot-

leader selection as done above in steps 1–3. Moreover, the argument

in step 4 completely breaks down as the static adversary given

in [16] no longer dominates any possible adaptive combination

of corruption and stalling. Therefore, our proof needs to revisit

the steps 1–4 and replace the analysis of a sequence of binomially

distributed random variables (representing the characteristic string)

by considering inter-slot dependence right from the beginning.

This is done via a martingale framework that is an important

contribution of this work since its generality might form the basis

of future analyses of blockchain protocols. We give all the details

of the approach in [3]. □

4.3 Adopting the Newmaxvalid-bg Rule

We now show that essentially the same guarantees as provided by

Theorem 4.3 still hold when we replace the chain selection rule

maxvalid-mcwithmaxvalid-bg, arriving at the protocol Ouroboros
Genesis. The proof of Theorem 4.4 is found in [3].

Theorem 4.4. Consider the protocol Ouroboros-Genesis using

maxvalid-bg as described in Section 3, executed in the setting with

static FN-MC-registration, under the same assumptions as in Theo-

rem 4.3. If the maxvalid-bg parameters, k and s , satisfy

k > 192∆/(ϵβ) and R/6 ≥ s = k/(4f) ≥ 48∆/(ϵβ f)

then the guarantees given in Theorem 4.3 for common prefix, chain

growth, chain quality, and existential chain quality are still valid

except for an additional error probability

exp (lnL − Ω(k))+ϵCG (β f /16,k/(4f))+ϵ∃CQ (k/(4f))+ϵCP (kβ/64) .
(5)

4.4 Newly Joining Parties

We next show that the above proven guarantees on common prefix,

chain growth and (existential) chain quality remain valid also when

new parties join the protocol later during its execution.

To capture this, we proceed as follows. For any new party U
that joins the protocol later during its execution (say at slot sljoin),

we consider a virtual party Ũ that holds no stake, but was partic-

ipating in the protocol since the beginning and was alert all the

time. Moreover, we assume that starting from sljoin, Ũ is receiving

the same messages (in the same slots) asU . Clearly, the run of the

protocol up to sljoin would look the same with and without Ũ , as

Ũ would never be elected a slot leader, and would not affect α or

β . Therefore, the execution of the protocol up to the point when

the first partyU tries to join is covered by the statements proven

in Section 4.3 (even when also considering the participation of Ũ).

To argue about the joining process ofU , we consider the above-

described execution and look at the first chain that Ũ adopts as an

update to its state after sljoin. We call it the synchronizing chain

ofU , denote it Csync. Since it is a rather intuitive notion, we omit a

formal definition here and refer to the full version [3]. The heart

of our argument is then captured in the following lemma, proven

in [3].

Lemma 4.5. In the same setting as Theorem 4.4 but with dynamic

FN-MC-registrations, any newly joining party will adopt its synchro-

nizing chain, except with probability (5).

In the full version [3], we discuss and formally analyze the so-

called synchronization time tsync it takes for the synchronizing chain
to appear after U joins the execution, for several variants of the

protocol. Our main observations are: (1) Using the default request

mechanism presented in Section 3 we have tsync = 2∆. (2) If alert
parties did multicast their local state every (constant) T rounds,

we have tsync := T + ∆ even without any active request by the

newly joining party. (3) The protocol also has a self-synchronization

property, in the sense that even without any active requests, the

party will receive a synchronizing chain eventually.

The analysis of the synchronization process that was outlined

above applies also to resynchronization of parties that have already

participated in the protocol, acquired some stake, and then been

deregistered from FN-MC and hence became offline. The only dif-

ference is that, since the joining party does not know which of

the messages it receives is actually its synchronizing message con-

taining Csync, it starts participating in the protocol immediately

after rejoining. Hence, before it receives Csync its participation is

to some extent controlled by the adversary and hence its stake has

to be counted towards the adversarial stake even though the party

is not formally corrupted. This is already captured in the general

form of Definition 4.2, and hence we have established the following

corollary.

Corollary 4.6. Consider the protocol Ouroboros-Genesis as de-
scribed in Section 3, executed in an environment with dynamic FN-MC-

registrations and deregistrations. Then, under the assumptions of The-

orem 4.4, the guarantees it gives for common prefix, chain growth,

and chain quality are valid also in this general setting.

4.5 Composable Guarantees

We conclude our analysis by showing how the property-focused

statement of Corollary 4.6 can be turned into a UC security state-

ment. The statement is conditioned again on the honest majority

assumption introduced above. As explained in [4] for fully compos-

able statements, it is desirable not to restrict the environment, but

rather model these restrictions as part of the setup. In [4], they put

forth a general methodology to model such restrictions as wrapper

functionalities that control the interaction between an adversary

and the assumed setup functionality to enforce the restrictions. For

completeness, we provide the corresponding wrapper in the full

version [3].

To prove composable security, the properties proven above for

the real-world UC-execution play a crucial role in realizing the

ledger Gledger functionality (implementing a certain policy): first,

the common-prefix property ensures that the ledger can maintain

a unique ledger-state (a chain of state-blocks). Second, the chain

quality ensures that the ledger can enforce a fraction of honestly

generated blocks. Third, chain growth ensures that the ledger can

enforce its state to grow. The remaining arguments are given in

the full proof in [3]. We now state the composable version of Corol-

lary 4.6 (again for the default tsync = 2∆ case) as a theorem:

Theorem 4.7. Let k be the common-prefix parameter and let R
be the epoch-length parameter (restricted as in Theorem 4.4), let ∆
be the network delay, let τCG and µ be the speed and chain-quality

coefficients, respectively (both defined as in Theorem 4.3), and let α
and β refer to the respective bounds on the participation ratios (as

in Theorem 4.3). Let Gledger be the ledger functionality defined in

Section 2.2 and instantiate its parameters by

wSize = k and Delay = 2∆

maxTimewindow =
wSize

τCG
and advBlckswindow = (1 − µ)wSize.

The protocol Ouroboros-Genesis (with access to its specified hy-

brids) securely UC-realizes Gledger under the assumptions required

by Theorem 4.3. In addition, the corresponding simulation is perfect

except with negligible probability in the parameter k when setting

R ≥ ω (logk).

A HYBRID FUNCTIONALITIES IN

OUROBOROS GENESIS

Recall that we consider functionalities that handle a dynamic party

set. As introduced in [4], the employed mechanism roughly works

as follows: the functionalities include the instructions that allow

honest parties to join or leave the set P of players that the func-

tionality interacts with, and inform the adversary about the current

set of registered parties. For sake of simplicity, we do not explicitly

state these commands in the descriptions below.

Key-Evolving Signatures. The key-evolving signature scheme is

employed for signing blocks and a specification is given in Figure 11.

Verifiable Random Function. The verifiable random function

functionality is employed during slot-leader election and a specifi-

cation is given in Figure 11.

Both hybrid functionalities are shown to be implementable by

standard cryptographic constructions.

B THE CHAIN SELECTION RULE FROM [16]

To better compare the main step between Ouroboros Genesis and

its predecessor Ouroboros Praos, we depict the chain selection rule

of Ouroboros Praos in Figure 12.

C LIST OF SYMBOLS

We give here a reference on the symbols and their associated mean-

ings that we used in the main body.

The communication model:

∆ maximum message delay in slots

FVRF interacts with parties called U1, . . . , Un as follows:

• Key Generation. Upon receiving a message (KeyGen, sid) from a

stakeholder Ui , hand (KeyGen, sid, Ui) to the adversary. Upon

receiving (VerificationKey, sid, Ui , v) from the adversary, if Ui is
honest, verify that v is unique, record the pair (Ui , v) and return

(VerificationKey, sid, v) to Ui . Initialize the table T (v, ·) to empty.

• Malicious Key Generation. Upon receiving a message

(KeyGen, sid, v) from S, verify that v has not being recorded before;

in this case initialize table T (v, ·) to empty and record the pair (S, v).
• VRF Evaluation. Upon receiving a message (Eval, sid,m) from Ui ,
verify that some pair (Ui , v) is recorded. If not, then ignore the request.

Then, if the value T (v,m) is undefined, pick a random value y from

{0, 1}ℓVRF and set T (v,m) = (y, ∅). Then output (Evaluated, sid, y)
to P , where y is such that T (v,m) = (y, S) for some S .

• VRF Evaluation and Proof. Upon receiving a message

(EvalProve, sid,m) from Ui , verify that some pair (Ui , v) is recorded.
If not, then ignore the request. Else, send (EvalProve, sid, Ui ,m) to
the adversary. Upon receiving (Eval, sid,m, π) from the adversary, if

value T (v,m) is undefined, verify that π is unique, pick a random

value y from {0, 1}ℓVRF and set T (v,m) = (y, {π }). Else, if
T (v,m) = (y, S), set T (v,m) = (y, S ∪ {π }). In any case, output

(Evaluated, sid, y, π) to P .
• Malicious VRF Evaluation. Upon receiving a message

(Eval, sid, v,m) from S for some v , do the following. First, if (S, v)
is recorded and T (v,m) is undefined, then choose a random value y
from {0, 1}ℓVRF and set T (v,m) = (y, ∅). Then, if T (v,m) = (y, S)
for some S , ∅, output (Evaluated, sid, y) to S, else ignore the
request.

• Verification. Upon receiving a message (Verify, sid,m, y, π , v ′)
from some party P , send (Verify, sid,m, y, π , v ′) to the adversary.

Upon receiving (Verified, sid,m, y, π , v ′) from the adversary do:

(1) If v ′ = v for some (Ui , v) and the entry T (Ui ,m) equals (y, S)
with π ∈ S , then set f = 1.

(2) Else, if v ′ = v for some (Ui , v), but no entry T (Ui ,m) of the form
(y, {. . . , π , . . . }) is recorded, then set f = 0.

(3) Else, initialize the table T (v ′, ·) to empty, and set f = 0.

Output (Verified, sid,m, y, π , f) to P .

Functionality FVRF

FKES is parameterized by the total number of signature updates T ,
interacting with a signer US and stakeholders Ui as follows:
• Key Generation. Upon receiving a message (KeyGen, sid, US)
from a stakeholder US , send (KeyGen, sid, US) to the adversary.

Upon receiving (VerificationKey, sid, US , v) from the adversary,

send (VerificationKey, sid, v) to US , record the triple (sid, US , v)
and set counter kctr = 1.

• Sign and Update. Upon receiving a message (USign, sid, US ,m, j)
from US , verify that (sid, US , v) is recorded for some sid and that

kctr ≤ j ≤ T . If not, then ignore the request. Else, set kctr = j + 1 and
send (Sign, sid, US ,m, j) to the adversary. Upon receiving

(Signature, sid, US ,m, j, σ) from the adversary, verify that no

entry (m, j, σ , v, 0) is recorded. If it is, then output an error message

to US and halt. Else, send (Signature, sid,m, j, σ) to US , and record

the entry (m, j, σ , v, 1).
• Signature Verification. Upon receiving a message

(Verify, sid,m, j, σ , v ′) from some stakeholder Ui do:
(1) If v ′ = v and the entry (m, j, σ , v, 1) is recorded, then set f = 1.

(This condition guarantees completeness: If the verification key

v ′ is the registered one and σ is a legitimately generated

signature form, then the verification succeeds.)

(2) Else, if v ′ = v , the signer is not corrupted, and no entry

(m, j, σ ′, v, 1) for any σ ′ is recorded, then set f = 0 and record

the entry (m, j, σ , v, 0). (This condition guarantees

unforgeability: If v ′ is the registered one, the signer is not

corrupted, and never signedm, then the verification fails.)

(3) Else, if there is an entry (m, j, σ , v ′, f ′) recorded, then let

f = f ′. (This condition guarantees consistency: All verification

requests with identical parameters will result in the same

answer.)

(4) Else, if j < kctr, let f = 0 and record the entry (m, j, σ , v, 0).
Otherwise, if j = kctr, hand (Verify, sid,m, j, σ , v ′) to the

adversary. Upon receiving (Verified, sid,m, j, ϕ) from the

adversary let f = ϕ and record the entry (m, j, σ , v ′, ϕ). (This
condition guarantees that the adversary is only able to forge

signatures under keys belonging to corrupted parties for time

periods corresponding to the current or future slots.)

Output (Verified, sid,m, j, f) to Ui .

Functionality FKES

Figure 11: The VRF and the key-evolving signatures functionalities from [16].

Functionalities:

Gclock global clock

GRO global random oracle

F
bc,∆
N-MC

∆-delayed network for diffusing blockchains

F
tx,∆
N-MC

∆-delayed network for diffusing transactions

FINIT init functionality providing the genesis block

FVRF verifiable random function

FKES key-evolving signature scheme

Gledger the ledger functionality

Protocol Ouroboros-Genesis:
f active slots coefficient

ϕ (·) slot-leader probability function (Eq. (1))

R epoch length in slots

Sep stake distribution used to sample slot

leaders in epoch ep
αepp relative stake of partyUp in Sep

ηep randomness used to sample slot leaders

in epoch ep

Analysis:

α alert stake ratio (Def. 4.2)

β participating stake ratio (Def. 4.2)

L total length of the execution (in slots)

Q total number of queries to the random

oracle

1: Set Cmax ← Cloc.

2: for i = 1 to ℓ do

3: if IsValidChain(Ci) then
// Compare Cmax to Ci

4: if (Ci forks from Cmax at most k blocks) then
5: if |Ci | > |Cmax | then // Condition A

Set Cmax ← Ci .

end if

end if

end if

end for

6: return Cmax.

Protocol maxvalid-mc(Cloc, C1, . . . , Cℓ)

Figure 12: The chain selection rule of Ouroboros Praos.

REFERENCES

[1] Marcin Andrychowicz and Stefan Dziembowski. 2015. PoW-Based Distributed

Cryptography with No Trusted Setup. In CRYPTO 2015, Part II (LNCS), Rosario

Gennaro and Matthew J. B. Robshaw (Eds.), Vol. 9216. Springer, Heidelberg,

379–399. https://doi.org/10.1007/978-3-662-48000-7_19

[2] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz

Mazurek. 2014. Secure Multiparty Computations on Bitcoin. In 2014 IEEE

Symposium on Security and Privacy. IEEE Computer Society Press, 443–458.

https://doi.org/10.1109/SP.2014.35

[3] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis

Zikas. 2018. Ouroboros Genesis: Composable Proof-of-Stake Blockchains with

Dynamic Availability. Cryptology ePrint Archive, Report 2018/378. https:

//eprint.iacr.org/2018/378.

[4] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. 2017.

Bitcoin as a Transaction Ledger: A Composable Treatment. In CRYPTO 2017,

Part I (LNCS), Jonathan Katz and Hovav Shacham (Eds.), Vol. 10401. Springer,

Heidelberg, 324–356.

[5] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. 2014. Cryptocurrencies without

Proof of Work. CoRR abs/1406.5694 (2014). http://arxiv.org/abs/1406.5694

[6] Iddo Bentov and Ranjit Kumaresan. 2014. How to Use Bitcoin to Design Fair

Protocols. In CRYPTO 2014, Part II (LNCS), Juan A. Garay and Rosario Gen-

naro (Eds.), Vol. 8617. Springer, Heidelberg, 421–439. https://doi.org/10.1007/

978-3-662-44381-1_24

[7] Vitalik Buterin. 2013. A Next-Generation Smart Contract and Decentralized

Application Platform. https://github.com/ethereum/wiki/wiki/White-Paper.

[8] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality Gadget.

CoRR abs/1710.09437 (2017). arXiv:1710.09437 http://arxiv.org/abs/1710.09437

[9] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In 42nd FOCS. IEEE Computer Society Press, 136–145.

[10] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. 2007. Universally

Composable Security with Global Setup. In TCC 2007 (LNCS), Salil P. Vadhan

(Ed.), Vol. 4392. Springer, Heidelberg, 61–85.

[11] Ran Canetti and Marc Fischlin. 2001. Universally Composable Commitments. In

CRYPTO 2001 (LNCS), Joe Kilian (Ed.), Vol. 2139. Springer, Heidelberg, 19–40.

[12] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. 2014. Practical UC security

with a Global Random Oracle. In ACM CCS 14, Gail-Joon Ahn, Moti Yung, and

Ninghui Li (Eds.). ACM Press, 597–608.

[13] The NXT Community. 2014. NXT Whitepaper. https://bravenewcoin.com/assets/

Whitepapers/NxtWhitepaper-v122-rev4.pdf.

[14] Phil Daian, Rafael Pass, and Elaine Shi. 2016. Snow White: Provably Secure

Proofs of Stake. Cryptology ePrint Archive, Report 2016/919. https://eprint.iacr.

org/2016/919.

[15] Bernardo David, Rafael Dowsley, and Mario Larangeira. 2018. ROYALE: A

Framework for Universally Composable Card Games with Financial Rewards

and Penalties Enforcement. IACR Cryptology ePrint Archive 2018 (2018), 157.

http://eprint.iacr.org/2018/157

[16] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. 2017.

Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake proto-

col. Cryptology ePrint Archive, Report 2017/573. http://eprint.iacr.org/2017/573.

To appear at EUROCRYPT 2018.

[17] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Function

with Short Proofs and Keys. In PKC 2005 (LNCS), Serge Vaudenay (Ed.), Vol. 3386.

Springer, Heidelberg, 416–431.

[18] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone

Protocol: Analysis and Applications. In EUROCRYPT 2015, Part II (LNCS), Elisa-

beth Oswald and Marc Fischlin (Eds.), Vol. 9057. Springer, Heidelberg, 281–310.

https://doi.org/10.1007/978-3-662-46803-6_10

[19] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2017. The Bitcoin Back-

bone Protocol with Chains of Variable Difficulty. In Advances in Cryptology -

CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara,

CA, USA, August 20-24, 2017, Proceedings, Part I (Lecture Notes in Computer Sci-

ence), Jonathan Katz and Hovav Shacham (Eds.), Vol. 10401. Springer, 291–323.

https://doi.org/10.1007/978-3-319-63688-7_10

[20] Peter Gaži, Aggelos Kiayias, and Alexander Russell. 2018. Stake-Bleeding Attacks

on Proof-of-Stake Blockchains. Cryptology ePrint Archive, Report 2018/248.

https://eprint.iacr.org/2018/248.

[21] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. Cryptology

ePrint Archive, Report 2017/454. http://eprint.iacr.org/2017/454.

[22] Martin Hirt and Vassilis Zikas. 2010. Adaptively Secure Broadcast. In EURO-

CRYPT 2010 (LNCS), Henri Gilbert (Ed.), Vol. 6110. Springer, Heidelberg, 466–485.

[23] Aljosha Judmayer, Alexei Zamyatin, Nicholas Stifter, Artemios G. Voyiatzis, and

Edgar R. Weippl. 2017. Merged Mining: Curse or Cure?. In Data Privacy Manage-

ment, Cryptocurrencies and Blockchain Technology - ESORICS 2017 International

Workshops, DPM 2017 and CBT 2017, Oslo, Norway, September 14-15, 2017, Pro-

ceedings (Lecture Notes in Computer Science), Joaquín García-Alfaro, Guillermo

Navarro-Arribas, Hannes Hartenstein, and Jordi Herrera-Joancomartí (Eds.),

Vol. 10436. Springer, 316–333. https://doi.org/10.1007/978-3-319-67816-0_18

[24] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. 2013. Uni-

versally Composable Synchronous Computation. In TCC 2013 (LNCS), Amit

Sahai (Ed.), Vol. 7785. Springer, Heidelberg, 477–498. https://doi.org/10.1007/

978-3-642-36594-2_27

[25] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.

2017. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In

CRYPTO 2017, Part I (LNCS), Jonathan Katz and Hovav Shacham (Eds.), Vol. 10401.

Springer, Heidelberg, 357–388.

[26] Sunny King and Scott Nadal. 2012. PPCoin: Peer-to-Peer Crypto-Currency with

Proof-of-Stake. https://peercoin.net/assets/paper/peercoin-paper.pdf.

[27] Ranjit Kumaresan and Iddo Bentov. 2014. How to Use Bitcoin to Incentivize

Correct Computations. In ACM CCS 14, Gail-Joon Ahn, Moti Yung, and Ninghui

Li (Eds.). ACM Press, 30–41.

[28] Ranjit Kumaresan and Iddo Bentov. 2016. Amortizing Secure Computation with

Penalties. In ACM CCS 16, Edgar R. Weippl, Stefan Katzenbeisser, Christopher

Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press, 418–429.

[29] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. 2015. How to Use Bitcoin to

Play Decentralized Poker. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, Denver, CO, USA, October 12-16, 2015,

Indrajit Ray, Ninghui Li, and Christopher Kruegel (Eds.). ACM, 195–206. https:

//doi.org/10.1145/2810103.2813712

[30] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. 2017. A Smart Contract

for Boardroom Voting with Maximum Voter Privacy. In Financial Cryptography

and Data Security - 21st International Conference, FC 2017, Sliema, Malta, April 3-7,

2017, Revised Selected Papers (Lecture Notes in Computer Science), Aggelos Kiayias

(Ed.), Vol. 10322. Springer, 357–375. https://doi.org/10.1007/978-3-319-70972-7_

20

[31] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cam-

bridge University Press, New York, NY, USA.

[32] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. http:

//bitcoin.org/bitcoin.pdf.

[33] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the Blockchain

Protocol in Asynchronous Networks. In EUROCRYPT 2017, Part II (LNCS), Jean-

Sébastien Coron and Jesper Buus Nielsen (Eds.), Vol. 10211. Springer, Heidelberg,

643–673.

[34] Rafael Pass and Elaine Shi. 2017. The Sleepy Model of Consensus. In ASI-

ACRYPT 2017, Part II (LNCS), Tsuyoshi Takagi and Thomas Peyrin (Eds.),

Vol. 10625. Springer, Heidelberg, 380–409.

[35] Andrew Poelstra. 2014. Distributed Consensus from Proof of Stake is Impossible.

https://download.wpsoftware.net/bitcoin/old-pos.pdf.

[36] Alexander Russell, Cristopher Moore, Aggelos Kiayias, and Saad Quader. 2017.

Forkable Strings are Rare. Cryptology ePrint Archive, Report 2017/241. https:

//eprint.iacr.org/2017/241.

https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1109/SP.2014.35
https://eprint.iacr.org/2018/378
https://eprint.iacr.org/2018/378
http://arxiv.org/abs/1406.5694
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-662-44381-1_24
https://github.com/ethereum/wiki/wiki/White-Paper
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1710.09437
https://bravenewcoin.com/assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf
https://bravenewcoin.com/assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf
https://eprint.iacr.org/2016/919
https://eprint.iacr.org/2016/919
http://eprint.iacr.org/2018/157
http://eprint.iacr.org/2017/573
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://eprint.iacr.org/2018/248
http://eprint.iacr.org/2017/454
https://doi.org/10.1007/978-3-319-67816-0_18
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1007/978-3-319-70972-7_20
https://doi.org/10.1007/978-3-319-70972-7_20
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2017/241
https://eprint.iacr.org/2017/241

	Abstract
	1 Introduction
	2 The Dynamic-Availability Model
	2.1 The Real World Execution
	2.2 The Ideal World Execution

	3 Ouroboros Genesis as a UC-Protocol
	3.1 Registration and Deregistration
	3.2 Interacting with the Ledger

	4 Security Analysis
	4.1 Blockchain Security Properties
	4.2 Security of Ouroboros Genesis with maxvalid-mc
	4.3 Adopting the New maxvalid-bg Rule
	4.4 Newly Joining Parties
	4.5 Composable Guarantees

	A Hybrid Functionalities in Ouroboros Genesis
	B The Chain Selection Rule from praos
	C List of Symbols
	References

