

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 29, 2025

Alpha-Beta Privacy

Mödersheim, Sebastian Alexander; Viganò, Luca

Published in:
ACM Transactions on Privacy and Security

Link to article, DOI:
10.1145/3289255

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Mödersheim, S. A., & Viganò, L. (2018). Alpha-Beta Privacy. ACM Transactions on Privacy and Security, 1(1).
https://doi.org/10.1145/3289255

https://doi.org/10.1145/3289255
https://orbit.dtu.dk/en/publications/66bc4588-1306-4469-9e2f-8978f05d1519
https://doi.org/10.1145/3289255

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Alpha-Beta Privacy

SEBASTIAN MÖDERSHEIM, DTU Compute, Denmark

LUCA VIGANÒ, Department of Informatics, King’s College London, UK

The formal specification of privacy goals in symbolic protocol models has proved to be not quite trivial so far.

The most widely used approach in formal methods is based on the static equivalence of frames in the applied

pi-calculus, basically asking whether or not the intruder is able to distinguish two given worlds. But then a

subtle question emerges: how can we be sure that we have specified all pairs of worlds to properly reflect our

intuitive privacy goal? To address this problem, we introduce in this paper a novel and declarative way to

specify privacy goals, called (α , β)-privacy. This new approach is based on specifying two formulae α and β
in first-order logic with Herbrand universes, where α reflects the intentionally released information and β
includes the actual cryptographic (“technical”) messages the intruder can see. Then (α , β)-privacy means that

the intruder cannot derive any “non-technical” statement from β that he cannot derive from α already. We

describe by a variety of examples how this notion can be used in practice. Even though (α , β)-privacy does not

directly contain a notion of distinguishing between worlds, there is a close relationship to static equivalence of

frames that we investigate formally. This allows us to justify (and criticize) the specifications that are currently

used in verification tools, and obtain a decision procedure for a large fragment of (α , β)-privacy.

CCS Concepts: • Security and privacy → Formal security models; Logic and verification; Privacy-
preserving protocols; Security requirements; Security protocols;

Additional Key Words and Phrases: Privacy, frames, static equivalence, voting, model theory, Herbrand logic

ACM Reference Format:
Sebastian Mödersheim and Luca Viganò. 2018. Alpha-Beta Privacy. ACM Trans. Priv. Sec. 1, 1, Article 1

(January 2018), 33 pages. https://doi.org/10.1145/3289255

1 INTRODUCTION
1.1 Context and motivation.
Over the last fifteen years or so, several formal notions of privacy in symbolic protocol models have

been proposed, e.g., [? ? ? ? ? ? ? ? ?] to name only a few. Although these notions are quite different,

they are all witness to the fact that defining privacy is actually surprisingly subtle and not as easy

as it is sometimes thought to be. One of the main reasons is that classical secrecy notions apply

only to data that are themselves the secrets, e.g., a private key. In contrast, the data that privacy

goals are formulated about are typically not secrets in themselves, e.g., the name of the candidates

and of the voters in a voting protocol are usually all publicly known. Rather, the information we

would like to protect is the relation between these values, i.e., who voted for whom.

For this reason, the majority of the popular approaches to formalizing privacy are based not on
the question of what the intruder can deduce from a set of known messages, but rather whether

Authors’ addresses: Sebastian Mödersheim, DTU Compute, Richard Petersens Plads, Building 324, Kgs. Lyngby, DK-2800,

Denmark, samo@dtu.dk; Luca Viganò, Department of Informatics, King’s College London, Bush House, 30 Aldwych, London,

WC2B 4BG, UK, luca.vigano@kcl.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

2471-2566/2018/1-ART1 $15.00

https://doi.org/10.1145/3289255

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3289255
https://doi.org/10.1145/3289255

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 S. Mödersheim and L. Viganò

he can distinguish two different worlds.
1
A crucial question is thus: what is the “right” set of

distinguishability questions to define privacy? For instance, in voting protocols, it has become

standard to define vote privacy by the following “vote swapping” encoding: take the protocol with

fixed votes and consider a variant where the votes of two honest voters have been swapped; then

the two variants should be indistinguishable for the intruder. We propose that this vote swap,

though formally precise, is still an encoding of an unspoken underlying idea or intuition. This

becomes apparent when we ask the question: is vote swapping in some sense a “correct” (sound and

complete) encoding? That is, does it really capture all privacy violations that we intuitively would

see as a violation and only those? In some sense we cannot completely avoid the fact that there

may be a gap between intuitive ideas and mathematical notions, but simple, declarative, logical

notions can give a higher confidence. Below we argue that with (α , β)-privacy there is a rather

straightforward formal goal we can state: that in a voting protocol the intruder only learns the

number of cast votes and the result, i.e., the information that is officially published anyway. We can

then prove that this is in fact equivalent to the vote-swapping trick and thereby justify this notion

as being sound and complete with respect to a different, more high-level notion. In fact, this is the

main theme of this paper: we do not want to replace the existing works on privacy, but we want to

highlight it from a new angle that can give us novel insights and methods to reason about privacy.

It is even more difficult to come up with privacy definitions for other, more open-ended fields like

identity management. In general, we have no good criterion when a given set of distinguishabilities

is “complete”, i.e., to be sure that we have not overlooked some possible connection the intruder

could make that would violate our intuitive understanding of privacy. We return to this in the next

subsection, after having introduced (α , β)-privacy.

1.2 Contributions.
In this paper, we take a step back and approach the problem of defining privacy from a different

angle. Our overall contribution is the definition of a formal description that reflects the idea of

privacy in a “natural” and less “technical” way.
2
This allows us to formally relate such declarative

logical privacy definitions with existing low-level encodings based on indistinguishability: either

proving that the encoding is correct or giving a counter example (e.g., where the declarative notion

of privacy is violated while the encoding does not detect it). This also allows us to use existing

verification technologies, but opens a new way of understanding and declaratively using the goals,

and ultimately also new ways of implementing verification tools.

The logical notion we introduce in this paper is called (α , β)-privacy and it is based on specifying

two formulae α and β in First-Order Logic with Herbrand Universes [?].
The formula α formalizes the intentionally released information, i.e., the information that we

consciously give to the intruder; we also refer to this information as payload. This is in fact inspired

by cryptographic zero-knowledge proofs: here a prover proves a statement to the verifier (for

instance, that one possesses a credential and is over 21 years old according to this credential).

The verifier clearly learns this statement, including any logical consequence (for instance, that the
prover is also over 18 years old). The point about zero knowledge is that the verifier does not learn
any more information than the proved statement (for instance, whether or not the prover is over

1
There are also approaches, such as k-anonymity, ℓ-diversity, t -closeness and differential privacy, that, instead of focusing

on distinguishability, aim at quantifying privacy in order to capture privacy loss and thus analyse the minimal information

disclosure inherent in a system. We will discuss these approaches, and their relationship to (α , β)-privacy in more detail at

the end of the paper (Section 8).

2
Note that, as will become clearer below, when we write “less technical” here we do not mean “less formal”; rather, we

mean that our definition is declarative and not at the technical level like in the case of the different indistinguishability

questions where one needs to consider explicitly the cryptographic messages that are being exchanged.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Alpha-Beta Privacy 1:3

65 years old). Our idea is to use such a simple formula α that describes the deliberately released

information as the core of the privacy definition: the intruder should not be able to learn anything

that is not a logical consequence of α .
As a counterpart to the “ideal knowledge” provided by the payload α , we also describe the

technical information β , which represents the “actual knowledge” that the intruder has, describing

the information (e.g., names, keys ...) that he initially knows, which actual cryptographic messages

he has observed and what he knows about these messages. For instance, he may be unable to

decrypt a message but anyway know that it has a certain format and contains certain (protected)

information, like a vote.

(α , β)-privacy then means that every “non-technical” statement that the intruder can derive from

β can already be derived from α . We believe that this is indeed a simple way to define privacy,

and is a more declarative way to talk about privacy than distinguishability of frames. To some

extent, this liberates the modelers from thinking about what technical information the intruder

could exploit, and rather think about only two crucial aspects of the system that they should be

clear about anyway: namely, what information is deliberately released (α) and what messages are

actually exchanged (β).
For the example of vote privacy, the deliberately released information may be for instance the

number of cast votes and for each candidate the number of received votes. We can then formally

prove that this is indeed equivalent to the aforementioned vote-swapping trick. In other words,

one can convince oneself by examples that the vote-swapping encoding makes sense: for instance,

the intruder should not find out whether two honest voters have voted the same or differently,

and if this were violated in a protocol, then this would be detected by the vote-swapping goal.

However checking that a number of intuitive examples are covered is not completely satisfactory

from a scientific point of view. To put it differently: the vote swap is an encoding of an (otherwise

unformalized) intuition. With α-β privacy, in contrast, we are able to formally prove that it is a
correct encoding of a simple privacy goal α : that the intruder does not find out more than we

deliberately release, i.e., the number of cast votes, the election result and what the dishonest voters

voted for (if that is considered).

An interesting property of (α , β)-privacy is that it is stable under background information, in

the following sense: if (α , β)-privacy holds for a particular α and β , and the intruder somehow has

some additional background knowledge α0, then also (α ∧α0, β ∧α0)-privacy holds, i.e., the intruder
cannot find out more than what follows from his background knowledge and the information that

was released to him.

Another interesting and declarative feature of our approach is how we can reason about the

collusion of dishonest parties. If the knowledge of every dishonest party is described by an (α , β)
pair, say (α1, β1) and (α2, β2), then we can consider the conjunction of the α ’s and the conjunction

of the β ’s and require (α1∧α2, β1∧ β2)-privacy to hold. This is indeed the strongest possible privacy
goal any system can fulfill in the face of such a collusion, because we cannot prevent the dishonest

parties from pooling their knowledge—both on the α and on the β level—and drawing conclusions

from that.

Last but not least, (α , β)-privacy also provides a model-theoretic approach to privacy: given some

information or observations about the world (a formula), what are the possible worlds that are

compatible with this information (the models of the formula)? A privacy goal then specifies simply

the set of possible worlds (the models of α), and the intruder should not be able to exclude any of

them using β . In fact, we will show that combining the model-theoretic and proof-theoretic views

yields a powerful tool-set for reasoning about privacy.

This paper is focused on developing new foundations for reasoning about privacy and we do not

discuss automated procedures. However, we prove that a fragment of (α , β)-privacy corresponds to

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 S. Mödersheim and L. Viganò

Table 1. Roadmap of the main notions and primitives introduced

Primitive Section Meaning
Σ,V,TΣ (V) Section 2.1, p.4

(Definition 2.1)

Finite alphabet, disjoint set of variables, and terms of our Her-

brand Logic (FOL with Herbrand Universes)

Σop Table 2, p.8 Example set of standard cryptographic constructors, destructors,

verifiers

𭟋i Section 2.3, p.7

(Definition 2.6)

Frame (as in static equivalence), adapted to Herbrand Logic

mi Section 2.3, p.7 Memory location i , storing a piece of intruder knowledge

α Section 3, p.10 Payload, information that the intruder may legitimately obtain,

overV0 ⊆ V and Σ0 ⊆ Σ
β Section 3, p.10 Technical information of and about observed protocol messages,

overV and Σ
ϕframe (𭟋),
ϕ𭟋1∼𭟋2

Fig. 1, p.9 Axioms used in (α , β)-privacy

concr Section 3.2, p.12 Encoding of concrete intruder knowledge, ground terms from

TΣ

struct Section 3.2, p.12 Encoding of structural intruder knowledge, terms from TΣ (V)

frame equivalence problems, so that existing decision procedures are applicable. (α , β)-privacy is,

however, more powerful and can incorporate how information is released during a protocol run.

We will finally illustrate with an example how to define transition systems based on (α , β)-privacy,
i.e., where every reachable state characterizes the intruder knowledge by an (α , β) pair.

1.3 Organization.
Section 2 provides the basis for our approach: we discuss First-Order Logic with Herbrand Universes,

messages and frames. In Section 3, we formalize (α , β)-privacy and consider some concrete examples.

Note that we introduce the main notions and primitives of our new (α , β)-privacy approach step

by step, where Table 1 gives an overview of where they are introduced. In Section 4, we discuss

automation and the relation of (α , β)-privacy to static equivalence. In Section 5, we provide additional
examples of how (α , β)-privacy may be employed to model randomized and deterministic pooling

of knowledge, and e-voting. In Section 6, we discuss how we can extend (α , β)-privacy to transition

systems. In Section 7, we show how the intruder can make use of some background knowledge

to carry out attacks. Finally, in Section 8, we draw conclusions, discussing also related work and

future work. This paper extends and supersedes the preliminary version [?].

2 PRELIMINARIES
2.1 Herbrand Logic
To formalize our approach, we need to choose an appropriate logic. An obvious candidate is first-
order logic (FOL), but this has one difficulty when it comes to the interpretation of the constants

and cryptographic operators. As is standard in security protocol verification, we would like to

interpret these operators either in the free algebra or in the initial algebra induced by a set of

algebraic equations; we call this the Herbrand Universe.3 In general, we cannot enforce the desired

3
Note that it is common to define the Herbrand Universe as the free term algebra but for our purposes it is crucial to include

also algebraic properties of the operators, as illustrated in Example 2.3.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Alpha-Beta Privacy 1:5

interpretation by axioms in FOL (see, e.g., Example 2.5). There are some workarounds for this; for

instance, [? ? ? ?] use first-order Horn theories that are inconsistent (in standard FOL) iff there is

an attack in the least Herbrand model, but this construction is not possible for our work because

we want to talk about deductions that hold in all Herbrand models of a formula (which does not

necessarily have a unique least Herbrand model).

As proposed in [?], FOL with Herbrand universes, or Herbrand Logic for short, can be seen as a

logic in its own right—as justified by the higher expressiveness, see, e.g., Example 2.5 below. We

define Herbrand Logic as follows (and will then discuss differences with respect to the definition

of [?] below).

Definition 2.1 (Syntax of Herbrand Logic). Let Σ = Σf ⊎ Σi ⊎ Σr be an alphabet that consists of

• a set Σf of free function symbols,
• a set Σi of interpreted function symbols and
• a set Σr of relation symbols,

all with their arities. We write f n and rn to denote a function symbol f and a relation symbol r of
arity n, respectively.
We write f (t1, . . . , tn) when f ∈ Σf and f [t1, . . . , tn] when f ∈ Σi , and we denote the set of

considered cryptographic operators by the subset Σop ⊆ Σf . Constants are the special case of function
symbols with arity 0; for an uninterpreted constant c0 ∈ Σf , we omit the parentheses and write

simply c instead of c (), whereas for interpreted constants c0 ∈ Σi , we do not omit the square

brackets for clarity and write c[].
LetV be a countable set of variable symbols, disjoint from Σ. We denote with TΣ (V) the set of

all terms that can be built from the function symbols in Σ and the variables inV . We simply write

TΣ whenV = ∅, and call its elements ground terms (over signature Σ). We define substitutions θ as

is standard.

We define the set LΣ (V) of formulae over the alphabet Σ and the variablesV as usual: relations

and equality of terms are atomic formulae, and composed formulae are built using conjunction ∧,
negation ¬, and existential quantification ∃.

The function fv returns the set of free variables of a formula as expected. □

We employ the standard syntactic sugar and write, for example, ∀x .ϕ for ¬∃x .¬ϕ. We also write

x ∈ {t1, . . . , tn } to abbreviate x = t1 ∨ . . . ∨ x = tn .
Slightly abusing notation, we will also consider a substitution {x1 7→ t1, . . . ,xn 7→ tn } as a

formula x1 = t1 ∧ . . . ∧ xn = tn .

Definition 2.2 (Herbrand Universe and Algebra). Formulae in Herbrand logic are always interpreted

with respect to a given fixed set Σf of free symbols (since this set may contain symbols that do not

occur in the formulae) and a congruence relation ≈ on TΣf . We may annotate all notions of the

semantics with Σf and ≈ when it is not clear from the context.

We write [[t]]≈ = {t
′ ∈ TΣf | t ≈ t ′} to denote the equivalence class of a term t ∈ TΣf with

respect to ≈. Further, let U = {[[t]]≈ | t ∈ TΣf } be the set of all equivalence classes. We call U the

Herbrand universe (since it is freely generated by the function symbols of Σf modulo ≈). Based

onU , we define a Σf -algebra A that interprets every n-ary function symbol f ∈ Σf as a function

fA : U n → U in the following standard way. fA ([[t1]]≈, . . . , [[tn]]≈) = [[f (t1, . . . , tn)]]≈, where
the choice of the representatives t1, . . . , tn of the equivalence classes is irrelevant because ≈ is

congruent. A is sometimes also called the quotient algebra (in the literature sometimes denoted

with TΣf / ≈). □

Example 2.3. As an example, suppose the congruence relation ≈ is given by a set of equations

like ∀x ,y. x+y ≈ y+x for some binary function symbol + in Σf . Then we have in the quotient

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 S. Mödersheim and L. Viganò

algebra 5+3 ≈ 3+5 but still 3+5 0 (1+2)+5. Thus, the quotient algebra is the finest (or “free-est”)
interpretation still compatible with the given algebraic properties. □

Definition 2.4 (Semantics of Herbrand Logic). An interpretation I maps every interpreted function

symbol f ∈ Σi of arity n to a function I (f) : U n → U on the Herbrand universe, every relation

symbol r ∈ Σr of arity n to a relation I (r) ⊆ U n
on the Herbrand universe, and every variable

x ∈ V to an element ofU .

We extend I to a function on TΣ (V) as expected: I (f (t1, . . . , tn)) = fA (I (t1), . . . ,I (tn)) for
f ∈ Σf and I (f[t1, . . . , tn]) = I (f) (I (t1), . . . ,I (tn)) for f ∈ Σi .

We define that I is a model of formula ϕ, in symbols I |= ϕ, as follows:

I |= s = t iff I (s) = I (t)
I |= r (t1, . . . , tn) iff (I (t1), . . . ,I (tn)) ∈ I (r)
I |= ϕ ∧ψ iff I |= ϕ and I |= ψ
I |= ¬ϕ iff not I |= ϕ
I |= ∃x .ϕ iff there is a c ∈ U such that I{x 7→ c} |= ϕ

where I{x 7→ c} denotes the interpretation that is identical to I except that x is mapped to c .
Entailment ϕ |= ψ is defined as I |= ϕ implies I |= ψ for all interpretations I. We write ϕ ≡ ψ
when both ϕ |= ψ andψ |= ϕ. We also use ≡ in the definitions of formulae. Finally, we write Sat (ϕ)
if ϕ has a model. □

For most applications, the interpretation of the Herbrand universe modulo a congruence ≈ is

actually syntactic sugar. For instance, when ≈ is induced by a set of equations, it is not difficult to

see that the relation ≈ can be axiomatized in Herbrand logic itself.

Example 2.5. Similar to [?], we can axiomatize arithmetic in Herbrand logic; simply let Σf =

{z0, s1}, representing 0 and (+1), let ≈ be syntactic equality on TΣf , and let Σi = {add2,mult2} and
Σr = {<} with the following formula:

ϕ ≡ ∀x ,y. add[z,y] = y ∧ add[s(x),y] = add[x , s(y)] ∧ mult[z,y] = z ∧
mult[s(x),y] = add[y,mult[x ,y]] ∧ x < s(x) ∧ x < y =⇒ x < s(y)

Then ϕ |= ψ iff ψ is a true arithmetic statement. It is well-known that (as a consequence of

Löwenheim-Skolem’s theorem, see [?], for instance) an equivalent axiomatization cannot be

achieved in standard FOL. □

We note the following three differences with respect to the definition of Herbrand logic in [?].
First, in [?] and as is standard, the Herbrand universe is the free term algebra, forbidding one to

model algebraic properties of the free operators. Our definition is a generalization to equivalence

classes modulo the ≈ relation (and ≈ can simply be set to be the syntactic equality on TΣf to get the

free algebra). Second, the logic in [?] treats free variables as implicitly universally quantified, which

is quite non-standard.
4
In our definition, an interpretation of a formula includes the interpretation

of the free variables as is standard. This is, of course, without loss of expressiveness since one can

quantify variables when this is what one wants to express. Third, the logic in [?] does not have
interpreted functions and, in fact, these are syntactic sugar: an interpreted n-ary function symbol f
can bemodeled by ann+1-ary relationRf symbolwith the axiom∀x1, . . . ,xn . ∃y.Rf (x1, . . . ,xn ,y)∧
∀y ′.Rf (x1, . . . ,xn ,y

′) =⇒ y = y ′.

4
It is, of course, common to use some quantifier-free representations, e.g., a set of clauses where all variables are implicitly

universally quantified. However, in a logic with (arbitrarily scoped) quantifiers this is indeed non-standard. Consider, as an

example, the absurd statement x = c |= x ̸= c . In our definition of Herbrand Logic, this is false. If we consider all variables

as explicitly quantified, i.e., ∀x . x = c |= ∀x . x ̸= c , it is trivially true (since the formula on the left is unsatisfiable).

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Alpha-Beta Privacy 1:7

2.2 Messages, Operators and Algebraic Properties
In (α , β)-privacy we generally use a black-box algebraic model that consists of an arbitrary set of

cryptographic operators and their algebraic properties. For concreteness, for most examples in this

paper, we will use the set Σop given in Table 2.

The congruence relation ≈ that the Herbrand universe is defined by is the least relation so that

the equations in Table 2 hold (for all terms s , r , t , t1, t2 in TΣop and for i ∈ {1, 2}). Intuitively,

• pub(a) and priv(a) represent an asymmetric key pair for an agent a, where pub is a public
function in Σop and priv is a private function in Σ \ Σop;

5

• crypt(p, r , t) represents the asymmetric encryption of a message t with a public key p and

randomness r ;
• dcrypt(p ′, t) represents the decryption with private key p ′ of a message t , and the first

property formalizes that decryption with the correct private key yields the original message;

• vcrypt(p ′, t) and the second property formalize that we can check whether the message t
can be correctly decrypted with private key p ′ (we return to this below);

• sign(p ′, t), retrieve(t) and vsig(p ′, t), together with their properties, similarly formalize digital

signatures (where we here model signatures that contain the plaintext so that it can be

retrieved);

• scrypt(k, t), dscrypt(k, t) and vscrypt(k, t), together with their properties, similarly formalize

symmetric cryptography;

• pair, proji and vpair, together with their properties, formalize that we assume to have a

mechanism to concatenate plaintext so that it can later be decomposed in a unique way

(sometimes called “serialization”);

• h is a cryptographic hash function (where the lack of destructors reflects that it is hard to

find a pre-image).

This model represents cryptographic implementations that allow for checking whether one has

decrypted correctly (for instance, in symmetric cryptography, this is often realized by message

authentication codes). This means that the real decryption functions stop with a failure whenever

the message has not been encrypted with the corresponding key, and are thus partial functions.

The way we model them, destructors are total functions and the corresponding verifiers represent

the domain for which they are defined. Of course, we can model other cryptographic set-ups,

however they often have quite different properties for privacy, e.g., the randomization is crucial in

asymmetric cryptography (as illustrated by the examples below).

Note also that our model is untyped, e.g., one can build crypt(h(t1), r , t2), although decryption

will later fail for any term as decryption key.

2.3 Frames
Frames and the notion of their static equivalence are a standard way to formalize privacy goals in

formal methods, e.g., [? ? ?]. In this paper, we define frames in a slightly non-standard way that

is more convenient to formalize them directly in Herbrand logic. In Section 2.4, we discuss the

differences between the standard definition of frames and the one we consider here, and then, in

Section 3, we relate frames to our concept of (α , β)-privacy.

Definition 2.6 (Frame). A frame is written as

𭟋 = {|m1 7→ t1, . . . ,ml 7→ tl |} ,

5
In this theory, every agent can have only one key pair for simplicity; to allow for arbitrary key infrastructures, one can

rather model both pub and priv as public functions that map secret seeds to public and private keys, respectively.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 S. Mödersheim and L. Viganò

Table 2. Example set Σop : standard cryptographic constructors, destructors, verifiers

Constructors Destructors Verifiers Properties
pub
crypt dcrypt vcrypt dcrypt(priv(s), crypt(pub(s), r , t)) ≈ t

vcrypt(priv(s), crypt(pub(s), r , t)) ≈ yes
sign retrieve vsig retrieve(sign(priv(s), t)) ≈ t

vsig(pub(s), sign(priv(s), t)) ≈ yes
scrypt dscrypt vscrypt dscrypt(k, scrypt(k, t)) ≈ t

vscrypt(k, scrypt(k, t)) ≈ yes
pair proji vpair proji (pair(t1, t2)) ≈ ti

vpair(pair(t1, t2)) ≈ yes
h

where the mi are distinguished constants and the ti are ground terms that do not contain any mi .

We call m1, . . . ,ml and t1, . . . , tl the domain and the image of the frame, respectively. □

This frame represents that the intruder knows l messages t1, . . . , tl that he can “refer to” as

m1, . . . ,ml . In standard Dolev-Yao-style intruder models, the intruder knowledge is just a set of

messages {t1, . . . , tl }; in contrast, frames give each message a unique label mi . This allows us to

talk more precisely about what operations the intruder performs, e.g., “the intruder hashes the

message at label m1 and compares it with the message at label m2”. We may thus refer to the mi as

memory locations of the intruder knowledge.6

Definition 2.7 (Recipes and intruder-generable term). The set of recipes is the least set that contains
m1, . . . ,ml and that is closed under all the cryptographic operators Σop . A frame𭟋 can be regarded

as a substitution that replaces every mi of its domain with the corresponding ti . For a recipe t , we
thus write 𭟋(t) for the term obtained by applying this substitution to t . An intruder generable term
(or just generable term for short) is any term s for which there is a recipe t with s = 𭟋(t). □

To formalize frames and recipes (and later equivalence of frames) in Herbrand Logic, we introduce

two new symbols for every distinct frame 𭟋 that we want to talk about: an interpreted unary

function symbol kn𭟋 (for knowledge) and a unary predicate symbol gen𭟋 (for generate).We introduce

two axiomsϕframe (𭟋) andϕ𭟋1∼𭟋2
that are shown in Fig. 1. Both these axioms are parameterized over

a given set Σop of operators; for instance an expression like

∨
fn ∈Σop ϕ stands for the corresponding

disjunction of the instances of the formula ϕ for every operator f of arity n of Σop.

6
The original definition of frames uses actually variables instead of constants for the labels, so that a frame is a substitution.
In a logical context this is however quite inconvenient, since substitutions are meta level instead of object level, and mixing

them usually does not lead to great results. Using constants for memory locations instead yields a clean solution and we can

easily model frames as (object-level) functions on ground terms.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Alpha-Beta Privacy 1:9

For every considered frame 𭟋 = {|m1 7→ t1, . . . ,ml 7→ tl |}, let kn𭟋 be an interpreted unary function symbol

and gen𭟋 be a unary predicate.

For a frame 𭟋:

ϕframe (𭟋) ≡ (∀x . gen𭟋 (x) ⇐⇒

(x ∈ {m1, . . . ,ml } ∨∨
fn ∈Σop ∃x1 . . . xn . x = f (x1, . . . ,xn) ∧ gen𭟋 (x1) ∧ . . . ∧ gen𭟋 (xn)))

∧

(kn𭟋[m1] = t1 ∧ . . . ∧ kn𭟋[ml] = tl)
∧∧

fn ∈Σop (∀x1 . . . xn .

gen𭟋 (x1) ∧ . . . ∧ gen𭟋 (xn) =⇒ kn𭟋[f (x1, . . . ,xn)] = f (kn𭟋[x1], . . . , kn𭟋[xn]))

For two frames 𭟋1 and 𭟋2:

ϕ𭟋1∼𭟋2
≡ (∀x . gen𭟋1

(x) ⇐⇒ gen𭟋2

(x))

∧

(∀x ,y. gen𭟋1 (x) ∧ gen𭟋1 (y) =⇒ (kn𭟋1
[x] = kn𭟋1

[y] ⇐⇒ kn𭟋2
[x] = kn𭟋2

[y]))

Fig. 1. Axioms used in (α , β)-privacy parameterized over a given set Σop of operators.

Let, for instance, 𭟋 = {|m1 7→ t1,m2 7→ t2,m3 7→ t3,m4 7→ t4 |} for some terms t1, . . . , t4; then, for
our example Σop of Table 2, we have

ϕframe (𭟋) ≡ (∀x . gen𭟋 (x) ⇐⇒
(x ∈ {m1,m2,m3,m4} ∨

(∃x1. x = priv(x1) ∧ gen𭟋 (x1)) ∨
(∃x1,x2,x3. x = crypt(x1,x2,x3) ∧ gen𭟋 (x1) ∧ gen𭟋 (x2) ∧ gen𭟋 (x3)) ∨
. . .

)
)
∧

(∀x1. gen𭟋 (x1) =⇒ kn𭟋[priv(x1)] = priv(kn𭟋[x1]))
∧

(∀x1,x2,x3. gen𭟋 (x1) ∧ gen𭟋 (x2) ∧ gen𭟋 (x3) =⇒
kn𭟋[crypt(x1,x2,x3)] = crypt(kn𭟋[x1], kn𭟋[x2], kn𭟋[x3]))

∧ ...

The formula ϕframe (𭟋) characterizes a frame in Herbrand logic as follows. The first conjunct

defines the predicate gen𭟋 to be exactly the set of recipes for the frame𭟋 = {|m1 7→ t1, . . . ,ml 7→ tl |};
the second and third conjuncts formalize that kn𭟋[t] is the result of applying recipe t to frame 𭟋,

i.e., replacing every occurrence of a label mi by the corresponding ti in t . Thus, we have:

I |= ϕframe (𭟋) iff
I (gen𭟋) = {[t]≈ | t ∈ TΣop∪{m1, ...,ml }} and

I (kn𭟋) ([t]≈) = [𭟋(t)]≈ for every t ∈ TΣop∪{m1, ...,ml }

Example 2.8. Consider the frame (from [?]):

𭟋1 = {|m1 7→ scrypt(k, n1),m2 7→pair(n1, n2),m3 7→ k|} .

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 S. Mödersheim and L. Viganò

The intruder can then, e.g., obtain n1 as follows: letΦ ≡ ϕframe (𭟋1); then,Φ |= gen𭟋1
(dscrypt(m3,m1)) ∧

kn𭟋1
[dscrypt(m3, m1)] = n1. We then also have Φ |= kn𭟋1[dscrypt(m3,m1)] = kn𭟋1[proj1 (m2)],

which intuitively means that the intruder can check that the decrypted term is equal to the first

component of the term in m2. □

The main idea behind static equivalence of frames (e.g., [? ? ?]) is to ask whether the intruder

is able to detect the difference between two “intruder knowledges” (that have the same domain):

can the intruder make any check on the knowledge, i.e., two recipes so that one frame yields the

same message for both recipes, while the other frame yields different messages? If there is no such

critical pair of recipes, i.e., if the intruder has no way to tell whether he is “in” one frame or the

other, then the frames are statically equivalent. We can formalize this in Herbrand logic using the

axiom ϕ𭟋1∼𭟋2
:

Definition 2.9 (Static Equivalence of Frames). Two frames𭟋1 and𭟋2 with the same set {m1, . . .ml }

of memory locations are statically equivalent (in symbols,𭟋1 ∼ 𭟋2) iff Sat (ϕframe (𭟋1)∧ϕframe (𭟋2)∧
ϕ𭟋1∼𭟋2

). □

Example 2.10. We can distinguish 𭟋1 of Example 2.8 from the frame

𭟋2 = {|m1 7→ scrypt(k, n3),m2 7→ pair(n1, n2),m3 7→ k|}

since the check kn𭟋2
[dscrypt(m3,m1)] = kn𭟋2

[proj
1
(m2)] fails, whereas the same check succeeds

for kn𭟋1
. □

2.4 Differences with Respect to the Standard Definition of Frames
The standard definition of frames is of the form νn1, . . . ,nk . θ , where θ is a substitution from

variables x1, . . . ,xl to terms t1, . . . , tl , respectively, and where the xi do not occur in the ti . (We

use the distinct constants mi instead of the variables xi .) Further, the ni are the restricted names.
Intuitively, the intruder knows all names that occur freely, i.e., that are not under a restriction. Note

that in the frame νn.{|m1 7→ n |} the intruder can produce n anyway, even though it is restricted,

since he has it as a message in his knowledge. In contrast, in our notion of frames, all constants

are by default unknown to the intruder; thus, public constants must be modeled in our framework

by putting them into the frame explicitly. This is of course not a restriction (if the set of public

constants is finite), it only may mean longer frames. While the notion of restricted names is very

handy in process calculi, they do not really fit well with a logical approach, since they are a mixture

between constants and variables.

3 A NEW PRIVACY MODEL: (α , β)-PRIVACY
We introduce (α , β)-privacy step by step. In Section 3.1, we introduce the distinction between

payload formulae α and technical formulae β as well as the notion of interesting consequences.
In Section 3.2, we establish the methodology to reason over such formulae. We also define what

it means for α to be combinatoric and what is a message-analysis problem. In Section 3.3, we

show how (α , β)-privacy extends straightforwardly to the case of dishonest agents pooling their

knowledge. In Section 4, we discuss automation and the relation to static equivalence. We then

discuss further examples of (α , β)-privacy in Section 5. In Section 6, we discuss how to extend the

(α , β)-privacy notion to transition systems. In Section 7, we consider the presence of additional

background knowledge.

3.1 Payload and Technical Information
Ourmodel is inspired by zero-knowledge proofs for privacy (as they are used, e.g., in IBM’s Idemix [?
]). The following points are characteristic for such proofs:

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Alpha-Beta Privacy 1:11

• The prover (intentionally) conveys some information to the verifier, i.e., the statement being

proved to the verifier. We call this statement the payload α .
• The participants also (inevitably) convey some cryptographic information (e.g., commitments,

challenges, and responses) that, if the scheme is secure, do not reveal anything “interesting”

besides α ; this, of course, is the very reason why such a scheme is called zero-knowledge. We

call this kind of information the technical information β .
The term “interesting” that we use here is often defined in the cryptography world by the fact that

it is computationally easy to produce a fake transcript of zero-knowledge proofs that is statistically

indistinguishable from a real transcript. Hence, whatever information could possibly be obtained

from β , one may have created oneself. This kind of definition is, however, quite unhandy in logical

reasoning, and it applies only to (some types of) zero-knowledge proofs.

We show that it is fortunately possible to define the term “interesting” on a logical basis that

makes sense for many actual situations in which we want to talk about privacy. The key idea is

that the payload α may be formulated over a restricted alphabet Σ0 ⊊ Σ, whereas the technical
information β may talk about the full alphabet Σ (e.g., all cryptographic operators are part of Σ \Σ0).

Hence, we can define (α , β)-privacy as follows.

Definition 3.1 (Interesting consequences and respect/violation of privacy). Let Σ0 ⊊ Σ. Given a

payload formula α ∈ LΣ0 (V) and a technical formula β ∈ LΣ (V), where β |= α and fv (α) =
fv (β) and both α and β are consistent, we say that a statement α ′ ∈ LΣ0 (fv (α)) is an interesting
consequence of β (with respect to α) if β |= α ′ but α ̸ |= α ′.
We say that β respects the privacy of α if it has no interesting consequences, and that β violates

the privacy of α otherwise. □

Before we move on to the discussion of privacy on messages, let us say a few more words on

the intuition behind Σ0, α , α
′
and β . Σ0 is a sub-alphabet of Σ, namely the restricted alphabet over

which we can define the payloads α and the interesting consequences α ′. The choice of Σ0 depends,

of course, on the specific case study we are considering, and we will give a number of examples in

the next subsection and in Section 5. Σ0 allows us to write the statements α that will be revealed to

the intruder and their consequences α ′. As such, Σ0 will typically contain “payload” information,

i.e., the information a system actually deals with, as opposed to all cryptographic functions and

communications that are used to implement the system. For instance, in a voting system, Σ0 could

contain the names of three electoral candidates a, b and c, and α could then “reveal” that the actual

vote being cast is x ∈ {a, b, c}, as opposed to the specific cryptographic messages being sent in the

system that use hash functions and cryptographic operators to encrypt the votes. Note also that,

given the importance of Σ0, we could actually write “(α , β)-privacy with respect to Σ0”. However,

we take the liberty to write just (α , β)-privacy as it is simpler and Σ0 is, almost always, clear from

context.

We have defined the notion of an interesting consequence α ′ as anything the intruder may be

able to derive from his knowledge β as long as it is a non-technical statement (i.e., of LΣ0) and it

does not follow from α alone, i.e., from what he is permitted to know anyway. This allows us to

capture that the intruder may well see a few technical details, e.g., that two messages come from

the same IP address, but that in itself is not very interesting or useful as long as he cannot tie that

to a relevant information α ′.
Another aspect of this definition is that by the information α that we gave out, also all information

that can be derived from α is given out, because the best cryptographic systems cannot prevent the

intruder from drawing conclusions (by making derivations from the cryptographic messages he

knows). In general, the weaker α is (i.e., the less information we deliberately release to the intruder)

and the stronger β is (i.e., the more information we assume the intruder might actually have), the

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 S. Mödersheim and L. Viganò

stronger is the notion of privacy. So, as a rule of thumb, when in doubt, one should be restrictive

on α and generous on β .
In the examples below, we will see that, at least for easy systems, it is actually possible to “infer” β

systematically from the definition of the system under study: β is namely defined as the conjunction

of α and the instantiation of the axioms ϕframe (𭟋) and ϕ𭟋1∼𭟋2
for the specific system, including in

particular its specific set Σop of cryptographic operators and the cryptographic messages exchanged.

One could even compute β from a formal system specification of the system written, e.g., in the

applied pi-calculus or in an extended Alice–Bob notation such as [?]. In general, however, it might

not be possible to systematically infer β from the system, as β may actually contain information

that goes beyond the exchanged messages, such as timing information, for instance.

3.2 Privacy on Messages
The frames that we have introduced above formalize the knowledge of the intruder. The new idea

is that we also model the structural information that the intruder has about messages, and that that

information takes the form of a frame too, but with variables in messages. The concrete knowledge

(that is modeled by frames so far) is then an instance of this structural knowledge. Thus, a key idea

of (α , β)-privacy is to make explicit the fact that the intruder will usually also have information

about the structure of messages and can use this for his reasoning.

For instance, the intruder may know a message f (a,a), and he may know that the term is the

application of the operator f to two terms, but he may not know which terms. This structural

knowledge can be expressed by the term f (x ,y) with two variables x and y as placeholders for

what the intruder cannot determine so far. If the intruder learned that the two unknown arguments

are the same, then we would have the structural information f (x ,x).
For most part of this paper, we will call the frame for the structural information struct and the

frame for the concrete knowledge concr , and for simplicity we will abuse notation and write also

struct[·] and concr[·] in Herbrand logic instead of knstruct[·] and knconcr[·]. Since struct and concr
will then also have the same domain, it follows that genstruct and genconcr are equivalent and thus

we will simply write gen.
The variables that occur in frame struct are the free variables from α , e.g., the intruder may know

about an encrypted term that it contains a particular secret, although he does not know this secret.

The axiom ϕframe (𭟋) can now be instantiated with concr and struct. This formalizes that (a)

the intruder knowledge is closed under application of public operators and (b) when the intruder

composes terms himself, he knows the structure of the result as far as he knows the structure of

the subterms.

An interesting question is now what it means if we also instantiate the axiom ϕ𭟋1∼𭟋2
with concr

and struct, i.e., ϕconcr∼struct . This expresses that the intruder can connect knowledge of concrete

terms and their structure: two recipes yield the same intruder-generable messages iff they have the

same structure.

Let us now illustrate this by introducing a running example. In (α , β)-privacy, we typically

consider infinite state-transition systems and we now first focus on the analysis of privacy with

respect to one particular reachable state of such a system.

Example 3.2 (A simple voting example). As an example, let us consider a very simplistic toy

e-voting protocol (we will discuss more realistic examples in Section 5 and Section 6). Assume that

users vote by choosing values xi from a payload alphabet Σ0 = {a, b, c}, and that, as part of the

protocol, a voting server publishes messages of the form h(xi). Consider an intermediate state of

an election in which only one vote x = a has been cast (and the final result of the election has not

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Alpha-Beta Privacy 1:13

yet been released by the server). Then, α and β for this state could look as follows:

α ≡ x ∈ {a, b, c}
β ≡ α ∧ ϕframe (concr) ∧ ϕframe (struct) ∧ ϕconcr∼struct

for a frame struct = {|m1 7→ a,m2 7→ b,m3 7→ c,m4 7→ h(x) |}, so that concr = θ (struct) for a
substitution θ = {x 7→ a}. Then, in particular, we have that

concr[m1] = struct[m1] = a ∧
concr[m2] = struct[m2] = b ∧
concr[m3] = struct[m3] = c ∧
concr[m4] = h(a) ∧ struct[m4] = h(x)

The payload formula α expresses the obvious, namely, that the intruder knows that the vote is

in Σ0. The technical formula β contains α , the concrete and structural knowledge, and the ability

to compare them. β thus expresses the fact that the intruder knows

• all the constants of Σ0 (in memory locations m1, m2 and m3, for which the structural infor-

mation is identical to the concrete information),

• the concrete (observed) hash of the vote (in m4) and the structural information that the vote

message has the form h(x).

We, the modelers, can indirectly read off from the formula β “what actually happened”: there is

only one interpretation of the x such that concr[m4] = struct[m4] holds, namely x = a. The intruder
cannot reason this way, and thus in general will not know the right interpretation of the variables,

but may in some cases be able to infer it by comparing concrete and structural information he has, as

is the case in this example: first, observe that, by ϕframe (concr), we have concr[h(m1)] = concr[m4];

hence, by applying ϕconcr∼struct , we get struct[h(m1)] = struct[m4], which, by ϕframe (struct), yields
h(a) = h(x); thus, we conclude that the intruder can indeed find out that the vote was x = a,
meaning that β does not respect the privacy of α (with respect to Σ0 = {a, b, c}) and that the

protocol is not safe.

Let us therefore consider a more refined protocol by adding a fixed and secret number n: the
voting server now publishes messages of the form h(pair(n,xi)) for a number n known only to the

server, i.e., n is a secret from Σ \ Σ0. (Obviously, using such a fixed number, even though secret

from the intruder, is a risk for guessing attacks, but we will abstract away from guessing for now

and discuss it later.) Let us again consider an intermediate state of the election in which only one

vote x = a has been cast (and the final result of the election has not yet been released by the server).

Then, the α and β for this state could look as follows:

α ≡ x ∈ {a, b, c}
β ≡ α ∧ ϕframe (concr) ∧ ϕframe (struct) ∧ ϕconcr∼struct

for a frame struct = {|m1 7→ a,m2 7→ b,m3 7→ c,m4 7→ h(pair(n,x)) |}, with concr = θ (struct) for
θ = {x 7→ a}. Now, β expresses that the intruder knows the observed hash of the vote (concr[m4] =

h(pair(n, a)) and the structural information that thismessage has the form struct[m4] = h(pair(n,x)).
Here, the intruder does not know n and thus β has several satisfying interpretations of the free

variables, i.e., β has models for each x ∈ {a,b, c}), which represents the uncertainty of the intruder.

Hence, this β does respect the privacy of α (with respect to Σ0 = {a, b, c}).
One would thus be tempted to say that the variant of the protocol with the fixed secret number

is safe, but what happens if there are some dishonest voters who collaborate with the intruder? Let

us now focus on an intermediate state of the election in which only two votes x1 and x2 have been
cast (and the final result of the election has not yet been released by the server), where x1 = a is

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 S. Mödersheim and L. Viganò

from a dishonest voter and x2 = b from an honest one. Then, the α and β for this state could look

as follows:

α ≡ x1,x2 ∈ {a, b, c} ∧ x1 = a
β ≡ α ∧ ϕframe (concr) ∧ ϕframe (struct) ∧ ϕconcr∼struct

for a frame struct = {|m1 7→ a,m2 7→ b,m3 7→ c,m4 7→ h(pair(n,x1)),m5 7→ h(pair(n,x2) |}, with
concr = θ (struct) for θ = {x1 7→ a,x2 7→ b}, where now α expresses that the intruder knows that

both votes are in Σ0 and that he knows the value of the dishonest vote, whereas β expresses that

the intruder not only knows the concrete observed messages h(pair(n, a)) and h(pair(n, b)), which
are respectively in m4 and m5, but he also has the structural information that these messages have

the form h(pair(n,xi)).
The intruder can now reason as follows: since, by ϕframe (concr), it holds that concr[m4] ,

concr[m5] (recall that all terms are interpreted in the Herbrand universe), we have struct[m4] ,
struct[m5] by ϕconcr∼struct , so that h(pair(n, x1)) , h(pair(n,x2)), and therefore x1 , x2 (again since

terms are interpreted in the Herbrand universe). Since the intruder knows already the dishonest

vote x1 = a, he knows x2 , a, and can hence derive from β the Σ0-formula α ′ ≡ x2 ∈ {b, c} that
does not follow from α . Thus, in this example, β does not respect the privacy of α (with respect to

Σ0 = {a, b, c}). Note that the intruder cannot derive more, which is—very declaratively—because β
has both a model in which x2 = b, and one in which x2 = c, so the intruder was not even able to

determine the choice x2, he was only able to exclude one interpretation, namely x2 = a.7

Let us briefly also consider three further variants of the example with α ≡ x ∈ {a,b, c}. First,
if the intruder also knows n, say concr[m6] = struct[m6] = n, then he can indeed derive x = b,
because he can verify that h(pair(m6,m2)) gives the same concrete value as m4.

Second, if the server uses different secret nonces instead of a fixed number for all votes, i.e.,

β ≡ . . . concr[m4] = struct[m4] = h(pair(n1, a)) ∧ concr[m5] = h(pair(n2, b)) ∧ struct[m5] =

h(pair(n2,x)), then β indeed preserves the privacy of α . To see this, note that β has models with

x = a, with x = b, and with x = c. Therefore, every Σ0-formula α ′ that follows from β also follows

from α and thus β respects the privacy of α (with respect to Σ0 = {a, b, c}).
Third, so far m4 represented the vote of a dishonest agent and the intruder knew already its

value x1 = a. Protecting the privacy of two honest votes can be formalized as follows (where we

have two different nonces, but model them just as some fixed constants that the intruder does not

know by default):

α ≡ x1 ∈ {a, b, c} ∧ x2 ∈ {a, b, c}
β ≡ α ∧ ϕframe (concr) ∧ ϕframe (struct) ∧ ϕconcr∼struct

such that β includes

. . . concr[m4] = h(pair(n1, a)) ∧ struct[m4] = h(pair(n1,x1)) ∧
concr[m5] = h(pair(n2, b) ∧ struct[m5] = h(pair(n2,x2))

Here again β respects the privacy of α (with respect to Σ0 = {a, b, c}) because we can find a model

for each combination of values for x1,x2 ∈ {a, b, c}. In contrast, if we had used the same nonce

7
Note also that one may, of course, consider a similar use of variables for non-payload secrets, like the value n. However,
since we require that α and β have the same set of free variables, one would then existentially quantify that value, e.g.,

β ≡ ∃y concr[m4] = h(pair(n, a)) ∧ struct[m4] = h(pair(y, x1)) ∧
concr[m5] = h(pair(n, b)) ∧ struct[m5] = h(pair(y, x2))

Without the existential quantifier (ify were left free), the intruder could derive, e.g., thaty , a (by generating h(pair(m1, m1))
and comparing the result with m4). The ∃ thus intuitively says that we are not interested in the concrete value of y ; in fact,

the goal is not the protection of the nonces in the hash-values, so if they are found out, then it is not in itself a violation of

privacy (but may lead to one).

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Alpha-Beta Privacy 1:15

(replacing both n1 and n2 with n), we would have that concr[m4] , concr[m5] and thus x1 , x2,
which does not follow from α . Again the intruder does not find out x1 or x2 but only that the two

users voted differently. The crucial point here (and the strength of (α , β)-privacy) is that we do not

have to specify checks for all the different things that the intruder may be able to figure out, or even

think about them; we do not need to list all the different equivalences that should be considered. In

(α , β)-privacy, we simply just specify a formula α that describes what he is cleared to know and a

formula β containing all information that may be available to him. □

The form of α and β that we have used for Example 3.2 is at the core of many specifications,

namely, when the intruder has observed a set of messages and knows their structure. For this

reason, we define a particular fragment of (α , β)-privacy (for which we give some decidability

results in Section 4) that deals only with what we call combinatoric α and only with the analysis of

messages similar to the previous example.

Definition 3.3 (Combinatoric α). We call α ∈ LΣ0 (V) combinatoric if Σ0 is finite and contains

only uninterpreted constants. □

Thus, every model I of α maps the free variables of α to elements of the Herbrand universe

induced by Σ0. For each free variable x of α , we have I (x) = [c]≈ for some unique c ∈ Σ0. For

every I such that I |= α , we define the substitution θI that has as domain the set of free variables

of α , and such that θI (x) = c iff I (x) = [c]≈ (note that θI is unique modulo ≈). Recall that, by

slight abuse of notation, we may treat a substitution θ = [x1 7→ t1, . . . ,xn 7→ tn] as the Herbrand
formula x1 = t1 ∧ . . . ∧ xn = tn . Thus α is equivalent to the disjunction of all such substitutions:

Lemma 3.4. For every combinatoric α , there is a finite set of substitutions Θ such that α ≡
∨

θ ∈Θ θ .
We thus call Θ also the models of α .

Proof. Let Θ = {θI | I |= α }. Then Θ is finite since both the domain (namely the free variables

of α) and co-domain (namely Σ0) of every θI are finite. For every I |= α , it is clear that I |= θI ,
thus α |=

∨
θ ∈Θ θ . For every θ ∈ Θ and every I |= θ , we have I |= α , since Σ0 contains nothing but

uninterpreted constants and all free variables of α are mapped to Σ0 by θ , thus also
∨

θ ∈Θ θ |= α . □

Definition 3.5 (Message-analysis problem). Let α be combinatoric, θ a model of α , struct = {|m1 7→

t1, . . . ,ml 7→ tl |} for some t1, . . . , tl ∈ TΣ (fv (α)), and concr = θ (struct). Define

MsgAna(α , struct, θ) ≡ α ∧ ϕframe (concr) ∧ ϕframe (struct) ∧ ϕconcr∼struct

If β ≡ MsgAna(α , struct, θ), then we say that β is a message-analysis problem (with respect to α ,
struct, and θ). □

In general, such a β allows us to model a system where messages ti have been exchanged that

depend on some payload values fv (α) and the intruder has seen the concrete instantiations θ (ti) of
these messages. Typically, the intruder knowledge will contain all the values of Σ0 but he does not

know the substitution θ , i.e., how the payload variables were actually chosen from Σ0. What he

knows, however, is the structure of the terms, i.e., where these variables occur in the ti , because
this structural information is usually part of a publicly available protocol description. He can try to

exploit comparisons (ϕconcr∼struct) of concrete terms and structural information.

3.3 Pooling of Knowledge in (α , β)-privacy
If we model several dishonest parties, an interesting question is what they can achieve if they

collaborate, in particular, if they pool their knowledge. (α , β)-privacy offers a particularly simple

and declarative way of modeling, and reasoning about, the pooling of knowledge.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 S. Mödersheim and L. Viganò

The general principle for pooling knowledge is as follows. We can describe the individual view

of the world of two dishonest agents as two pairs (α1, β1)-privacy and (α2, β2)-privacy. Suppose they
are message-analysis problems, i.e., β1 = MsgAna(α1, struct1, θ1) and β2 = MsgAna(α2, struct2, θ2),
where we assume that the domains of struct1 and struct2 are disjoint (i.e., we do not have a name

clash in the memory locations).

Thus, α1 and α2 is the knowledge we have deliberately released to the two dishonest agents,

and β1 and β2 is the technical information such as exchanged messages that they could observe,

respectively. Of course, we require that both (α1, β1)-privacy and (α2, β2)-privacy already hold. If

the two parties collude, then they can in general derive more than their individual αi , but it is
quite “natural” to require that still (α1 ∧ α2, β1 ∧ β2)-privacy should hold. Why is it “natural”? It is

obviously the strongest privacy requirement we can make: no system can prevent the intruders

from combining their knowledge, i.e., both on the payload level α1 ∧ α2 and on the technical level

β1 ∧ β2, and derive conclusions from that. The point is that the intruders should not be able to

derive even more than that.

Example 3.6. Continuing in the realm of the previous examples, consider two dishonest agents

who each have observed the messages around one vote x1 and x2, respectively:

α1 ≡ x1 ∈ {a, b, c}
β1 ≡ MsgAna(α1, struct1, θ1)

with struct1 = {|m1 7→ a,m2 7→ b,m3 7→ c,m4 7→ h(pair(n,x1) |} and θ1 = {x1 7→ a}, and

α2 ≡ x2 ∈ {a, b, c}
β2 ≡ MsgAna(α2, struct2, θ2)

with struct2 = {|m5 7→ a,m6 7→ b,m7 7→ c,m8 7→ h(pair(n,x2) |} and θ2 = {x2 7→ b}.
Now consider β1∧β2. The question is whether it respects the privacy of α1∧α2. By joining forces

and pooling their knowledge, and reasoning exactly like we did in Example 3.2, the two dishonest

agents can derive that the two votes are different, i.e., x1 , x2, which does not follow from α1 ∧ α2.
This is an example of the fact that, even though a protocol may safeguard privacy against two

intruders who do not collude and see only part of the messages, the two intruders may be able to

break the protocol’s privacy when they pool their knowledge. As in the previous examples, the

problem is that the two messages in question use the same nonce; if the hash-values in m4 and m8
used different nonces n1 and n2 (instead of n), then the same derivation is not possible, and the

privacy of α1 ∧ α2 is respected. □

Thus, in general, it makes sense to consider the case that dishonest agents can pool their

knowledge and draw conclusions: no system can prevent this. From the (α , β)-privacy paradigm

it is clear that the conjunction of the respective αs and the respective βs yields the best possible
privacy requirement for the case of such a collusion, and this is a natural candidate to verify in a

system.

3.4 Model-theoretical (α , β)-privacy
We now introduce a model-theoretical view of (α , β)-privacy that gives us additional tools to tackle

some problems in a more semantical way. We then prove two theorems about the relationship

between the classical notion of (α , β)-privacy that we have considered above and the model-

theoretical notion.

Recall that in Herbrand logic an interpretation does not specify a universe (as is the case

in standard first-order logic), but the universe is rather the Herbrand universe induced by the

considered alphabet (typically Σ or Σ0 in our case) and the congruence relation ≈. When it is

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Alpha-Beta Privacy 1:17

not determined by the context, we may explicitly denote the alphabet and write, e.g., “a Σ0-

interpretation”.

Definition 3.7 (Model-theoretical (α , β)-privacy). Consider Σ0 and Σ as before, a formula α over

Σ0 and a formula β over Σ such that fv (α) = fv (β), both α and β are consistent and β |= α . We say

that (α , β)-privacy holds model-theoretically iff every Σ0-model of α can be extended to a Σ-model of

β , where a Σ-interpretation I ′ is an extension of a Σ0-interpretation I if they agree on all variables

and all the interpreted function and relation symbols of Σ0. □

Theorem 3.8. If (α , β)-privacy holds model-theoretically, then it also holds in the classical sense.
Conversely, if for every model I of α , there is a Σ0-formula ϕI that has only I as a model (with respect
to Σ0), then classical (α , β)-privacy implies model-theoretical (α , β)-privacy.

Proof. First, suppose that (α , β)-privacy holds model-theoretically. Let I be a model of α . Then,
for some extension I ′ of I (interpreting also the symbols in Σ \ Σ0), we have I

′ |= β . Let further
α ′ be any Σ0 formula that follows from β . Then, I ′ |= α ′ and thus also I |= α ′. Since I |= α was

arbitrary, we have that α |= α ′; since α ′ was arbitrary, we have classical (α , β)-privacy.
Conversely, suppose that for every I such that I |= α there is a Σ0 formula ϕI that has (with

respect to Σ0) exactly I as a model. Suppose, for the sake of contradiction, that (α , β)-privacy does

not hold in the model-theoretical sense, i.e., let I |= α be such that no extension I ′ to Σ is a model

of β . Thus, no model of β is a model of ϕI , and then β |= ¬ϕI . Let thus α
′ ≡ ϕI . Obviously, α ̸ |= α

′
,

so classical (α , β)-privacy is violated, and we conclude by contradiction. □

Hence, for a combinatoric α , classical (α , β)-privacy and model-theoretical (α , β)-privacy coincide.
In general, however, classical (α , β)-privacy does not imply model-theoretical (α , β)-privacy.

Theorem 3.9. Classical (α , β)-privacy does not imply model-theoretical (α , β)-privacy.

Proof. Let Σ0 consist of the predicate p/1 and the uninterpreted functions z/0 and s/1, i.e., the
Herbrand Universe is the natural numbers and p is a unary predicate over the natural numbers. We

can represent any model of p as an ω-wordw ∈ {0, 1}ω , where the i-th position in the word is 1 iff

p[si (z)] holds. Let α ≡ true. Let now Σ contain Σ0 and the interpreted function +/2 and let

β ≡ (∀x ,y. (x+z = x) ∧ (x+s(y) = s(x+y))) ∧ (∃t1, t2. (t1 , z) ∧ (∀x . p[t2+x]↔ p[t1+t2+x]))

Thus, β says that + is addition on natural numbers and that p when written as an ω-word has the

formuvω for someu,v ∈ {0, 1}∗,v , ϵ . Clearly, (α , β)-privacy does not hold in the model-theoretical

sense, but we now show that it holds in the classical sense.

Let α ′ be any formula over Σ0, and let G be the models for p of the formula ¬α ′ represented as

ω-words. NowG is an ω-regular language: this is because ¬α ′ is over Σ0, thus can only use z, s and
p besides the symbols of the logic; the meaning of z and s and the domain of p are determined by

the Herbrand universe, thus ¬α ′ corresponds to an S1S formula and the set of its models forms

an ω-regular language [?]. We can distinguish two cases. In the first case, G = ∅, then α |= α ′, so
(α , β)-privacy is not violated for this α ′. In the second case,G , ∅. A non-emptyω-regular language,
however, always contains a word of the formw = uvω for some u,v ∈ {0, 1}∗, v , ϵ . Then,w can

be extended to a model of β , but it is also a model of ¬α ′, and thus β ̸ |= α ′. Hence, also for this

α ′, (α , β)-privacy is not violated either. In conclusion, there is no α ′ over Σ0 such that β |= α ′ but
α ̸ |= α ′. □

Note again that whenever all models of α can be written as Σ0-formulae—which holds in all

but quite construed cases—classical and model-theoretical (α , β)-privacy holds. This allows us to

overcome the following obstacle. (α , β)-privacy asks for any Σ0-formula α ′ that can be derived

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 S. Mödersheim and L. Viganò

from β but not from α . In general, there is a (countably) infinite choice for α ′ to consider. However,

this is not the case when α is combinatoric:

Corollary 3.10. Consider an (α , β) pair, where α is combinatoric and Θ is the set of models of α .
Then, β violates the privacy of α iff β |= ¬θ for any θ ∈ Θ.

Proof. For a combinatoric α , classical and model-theoretical privacy coincide by Theorem 3.8.

Moreover, for a combinatoric α , Θ is finite by definition. The statement follows by the fact that

β |= ¬θ is equivalent to ¬Sat (β ∧ θ). □

4 AUTOMATION AND THE RELATION TO STATIC EQUIVALENCE
The concept of (α , β)-privacy is very expressive, because Herbrand logic is. Considering Example 2.5,

we recall that we can axiomatize arithmetic (of natural numbers) by a Herbrand formula α so that

α |= γ iff γ is a true sentence of arithmetic. Let valid be a further nullary relation symbol in Σ0 and

β ≡ α ∧ (γ =⇒ valid); then β respects the privacy of α iff γ is a true sentence of arithmetic. Thus,

in general, (α , β)-privacy (or its complement) is not even semi-decidable.

We see this expressive power as a feature, because it allows us to think about privacy without

the tight corset imposed by automated methods. In this section, we explore a decidable fragment

and the relation to static equivalence of frames for which many decidability results already exist.

Because of its expressive power, it is no surprise that one can formulate static equivalence in

Herbrand logic, and thus reduce static equivalence of frames to (α , β)-privacy.

Lemma 4.1. Given two frames 𭟋1 and 𭟋2, we have 𭟋1 ∼ 𭟋2 iff (α , β)-privacy holds for α ≡ x ∈
{0, 1} and β ≡ α ∧ (x = 1 =⇒ ϕframe (𭟋1) ∧ ϕframe (𭟋2) ∧ ϕ𭟋1∼𭟋2

).

Proof. The statement follows straightforwardly by observing that every model of α can be

extended to a model of ϕframe (𭟋1) ∧ ϕframe (𭟋2) ∧ ϕ𭟋1∼𭟋2
iff 𭟋1 ∼ 𭟋2. □

The simple argument of this lemma may seem slightly unfair towards static equivalence of

frames, since we are not truly using α for the high-level payload information available to the

intruder, but rather considering everything as technical, and then just exploiting the expressive

power of Herbrand logic. In order to show a closer relationship between static equivalence and

(α , β)-privacy, we prove below that a large fragment of the static equivalence problem for frames

can be encoded into the message-analysis fragment of (α , β)-privacy (cf. Definition 3.5).

Static equivalence of frames is essentially the question whether the intruder can distinguish two

concrete worlds. For instance, the frames𭟋1 and𭟋2 in Example 2.8 and Example 2.10 represent two

concrete worlds that the intruder can distinguish: 𭟋1 ≁ 𭟋2. In contrast, (α , β)-privacy expresses

with α all possible worlds (there may be more than two) and with β one concrete world, asking

whether the intruder can exclude some of the worlds that are models of α . This, in particular,

requires a distinction—that frames do not have—between high-level payload information and

low-level technical information.

The fact that static equivalence problems can be somehow encoded into (α , β)-privacy is not too

surprising since it simply exploits the expressiveness of Herbrand logic, as we already remarked. A

deeper relation is highlighted in the following where we show that message-analysis-style problems

with a clear distinction of payload and technical information can be “more directly” encoded into

(α , β)-privacy.
The other direction for message-analysis problems is also possible. This is interesting and useful

not just conceptually but also practically, since it allows us to use for (α , β)-privacy existing results

and tools for static equivalence (in particular, for various algebraic theories).

As first step towards a relation between static equivalence and (α , β)-privacy, we show the

following:

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Alpha-Beta Privacy 1:19

Lemma 4.2. Let α be combinatoric, Θ be the models of α , and β ≡ MsgAna(α , 𭟋, θ1) for some
θ1 ∈ Θ. Then, for every θ2 ∈ Θ, we have Sat (θ2 ∧ β) iff θ1 (𭟋) ∼ θ2 (𭟋).

Proof. The following statements are equivalent:

• Sat (θ2 ∧ β)
• Sat (θ2 ∧ α ∧ ϕframe (θ1 (𭟋)) ∧ ϕframe (𭟋) ∧ ϕθ1 (𭟋)∼𭟋) [by Definition 3.5]

• Sat (θ2 ∧ α ∧ ϕframe (θ1 (𭟋)) ∧ ϕframe (θ2 (𭟋)) ∧ ϕθ1 (𭟋)∼θ2 (𭟋))
This is because the formula contains θ2 and thus all variables must be instantiated accordingly,

including those occurring in 𭟋.

• Sat (ϕframe (θ1 (𭟋)) ∧ ϕframe (θ2 (𭟋)) ∧ ϕθ1 (𭟋)∼θ2 (𭟋))
This is because the formula Sat (ϕframe (θ1 (𭟋)) ∧ ϕframe (θ2 (𭟋)) ∧ ϕθ1 (𭟋)∼θ2 (𭟋)) is ground (and

consistent with α and θ2).
• θ1 (𭟋) ∼ θ2 (𭟋) [by Definition 2.9] □

We now show the equivalence of message-analysis problems with a corresponding finite set of

static equivalence problems. More specifically, we prove that it suffices to pick arbitrarily one of

the models of α and show that (α , β)-privacy holds for that model, and that this is equivalent to

showing the indistinguishability of the given frame under every model of α .

Theorem 4.3. Letα be combinatoric,Θ = {θ1, . . . ,θn } be themodels ofα , and β ≡ MsgAna(α , 𭟋, θ1)
for some θ1 ∈ Θ. Then, we have that (α , β)-privacy holds iff θ1 (𭟋) ∼ . . . ∼ θn (𭟋).

Proof. The following are equivalent:

• (α , β)-privacy
• Sat (θi ∧ β) for every 1 ≤ i ≤ n [by Definition 3.7]

• θi (𭟋) ∼ θ1 (𭟋) for every 1 ≤ i ≤ n [by Lemma 4.2]

• θ1 (𭟋) ∼ . . . ∼ θn (𭟋) [by Definition of ∼] □

Example 4.4. Let us consider again the second case of our simple voting example (Example 3.2),

in which the voting server publishes messages of the form h(pair(n,xi)) for a fixed number n
known only to the server, i.e., n is a secret from Σ \ Σ0. The models of

α ≡ x ∈ {a, b, c}

are Θ = {θ1,θ2,θ3} with θ1 = {x 7→ a}, θ2 = {x 7→ b} and θ3 = {x 7→ c}. Then, for θi ∈ Θ
corresponding to the specific vote xi that has been cast, we have

β ≡ MsgAna(α , struct, θi)
≡ α ∧ ϕframe (concr) ∧ ϕframe (struct) ∧ ϕconcr∼struct

for a frame struct = {|m1 7→ a,m2 7→ b,m3 7→ c,m4 7→ h(pair(n,x)) |}, with concr = θi (struct). So,
to check whether (α , β)-privacy holds it suffices to check one θi ∈ Θ, say θ1 = {x 7→ a}, and then it

holds for all θi ∈ Θ. Theorem 4.3 tells us that this is equivalent to checking the static equivalence

between all concrete votes by considering all models, i.e., θ1 (struct) ∼ θ2 (struct) ∼ θ3 (struct). □

Corollary 4.5. Let α be combinatoric, Θ be the models of α , and 𭟋 be a frame. Then, we have
that (α ,MsgAna(α , 𭟋, θ))-privacy holds for some θ ∈ Θ iff (α ,MsgAna(α , 𭟋, θ))-privacy holds for
all θ ∈ Θ.

Hence, if in a given world θ the intruder cannot exclude any other worlds, then in no world he

can exclude any world. Thus, in transition systems, we may summarize the worlds that only differ

on the concrete value of the privacy variables in one state. This is however only possible as long as

no behavior of the honest agents depends on it. For instance, in a voting protocol, the actual values

of the vote have no influence on the behavior of the honest agents, so there we can always model

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 S. Mödersheim and L. Viganò

all possible voting outcomes by a single state that is parameterized over the choice of a model θ .
Thus, we can exploit privacy (the goal) even for an efficient representation.

Since this result is independent of the considered set Σop of cryptographic operations and

algebraic theory, we immediately have that if we can decide static equivalence for a given theory

(e.g., [? ?]), then we can decide the message-analysis problem fragment of (α , β)-privacy for that

theory.

To conclude the section, note that, instead of relying on static equivalence, we could have also

given a direct decision procedure for our example theory, without an enumeration of all models.

5 MODELING AND REASONING ABOUT FURTHER EXAMPLE SCENARIOS
We chose the following major areas to model further examples and show (α , β)-privacy at work:

• randomized vs. non-randomized encryption including non-determinism and the notion of

strong secrecy (Section 5.1),

• guessing attacks (Section 5.2, in which we discuss different approaches to encode passwords

and guessing in (α , β)-privacy and show unique features of our logic), and

• e-voting (Section 5.3).

5.1 Modeling Subtleties of Encryption
5.1.1 Randomized vs. Non-Randomized Encryption. Standard Dolev-Yao models are blind to the

problem of non-randomized encryption because the intruder cannot compare results in thesemodels.

Here, we have directly modeled randomized encryption operators by means of a random value

r , e.g., crypt(k, r ,m), where the randomization should, of course, be different at each encryption.

In our approach, this is taken care of by the transition system, which should actually ensure that

every honest agent chooses a new randomness at each encryption.

We model non-randomized encryption by using r = ε for an intruder-known constant ε , i.e., we
write crypt(·, ε, ·) to model the missing randomization.

Example 5.1 (Simple Voting). Let Σ0 = {0, 1}, α ≡ x ∈ {0, 1}, and β ≡ MsgAna(α , struct, θ), where
struct = {|m1 7→ ε,m2 7→ 0,m3 7→ 1,m4 7→ k,m5 7→ crypt(k, ε,x) |} and θ = {x 7→ 0}. The intruder
can derive from β that concr[m5] = crypt(k, ε, 0) = concr[crypt(m4,m1,m2)], and then, by ϕ𭟋1∼𭟋2

,

struct[m5] = struct[crypt(m4,m1,m2)] and thus x = 0.
A similar deduction would not be possible if crypt contained additionally something random,

i.e., if struct = {|m1 7→ ε,m2 7→ 0,m3 7→ 1,m4 7→ k,m5 7→ crypt(k, r,x) |}, where r is not known to

the intruder. (This is of course the very reason for probabilistic encryption.) In such a probabilistic

variant, β would indeed respect the privacy of α as the intruder would no longer be able to generate

terms that would give him any interesting insight on x . □

5.1.2 Non-determinism. Another interesting question that we can ask is what the intruder can

discover when he does not know the content of messages sent by the honest agents (in fact, he might

not even know to which protocol the messages belong), but he knows the format of the messages

that are exchanged in several protocols. (α , β)-privacy can easily encode non-determinism, e.g., if

messages have a different structure depending on the choices of parties. Consider this example

α ≡ x ∈ {yes, no} ∧ y ∈ {a, b} ,

where x is the server’s decision and y is the concrete name of the client (the intruder knows yes,
no and pub(a)). A party may respond to a request with

crypt(pub(y), r, pair(yes, n)) or crypt(pub(y), r, no) ,

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Alpha-Beta Privacy 1:21

depending on the decision on the vote, where n is a secret from Σ\Σ0 (and where, like in Example 3.2,

we abstract away from the fact that the intruder might be able to guess such a fixed number).

This is no longer a message-analysis problem, since the structure of the messages depends on x ;
and it cannot be directly expressed as a problem of static equivalence of frames either.

8
However,

(α , β)-privacy allows us to incorporate such more complex relations between α and the structure

of messages, e.g., the history of events that happened so far. For this example, we can specify the

struct and concr knowledge of the intruder directly as a formula related to the flag x as part of β :

concr[m1] = struct[m1] = yes ∧
concr[m2] = struct[m2] = no ∧
concr[m3] = struct[m3] = pub(a) ∧
concr[m4] = crypt(pub(a), r, pair(yes, n)) ∧

((x = yes ∧ struct[m4] = crypt(pub(y), r, pair(yes, n))) ∨
(x = no ∧ struct[m4] = crypt(pub(y), r, no)))

so that β actually encodes a concrete world (in this case, such that x = yes).
Indeed, in the example, (α , β)-privacy holds, but if we had used non-randomized encryption

(replacing r with ε), the intruder could have generated the term crypt(m3, ε, m2) and checked that

it does not produce the same concr value as m4. Thus, β |= struct[m4] , crypt(pub(a), ε, no). It
follows that the model (x = no ∧ y = a) is excluded. Note that this does not tell us the value of x
nor that of y, but just excludes one of the combinations.

5.1.3 Strong Secrecy. In the static equivalence community (e.g., [?]), there is also the notion of

strong secrecy:

Definition 5.2. A frame 𭟋 that talks about a variable x (the “secret”) respects the strong secrecy of
x if 𭟋{x 7→ s} ∼ 𭟋{x 7→ t } for any generable terms s and t . □

Thus, if the intruder can choose arbitrary (known) values and the secret is replaced for those

values, he still cannot deduce which one it is.

The philosophy of the (α , β)-privacy approach is actually a bit different from this view: we would

normally consider problems of strong secrecy actually as the question of checking that a protocol

provides secrecy even when the secrets are weak, like poor passwords. We illustrate this in the

following subsection on modeling guessing attacks. However, the notion of a game that the intruder

can play is quite interesting for its relation for instance to cryptographic models. Therefore, we

quickly illustrate how this can be done with (α , β)-privacy.

Example 5.3 (Strong Secrecy Game). As an example of the experiment that the intruder can do

with his environment, consider the following “strong secrecy game”. To model an interaction

between the intruder and a (virtual) host, we design a formula that represents the evolution of the

intruder knowledge in the game in two steps:

• We start in a state where the intruder knowledge is represented by 𭟋1 = {|m1 7→ n1,m2 7→

n2 |}.
• The intruder can choose any two recipes s0 and s1 with respect to𭟋1, i.e., gen𭟋1

(s0)∧gen𭟋1

(s1),
and he sends concr[s0] and concr[s1] to an honest agent host.
• Now the host non-deterministically chooses a Boolean b ∈ {0, 1} and encrypts concr[sb]
with a key k and sends it back to the intruder, who only knows that the encryption contains

8
Note that, in general, even for problems that fall outside the message-analysis fragment of (α , β)-privacy there could still

be suitable encodings into static equivalence problems.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 S. Mödersheim and L. Viganò

sb depending on the choice b (that the intruder does not know). For this uncertainty, we

introduce a new variable x and have α ≡ x ∈ {0, 1}. Let θ = [x 7→ b]. Now we define

β ≡ MsgAna(α , 𭟋1, θ)
∧

∃s0, s1. gen𭟋1

(s0) ∧ gen𭟋1

(s1)
∧ ∃sx . sx ∈ {s0, s1}.

((x = 0 ∧MsgAna(α , 𭟋2, θ ∪ [sx 7→ s0])) ∨
(x = 1 ∧MsgAna(α , 𭟋2, θ ∪ [sx 7→ s1])))

where 𭟋2 = 𭟋1 ∪ {|m3 7→ scrypt(k, concr[sx]) |}.
Indeed, (α , β)-privacy holds, i.e., the intruder cannot determine x , so this gives us strong secrecy.

An example of violation of strong secrecy would be for instance if the message had rather the form

scrypt(concr[sb], . . .) (i.e., if a weak secret is used to encrypt a message) or if we have hash-values

like h(concr[sb], . . .) with other guessable elements, since then the intruder can verify whether the

message was generated with s0 or s1, and thus obtain x . □

5.2 Modeling Guessing Attacks
Guessing attacks have been intensively studied in security protocol analysis, also using static

equivalence, e.g., [? ? ?] to name just a few works. We can use also this example to show how

flexible our (α , β)-privacy approach is: suppose that we have an intruder who knows only a

part of the password space (e.g., some users use good passwords, some use bad passwords). Let

P = {p1, . . . , pk } be the space of all passwords and let D = {p1, . . . , pl }, with l < k , be the intruder’s
dictionary. For concreteness, let us consider the classical example of the MS CHAPv2 protocol [?],
where the server sends a nonce ns and the client c should produce nc, hx (nc, ns, c) for some client

nonce nc, hash-MAC’ed with the client’s password x . Then one reachable state could be:

α ≡ x ∈ {p1, . . . , pk }
β ≡ MsgAna(α , struct, θ)

where struct = {|m1 7→ p1,m2 7→ p2, . . . ,ml 7→ pl ,ml+1 7→ ns,ml+2 7→ c,ml+3 7→ pair(nc,h(x ,
pair(nc, pair(ns, c)))) |} and θ = {x 7→ p1}.

This is obviously the concrete state where x = p1, and the intruder can find out that that is indeed

the case. To that end, he uses the generable terms s = h(m1, pair(proj1 (ml+3), pair(ml+1,ml+2)))
and t = proj

2
(ml+3), so that concr[s] = concr[t] and thus struct[s] = struct[t]. Then

h(p1, pair(proj1 (pair(nc, h(x, pair(nc, pair(ns, c))))), pair(ns, c))) =

proj
2
(pair(nc, h(x, pair(nc, pair(ns, c)))))

and thus h(p1, pair(nc, pair(ns, c))) = h(x, pair(nc, pair(ns, c))). In the given Herbrand universe

(which depends on the algebraic theory), the only possible model for x is x = p1, thus β |= x = p1.
Note that if we consider a trace where x = pn with l < n ≤ k , thus using a password that the

intruder does not have in his dictionary, then this attack is not possible. However, the intruder

can still derive x ∈ {pl+1, . . . , pk } since by checking his entire dictionary, he can confirm that the

password is not one of those he knows. So, in fact, privacy is violated also in these cases, even

though most people would agree that this in itself is not a problem, at least for online guessing:

an interesting argument, in this case, is that even the best protocol and the best password cannot

prevent the intruder from trying out online a few passwords and confirming that they are wrong

guesses. Whereas in offline guessing good password protocols don’t in fact allow the intruder to

carry out offline guesses, we can still consider transition systems in which the intruder can actually

send guesses to the server. We leave a more detailed investigation of this for future work.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Alpha-Beta Privacy 1:23

In fact, for this reason we suggest to see the password itself as a technical information that

encrypts the actual payload information we try to protect. This is a simple way to say: we don’t
care what the intruder finds out about the password, but about the messages that are encrypted with
it. This allows us to circumvent all troubles with declassification of information or quantitative

aspects. Here is how this could look like, if the password pn is used to encrypt a payload x that is,

say, from a set of values {c1, . . . , cm }:

α ≡ x ∈ {c1, . . . , cm }
β ≡ MsgAna(α , struct, θ)

where struct = {|m1 7→ p1,m2 7→ p2, . . . ,ml 7→ pl ,ml+1 7→ ns,ml+2 7→ c,ml+3 7→ pair(nc,h(pn ,
pair(nc, pair(ns, c)))),ml+4 7→ scrypt(pn , x) |} and θ = {x 7→ c7}.
This preserves privacy if l < n ≤ k (i.e., for a good password) and still violates it for a bad

password 1 ≤ n ≤ l . Note that when the password is technical information, we do no longer use a

variable for it, because it is not part of the space we try to get information about.

5.3 Modeling E-Voting
An interesting field for privacy goals is of course electronic voting (e-voting), which we already

touched upon in the previous examples. In this paper, we do not want to model and analyze

a full voting protocol, as that is not the main focus of our research, but rather only illustrate

how (α , β)-privacy gives a new and declarative way to formulate privacy goals and describe their

analysis.

Let us first look at the most basic setting: the vote between two options 1 and 0 (e.g., representing

“yes” or “no”, or the choice between two candidates).

Definition 5.4 (Binary Voting Privacy). Consider a voting system where the choice is either 1

or 0. Let N be the number of cast votes and R be the number of votes for 1. Let Σ0 consist of the

constant 0, the successor function s (·) and the addition function +, and consider the axiom αax
characterizing addition:

αax ≡ ∀x .∀y. x + 0 = x ∧ x + s (y) = s (x + y)

The privacy goal for binary votes (namely releasing N and R) is then defined by the following

formula α :

α ≡ αax ∧v1 ∈ {0, 1} ∧ . . . ∧vN ∈ {0, 1} ∧v1 +v2 + . . . +vN = R ,

where v1, . . . ,vN are variables. □

Note that, strictly speaking, α is not combinatoric, since Σ0 contains 0 and s (so the Herbrand
universe entails the natural numbers) and + is interpreted as addition. There are however only

finitely manymodels (with respect to the free variables). In fact, there exists an (inefficient) encoding

into a combinatoric problem that works without a concept of natural numbers.

Example 5.5. For example, consider the trivial voting protocol, in which every voter i sends their
votevi directly to a voting server, signed with their own private key and encrypted with the server’s
public key. This of course makes the strong requirement that the server must be completely trusted

by everybody as it can see all votes and nobody can verify the correct tallying by the server. Let θ
be the true result of the vote (mapping each vi to 0 or 1); then we have β = MsgAna(α , struct, θ)
where

struct = {|m1 7→ crypt(pub(s), r1, sign(priv(1), ballot(v1))),
. . .
mN 7→ crypt(pub(s), rN , sign(priv(N), ballot(vN))) |}

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 S. Mödersheim and L. Viganò

and ballot is the ballot format of this vote, priv(i) is the private key of the ith voter, pub(s) is the
public key of the server, and the ri are random values to make the encryption non-deterministic.

In this example, (α , β)-privacy holds, since the intruder cannot analyze any messages and cannot

compare them, thus every model of α can be extended to a model of β . □

There are many works on electronic voting using the applied pi-calculus or a similar calculus to

model the protocol (see, e.g., [? ? ? ? ? ?] to name a few). The voting privacy goal is usually then

expressed by the following trick: consider two processes that differ only in the concrete vote of two

(honest) voters who swap their vote; then any such pair of processes must be indistinguishable.

More formally, let θ1 and θ2 be two substitutions with domain v1, . . . ,vN and co-domain {0, 1}.
Then θ1 and θ2 are a vote swap of each other, if θ1 (vi) = θ2 (vj) and θ1 (vj) = θ2 (vi) for some

i, j ∈ {1, . . . ,N } and θ1 (vk) = θ2 (vk) for all other k . We show that this privacy definition based on

vote swapping is actually in some sense equivalent to the binary voting privacy goal:

Theorem 5.6. Let α be the binary voting privacy goal from Definition 5.4, θ0 be a model of α , and
β ≡ MsgAna(α , struct, θ0) for some frame struct be a message-analysis problem. Then (α , β)-privacy
holds iff θ1 (struct) ∼ θ2 (struct) for any two models θ1 and θ2 of α that are a vote swap of each other.

Proof. Let Θ = {θ1, . . . ,θn } be the models of α . By Theorem 4.3, (α , β)-privacy holds iff

θ1 (struct) ∼ . . . ∼ θn (struct). The models of α can be characterized by permutations: θ1,θ2 are mod-

els of α iff there is a permutation π of {1, . . . ,N } such that θ1 (vi) = θ2 (vπ (i)) for all i ∈ {1, . . . ,N }.
The theorem now follows from the fact that all permutations can be obtained from each other by a

sequence of swaps, and ∼ is an equivalence relation. □

Example 5.7. Let us consider the setting of Definition 5.4 and Example 5.5 and let, for concreteness,

the number of cast votes be N = 3 and the number of votes for 1 be R = 2. Then the privacy goal

for binary votes is defined by

α ≡ αax ∧v1 ∈ {0, 1} ∧v2 ∈ {0, 1} ∧v3 ∈ {0, 1} ∧v1 +v2 +v3 = 2 ,

where v1,v2,v3 are variables and αax is the axiom characterizing addition. The models of α are

Θ = {θ1,θ2,θ3} with θ1 = {v1 7→ 1,v2 7→ 1,v3 7→ 0}, θ2 = {v1 7→ 1,v2 7→ 0,v3 7→ 1} and
θ3 = {v1 7→ 0,v2 7→ 1,v3 7→ 1}.

Let, without loss of generality, the true result of the vote be θ = θ1 = {v1 7→ 1,v2 7→ 1,v3 7→ 0},
so that β = MsgAna(α , struct, θ) with

struct = {|m1 7→ crypt(pub(s), r1, sign(priv(1), ballot(v1))),
m2 7→ crypt(pub(s), r2, sign(priv(2), ballot(v2))),
m3 7→ crypt(pub(s), r3, sign(priv(3), ballot(v3))),
m4 7→ 0,m5 7→ 1,m6 7→ pub(s) |}

As we remarked above, (α , β)-privacy holds since the intruder cannot analyze any messages and

cannot compare them, thus every model of α can be extended to a model of β . We can also use

Theorem 5.6 (and Theorem 4.3) to argue that (α , β)-privacy holds iff θ1 (struct) ∼ θ2 (struct) ∼
θ3 (struct). It is easy to see that the models of α are characterized by permutations of {1, 2, 3}, and
that all these permutations can be obtained from each other by a sequence of swaps. Hence, we

can conclude by the fact that ∼ is an equivalence relation. □

Theorem 5.6 shows that (α , β)-privacy is actually a declarative logical characterization of the

privacy goals, in contrast to the more technical vote-swapping formulation. Note also that privacy

for some more advanced voting systems cannot be characterized by vote swapping, but such

systems have a declarative specification using (α , β)-privacy. For example, consider the following

generalization of voting privacy:

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Alpha-Beta Privacy 1:25

Definition 5.8 (General Vote Privacy). Consider a voting system with K candidates {c1, . . . , cK }
and N voters, and such that every voter has L votes (one can give multiple votes to candidates).

We use a binary interpreted function symbol v[·][·] as follows: v[i][c j] is the number of votes that

voter i has given to candidate c j . Then, publishing the total number of votes R1, . . . ,RK for each

candidate gives rise to the following privacy goal:

α ≡ αax ′ ∧v[1][c1] + . . . +v[1][cK] = L ∧ . . . ∧ v[N][c1] + . . . +v[N][cK] = L
∧v[1][c1] + . . . +v[N][c1] = R1 ∧ . . . ∧ v[1][cK] + . . . +v[N][cK] = RK

□

This shows that (α , β)-privacy indeed provides us with a new and declarative way to formulate

privacy goals also in the context of e-voting, and sets the basis for the modeling and analysis of full

voting protocols, which will also require us to consider (α , β)-privacy in the context of transition

systems.

6 (α , β)-PRIVACY IN TRANSITION SYSTEMS
We now briefly show how we can extend (α , β)-privacy to transition systems. Given that transition

systems are not the main focus of this paper (and will be investigated in detail in future work)

we here only discuss the key idea and a detailed example of two security protocols for private

authentication.

The key idea is that we can define a state as a triple (α , β,γ) of formulae, where γ represents the

“truth”. Then we can specify transition systems for this kind of states, and privacy is the question

whether (α , β)-privacy holds in every reachable state (α , β,γ). Formally, with Σ, Σ0 ⊆ Σ,V and ≈

as before:

Definition 6.1 (Transition systems). A state is a triple (α , β ,γ), where α and β are as before and

γ ∈ LΣ0 (V) is such that γ |= α and γ is true in exactly one model of α (with respect to Σ0 and the

free variables of α). We also call γ the truth and may also apply it to Σ0-terms like a substitution.

Let S denote the set of all states. A transition system is a pair (I ,R) where I ∈ S and R ⊆ S × S.
As is standard, the set of reachable states is the smallest set that contains I and that is closed under

R, i.e.: if S is reachable and (S, S ′) ∈ R, then also S ′ is reachable.
We say that a transition system satisfies privacy iff (α , β)-privacy holds in every reachable state

(α , β ,γ). □

Example 6.2. As an example of privacy as reachability, consider a simple transition system with

an initial state that has no information, and four successor states Si, j with i, j ∈ {0, 1} depending
on two independent choices i and j of the user. In all four states, we have α ≡ x ∈ {0, 1}. Let now
βi, j ≡ MsgAna(α , struct, θ) where struct = {|m1 7→ scrypt(kj ,x),m2 7→ k1 |}, kj are new constants,

and θ = {x 7→ i}.
In the states with j = 0, the intruder cannot deduce anything interesting as he does not have

the key needed for decryption, but in the states with j = 1, we have βi,1 |= x = i . So, there are
reachable states in which the intruder can find out more than he is supposed to. □

For an entire protocol one would not say that it satisfies its privacy goals if in every state (α , β)-
privacy holds; one may then, by slight abuse of notation, say (α , β)-privacy holds for the protocol

(referring to (α , β)-privacy as a concept, not with respect to a concrete pair of formulas α and β).
That both α and β may grow over time should not be surprising, since the information that the

intruder gathers may increase over time. For instance, at the beginning of a voting process, the

result is not published yet (even if all voters have at this point already made up their mind how

they want to vote). Moreover, a violation in an intermediate state of a system does not necessarily

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 S. Mödersheim and L. Viganò

entail a violation in the end (votes are actually released at the end but must be protected while the

election is being carried out).

Let us now consider two more sophisticated examples.

6.1 Analysis of Two Example Protocols
To illustrate further the expressiveness and strength of (α , β)-privacy in transition systems, we

consider two protocols proposed by Abadi and Fournet in ? . The protocols are supposed to establish
shared secrets between two agentsA and B. As they write: “The first protocol uses digital signatures
and requires that principals have loosely synchronized clocks. The second protocol uses only

encryption and avoids the synchronization requirement, at the cost of an extra message. The second

protocol draws attention to difficulties in achieving privacy against an active adversary.” More

information on the protocols can be found in [?]; here, we will focus only on what is needed to

show (α , β)-privacy at work.

We adopt, whenever possible, Abadi and Fournet’s notions and notations but introduce our

own when needed. Consider a set of agents Agent and sets of agents SA for every A ∈ Agent,
representing the set of agents that A is willing to talk to. In contrast to Abadi and Fournet, we write

pub(A) and priv(A) for the public and private key of agent A, respectively.

6.1.1 The First Protocol (AF1). The first protocol, which we call AF1, is as follows:

A→ B : [hello, crypt(pub(B), [hello, pub(A), sign(priv(A), [pub(A), pub(B),K ,T])])]

where hello is a tag, K is a symmetric key freshly generated by A,T is a timestamp (we assume that

B buffers all messages as long as their timestamp is considered recent, so replays can be detected)

and [t1, . . . , tn] denotes the pairing pair(t1, pair(t2, pair(. . . , tn))).
Upon receipt of the message, the recipient B tries to decrypt the second component using its

private key priv(B). If the decryption yields a key pub(A) and a signed statement of the form

sign(priv(A), [pub(A), pub(B),K ,T])]), then B extracts pub(A) and K , verifies the signature using
pub(A), ensures that the message is not a replay using the timestamp T and checks that A ∈ SB . If

• the form does not check out (it is not encrypted with pub(B), etc.),
• the message is a replay, or

• A < SB (i.e., B is not willing to talk to A),

then B should simply discard the message.

The encryptions are assumed to be which-key concealing, i.e., an intruder cannot tell which public

key a message is encrypted with (unless he has the private key).

6.1.2 The Second Protocol (AF2). The second protocol, which we call AF2, consists of two steps:

A→ B : [hello, crypt(pub(B), [hello,NA, pub(A)])]
B → A : if valid then [ack, crypt(pub(A), [ack,NA,NB , pub(B)])] else [ack,R]

where NA and NB are nonces and ack is an acknowledgment tag. We use an if-then-else to express

that there is an error handling. B checks that the message (that apparently comes from A) is not a
replay and tries to decrypt the second component using its private key. If the decryption succeeds,

then B extracts the nonce NA and key pub (A), and checks that A ∈ SB . If all these succeed, then the

message is valid and B generates a nonce NB , and sends a reply to A. If B receives an ill-formed

message, then it will reply anyway, but with the second message in the “else” branch where R is

a random value. Note that the original paper has here encryption of a new nonce with another

public key of B, but the point is simply that without knowing priv(A), one should not be able to

tell whether a given message was produced by the “then” or by the “else” branch. We thus assume

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Alpha-Beta Privacy 1:27

here something even slightly stronger than which-key-concealing: that also a random value is

indistinguishable from the ciphertext, a property that at least holds in our algebraic model.
9

Abadi and Fournet consider, among others, the following goal. If A wishes to communicate with

B, but not vice versa, then the intruder should not learn anything. Thus, a run between the two

agents A and B should be indistinguishable from a run between two other agents A′ and B′ under
some hypotheses. These hypotheses should include that B is not the intruder and what can happen

outside the protocol, i.e., what the agents can do besides running the protocol, which can result in

leaks not caused by the protocol itself (see [?]).

6.1.3 Formalization of AF1 with (α , β)-privacy. In order to formalize AF1 with (α , β)-privacy, let
the payload alphabet Σ0 consist of

• a set of agent names (finite or countably infinite),

• a binary relation talk(a,b) representing that a is willing to talk to b (in the notation of Abadi

and Fournet: b ∈ Sa), and
• a unary predicate honest (a) to identify a subset of agents a that are honest (and thus follow

the protocol entirely); all other (dishonest) agents are just marionettes of the intruder.

In the previous sections, we have used a substitution θ to characterize an arbitrary model of α .
Now we also have to interpret the predicates honest and talk, and therefore use a Σ0-formula γ
instead of θ . We will also use γ sometimes as a substitution; by construction we will ensure that

whenever α in a state contains a variable x , then γ implies x = a for some a ∈ Σ0.

Definition 6.3. Let γ0 be a closed Σ0-formula with exactly one model (i.e., an arbitrary interpreta-

tion for the predicates honest and talk). The initial state (α0, β0,γ0) of the transition system is as

follows. LetM0 = {a | a ∈ Σ0} ∪ {pub(a) | a ∈ Σ0} ∪ {priv(d) | γ0 ̸ |= honest (d)} be the set of ground
messages initially known by the intruder. Let struct0 = {|m1 7→ t1, . . .ml 7→ tl |} if t1, . . . , tn are the

elements ofM0. Define

α0 ≡
∧
{talk(a,b) | γ0 |= talk(a,b) ∧ ¬honest (a)} ∧∧
{¬talk(a,b) | γ0 |= ¬talk(a,b) ∧ ¬honest (a)}

β ≡ MsgAna(α0, struct0, γ0)

Note that α0 is ground. □

Observe that the initial state preserves (α , β)-privacy, since there are no variables, and struct ∼
γ0 (struct) in all models, thus it is consistent for all models of α .

There is only one kind of transition:

Definition 6.4. The reachable states of AF1 are the least set of states that include the initial state and
that are closed under the following transition rule. We use as an invariant that β in every reachable

state is a message-analysis problem. If (α , β ,γ) is a reachable state with β = MsgAna(α , struct, γ),
then also the following state (α ′, β ′,γ ′) is reachable. Let a and b be any agents in Σ0 such that

γ |= talk(a,b) ∧ honest (a). Let x and y be two fresh variables (that do not occur in α and β). Let k
and t be arbitrary new uninterpreted constants of Σ \ Σ0, and

struct ′ = struct ∪
{|ml+1 7→ [hello, crypt(pub(y), [hello, pub(x), sign(priv(x), [pub(x), pub(y),k, t])])]|} ,

9
If one wants to model that ciphertexts are recognizable, one can simply introduce a new operator vciph with the algebraic

property vciph(crypt(k,m)) ≈ ⊤. Similarly one can model that a cipher is which-key-revealing with an operator vkey and

the property vkey(k, crypt(k,m)) ≈ ⊤.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 S. Mödersheim and L. Viganò

where l is the length of the frame struct. Define

γ ′ ≡ γ ∧ x = a ∧ y = b

α ′ ≡ α ∧ talk(x ,y) ∧

∧
{y , c | γ |= ¬honest (c)} if γ |= honest (b)

x = a ∧ y = b otherwise

β ′ ≡ MsgAna(α ′, struct ′, γ ′)

□

Note that we describe only transitions that are made by honest agents (since the other agents are

just intruder marionettes). That is, the intruder learns that there is an agent x who is willing to talk

to y and has started a session; additionally, if y, i.e. b, is dishonest, then the intruder knows who

x and y are; if y is honest, however, then the intruder only learns that y is none of the dishonest

agents. In order to generate an (α , β)-privacy transition system we could, among other options,

augment a process calculus notation in a suitable way. Then, to connect a process calculus notation

with (α , β)-privacy here (for this transition) we would need to explicitly denote in the process

calculus which information is released at this point, namely that talk(x ,y) is released to the public

(i.e., to all) for arbitrary x and y, and x = a and y = b is released to y if x or y is dishonest. All the

other information could be generated automatically in the process calculus notation.

Since (α , β)-privacy is not based on distinguishability, but rather a reachability problem, the

proof of privacy is in fact a pretty straightforward induction proof:

Lemma 6.5. Every reachable state of AF1 preserves (α , β)-privacy.

Proof. First note that in no state the intruder learns the private key of an honest agent. The

initial state preserves privacy as already noted. Let (α , β,γ) be any state in which privacy already

holds and (α ′, β ′,γ ′) be any state that can be reached by one transition according to Definition 6.4.

By the property of a reachable state, γ describes a single model of α . Moreover, x and y are exactly

the new variables of α ′ and talk(a,b) holds. Thus, γ ′ describes a single model of α ′.
To see that β ′ is consistent for every model, we distinguish whether b is honest or not. If

γ |= honest (y), then the intruder does not know priv(b) (respectively priv(y)). Hence, the only
check he can make (using the vcrypt function) is that the encrypted part cannot be decrypted with

the private key of any dishonest agent, and thus that y , c for any dishonest c . Since that is part of
α ′, this cannot produce an inconsistency.

If γ |= ¬honest (y), then α ′ already implies x = a and y = b and therefore β ′ |= concr[l + 1] =
struct[l + 1] where concr = γ (struct). Thus, the addition to β ′ cannot produce an inconsistency

either and (α , β)-privacy is preserved by every reachable state of AF1. □

6.1.4 Formalization of AF2 with (α , β)-privacy. For AF2, we have the same setup and initial state;

only the transitions are different. The first transition rule is as follows.

Definition 6.6. If (α , β ,γ) is a reachable state with β = MsgAna(α , struct, γ), then also the

following state (α ′, β ′,γ ′) is reachable. Let a and b be any agents in Σ0 such that γ |= talk(a,b) ∧
honest (a). Let x and y be two fresh variables (that do not occur in α and β) and na be a fresh

constant. Let

struct ′ = struct ∪ {|ml+1 7→ [hello, crypt(pub(y), [hello,na , pub(x)])]|} ,

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Alpha-Beta Privacy 1:29

where l is the length of the frame struct. Define

γ ′ ≡ γ ∧ x = a ∧ y = b

α ′ ≡ α ∧ talk(x ,y) ∧

∧
{y , c | γ |= ¬honest (c)} if γ |= honest (b)

x = a ∧ y = b otherwise

β ′ ≡ MsgAna(α ′, struct ′, γ ′)

□

In a process calculus notation, here we would as before need to make explicit how α ′ extends α
by the information that is released explicitly in this transition, namely talk(x ,y) is released to the

public (i.e., to all) for arbitrary x and y, and x = a and y = b is released to y if y is dishonest, and

otherwise, the intruder only learns that y is none of the dishonest agents. All the other information

could be generated automatically in the process calculus notation.

One may argue that b cannot be sure at this point that it is really a who contacted it here.

However, we do not model that several dishonest agents cheat each other, but that they all work

together as the intruder. Hence, our model shall simply not include a dishonest a talking to a

dishonest b trying to cheat about its identity. Thus, it is safe to assume that whenever b is dishonest

and is apparently being contacted by a, it is indeed a (being either honest or an accomplice).

We now have a second transition where some message is received by an agent b and met with a

reply (either the standard or the decoy message). We may assume that the message received by b
has a proper form, namely

[hello, crypt(pub(B), [hello,NA, pub(A)])]

for some agents A and B and some term NA. This message is either constructed by the intruder or

a replay of a message the intruder has seen before. A priori, the intruder does not know whether

the agent is actually b or somebody else (he can only guess; we assume the agent names to be all

public). Thus, b will also answer with a decoy message if B , b or if ¬talk(B,A).

Definition 6.7. If (α , β ,γ) is a reachable state with β = MsgAna(α , struct, γ), where l is the length
of the frame struct, then also the following state (α ′, β ′,γ) is reachable. Let rp be any recipe such

that

β |= gen(rp) ∧ struct[rp] = [hello, crypt(pub(B), [hello,NA, pub(A)])]

for some terms A, B and NA, where A and B are either constants of Σ0 or free variables of α . Let
further b ∈ Σ0 with γ |= honest (b), and r and nb be fresh constants (that do not appear in β). Then:

α ′ ≡ α ∧

B = b ∧ talk(B,A) if γ |= B = b ∧ talk(B,A) ∧ ¬honest (A)
true otherwise

β ′ ≡ ∃s . MsgAna(α , struct ∪ {|ml+1 7→ s |}, γ ′ ∪ {s 7→ t })
∧ (B = b ∧ talk(B,A) ⇐⇒ s = [ack, crypt(pub(A), [ack,NA,nb , pub(B)])])
∧ (B , b ∨ ¬talk(B,A) ⇐⇒ s = [ack, r])

t =

[ack, crypt(pub(γ (A)), [ack,NA,nb , pub(γ (B))])] if γ |= B = b ∧ talk(B,A)
[ack, r] otherwise

□

First note the difference in how the “case split” is handled: while the concrete message t is
either the concrete answer message or the concrete decoy message (depending on the condition

B = b ∧ talk(B,A)), for the structural information s we literally include the case split into the

formula β , i.e., the intruder does not know the structure of the new message a priori, but he knows

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 S. Mödersheim and L. Viganò

that the structure is either the regular message (if the condition B = b ∧ talk(B,A) holds true), or
the decoy message, otherwise.

10

The formula α ′ permits the intruder to learn that B = b and talk(B,A) if that is the case and A is

a dishonest agent.
11
Otherwise, i.e., if B , b or ¬talk(B,A), the intruder shall learn nothing. The

answer from b is thus either the normal message or the decoy message, depending on whether

B = b ∧ talk(B,A).
Observe that, if A is dishonest, then the intruder has composed the input message to B himself.

Then the intruder knows priv(A) and can thus check whether the second part of the new message

is (concretely) encrypted with pub(A). If that is the case, then it cannot be the decoy message, i.e.,

the intruder can derive B = b ∧ talk(B,A) because of ϕ𭟋1∼𭟋2
, but all this information is also part of

α ′.
If the decryption check fails, then it must be the decoy message and because of ϕ𭟋1∼𭟋2

, B ,
b ∨ ¬talk(B,A). This formula does not follow from α ′ in general (since we can take this transition

in the initial state) and we thus have a violation of (α , β)-privacy. Actually, we cannot guarantee
that the A does not learn anything here; it must be that one of two things is the case: A has guessed

wrongly who B is, or B does not want to talk to A. In fact, repeating this, A can guess a number

of possible agent names and thus either find out who B is or find out (if an exhaustive search is

possible) that ¬talk(B,A).
As far as we can see the only way to correct this is to release this information in α ′:

Definition 6.8. Consider the second transition with this alternative α ′:

α ′ ≡ α ∧

B = b ∧ talk(B,A) if γ |= B = b ∧ talk(B,A) ∧ ¬honest (A)
B , b ∨ ¬talk(B,A) if γ |= (B , b ∨ ¬talk(B,A)) ∧ ¬honest (A)
true otherwise

□

Compare this with a different but similar situation: if the intruder tries to use online guessing

for a login. We cannot entirely prevent it (we can only limit the number of passwords he can try

within a given time) and also cannot prevent that with every failed attempt the intruder learns that

the password he tried was not correct. With (α , β)-privacy we have a declarative way to express

that: each failed guess leads to an augmentation of α .
Thus, (α , β)-privacy forces us to make explicit that we are leaking here a bit of information (which

may be tolerable) and may lead to the awareness that we should protect the agent responding. In

online guessing, it is common that after a failed attempt, one must wait a few seconds before a

new attempt can be made. Similarly, here, B should pause a few seconds after any message. It is

necessary to do so also in the successful case, since when A is honest it shall not be observable for

the intruder whether a message was successful.

Lemma 6.9. Every reachable state of AF2 with the modification of Definition 6.8 satisfies (α , β)-
privacy.

10
Note that we do not specify transitions in Herbrand logic (just the states of the transition system are characterized by

formulas in Herbrand logic), and so here we specified the transitions “by hand”. Here we have modeled the case that the

intruder uses a message for which he knows it has the right structure. This is clearly the case when he constructs such a

message himself or if he uses one that was produced by an honest agent for the first step (because there is no decoy there).

Sending any other message here necessarily would lead to a decoy and that is pointless for the intruder, so we omitted that

here.

11
In a process calculus notation, here we would need to make explicit how α ′ extends α by the information that is released

explicitly in this transition, namely that the information B = b and talk(B, A) is released to the dishonest agent A.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Alpha-Beta Privacy 1:31

Proof. Let (α , β,γ) a reachable state in which (α , β)-privacy holds. Let (α ′, β ′,γ ′) be state

reached with one transition of Definition 6.6. First, γ ′ describes one single model of α ′. Like in the

first protocol, either b is honest or it is dishonest. If b is honest, then the intruder does not know

priv(b) and cannot check the encrypted part of the message, and thus does not learn anything.

If b is dishonest, then β ′ |= concr[l + 1] = struct[l + 1] for the new position l + 1 (where again

concr = γ (struct)) and thus it cannot lead to inconsistencies.

Let (α ′, β ′,γ ′) be a state reached with one transition of Definition 6.7 with the fix of Definition 6.8.
We note again that γ ′ describes one single model of α ′. If A is honest, then the intruder does not

know priv(A) and thus cannot check whether the second part of the message at position l + 1

is encrypted with pub(A) or is a decoy. Thus, the augmentation of β ′ is consistent. Otherwise,
regardless of whether γ |= B = b ∧ talk(B,A), we have β ′ |= struct[l + 1] = concr[l + 1], and thus

β ′ cannot introduce any inconsistencies with any model of α ′. □

In future work, we will provide a more detailed account of (α , β)-privacy in transition systems,

but we believe that these detailed examples already provide for a convincing case.

7 BACKGROUND KNOWLEDGE
One may wonder what happens if the intruder can make use of some background knowledge that

is outside our formal model. Consider the following simplistic example. In a small rural village,

everybody votes for the conservative party until one day a young couple moves to the village, and

in the next election there are two left-wing votes. It does not take much imagination to figure out

who was it (at least with high probability). Thus, with a bit of background information (and in fact

common sense) one may be able to deduce information that was not deliberately released and in

fact invade privacy. However note that this “attack” does not depend on the voting system: the

best voting system cannot prevent this to happen since the system has been actually designed to

release the total number of votes each candidate or party received. Of course, we cannot prevent

an intruder from combining all the knowledge that is available to him, and thus, the voting system

is not to blame as long as it does not release more information than specified in α .
The subtle question is however: given that we have verified a system to have (α , β)-privacy, but

the intruder has some additional background knowledge α0 that the formal model does not take

into account, what guarantees do we have in the system then? Obviously, the intruder can derive

anything that is implied by α ∧ α0—the best system cannot prevent that. But could it be that the

intruder can actually derive even more by some subtle combination of the information in β and

α0? We now show that this is not the case: our notion of (α , β)-privacy is stable under an arbitrary

consistent intruder background knowledge, i.e., the intruder cannot derive more than α ∧ α0:

Theorem 7.1. Consider a pair (α , β) according to Definition 3.1 and let the intruder’s background
knowledge be any formula α0 ∈ LΣ0 (fv (α)) such that β ∧ α0 is consistent. If (α , β)-privacy holds,
then also (α ∧ α0, β ∧ α0)-privacy holds.

Proof. Suppose it were not the case, i.e., consider

• a pair (α , β) such that (α , β)-privacy holds,

• a background knowledge α0 ∈ LΣ0 (fv (α)) such that β ∧ α0 is consistent, and
• an α ′ ∈ LΣ0 (fv (α)) such that β ∧ α0 |= α ′ but α ∧ α0 ̸ |= α ′. (Thus, α ′ is a witness that

(α ∧ α0, β ∧ α0)-privacy does not hold.)

By Definition 3.1, β must have the form β ≡ α ∧ β0 for some β0. We can thus rewrite β ∧ α0 |= α
′

as β0 |= ¬α ∨ ¬α0 ∨ α
′
. Now

• β0 |= ¬α is absurd, since then β would be inconsistent;

• β0 |= ¬α0 is also absurd, since β ∧ α0 must be consistent; and

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 S. Mödersheim and L. Viganò

• β0 |= α
′
would entail a violation of (α , β)-privacy as α ∧ α0 ̸ |= α

′
and thus α ̸ |= α ′. □

One may remark here that this also indicates why we get a reasonable model of privacy in

quantitative systems without actually considering quantitative measures or probabilities: for a

good voting system, for instance, it simply does not matter how likely the different outcomes are,

the cryptography should treat them all the same, only the background knowledge may be biased,

but that does not really matter for the system and its privacy properties then.

8 CONCLUDING REMARKS
We have introduced (α , β)-privacy as, we believe, a simple and declarative way to specify privacy

goals and reason about them: the intruder should not be able to derive any “non-technical” statement

from the technical information β that he cannot derive from the intentionally released information

α already. We have given a variety of concrete examples that describe how (α , β)-privacy can be

used in practice.

Above we have already compared extensively with static equivalence: we have described the

simplicity of specifying properties via the declarative approach of (α , β)-privacy with respect to the

more tricky specifications in the static equivalence approach, and we have investigated formally

the close relationship of (α , β)-privacy to static equivalence, proving in particular the equivalence

of message-analysis problems with a corresponding finite set of static equivalence problems. This

result entails that we can use existing methods for deciding static equivalence for a given algebraic

theory also for deciding the message-analysis fragment of (α , β)-privacy for that theory.

(α , β)-privacy is course also related to observational equivalence (see, e.g., [?] as well as works
on trace equivalence [? ? ? ?]). In this approach, one typically considers labeled bi-similarity of two

processes, checking that every transition of one process can be simulated by the other so that they

are still bi-similar and so that their intruder knowledges are statically equivalent. This is difficult to

automate but there are tricks that can be employed, such as turning it into a reachability problem

by restricting the two processes to be the left and right variant of a bi-process. In contrast, thanks to

the expressiveness of (α , β)-privacy, we have a way to formulate privacy as a reachability problem

while not being limited by bi-processes and the like. We believe that this gives opportunities for

novel techniques for the automated verification of privacy goals.

(α , β)-privacy bears some similarities also with the non-interference approach and related works in
information-flow and language-based security (see, e.g., [? ? ? ?]). Non-interference distinguishes
(at least) two levels of information, usually low-level and high-variables. These are, however,

fundamentally different from our payload α and technical information β since they are formulae

that express relations between values (rather than directly being public or private values). We

actually do not mind that the intruder gets hold of (some) technical information as long as he

cannot use it to obtain anything interesting besides the payload.

Privacy has also been studied in the area of statistical databases, building on database abstractions,

in which records may contain identifiers, quasi-identifiers and sensitive attributes. Approaches in

this field (such as k-anonymity, ℓ-diversity, t-closeness and differential privacy) aim at quantifying

privacy in order to capture privacy loss and thus analyze the minimal information disclosure

inherent in a system. k-anonymity [? ?] seeks to protect against identity disclosure by ensuring

that a record is indistinguishable from k − 1 other records on quasi-identifiers, usually replaying

quasi-identifiers with equivalence classes of appropriate size. Hence, an intruder must be unable

to reduce the anonymity set below a threshold of k users. It is known that k-anonymity does

not protect against attribute disclosure, which led to the development of ℓ-diversity [?], i.e., the
requirement that each equivalence class contains at least ℓ representations of a sensitive attribute.
The work on t-closeness [?] observed that there are still attribute disclosures possible in ℓ-diverse

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Alpha-Beta Privacy 1:33

datasets, in particular, when the distribution of a sensitive attribute in an equivalence class is

different from its distribution in the whole database, where this new notion stipulates that the

distance between equivalence class and table distribution is at most t . Let us differentiate which
statements over these three notions can be modeled in (α , β)-privacy.

For k-anonymity, we observe that the property that α has at least k models, and that the intruder

cannot deduce an α ′ with less choices, is in principle encodable in (α , β)-privacy, which means that

(α , β)-privacy can express identity disclosure, although a full-fledged encoding of k-anonymity in

(α , β)-privacy will be subject of future work.

Our argument can be applied recursively to equivalence classes: for each equivalence class for

any sensitive attribute, there are ℓ models, and the intruder cannot deduce an α ′ with less choices

for any equivalence class. Hence, the argument suggests also an (α , β)-privacy encoding for the

main definition of distinct ℓ-diversity. However, (α , β)-privacy does not have a notion of entropy

and thus cannot encode entropy ℓ-diversity.
Similarly, (α , β)-privacy cannot encode directly t-closeness, which relies on distance of probability

distributions (using variational distance or the Kuhlback-Leibler distance on entropies as measure).

Finally, let us consider differential privacy [?], which asks whether an intruder can detect

significant changes in a probability distribution on statistical data released by a curator on data

sets differing in one element. As differential privacy is a property established on the information

release function of the curator, a relation to our notion is not straightforward.

We have already mentioned above and in the previous sections a few directions for future work.

In addition to these, we have already started to consider further examples than those discussed

here, in particular examples that fall outside the message-analysis problem. To that end, we will

need to generalize the definition of combinatoric α and to generalize our decidability results to

larger fragments of (α , β)-privacy. In fact, many interesting issues in e-voting fall outside the

message-analysis fragment (and of the static equivalence approach).

We also plan to extend our formalization to a full-fledged specification of (α , β)-privacy in

transition systems. It will also be interesting to investigate how (α , β)-privacy, which is a purely

qualitative and possibilistic approach, can be extended to consider quantitative aspects of privacy

such as: probabilities, time and cost of the private information.

ACKNOWLEDGMENTS
We thank Thomas Groß for our joint preliminary work and for many interesting discussions. This

work was supported by the Sapere-Aude project “Composec: Secure Composition of Distributed

Systems”, grant 4184-00334B of the Danish Council for Independent Research; the EU FP7 project no.

318424, “FutureID: Shaping the Future of Electronic Identity” (futureid.eu); the EU FP7 project no.

257876, “SPaCIoS: Secure Provision and Consumption in the Internet of Services” (www.spacios.eu);

the EU H2020 project no. 700321 “LIGHTest: Lightweight Infrastructure for Global Heterogeneous

Trust management in support of an open Ecosystem of Trust schemes” (lightest.eu); and the Italian

PRIN 2010-11 project “Security Horizons”.

Received December 2017; revised July 2018; accepted October 2018

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

