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ABSTRACT
Machine-learning-based anomaly detection systems can be vulner-

able to new kinds of deceptions, known as training attacks, which

exploit the live learning mechanism of these systems by progres-

sively injecting small portions of abnormal data. The injected data

seamlessly swift the learned states to a point where harmful data

can pass unnoticed. We focus on the systematic testing of these

attacks in the context of intrusion detection systems (IDS). We pro-

pose a search-based approach to test IDS bymaking training attacks.

Going a step further, we also propose searching for countermea-

sures, learning from the successful attacks and thereby increasing

the resilience of the tested IDS. We evaluate our approach on a

denial-of-service attack detection scenario and a dataset recording

the network traffic of a real-world system. Our experiments show

that our search-based attack scheme generates successful attacks

bypassing the current state-of-the-art defences. We also show that

our approach is capable of generating attack patterns for all config-

uration states of the studied IDS and that it is capable of providing

appropriate countermeasures. By co-evolving our attack and de-

fence mechanisms we succeeded at improving the defence of the

IDS under test by making it resilient to 49 out of 50 independently

generated attacks.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Soft-
ware and its engineering→ Software testing and debugging.
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1 INTRODUCTION
Modern networks and systems evolve at a rapid pace, both in terms

of numbers and behaviour. To support this polymorphic evolu-

tion, new-generation anomaly detection systems employ machine

learning to provide adaptive and robust security mechanisms.

To this end, learning-based Intrusion Detection Systems (IDS)

[10], a particular class of anomaly detection systems that aims at

detecting security breaches within a network or a system, con-

stantly adapt to system and network evolutions. Their key attribute

is that they learn to recognize and adapt to the typical behaviour

of systems and thus are able to detect suspicious and anomalous

deviations that result from malicious attacks [6]. As such, those

IDS provide security mechanisms that are immediately applicable

to production environments and remain adaptive to system and en-

vironmental evolutions (such as behaviour shifts, appearances and

disappearances). These characteristics are appealing and preferable

over the traditional ones [6].

Among the related machine learning approaches (e.g. neural

networks), those based on unsupervised clustering are the most

prominent [17]. They offer comprehensive and explainable results,

they do not require any offline training or prior knowledge, and

unlike, e.g., Bayesian approaches, they can model multiple types of

behaviours at the same time.

Unfortunately, machine-learning-based IDS are vulnerable to

new types of attacks, called training attacks [11]. These attacks

exploit the live learning mechanism of the systems by progressively

injecting small portions of abnormal data. Although the injected

data are harmless, they seamlessly swift the learned states of the

systems to a point where illicit data can pass unnoticed [18].

Clustering-based IDS are no exception [4], as attackers can

slowly modify the numbers and shapes of the clusters. Previous

work has shown that a clustering-based IDS monitoring network

traffic against Denial-of-Service (DoS) attacks can be deceived [11].

To counterbalance this problem, state-of-the-art countermeasures

run multiple instances of clustering algorithms with different pa-

rameters to monitor the traffic in parallel. Then, an alert is raised

as soon as one of the instances suspects that an attack occurs.

https://doi.org/10.1145/3293882.3330580
https://doi.org/10.1145/3293882.3330580
https://doi.org/10.1145/3293882.3330580
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Such a solution can succeed in detecting the training attack

but offers no confidence that it is resilient to attacks performed

differently, e.g., a DoS attack with a different speed. Therefore, there

is an emerging need to practically assess the resilience of such

systems. Naturally, this can be achieved through testing, where one

designs tests exhibiting different training attack schemes.

However, as in every testing scenario, test design is hard and

time-consuming. This activity is usually performed manually and

in an ad-hoc way. Therefore, administrators rely on the knowledge

and ability of testers to assess their defence mechanisms.

In an endeavour to address this challenge, we propose a system-

atic testing approach for clustering-based IDS to counter training

attacks (the threat model). Our method realizes the idea that one

can make IDS more resilient to real-world, black-box training at-

tacks, by confronting them to white-box training attacks crafted

by observing IDS cluster evolution.

We formulate the crafting of white-box training attacks as a

search problem and shows that search-based techniques can gener-

ate effective attack schemes. We also propose the inverse technique,

i.e., a search technique that searches for countermeasures (defence

strategies) to counter given attacks. Going a step further, we co-

evolve both the attack and defence schemes in order to overall

achieve better resilience and stronger defences.

We implemented this approach and performed a case study on

a denial-of-service attack detection scenario using network traf-

fic data recorded from a real-world system. Our results show that

our framework can systematically generate attack schemes bypass-

ing the current state-of-the-art defences, i.e., multiple clustering

instances [11]. We also show that for any successful attack our

framework can generate an appropriate defence without disturbing

the normal (benign) traffic.

Overall, since our two methods (automatic generation of attacks

and defences) are complementary, they can be applied iteratively.

Thus, by co-evolving both attacks and defences, one can reliably

improve the resilience and robustness of the systems under analysis.

In summary, the paper makes the following contributions:

(1) We design a testing framework based on search algorithms

that, given an IDS, can generate a test (i.e. a training attack

scheme) to deceive the IDS. We instantiate this framework in

a denial-of-service attack scenario, where a training attack

consists of unnoticed, successive increases in data rate.

(2) We generalize the countermeasure proposed by Muller et

al. [11] and design a genetic algorithm to search for a defence

strategy (in the form of new parameter sets) that succeeds

in detecting the attack induced by a given test case.

(3) We show that our testing framework enables the continuous

improvement of IDS detection capabilities. More precisely,

we set up a co-evolution process that attractively generates

attacks and defences leading to new parameter sets that

make the IDS resilient to all generated attacks.

2 BACKGROUND AND CASE STUDY
2.1 Clustering-Based IDS
D-Stream [7] is a clustering algorithm that can categorize n-dimen-

sional data streams in real time. Its principles are illustrated in

Figure 1. D-Stream divides the data state space into a predefined grid

Figure 1: D-Stream online and offline processes [7].

and records new streamed data as data points in the corresponding

grid cells. Newer data are considered more important than older

ones, as they better reflect the current behaviour of the system.

Therefore, D-stream associates each recorded data point with a

weight that decays over time. The rate of decaying is controlled

by a meta-parameter, denoted by λ, with 0 < λ < 1, such that the

weight of a data point at time t is given by λt−t0 where t0 is the
time at which the data point was recorded. Thus, the higher λ is,

the longer the system remembers past data.

A cluster is defined as a maximal contiguous set of dense cells. A

cell is dense at a given time if and only if the sum of the weights of

its contained data points is higher than a specified threshold. This

notion of density allows one to distinguish recurrent behaviour

(represented by dense cells) from outliers (represented by isolated

data points in sparse cells, which are thus not part of any cluster).

Outliers corresponds to statistical abnormalities that do not re-

flect changes in the system behaviour. As such, they are considered

unharmful [11]. On the contrary, the formation of clusters at unex-

pected spaces of the grid may result from threatening persistent

attacks. Therefore, any modifications to the shape of the clusters

should raise attention, as those are signs of persistent modifications

in the behaviour accepted by the system.

The shape of clusters can change in multiple ways. When an

isolated cell becomes dense, it gives rise to a new cluster. This

phenomenon models the capture of a new type of behaviour by

the clustering algorithm. Clusters can also disappear when their

constituent cells lose their dense status (i.e. due to decayed data

points). This happens when a previously recurrent behaviour is

now considered as an outlier. More generally, clusters can evolve

(i.e. gain or lose cells) to give account for natural evolutions of a

modelled behaviour (e.g. more monitored smart equipments yields

an increase of network traffic). Two particular cases of evolution

are the merging and the splitting of clusters. Two disjoint clusters

merge as soon as they become connected via a new dense cell.

This phenomenon originates from the fact that two independent

behaviours have evolved so much that they are now very similar.

Similarly, one cluster can split due to a natural separation of its

modelled behaviour into new classes.

An IDS based on D-Stream consists of two processes (see Fig-

ure 1). First, it feeds the grid with the received data in an online

process. Second, after a specified interval of time Γ, it triggers and
offline clustering process and observes the changes in the clusters’

shape. Only the appearance of new clusters is considered harmful,
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Figure 2: The normal traffic rate (in Bytes per second) of our
SCADA network case study, recorded for 18 hours.

as it corresponds to recurrent behaviour that was before rarely

observed. This anomaly is thus assimilated to an attack.

Training attack refers to a sophisticated attack scheme that hi-

jacks the clustering process to make inappropriate behaviour ac-

cepted by the IDS. It progressively injects malicious data in order

to move one or more clusters so slowly that these changes are per-

ceived as licit evolutions. Intuitively, the trick lies in the frequency

of observations performed by the IDS: frequent observations make

the attack look like a succession of small, unharmful changes in

the shape of the clusters, while longer-term observations reveal

the appearance of a new cluster. Longer-term observations alone,

however, are not viable, as they are vulnerable to short-term attacks.

To counter short-term and long-term attacks, the state-of-the-art

countermeasure [11] recommends to run multiple instances of D-

stream in parallel, each of which works with a different Γ interval.

Thereby, one increases the likelihood that at least one instance will

observe the appearance of new clusters, thus detecting training

attacks. This, of course, comes at the cost of a multiplication of

the required resources by a factor equal to the number of running

instances. It is therefore essential to select the Γ values wisely,

so as to minimize the number of instances while maximizing the

likelihood of detecting training attacks.

An alternative solution is to slow down the training process [4],

but doing so runs the risk of rendering the IDS inert. Therefore,

the only countermeasure we use throughout our work is the addi-

tion and configuration of new D-Stream instances (along the lines

proposed by Muller et al. [11]).

2.2 Case Study: DoS Attack on SCADA Network
We consider a specific case study that serves as a running example

throughout the paper and as an evaluation case for our experi-

ments. This case concerns a clustering-based network monitoring

system that targets Denial-of-Service (DoS) attacks. Such attacks

consist of flooding a network with data packets in order to overload

the supporting infrastructure. The protected network we consider

is a Supervisory Control and Data Acquisition (SCADA) network,

which is commonly deployed to support the operations of critical in-

frastructures such as, e.g., water treatment facilities, manufacturing

processes, airports and space stations.

Figure 3: The traffic rate (in Bytes per second) of our SCADA
network case study confronted to a training attack.

Dataset [1]. To detect DoS attacks, the monitoring system fol-

lows typical recommendations [5] and records the average data

rate (in Bytes per second) received by the system every minute.

Figure 2 shows the traffic rate of the SCADA network recorded

for 18 hours. It illustrates the two behaviours that the network

exhibits, i.e. the day traffic and the night traffic. A D-Stream-based

IDS would cluster the data rates to reflect the two behaviours. If

we assume a linear grid with 200-byte-long cells, it is likely that at

least two cells would be dense and form a contiguous cluster: the

first ranges from 200 to 400 and contains data points of the night

traffic, the other from 400 to 600 and corresponds to the day traffic.

Should the data rate frequently reach unusual values, the system

raises an alert. Yet, it is evident that the data rate of a network

system is unlikely to remain constant over time. For instance, an

increase of licit activities within the network yields a higher data

rate. This makes clustering algorithms such as D-Stream particu-

larly appropriate, as those can register natural variations in the

data rates without triggering false alarms.

At the same time, however, this also opens the door for training

attacks that would progressively increase the data rate over time.

This particular attack has already been identified by the study

of Muller et al. [11]. In order to generate a training attack, they

artificially injected additional data, thereby increasing the data rate

following a carefully chosen exponential law. Their training attack

was absolutely unnoticed by the IDS.

Figure 3 illustrates the effect of such an attack on the SCADA

network. The particular attack increases the data rate by 20% every

18 hours. We see that both day and night traffic rates are slowly

increasing. At each 18-hour iteration, the linear grid would pro-

gressively expand and/or shift the cluster towards higher cells to

account for the relative increase. However, in the long run, we

would get two clusters, i.e. the single-cell cluster ranging from 200

to 400 Bps and the other formed by cells from 800 to 1,600 Bps.

With their experiments, Muller et al. showed that a counter-

measure to this attack was to use multiple instances of D-Stream,

each of which doubles the Γ value of the previous one. Neverthe-

less, although they demonstrated the possibility of training attacks

and countermeasures, they considered only one specific case (set-

tings), evaluated manually both for attack and defence. Therefore,

there is no guarantee that IDS are generally vulnerable and that
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their solution is secure over systematic attacks or other similar

attack schemes. More generally, their focus was to demonstrate

the possibility of the attack rather than to provide a systematic

testing approach. Therefore, through our work, we aim at laying

the foundations to address the automated testing and resilience

improvement problem in the context of training attacks.

3 SEARCH-BASED IMPROVEMENT OF IDS
In order to provide an automated and systematic approach to test

D-Stream-based IDS, we propose a methodology based on search

algorithms. We present it first under the particular scope of the

DoS attack case study, before discussing how to generalize the

methodology to other cases (including with n-dimensional data).

3.1 Search-Based Test of IDS
We designed a genetic algorithm which, given an IDS running D-

Stream, generates attack schemes capable of deceiving the IDS. In

what follows, we present its constituents.

Genotype. Each individual of the population generated by our

algorithm corresponds to a training attack scheme, i.e. a strategy to

make attacks unnoticed. In our case study, the genotype comprises

only one chromosome (since we deal with one-dimensional data).

The genes of this chromosome reflect the strategy used to increase

the data rate.

A first, yet inefficient, representation contains one gene per 60

seconds timeframe (which is also the interval of time between two

observations of the network’s input data rate), where each gene

specifies how many Bytes per second the attacker should send

during the corresponding timeframe. Although this solution offers

the most flexibility, it requires a lot of genes to represent a single

attack (e.g., our experiments consider a total duration of one year,

which means that the chromosomes can have up to 525,600 genes).

It is therefore computationally expensive.

A second, more efficient, consists of a single gene, which is the

exponential rate for increasing the data rate over time. This solution,

however, offers less control and therefore appears as less stealthy.

As a compromise between the above two representations, we

propose a third solution that offers flexibility and results in chro-

mosomes of affordable size. We specify that a chromosome is com-

posed of k ordered real-valued genes, each of which corresponds

to a timeframe whose length is 1/k of the total duration allowed

for the attack. Each gene models how much the current data rate

should increase during its corresponding timeframe. That is, at any

i-th timeframe, 0 < i ≤ k , the data rate received by the system will

be equal to r ×
∏i

j=1(1 + ch[j]) where r is the original data rate

received by the system (i.e. in the absence of attack) and ch[j] is
the value of the j-th gene of the chromosome.

To improve scalability, we limit the maximum size of the chromo-

some (i.e. the number of successive raises in data rate). We also limit

the maximal value of a gene in order to avoid large fluctuations

that would rapidly be detected. In our experiments, we have set the

maximum number of variations to 365 (i.e. one per day) and the

maximum gene value to 1.0 (i.e. a maximum increase of 100%).

Figure 4 illustrates an attack scheme produced by our testing

algorithm. This scheme divides the attack duration into 16 time

fragments (shown on the x-axis). For each fragment, the y-axis

Figure 4: A generated attack deceiving up to 7-instance IDS.

shows the multiplying factor that is applied on the original data

rate (obtained by multiplying the gene values). This attack scheme

was successful at deceiving up to 7-instance IDS (see Section 5).

Fitness function. Recall that behaviours accepted by the system
are represented by clusters of dense cells in the D-Stream grid. Then,

the main goal of an attacker is to make the IDS form a cluster that

encompasses data points corresponding to malicious behaviour. We

represent this objective as a single data point named tarдet , which
represents a typical malicious data point that the attacker wants

the system to accept. The attack thus aims to change the clusters’

shape so that tarдet falls inside one cluster.
To measure the progress towards this objective, we compute

the vector distance between tarдet and the closest centroid over

all clusters built by the IDS. Intuitively, centroids represent the

data points that will the most likely be accepted by the clusters. If

some malicious data points are close to a centroid, it means that

their recording within the system will contribute to stabilizing the

cluster around its centroid, thereby increasing the likelihood that

the corresponding illicit behaviour remains accepted in the future.

Then, the percentage of progress accomplished by an attack can be

measured wrt. (a) the initial distance computed from the location

of the cluster centroids before the attack is executed and (b) the

remaining distance after executing the attack.

An alternative to centroid distance is the average distance to all

data points of the cluster. While this solution seems suitable, it is

inherently more expensive to compute and is therefore disregarded.

The second objective of an attacker is to complete the training

attack as soon as possible, as he may lose opportunities otherwise.

Hence, we define the time consumed by a training attack with

respect to a specified maximum time budget, denoted by duration.
Thus, the success of a training attack can be measured as a trade-

off between maximizing the progress of an attack and minimizing

the consumed time budget, all this while avoiding detection. To

model this trade-off, we define our fitness function as a linear equa-

tion over the percentages of progress and consumed time budget, i.e.

α×proдress%−β×consumed%where α , β > 0 are meta-parameters

that specify the relative importance of progress and time.

Alternatively, instead of a linear equation, we could have de-

fined two fitness functions, thereby reducing our problem to multi-

objective optimization. It is, however, realistic to assume that what
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is important for attacks is to succeedwithin the allowed time budget,

and that time should only serve to rank attacks that are successful.

In practice, α and β will be set such that progress has substantially

more weight than time. In our experiments we set α = 10 and β = 1.

In the case of detected attacks, we want to reward attacks that

remained unnoticed for the longest time. Yet, those should never

be considered better than undetected attacks. Theoretically, the

fitness value of an undetected attack can never go below −β , as this
corresponds to 0% of progress and 100% of consumed time. Thus,

the highest fitness value that the best performing detected attack

(which is detected at the total duration) can receive is −β . Thus,
our fitness function is defined as follows.

Definition 3.1. Let ids be a clustering-based IDS, atk an attack

scheme run against ids . Then the fitness function of atk over ids ,
denoted by f itness(atk, ids), is given by

−β ×
time

duration

if ids detected atk on time time units. Otherwise, it is given by

α ×
distance0 − distance

distance0
− β ×

time

duration

wheredistance (resp.distance0) denotes the distance between tarдet
and the closest cluster centroid of ids after (resp. before) starting the
execution of the attack scheme and time denotes the time needed

to perform the attack.

In our SCADA network traffic example, we assume that attackers

perform a DoS attack by increasing the data rate received by the

network up to a predefined target rate, which represents the max-

imal load of the network. Accordingly, tarдet is a real value and
the distance is measured by the scalar difference between tarдet
and the closest centroid. Then, before executing an attack, we first

run the tested IDS against normal (unaltered) traffic data (our input

dataset). We computed the centroid of the two produced clusters,

which encompass data rates received by the system during the day

and during the night. The distance between the highest cluster

centroid and the tarдet value, i.e. distance0, is then used as the

starting point to measure the progress of an attack towards tarдet .
The advantage of this modelling is that it is independent of the

actual attack scheme. However, it requires the use of some data

representing the normal state of the traffic.

Selectors and alterers. At each iteration of the genetic algo-

rithm, a subset of the individuals is selected to pursue evolution,

and some of them are being altered to produce new individuals.

Generally speaking, an appropriate choice of selection and alter-

ation operators largely depends on the modelled problem. In our

experiments, we considered the most typical settings, which were

found to perform well. For selection, we use a tournament selector

that keeps the best individuals out of samples of three. As for al-

terers, two individuals are combined to form an offspring based on

single-point crossover with a 0.2 recombination probability, while

gene mutation in the offspring occurs with a probability of 0.15.

3.2 Search-Based Improvement of IDS
Our next step is to propose countermeasures to improve the IDS

in detecting training attacks. To achieve this, we generalize the

countermeasure proposed in [11], i.e. running multiple instances

of D-Stream with different clustering intervals.

In the following, we describe a second genetic algorithm that

can, given an attack scheme, determine how many instances and

what clustering intervals are needed to detect attacks executed by

this scheme. We name such a solution a defence strategy.
Genotype. Each individual of the population represents a de-

fence strategy. A strategy defines a number of D-Stream instances

as well as their respective parameters. Given a data space, D-stream

stands with the following parameters: the grid parameters (i.e. the

number of cells N , their coordinates on the grid, their density

threshold Cm , and the data decay rate λ), and the interval of time

Γ between two observations of the clusters. Previous work [11]

has shown that appropriate values for grid parameters are case-

specific and interrelated. Therefore, two strategies are distinguished

by the number of parallel clustering and their interval values Γ.
Accordingly, we represent the genotype of an IDS with a single,

variable-sized chromosome of integer-valued genes. The sizem of

the chromosome represents the number of D-Stream instances to

run, and value of the ith gene is the interval value Γi of the ith
instance. For example, the chromosome [600, 1200, 2400] represents

a defence strategy invoking three instances that observe changes

in the clusters every 600, 1200 and 2400 seconds, respectively.

Fitness function. A defence strategy should obviously allow

the detection of as many attacks as possible. Conversely, it should

not be too restrictive in order to accept normal fluctuations in the

system. It is indeed essential to avoid raising false alerts. Therefore,

any defence we built is first executed against normal data as a

sanity check. Regarding real attacks, a defence should aim at the

fastest detection time while, paradoxically, minimizing resources

(i.e. the number of deployed instances). Successful attacks that

remain undetected should be held off as long as possible.

We propose to score defence strategies through a fitness function

to minimize. For detected attacks, this function involves minimiz-

ing the percentage of detection time (out of an apriori maximal

duration) and of used resources (wrt. a specified maximum number

M of instances). For undetected attacks, it attempts to maximize

the attack execution time in place of minimizing detection time. As

in the previous algorithm, we model the trade-off between time

and resource consumption as a linear equation.

Definition 3.2. Let ids be a clustering-based IDS and atk an attack

scheme executed against ids . Then the fitness function of ids over
atk , denoted by f itness(ids,atk), is given by

γ ×
time

duration
+ δ ×

m

M

if ids detected atk ; otherwise, it is given by

−ν ×
time

duration
+ δ ×

m

M
where γ ,δ ,ν > 0 are meta-parameters that specify the relative

importance of detection time, resources and attack hold-off time.

In our experiments, we assumed that detection and hold-off

times are more important than resource consumption and set the

meta-parameters accordingly: γ = 10,δ = 1,ν = 10.

Selectors and alterers. To make the population evolve, we rely

on the same selectors and alterers as those used to generate attacks,



ISSTA ’19, July 15–19, 2019, Beijing, China Maxime Cordy, Steve Muller, Mike Papadakis, and Yves Le Traon

i.e. ternary tournament selector, single-point crossover with 0.2

probability, and gene mutation with a 0.15 probability.

3.3 Co-Evolution of Attacks and Defences
When deployed in production, an IDS should be able to detect as

many attacks as possible. Thus, our ultimate goal is to create defence

strategies that are increasingly resilient to attack schemes without

triggering false alarms. To achieve this, we designed a co-evolution

process that iteratively generates strengthened defences based on

previous, successful attack schemes.

Its inputs are an initial, manually set defence strategy d0, and
a number k of iterations to perform. Each i-th iteration consists

of a new co-evolution step. During such step, we first generate a

new attack scheme a that deceives the defence di−1, which was

either the defence resulting from the last iteration or, for the first

iteration, the initial defence d0. Then, we generate a new defence

di that successfully detect a and all the previous attacks. To achieve

this, we adapt the genetic algorithm presented in Section 3.2 such

that the fitness value of an individual is obtained by summing up

the fitness values obtained wrt. to each individual attack schemes.

3.4 Generalization to N-Dimensional Cases
Since our primary contribution regards the formulation and use

of metaheuristic search techniques for the test and improvement

of IDS, we only provide examples and empirical evidence (see Sec-

tion 5) that search can beneficial on a 1-dimensional realistic case.

Interestingly, the need for search methods is intensified when

adding more dimensions, because the solution space is decreasing

while the search space explodes. Of course, in this case, our frame-

work requires some tuning, but even as it is, our fitness functions,

co-evolution scheme and, more generally, the whole approach are

independent of the domain and support multi-dimensional data.

We can easily adapt our technique on other ML-based IDS. For

instance, the two objective functions we use are independent of the

domain and the dimensions. They are only concerned with time,

centroid distance, and number of D-Stream instances. Of course,

with 2 dimensions or more, the scalar distance must be replaced,

e.g. by Euclidean distance. The selectors and alterers we chose are

those commonly used in genetic algorithms, without any tuning.

Thus, they can be applied as they are. D-stream clustering natively

supports n-dimensional data and the genotype of our defence strate-

gies only concerns D-stream parameters (number of instances and

clustering intervals).

In the end, to apply our framework to another case study we

would need to change only the genotype of the white-box training

attacks. To do so, we propose a general recipe where the genotype

of individuals (attack schemes) consists of n chromosomes, that is,

one chromosome per data dimension. Each chromosome actually

encodes a strategy to alter a part (i.e. a dimension) of the malicious

data. The types and number of the genes composing each chromo-

some depends on the considered data dimension and strategy; it is

thus problem- and solution-specific.

Overall, if we stick to training attacks our method remains gen-

eral (with minor tweaks). Beyond that, it is a matter of the exact

data manipulation and the monitoring that the IDS relies on.

4 RESEARCH QUESTIONS
It is virtually impossible to build an IDS that can defend against

any attack. To increase confidence, one can manually design an

attack scheme and apply it to the to-be-deployed IDS to assess its

detection capabilities. However, coming up with a successful attack

can be hard. Therefore, our first questions concern the ability of

our search technique to perform successful attacks.

To answer this question we need to distinguish between single

and multiple instance IDS. The former case forms the current state

of IDS (that are known to be vulnerable [11]), while the later forms

the current state-of-the-art countermeasure [11]. Thus we ask the

following two subquestions:

RQ1.1. Can we automatically generate successful training at-

tacks for single instance IDS?

RQ1.2. Can we automatically generate successful training at-

tacks for multiple instance IDS?

We seek for a positive answer to the first subquestion in order to

show that our method is effective at generating potential training

attacks. Such an answerwill also re-validate the findings ofMuller et

al. [11] and necessitate the need for multiple instance IDS. Similarly,

answering positively the second subquestion will provide evidence

that the existing countermeasure is insufficient and that our method

is capable of finding security gaps on state-of-the-art defences.

In practice, there might be cases where countermeasures are not

sufficiently configured and trained. In these cases, it should be easy

to reconfigure and improve the system defences. However, how this

could be performed? This leads to our second research question:

RQ2. Given a training attack, can we automatically find effec-

tive defences?

An answer to this question suggests a potential improvement of

the system defences. However, how such a reconfiguration perform

on other attack schemes? In other words, can the automated defence

strategies generalize the improvements and offer higher resilience?

This leads us to investigate a third research question:

RQ3. Can we improve the resilience of IDS by making attack

and defence schemes co-evolve?

Security testing aims at spotting security gaps and improving

countermeasures. To this end, we seek a self-learning (co-evolving)

approach that learns to attack and defend with the ultimate goal of

improving the security countermeasures given a range of solutions.

5 RESULTS
5.1 Experimental Setup
To address our research questions, we implemented our testing

approach in a prototype tool. The tool was developed in Java on top

of Jenetics, an established framework for modelling and executing

genetic algorithms. Our full implementation is publicly available

for replication purposes.
1

All meta-parameters of the genetic algorithms were left to the

default value assigned by Jenetics, except population size. We

set the population size to 24 (instead of 50) in order to reduce

the required computation time. A higher population size did not

appear to affect our conclusions. Also, we stop the evolutionary

1
https://bitbucket.org/maxcordy/idsga

https://bitbucket.org/maxcordy/idsga
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testing algorithm that generates attack schemes as soon as no better

individual has been found for 20 successive generations. As for

the defence generation algorithms, we stop it after 50 successive

generations without improvement. These numbers were found

experimentally to be sufficient to find successful solutions.

All our experiments focus on our case study, i.e. detecting DoS

training attacks over a network. To that aim, we consider the 4SICS

Geek Lounge dataset [1], which contains 18 hours of real SCADA

traffic data. This dataset has the particularity of exhibiting working-

hour traffic (roughly 800 bytes per second) and non-working-hour

traffic (roughly 300 bytes per second). We repeated the data to reach

a total duration of one year, thereby obtaining a more realistic case.

All instances of D-Stream used in our experiments have been

assigned the same grid parameters. The grid data space is divided

into a logarithmic scale ofN = 50 cells, ranging from 2
7
to 2

20
Bytes

per second. The decay rate is set to λ = 0.0130
−1days

, which makes

the D-Stream instances forget data after 30 days. The cell density

threshold is set accordingly to 0.1, following the recommendations

of [11], which also allows us to replicate their experimental settings.

All D-Stream instances used by defences were first trained on the

legit data of the first 18 hours to avoid false positives. To ensure this,

we run each instance on one-year-long unmodified traffic data and

noticed that no false alert was raised, while reducing the training

time actually did raise some alerts. By training for 18 hours, we

ensured that all data are recorded once by the D-Stream instances.

Each experiment run invokes one or more randomly-seeded

genetic algorithms. To account for random variations, we repeated

RQ1’s and RQ2’s experiments 50 times. Unless noticed otherwise,

the results we provide are the median of the individual runs.

Here it must be noted, that the above settings are general ones,

common to all RQs we investigate. Still the specific settings required

to answer each specific RQ are given at the beginning of the Sections

answering them (Sections 5.2, 5.4, 5.5)

5.2 RQ1.1: Searching for Training Attacks on
Single-Instance IDS

We first consider 7 different IDS, each of which is composed of

a single D-Stream instance. The instance of the first IDS has a

clustering interval of 600 seconds, while each successive instance

doubles the interval of the previous one. The 7th IDS thus employs

a clustering interval of 38,400 seconds (that is, 10 hours and 40

minutes). According to a survey of Incapsula [9], an established

company providing solutions to mitigate DoS attacks, 86% of such

attacks last less than 24 hours and 68% less than 12 hours. Therefore,

further doubling the interval seems irrelevant as this would impede

the detection of the majority of attacks before they terminate.

For each of the 7 IDS, we apply our evolutionary testing algo-

rithm (see Section 3) to generate attack schemes that we execute

against the considered IDS. To do so, we set the weight parameters

α = 10 and β = 1; the minimum and maximum gene values to 0

and 1 respectively, so as to ensure that the data rate never suddenly

gets more than twice higher as its current value. The minimum

and maximum numbers of genes are set to 1 and 365 respectively,

which means that a new increase in data rate occurs at most once

per day and that there will be at least one increase throughout the

whole duration of the attack.

For all 7 IDS, our algorithm managed to generate an attack

scheme that succeeded in moving a cluster centroid to the desired

target rate or above. Figure 5 shows, for each IDS (represented by its

interval value) and over 50 repeated runs, the time required by the

best attack schemes to accomplish their attack. Overall, the vast ma-

jority of the best attack times range from 530,000 seconds to 875,000

seconds (i.e. 6 to 10 days). We also see that their median tends to

remain stable across the different interval values, reaching approxi-

mately 670,000 seconds (i.e. less than 8 days). Even though longer

interval values are intended to be better at detecting long-term

training attacks, our algorithm manages to finds attack schemes

unaffected by the interval values. The first and third quartiles, as

well as the spread of outliers, appear to be sensitive to the interval

value, but we cannot conclude about any statistical correlation. The

random seeding of the genetic algorithm might be the cause.

Figure 6 shows the number of the generations where the best

individuals were bred. We observe that it tends to decrease as the

interval value increases. This can be explained that the fact that

larger interval values naturally gives less window to be fooled

but are, at the same time, more likely to detect aggressive attacks.

Therefore, once a successful attack is discovered, the likelihood of

finding a faster one in the upcoming generations is lower for longer

interval values. For example, when the interval value is set to 19,200

or 38,400, the best attack is produced at the first 15 generations in

20 and 26 of the runs, respectively. Overall, for all interval values,

the generation number of the fastest attack ranges from 1 to 101,

which illustrate a relative convergence speed of our algorithm.

As a sanity check, we compared our results with a random base-

line that generate the same total number of individuals (respectively

as each run our our algorithm) in a single generation. Our results

revealed that, with the same time budget, random search generates

attack schemes that are 2-10 times slower. This tends to show that

the benefit of using metaheuristics lies in finding faster attacks.

Our testing approach can systematically find an attack

scheme that deceives single-instance IDS and thereby con-

firms and generalizes the results of Muller et al. [11]. The

median attack time is not impacted by the interval value,

while the convergence of our algorithm tends to be faster

for higher interval values.

5.3 RQ1.2: Searching for Training Attacks on
Multiple-Instance IDS

Our second set of experiments aims to determine whether the

state-of-the-art countermeasure, which recommends multiplying

D-Stream instances, is resilient to our testing algorithm. To answer

this question, we consider firstly all pairs of the 7 interval values

used in Section 5.2. For each pair, we create an IDS composed of

two parallel D-Stream instances using the interval values of the

pair. Then, we test the obtained IDS against our testing algorithm

and check whether a successful attack scheme was generated.

Once again, all the IDS were deceived. Detailed results are pre-

sented in Table 1 where we report, for each pair and over 50 runs,

the median of the fastest attack times and the median generation

numbers of those fastest attacks. With respect to the single-instance
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Table 1:Median of the best attack time in seconds (left numbers) and of the number of generations at which the best attacks are
found (right numbers) across 50 runs for each pair of interval values. Diagonal values denote themedian for the corresponding
single-instance interval value. Only upper triangle is shown since results are symmetric.

Interval values (s.) 600 1200 2400 4800 9600 19200 38400
600 (663,570 ; 31) (662,460 ; 27) (662,460 ; 29) (675,120 ; 22) (664,860 ; 26) (674,190 ; 18) (676,800 ; 21)

1200 (664,260 ; 34) (662,460 ; 24) (669,660 ; 19) (660,090 ; 24) (741,660 ; 18) (671,610 ; 19)

2400 (667,260 ; 23) (672,060 ; 20) (664,860 ; 22) (670,980 ; 20) (740,430 ; 16)

4800 (664,800 ; 24) (664,860 ;28) (664,860 ; 17) (670,020 ; 15)

9600 (669,330 ; 22) (676,260 ; 16) (676,290 ; 15)

19200 (684,000 ; 19) (672,960 ; 18)

38400 (664,800 ; 14)

Figure 5: Time required for the best attack to deceive the
system, across 50 runs and for an increasing interval value.

Figure 6: Number of generations required to find the best
attack, across 50 runs and for an increasing interval value.

IDS, the median attack time looks unaffected by the additional in-

stance of D-Stream. As for generation numbers, it seems dependent

only on the largest interval value. This supports the generality of

our testing approach and, conversely, challenges the appropriate-

ness of the countermeasure proposed by Muller et al. [11].

To confirm these claims, we carried out another 50-run experi-

ment where we consider 7 IDS relying on 1 to 7 parallel D-Stream

instances, such that the ith IDS uses the interval values {600, 600×2,
. . . , 600 × 2

i−1}. Once again, our algorithm managed to produce

successful attack schemes in every case. For example, the scheme

illustrated in Figure 4 is able to deceive all the 7 IDS. We measured

again the fastest attack time and the number of generations of for

all the 50 runs of every tuple. Figure 7 and 8 shows the evolution

of those values wrt. to the size of the considered tuples.

We see that the median attack time tends to remain stable (ap-

proximately 665,000 seconds) regardless of the tuple size. This tends

to show that the state-of-the-art countermeasure is ineffective at

increasing attack time. The tuple of size 6 yields a small increase

(it reaches 709,920 seconds) but given that the tuple of size 7 drops

down to 665,160, this is likely due to the random seeding of the algo-

rithm. The first and third quartile do increase from the tuple of size

4 onward, though, which indicates that more parallel instances may

increase the time required by the fastest and the slowest attacks.

The median generation numbers of the fastest attack found in

the different runs tend to lower slightly as the tuples size grows

larger. Similar observations were made when comparing single-

instance IDS with different interval values. This might mean that

the generation number, and thus the speed at which our genetic

algorithm converges, is only affected by the largest interval values

and not by the number of parallel instances.

The conclusions drawn from this experiment are stunning: the

state-of-the-art countermeasure has almost no effect on the effec-

tiveness and efficiency of our attack generation algorithm.

Our testing approach can systematically find an attack

scheme that deceives multiple-instance IDS and thereby

overcomes the state-of-the-art countermeasure. Having

more instances does not decrease the median attack time,

while the convergence speed of our algorithm is affected

only by the largest interval value.

5.4 RQ2: Searching for Defences
We consider 10 generated attack schemes that successfully deceive

the best IDS considered in RQ2, i.e. the one using 7 D-Stream in-

stances with intervals 600, 1200, 2400, 4800, 9600, 19200 and 38400

seconds. Then, for each scheme, we attempt to produce a defence

strategy (i.e. a number of parallel D-Stream instances with different

interval values) able to detect the executed attack. We record (a) the

number of D-Stream instances used, (b) the detection times, and (c)

the number of generations required to get the best strategy. To do

so, we parameterized our algorithm as follows: the meta-parameters

are set to γ = 10,δ = 1,ν = 10; the maximum number of parallel

instances is set to 10; the maximum interval value is 24 hours.
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Figure 7: Time required for the best attack to deceive the
system, across 50 runs and for an increasing number of D-
Stream instances.

Figure 8: Number of generations required to find the best
attack, across 50 runs and for an increasing number of D-
Stream instances.

For every attack scheme, our defence generation algorithm man-

aged to find a successful defence at each run. Table 2 shows, for

each attack, the characteristics of the best generated defences (wrt.

the fitness function as defined in Section 3.2): its clustering interval

values, its size (in number of parallel instances), the time needed by

the defence to detect the attack, and the number of the generation

at which the best defence appeared. For conciseness, the clustering

interval values are shown in minutes rather than in seconds. The

corresponding attacks are not shown due to the large size of their

chromosome (200 genes on average). In 4 out of the 10 cases, it

returned a defence using a single D-Stream instance: given a spe-

cific attack, only one instance can be needed to detect the attack

as long as it uses an appropriate interval value. The number of in-

stances never exceeds 4, which indicates that our algorithm indeed

attempts to converge towards the minimal size. In 8 of the cases,

the detection time is less than 5 hours, which is significantly faster

than the attack times we recorded in our previous experiments (see

Figures 5 and 7). The other two defences require 3 and 4 days to

counter their respective attack, but this remains faster than all the

aforementioned attack times. Finally, the number of generations

needed to produce the best defence varies for each case (due, again,

to random seeding), but remains low overall.

Table 2: The best defences that detected the 10 attacks that
were previously successful.

Defence Size Time (s.) Generation
{830} 1 34,800 11

{814; 829; 791} 3 32,880 5

{839} 1 35,880 33

{1371; 1401} 2 264,240 20

{829} 1 34,680 35

{794; 1178} 2 364,020 1

{713; 815; 817; 1266} 4 33,000 25

{618; 810; 1257} 3 32,400 33

{827} 1 34,400 16

{703, 822} 2 33,840 2

Table 3: Seven successive defences generated by an execu-
tion of our co-evolution algorithm.

Defence # Clustering Intervals
d0 {10; 20; 40; 80; 160; 320; 640}

d1 {919; 34; 808; 780}

d2 {1026; 111; 855; 823; 775}

d3 {853; 1214; 399}

d4 {868; 1133; 773; 1349; 774; 854}

d5 {849; 1274; 1159; 1208}

d6 {836; 868; 1160; 1312; 322; 1032; 853}

d7 {1423; 792; 815; 1398; 1309; 1333; 782; 607}

Our evolutionary defence algorithm succeeds in generat-

ing strategies countering effectively and efficiently multi-

ple attack schemes that deceived manually-parameterized

IDS. The algorithm tends to converge towards the minimal

number of instances and can deliver a result after a small

number of generations.

5.5 RQ3: Co-evolving Attacks and Defences
Our previous experiments show that our evolutionary testing frame-

work generates effective attack schemes to deceive a particular

(manually parameterized) IDS and that, conversely, our defence

generation algorithm can produce strategies to overcomes those

attacks even more efficiently. It remains to evaluate the capability of

our co-evolution process at increasing the resilience of the IDS over

multiple attacks. To answer this question, we implemented this pro-

cess in our prototype tool and run it. We initialized it with the best

defence we considered in RQ1, i.e.d0 = {10, 20, 40, 80, 160, 320, 640}.

We also set the number of iterations to k = 7. As a result, we ob-

tained 7 new defence strategies, numbered from d1 to d7, which are

shown in Table 3.

To evaluate these strategies, we applied our testing algorithm on

d0 50 times to obtain as many new attack schemes. We confronted

the 10 successive defence strategies against the 50 schemes and

computed the number of attacks that each strategy di detected.
We ensured that none of the 50 attack schemes were used by our

defence algorithm to generate any of the di strategies.
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Figure 9: Number of independent attacks (out of 50) detected
by the defences di generated by our co-evolution.

Results are shown in Figure 9. We observe that the first iteration

allows us to design a defence strategy able to detect 46 of the 50

executed attacks. This number drops by one unit for each of the next

two iterations. It is, however, noteworthy that d2 and d3 detected
attacks that deceived d1, but were themselves deceived by attack

thatd1 successfully countered. Then, the number of detected attacks

jumps to 48 at the 4th iteration and remains so at the 5th one. Finally,

the 6th and 7th iterations yielded defences that detected 49 of the

50 attacks, the remaining one having deceived all strategies. Let us

remark that these latter two strategies are also the ones relying on

the highest number of D-Stream instances, which corroborates the

recommendation of Muller et al [11].

Our co-evolution process yields defence strategies able to

counter most attack schemes that overcame the state-of-

the-art countermeasure. The defences resulting from the

highest iterations detected 49 attacks out of 50.

6 RELATEDWORK
Multiple approaches based on stream clustering have been proposed

to detect security anomalies. Zhong et al [20] cluster network traf-

fic data using an online-variant of k-means, which unfortunately

leads to comparatively low detection rates. Alseiari et al.[2] employ

another k-means variant to cluster smart meters data and consider

as anomalous every cluster smaller than a predefined threshold.

They allow cluster evolution by applying a sliding time window

but report that their results are sometimes unreliable. Tomlin et

al. [15] use k-means and fuzzy cognitive maps to cluster security

events in a power system and detect anomalies. Hendry et al.[8]

propose an offline attack detection algorithm that relies on attack

signatures created from recorded and clustered data. Yen et al.[19]

focus on detecting malware spreading in a network, by analyzing

the similarities in the online behaviour of the host.

Nevertheless, the use of machine learning to improve security

expands way beyond clustering data. For example, in the field of

web security, Tripp et al. [16] propose a search-based testing ap-

proach where cross-site scripting attacks are generated by learning

from previous attack executions. More recently, Appelt et al. [3]

present ML-Driven, an approach based on machine learning and

evolutionary algorithms to test web application firewall against

SQL injection attacks.

The proliferation of learning-based security mechanisms should

raise awareness against the new types of attacks that exploit learn-

ing phases. Wagner and Soto [18] are the first to highlight the

problem of training attacks, while Barreno et al. [4] explored the

topic in more details. A related problem is the mimicry attack,

which avoids detection without altering the detection system. Ste-

vanovic et al. [14] report on real-world occurrences of such attacks

on anti-DoS systems, and propose to counter them by combining

a classical DoS attack monitoring system with a detection system

specifically tailored for spotting mimicry attacks. In contrast to the

above, other approaches rely on evolutionary algorithms to build

rule-based IDS. Those search for patterns to detect certain kinds

of attack, and have been applied within areas with proper attack

taxonomy [12, 13].

The originality of our work lies in the combined use of both

clustering and genetic algorithms to build attack-resistant live-

learning IDS. Thereby, we allow those systems to benefit from live

learning mechanisms while protecting them, to some extent, from

their inherent vulnerabilities.

7 CONCLUSION
The rising needs for real-time adaptive security mechanisms ne-

cessitate the use of machine-learning-based anomaly detection

techniques that learn the behaviour of network streams. The advan-

tage of machine-learning-based systems is their flexibility, stability

and reliability, drawn from the statistical nature of the system be-

haviours - one can reliably alert outliers, with a very low probability

of false alarms [11]. Still, traditional IDS, such as signature scan-

ners, are capable of detecting specific malware instances and should

be applied in parallel to the machine-learning ones. Nevertheless,

machine-learning-based techniques require reliable testing and

configuration, as otherwise they can be fooled by training attacks.

This paper introduced a search-based approach that automat-

ically tests and improves the attack detection capabilities of IDS.

Our approach automatically generates attacks, checks their success,

and incrementally learns how to fool the systems under analysis.

Then, by leveraging the successful tests-attacks our approach can

search for countermeasures that can successfully defend these at-

tacks. All in all, by co-evolving both attacks and countermeasures

our approach can improve the defence of the system under analysis

in a reliable way (accepting normal traffic without false alarms).

Overall, this paper forms the first step towards automated solu-

tions that can assess and improve machine-learning security sys-

tems. We dealt only with training attacks and there might be other

possible techniques and opportunities to evade the IDS. However,

we are confident that search-based techniques, such as ours, can be

easily extended to include additional attack scenarios that can be

simulated with real or synthetic data.
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