Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

ChASE: Chebyshev Accelerated Subspace Iteration Eigensolver for Sequences of Hermitian Eigenvalue Problems

Published: 26 April 2019 Publication History

Abstract

Solving dense Hermitian eigenproblems arranged in a sequence with direct solvers fails to take advantage of those spectral properties that are pertinent to the entire sequence and not just to the single problem. When such features take the form of correlations between the eigenvectors of consecutive problems, as is the case in many real-world applications, the potential benefit of exploiting them can be substantial. We present the Chebyshev Accelerated Subspace iteration Eigensolver (ChASE), a modern algorithm and library based on subspace iteration with polynomial acceleration. Novel to ChASE is the computation of the spectral estimates that enter in the filter and an optimization of the polynomial degree that further reduces the necessary floating-point operations. ChASE is written in C++ using the modern software engineering concepts that favor a simple integration in application codes and a straightforward portability over heterogeneous platforms. When solving sequences of Hermitian eigenproblems for a portion of their extremal spectrum, ChASE greatly benefits from the sequence’s spectral properties and outperforms direct solvers in many scenarios. The library ships with two distinct parallelization schemes, supports execution over distributed GPUs, and is easily extensible to other parallel computing architectures.

References

[1]
Hasan Metin Aktulga, Lin Lin, Christopher Haine, Esmond G. Ng, and Chao Yang. 2014. Parallel eigenvalue calculation based on multiple shift-invert Lanczos and contour integral based spectral projection method. Parallel Computing 40 (2014), 195--212.
[2]
Edward Anderson, Zhaojun Bai, Christian Bischof, L. Susan Blackford, James Demmel, Jack Dongarra, Jeremy Du Croz, et al. 1999. LAPACK Users’ Guide. SIAM, Philadelphia, PA.
[3]
Chris G. Baker, Ulrich L. Hetmaniuk, Richard B. Lehoucq, and Heidi K. Thornquist. 2009. Anasazi software for the numerical solution of large-scale eigenvalue problems. ACM Transactions on Mathematical Software 36, 3 (July 2009), Article 13, 23 pages.
[4]
Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman, Lisandro Dalcin, et al. 2018. PETSc Web Page. Retrieved March 3, 2018 from http://www.mcs.anl.gov/petsc.
[5]
Amartya S. Banerjee, Lin Lin, Wei Hu, Chao Yang, and John E. Pask. 2016. Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations. Journal of Chemical Physics 145, 15 (Oct. 2016), 154101.
[6]
Friedrich L. Bauer. 1957. Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme. Zeitschrift für Angewandte Mathematik und Physik ZAMP 8, 3 (May 1957), 214--235.
[7]
Mario Berljafa, Daniel Wortmann, and Edoardo Di Napoli. 2015. An optimized and scalable eigensolver for sequences of eigenvalue problems. Concurrency and Computation: Practice and Experience 27 (Sept. 2015), 905--922.
[8]
Paolo Bientinesi, Inderjit S. Dhillon, and Robert A. van de Geijn. 2005. A parallel eigensolver for dense symmetric matrices based on multiple relatively robust representations. Journal of Scientific Computing 27, 1 (Jan. 2005), 43--66.
[9]
L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, et al. 1997. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA.
[10]
Stefan Blügel, Gustav Bihlmayer, and Daniel Wortmann. 2017. The FLEUR Code. Retrieved January 22, 2018 from http://www.flapw.de.
[11]
M. Clint and A. Jenning. 1970. The evaluation of eigenvalues and eigenvectors of real symmetric matrices by simultaneous iteration. Computer Journal 13, 1 (1970), 76--80.
[12]
Jan J. M. Cuppen. 1980. A divide and conquer method for the symmetric tridiagonal eigenproblem. Numerische Mathematik 36, 2 (March 1980), 177--195.
[13]
Inderjit S. Dhillon. 1997. A New O(n<sup>2</sup>) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem. Ph.D. Dissertation. EECS Department, University of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/1997/5888.html.
[14]
Edoardo Di Napoli. 2018. Chebyshev acceleration of subspace iteration revisited: Convergence and optimal polynomial degree. In preparation.
[15]
Edoardo Di Napoli and Mario Berljafa. 2013. Block iterative eigensolvers for sequences of correlated eigenvalue problems. Computer Physics Communications 184, 11 (Nov. 2013), 2478--2488.
[16]
Edoardo Di Napoli, Stefan Blügel, and Paolo Bientinesi. 2012. Correlations in sequences of generalized eigenproblems arising in density functional theory. Computer Physics Communications 183, 8 (Aug. 2012), 1674--1682.
[17]
Jack Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. 1990. A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software 16, 1 (March 1990), 1--17.
[18]
Jack Dongarra, Victor Eijkhout, and Ajay Kalhan. 1995. Reverse Communication Interface for Linear Algebra Templates for Iterative Methods. Technical Report. University of Tennessee, Knoxville, TN.
[19]
Gene H. Golub and Hongyuan Zha. 1995. The canonical correlations of matrix pairs and their numerical computation. In Linear Algebra for Signal Processing. Springer, New York, NY, 27--49.
[20]
Ming Gu and Stanley C. Eisenstat. 1995. A divide-and-conquer algorithm for the symmetrical tridiagonal eigenproblem. SIAM Journal on Matrix Analysis and Applications 16, 1 (Jan. 1995), 172--191.
[21]
Vicente Hernandez, Jose E. Roman, and Vicente Vidal. 2005. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Transactions on Mathematical Software 31, 3 (Sept. 2005), 351--362.
[22]
Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, et al. 2005. An overview of the Trilinos project. ACM Transactions on Mathematical Software 31, 3 (Sept. 2005), 397--423.
[23]
Pierre Hohenberg and Walter Kohn. 1964. Inhomogeneous electron gas. Physical Review 136, 3B (Nov. 1964), B864--871.
[24]
Harold Hotelling. 1936. Relations between two sets of variates. Biometrika 28, 3--4 (Dec. 1936), 321--377.
[25]
Toshiyuki Imamura, Susumu Yamada, and Masahiko Machida. 2011. Development of a high performance eigensolver on the petascale next generation supercomputer system. Progress in Nuclear Science and Technology 2 (2011), 643--650.
[26]
H. J. F. Jansen and A. J. Freeman. 1984. Total-energy full-potential linearized augmented-plane-wave method for bulk solids—Electronic and structural-properties of tungsten. Physical Review B 30, 2 (July 1984), 561--569.
[27]
Walter Kohn. 1999. Nobel lecture: Electronic structure of matter-wave functions and density functionals. Reviews of Modern Physics 71, 5 (Oct. 1999), 1253--1266.
[28]
R. Lehoucq, D. Sorensen, and C. Yang. 1998. ARPACK Users’ Guide. Vol. 6. SIAM, Philadelphia, PA.
[29]
Antoine Levitt and Marc Torrent. 2015. Parallel eigensolvers in plane-wave density functional theory. Computer Physics Communications 187 (Feb. 2015), 98--105.
[30]
Ruipeng Li, Yuanzhe Xi, Lucas Erlandson, and Yousef Saad. 2018. The eigenvalues slicing library (EVSL): Algorithms, implementation, and software. arXiv:1802.05215.
[31]
Lin Lin, Yousef Saad, and Chao Yang. 2016. Approximating spectral densities of large matrices. SIAM Review 58, 1 (2016), 34--65.
[32]
S. H. Lui. 2000. Domain decomposition methods for eigenvalue problems. Journal of Computational and Applied Mathematics 117, 1 (May 2000), 17--34.
[33]
Andreas Marek, Volker Blum, Rainer Johanni, Ville Havu, Bruno Lang, Thomas Auckenthaler, Alexander Heinecke, et al. 2014. The ELPA library: Scalable parallel eigenvalue solutions for electronic structure theory and computational science. Journal of Physics: Condensed Matter 26, 21 (2014), 213201.
[34]
Beresford N. Parlett. 1998. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, PA.
[35]
Matthias Petschow, Elmar Peise, and Paolo Bientinesi. 2013. High-performance solvers for dense hermitian eigenproblems. SIAM Journal on Scientific Computing 35, 1 (2013), C1--22.
[36]
Andreas Pieper, Moritz Kreutzer, Andreas Alvermann, Martin Galgon, Holger Fehske, Georg Hager, Bruno Lang, et al. 2016. High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations. Journal of Computational Physics 325 (Nov. 2016), 226--243.
[37]
Eric Polizzi. 2009. Density-matrix-based algorithm for solving eigenvalue problems. Physical Review B 79 (March 2009), 115112.
[38]
Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, and Nichols A. Romero. 2013. Elemental: A new framework for distributed memory dense matrix computations. ACM Transactions on Mathematical Software 39, 2 (Feb. 2013), Article 13, 24 pages.
[39]
E. H. Rogers. 1964. A minimax theory for overdamped systems. Archive for Rational Mechanics and Analysis 16, 2 (1964), 89--96.
[40]
Axel Ruhe. 1973. Algorithms for the nonlinear eigenvalue problem. SIAM Journal on Numerical Analysis 10, 4 (Sept. 1973), 674--689.
[41]
Heinz Rutishauser. 1969. Computational aspects of FL Bauer’s simultaneous iteration method. Numerische Mathematik 13, 1 (1969), 4--13.
[42]
Heinz Rutishauser. 1970. Simultaneous iteration method for symmetric matrices. Numerische Mathematik 16, 3 (1970), 205--223.
[43]
Yousef Saad. 2011. Numerical Methods for Large Eigenvalue Problems. SIAM, Philadelphia, PA.
[44]
Tetsuya Sakurai. 2014. The z-PARES code. Retrieved November 13, 2018 from http://zpares.cs.tsukuba.ac.jp.
[45]
Pablo Salas, Luc Giraud, Yousef Saad, and Stéphane Moreau. 2015. Spectral recycling strategies for the solution of nonlinear eigenproblems in thermoacoustics. Numerical Linear Algebra With Applications 22, 6 (2015), 1039--1058.
[46]
Andreas Stathopoulos. 2006. Locking Issues for Finding a Large Number of Eigenvectors of Hermitian Matrices. Technical Report WM-CS-2005-09. Department of Computer Science, College of William and Mary, Williamsburg, VA.
[47]
Andreas Stathopoulos and James R. McCombs. 2010. PRIMME: Preconditioned iterative multimethod eigensolver—Methods and software description. ACM Transactions on Mathematical Software 37, 2 (2010), 21.
[48]
G. W. Stewart. 1969. Accelerating the orthogonal iteration for the eigenvectors of a Hermitian matrix. Numerische Mathematik 13, 4 (Aug. 1969), 362--376.
[49]
G. W. Stewart. 1976. Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices. Numerische Mathematik 25, 1 (1976), 123--136.
[50]
G. W. Stewart. 2001. Matrix Algorithms. Vol. II. SIAM, Philadelphia, PA.
[51]
Christof Vömel, Ratko G. Veprek, Urban Weber, and Peter Arbenz. 2012. Iterative Solution of Generalized Eigenvalue Problems From Optoelectronics With Trilinos. Technical Report. Computer Science Department, ETH Zürich.
[52]
Heinrich Voss and Bodo Werner. 1982. A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems. Mathematical Methods in the Applied Sciences 4 (1982), 415--424.
[53]
S. David Watkins. 2007. The Matrix Eigenvalue Problem. SIAM.
[54]
E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman. 1981. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic-structure of molecules and surfaces: O molecule. Physical Review B 24, 2 (July 1981), 864--875.
[55]
Yuanzhe Xi, Ruipeng Li, and Yousef Saad. 2018. Fast computation of spectral densities for generalized eigenvalue problems. SIAM Journal on Scientific Computing 40, 4 (2018), 2749--2773.
[56]
T. Zhang, G. H. Golub, and K. H. Law. 1999. Subspace iterative methods for eigenvalue problems. Linear Algebra and Its Applications 294, 1 (1999), 239--258.
[57]
Yunkai Zhou, James R. Chelikowsky, and Yousef Saad. 2014. Chebyshev-filtered subspace iteration method free of sparse diagonalization for solving the Kohn--Sham equation. Journal of Computational Physics 274 (Oct. 2014), 770--782.
[58]
Yunkai Zhou and Ren-Cang Li. 2011. Bounding the spectrum of large Hermitian matrices. Linear Algebra and Its Applications 435, 3 (Aug. 2011), 480--493.
[59]
Yunkai Zhou, Yousef Saad, Murilo L. Tiago, and James R. Chelikowsky. 2006. Self-consistent-field calculations using Chebyshev-filtered subspace iteration. Journal of Computational Physics 219, 1 (Nov. 2006), 172--184.

Cited By

View all
  • (2023)Advancing the distributed Multi-GPU ChASE library through algorithm optimization and NCCL libraryProceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis10.1145/3624062.3624249(1688-1696)Online publication date: 12-Nov-2023
  • (2023)Orthogonal Layers of Parallelism in Large-Scale Eigenvalue ComputationsACM Transactions on Parallel Computing10.1145/361444410:3(1-31)Online publication date: 22-Sep-2023
  • (2023)Memory-aware Optimization for Sequences of Sparse Matrix-Vector Multiplications2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)10.1109/IPDPS54959.2023.00046(379-389)Online publication date: May-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 45, Issue 2
June 2019
255 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/3326465
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 April 2019
Accepted: 01 February 2019
Revised: 01 November 2018
Received: 01 May 2018
Published in TOMS Volume 45, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Elemental library
  2. Subspace iteration
  3. eigenvector correlation
  4. optimized polynomial degree
  5. spectral density

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)33
  • Downloads (Last 6 weeks)2
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Advancing the distributed Multi-GPU ChASE library through algorithm optimization and NCCL libraryProceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis10.1145/3624062.3624249(1688-1696)Online publication date: 12-Nov-2023
  • (2023)Orthogonal Layers of Parallelism in Large-Scale Eigenvalue ComputationsACM Transactions on Parallel Computing10.1145/361444410:3(1-31)Online publication date: 22-Sep-2023
  • (2023)Memory-aware Optimization for Sequences of Sparse Matrix-Vector Multiplications2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)10.1109/IPDPS54959.2023.00046(379-389)Online publication date: May-2023
  • (2023)Complexity reduction in density functional theory: Locality in space and energyThe Journal of Chemical Physics10.1063/5.0142652158:16Online publication date: 27-Apr-2023
  • (2022)ChASEProceedings of the Platform for Advanced Scientific Computing Conference10.1145/3539781.3539792(1-12)Online publication date: 27-Jun-2022
  • (2021)Space-Filling Curves for Real-Space Electronic Structure CalculationsJournal of Chemical Theory and Computation10.1021/acs.jctc.1c0023717:7(4039-4048)Online publication date: 3-Jun-2021
  • (2021)Solving the Bethe-Salpeter equation on massively parallel architecturesComputer Physics Communications10.1016/j.cpc.2021.108081267(108081)Online publication date: Oct-2021
  • (2020)The LAPW Method with Eigendecomposition Based on the Hari--Zimmermann Generalized Hyperbolic SVDSIAM Journal on Scientific Computing10.1137/19M127781342:5(C265-C293)Online publication date: 21-Sep-2020
  • (2020)ELSI — An open infrastructure for electronic structure solversComputer Physics Communications10.1016/j.cpc.2020.107459256(107459)Online publication date: Nov-2020
  • (2020)Scalable implementation of polynomial filtering for density functional theory calculation in PARSECComputer Physics Communications10.1016/j.cpc.2020.107330(107330)Online publication date: Apr-2020
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media