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Abstract

Algorithms are often used to produce decision-making rules that classify or evaluate indi-
viduals. When these individuals have incentives to be classified a certain way, they may behave
strategically to influence their outcomes. We develop a model for how strategic agents can invest
effort in order to change the outcomes they receive, and we give a tight characterization of when
such agents can be incentivized to invest specified forms of effort into improving their outcomes
as opposed to “gaming” the classifier. We show that whenever any “reasonable” mechanism can
do so, a simple linear mechanism suffices.
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1 Introduction

One of the fundamental insights in the economics of information is the way in which assessing people
(students, job applicants, employees) can serve two purposes simultaneously: it can identify the
strongest performers, and it can also motivate people to invest effort in improving their performance
[35]. This principle has only grown in importance with the rise in algorithmic methods for predicting
individual performance across a wide range of domains, including education, employment, and
finance.

A key challenge is that we do not generally have access to the true underlying properties that we
need for an assessment; rather, they are encoded by an intermediate layer of features, so that the true
properties determine the features, and the features then determine our assessment. Standardized
testing in education is a canonical example, in which a test score serves as a proxy feature for a
student’s level of learning, mastery of material, and perhaps other properties we are seeking to
evaluate as well. In this case, as in many others, the quantity we wish to measure is unobservable,
or at the very least, difficult to accurately measure; the observed feature is a construct interposed
between the decision rule and the intended quantity.

This role that features play, as a kind of necessary interface between the underlying attributes
and the decisions that depend on them, leads to a number of challenges. In particular, when an
individual invests effort to perform better on a measure designed by an evaluator, there is a basic
tension between effort invested to raise the true underlying attributes that the evaluator cares about,
and effort that may serve to improve the proxy features without actually improving the underlying
attributes. This tension appears in many contexts — it is the problem of gaming the evaluation
rule, and it underlies the formulation of Goodhart’s Law, widely known in the economics literature,
which states that once a proxy measure becomes a goal in itself, it is no longer a useful measure
[19]. This principle also underpins concerns about strategic gaming of evaluations in search engine
rankings [12], credit scoring [3, 16], academic paper visibility [4], reputation management [37], and
many other domains.

Incentivizing a designated effort investment. These considerations are at the heart of the
following class of design problems, illustrated schematically in Figure 1. An evaluator creates a
decision rule for assessing an agent in terms of a set of features, and this leads the agent to make
choices about how to invest effort across their actions to improve these features. In many settings,
the evaluator views some forms of agent effort as valuable and others as wasteful or undesirable.
For example, if the agent is a student and the evaluator is constructing a standardized test, then
the evaluator would likely view it as a good outcome if the existence of the test causes the student
to study and learn the material, but a bad outcome if the existence of the test causes the student
to spend a huge amount of effort learning idiosyncratic test-taking heuristics specific to the format
of the test, or to spend effort on cheating. Similarly, a job applicant (the agent) could prepare for
a job interview given by a potential employer (the evaluator) either by preparing for and learning
material that would directly improve their job performance (a good outcome for both the agent
and the evaluator), or by superficially memorizing answers to questions that they find on-line (a
less desirable outcome).

Thus, to view an agent’s effort in improving their features as necessarily a form of “gaming” is
to miss an important subtlety: some forms of effort correspond intuitively to gaming, while others
correspond to self-improvement. If we think of the evaluator as having an opinion on which forms of
agent effort they would like to promote, then from the evaluator’s point of view, some decision rules
work better than others in creating appropriate incentives: they would like to create a decision rule
whose incentives lead the agent to invest in forms of effort that the evaluator considers valuable.
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Agent’s effort
investment Features

F1 = ...

F2 = ...

F3 = ...

...

Evaluator’s
decision rule

Outcome

Figure 1: The basic framework: an agent chooses how to invest effort to improve the values of
certain features, and an evaluator chooses a decision rule that creates indirect incentives favoring
certain investments of effort over others.

These concerns have long been discussed in the education literature surrounding the issue of
high-stakes standardized testing. In his book “Measuring Up,” Daniel Koretz writes,

Test preparation has been the focus of intense argument for many years, and all sorts of
different terms have been used to describe both good and bad forms. . . I think it’s best
to. . . distinguish between seven different types of test preparation: Working more effec-
tively; Teaching more; Working harder; Reallocation; Alignment; Coaching; Cheating.
The first three are what proponents of high-stakes testing want to see [28].

Because teachers are evaluated based on their students’ performance on a test, they change their
behavior in order to improve their outcomes. As Koretz notes, this can incentivize the investment
of both productive and unproductive forms of effort.

What are the design principles that could help in creating a decision that incentives the kinds
of effort that the evaluator wants to promote? Keeping the evaluation rule and the features secret,
so as to make them harder to game, is generally not viewed as a robust solution, since information
about the evaluation process tends to leak out simply by observing the decisions being made, and
secrecy can create inequalities between insiders who know how the system works and outsiders who
don’t. Nor should the goal be simply to create a decision rule that cannot be affected at all by an
agent’s behavior; while this eliminates the risk of gaming, it also eliminates the opportunity for the
decision rule to incentivize behavior that the evaluator views as valuable.

If there were no intermediate features, and the evaluator could completely observe an agent’s
choices about how they spent their effort across different actions, then the evaluator could simply
reward exactly the actions they want to incentivize. But when the actions taken by an individual
are hidden, and can be perceived only through an intermediate layer of proxy features, then the
evaluator cannot necessarily tell whether these features are the result of effort they intended to
promote (improving the underlying attribute that the feature is intended to measure) or effort
from other actions that also affect the feature. In the presence of these constraints, can one design
evaluation rules that nonetheless incentivize the intended set of behaviors?

To return to our stylized example involving students as agents and teachers as evaluators, a
teacher can choose among many possible grading schemes to announce to their class; each corre-
sponds to a candidate decision rule, and each could potentially incentivize different forms of effort
on the part of the students. For example, the teacher could announce that a certain percentage
of the total course grade depends on homework scores, and the remaining percentage depends on
exam scores. In this context, the homework and the exam scores are the features that the teacher
is able to observe, and the students have various actions at their disposal — studying to learn
material, cheating, or other strategies — that can improve these feature values. How does the
way in which the teacher balances the percentage weights on the different forms of coursework —
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producing different possible decision rules — affect the decisions students make about effort? As
we will see in the next section, the model we develop here suggests some delicate ways in which
choices about a decision rule can in principle have significant effects on agents’ decisions about
effort.

These effects are not unique to the classroom setting. To take an example from a very different
domain, consider a restaurant trying to improve its visibility on a review-based platform (e.g. Yelp).
Here we can think of the platform as the evaluator constructing a decision rule and the restaurant
as the agent: the platform determines a restaurant’s rank based on both the quality of reviews
and the number of users who physically visit it, both of which are meant to serve as proxies for its
overall quality. The restaurant can individually game either of these metrics by paying people to
write positive reviews or to physically check in to their location, but improving the quality of the
restaurant will ultimately improve both simultaneously. Thus, the platform may wish to consider
both metrics, rating and popularity, in some balanced way in order to increase the restaurant’s
incentive to improve.

The present work: Designing evaluation rules. In this paper, we develop a model for this
process of incentivizing effort, when actions can only be measured through intermediate features.
We cast our model as an interaction between an evaluator who is performing an assessment, and an
agent who wants to score well on this assessment. An instance of the problem consists of a set of
actions in which the agent can invest chosen amounts of effort, and a set of functions determining
how the levels of effort spent on these actions translate into the values of features that are observable
to the evaluator.

The evaluator’s design task is to create an evaluation rule that takes the feature values as input,
and produces a numerical score as output. (Crucially, the evaluation rule is not a function of the
agent’s level of effort in the actions, only of the feature values.) The agent’s goal is to achieve a
high score, and to do this, they will optimize how they allocate their effort across actions. The
evaluator’s goal is to induce a specific effort profile from the agent — specifying a level of effort
devoted to each action — and the evaluator seeks an evaluation rule that causes the agent to decide
on this effort profile. Again, Figure 1 gives a basic view of this pipeline of activities.

Our main result is a characterization of the instances for which the evaluator can create an
evaluation rule inducing a specified effort profile, and a polynomial-time algorithm to construct such
a rule when it is feasible. As part of our characterization, we find that if there is any evaluation rule,
monotone in the feature values, that induces the intended effort profile, then in fact there is one
that is linear in the feature values; and we show how to compute a set of coefficients achieving such
a rule. Additionally, we provide a tight characterization of which actions can be jointly incentivized.

The crux of our characterization is to consider how an agent is able to “convert” effort from
one action to another, or more generally from one set of actions to another set of actions. If it is
possible to reallocate effort spent on actions the evaluator is trying to incentivize to actions the
evaluator isn’t trying to incentivize, in a way that improves the agent’s feature values, then it is
relatively easy to see that the evaluator won’t be able to design a decision rule that incentivizes their
desired effort profile: any incentives toward the evaluator’s desired effort profile will be undercut
by the fact that this effort can be converted away into other undesired forms of effort in a way that
improves the agent’s outcome. The heart of the result is the converse, providing an if-and-only-if
characterization: when such a conversion by the agent isn’t possible, then we can use the absence
of this conversion to construct an explicit decision rule that incentivizes precisely the effort profile
that the evaluator is seeking.

Building on our main result, we consider a set of further questions as well. In particular,

3



we discuss characterizations of the set of all linear evaluation rules that can incentivize a family
of allowed effort profiles, identifying tractable structure for this set in special cases, but greater
complexity in general. And we consider the problem of choosing an evaluation rule to optimize over
a given set of effort profiles, again identifying tractable special cases and computational hardness
in general.

Further Related Work. Our work is most closely related to the principal-agent literature from
economics: an evaluator (the principal) wants to set a policy (the evaluation rule) that accounts
for the agent’s strategic responses. Our main result has some similarities, as well as some key
differences, relative to a classical economic formulation in principal-agent models [18, 21, 22, 20].
We explore this connection in further detail in Section 2.4.

In the computer science literature, a growing body of work seeks to characterize the interaction
between a decision-making rule and the strategic agents it governs. This was initially formulated as
a zero-sum game [11], e.g. in the case of spam detection, and more recently in terms of Stackelberg
competitions, in which the evaluator publishes a rule and the agent may respond by manipulating
their features strategically [19, 5, 14, 24, 31]. This body of work is different from our approach in
a crucial respect, in that it tends to assume that all forms of strategic effort from the agent are
undesirable; in our model, on the other hand, we assume that there are certain behaviors that the
evaluator wants to incentivize.

There is also work on strategyproof linear regression [7, 10, 13]. The setup of these models is
also quite different from ours – typically, the strategic agents submit (x, y) pairs where x is fixed
and y can be chosen strategically, and the evaluator’s goal is to perform linear regression in a way
that incentivizes truthful reporting of y. In our setting, on the other hand, agents strategically
generate their features x, and the evaluator rewards them in some way based on those features.

Work exploring other aspects of how evaluation rules lead to investment of effort can be found
in the economics literature, particularly in the contexts of hiring [17, 23] and affirmative action [9].
While these models tend to focus on decisions regarding skill acquisition, they broadly consider
the investment incentives created by evaluation. Similar ideas can also be found in the Science
and Technology Studies literature [38], considering how organizations respond to guidelines and
regulations.

As noted above, principal-agent mechanism design problems in which the principal cannot
directly observe the agent’s actions have been studied in the economics literature [1, 33, 2], and
include work on the notion of moral hazard. Insurance markets are canonical examples in this
domain: the agent reduces their liability by purchasing insurance, and this may lead them to
act more recklessly and decrease welfare. The principal cannot directly observe how carefully
the agent is acting, only whether the agent makes any insurance claims. These models provide
some inspiration for ours; in particular, they are often formalized such that the agent’s actions are
“effort variables” which, at some cost to the agent, increase the agent’s level of “production” [29].
This could be, for example, acting in more healthy ways or driving more carefully in the cases of
health and car insurance respectively. Note, however, that in the insurance case, the agent and the
principal have aligned incentives in that both prefer that the agent doesn’t — e.g., in the case of car
insurance — get into an accident. In our model, we make no such assumptions: the agent may have
no incentive at all to invest in the evaluator’s intended forms of effort beyond the utility derived
from the mechanism. The types of scenarios considered in insurance markets can be generalized
to domains like share-cropping [8, 36], corporate liability [25], and theories of agency [34]. Steven
Kerr provides a detailed list of such instances in his classic paper “On the folly of rewarding A,
while hoping for B” [26].
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Concerns over strategic behavior also manifest in ways that do not necessarily map to intuitive
notions of gaming, but instead where the evaluator does not want to incentivize the agent to take
actions that might be counter to their interests. For example, Virginia Eubanks considers a case
of risk assessment in the child welfare system; when a risk tool includes features about a family’s
history of interaction with public services, including aid such as food stamps and public housing,
she argues that it has the potential to incentivize families to avoid such services for fear of being
labeled high risk [15]. This too would be a case in which the structure and implementation of an
evaluation rule can incentivize potentially undesirable actions in agents, and would be interesting
to formalize in the language of our model.

Organization of the remainder of the paper. Section 2 contains all the definitions and tech-
nical motivation leading up to the formulation and statement of our two main results, Theorems 3
and 5. Sections 3 and 4 contain the proofs of these two results, respectively, and Section 5 considers
further extensions.

2 Model and Overview of Results

2.1 A Formal Model of Effort Investment

Here, we develop a formal model of an agent’s investment of effort. There are m actions the agent
can take, and they must decide to allocate an amount of effort xj to each activity j. We’ll assume
the agent has some budget B of effort to invest,1 so

∑m
j=1 xj ≤ B, and we’ll call this investment of

effort x = (x1, x2, . . . , xm) an effort profile.
The evaluator cannot directly observe the agent’s effort profile, but instead observes features

F1, . . . , Fn derived from the agent’s effort profile. The value of each Fi grows monotonically in the
effort the agent invests in certain actions according to an effort conversion function fi(·):

Fi = fi

 m∑
j=1

αjixj

 , (1)

where each fi(·) is nonnegative, smooth, weakly concave (i.e., actions provide diminishing returns),
and strictly increasing. We assume αji ≥ 0.

We represent these parameters of the problem using a bipartite graph with the actions x1, x2, . . . , xm
on the left, the features F1, . . . , Fn on the right, and an edge of weight αji whenever αji > 0, so
that effort on action xj contributes to the value of feature Fi. We call this graph, along with the as-
sociated parameters (the matrix α ∈ Rm×n with entries αji; functions fi : R→ R for i ∈ {1, ..., n};
and a budget B), the effort graph G. Figure 2 shows some examples of what G might look like.

The evaluator combines the features generated by the effort using some mechanismM to produce
an output H, which is the agent’s utility. M is simply a function of the n feature values. In a
classification setting, for example, H may be binary (whether or not the agent is classified as positive
or negative), or a continuous value (the probability that the agent receives a positive outcome).
Because all features are increasing in the amount of effort invested by the agent — in particular,
including the kinds of effort we want to incentivize — we’ll restrict our attention to the class of

1We might instead model the agent as incurring a fixed cost c per unit effort with no budget. In fact, this
formulation is in a sense equivalent: for every cost c, there exists a budget B such that an agent with cost c behaves
identically to an agent with fixed budget B (and no cost). For clarity, we will deal only with the budgeted case, but
our results will extend to the case where effort comes at a cost.
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(a) General model
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(b) The classroom setting

Figure 2: The conversion of effort to feature values can be represented using a weighted bipartite
graph, where effort xj spent on action j has an edge of weight αji to feature Fi.

monotone mechanisms, meaning that if agent X has larger values in all features than agent Y , then
X’s outcome should be at least as good as that of Y . Formally, we write this as follows:

Definition 1. A monotone mechanism M on features Fi is a mapping Rn → R such that for
F, F ′ ∈ Rn with F ′i ≥ Fi for all i ∈ {1, ..., n}, M(F ′) ≥ M(F ). Also, for any F , there exists
i ∈ {1, ..., n} such that strictly increasing Fi strictly increases M(F ).

The second of these conditions implies that it is strictly optimal for an agent to invest all of
its budget. The agent’s utility is simply its outcome H. Thus, for a mechanism M , the agent’s
optimal strategy is to invest effort to maximize M(F ) subject to the constraints that

∑m
j=1 xj ≤ B

and xj ≥ 0 for all j. (Recall that in this phrasing, the vector F of feature values is determined

from the effort value xi via the functions Fi = fi

(∑m
j=1 αjixj

)
.) We can write the agent’s search

for an optimal strategy succinctly as the following optimization problem:

x∗ = arg max
x∈Rm

M(F ) s.t.
m∑
j=1

xj ≤ B (2)

x ≥ 0

where each component Fi of F is defined as in (1). Throughout this paper, we’ll assume that
agents behave rationally and optimally, though it would be an interesting subject for future work
to consider extensions of this model where agents suffer from behavioral biases. We also note that
this is where we make use of the concavity of the functions fi, since for arbitrary fi the agent
wouldn’t necessarily be able to efficiently solve this optimization problem.

2.2 Returning to the classroom example

To illustrate the use of this model, consider the effort graph shown in Figure 2b, encoding the
classroom example described in the introduction. There are two pieces of graded work for the class
(a test FT and homework FW ), and the student can study the material (x2) to improve their scores
on both of these. They can also cheat on the test (x1) and look up homework answers on-line (x3).
Their combined effort α1Tx1 + α2Tx2 contributes to their score on the test, and their combined
effort α2Wx2+α3Wx3 contributes to their score on the homework. To fully specify the effort graph,
we would have to provide a budget B and effort conversion functions fT and fW ; we leave these
uninstantiated, as our main conclusions from this example will not depend on them.
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From these scores, the teacher must decide on a student’s final grade H. For simplicity, we’ll
assume the grading scheme is simply a linear combination, meaning H = βTFT + βWFW for some
real numbers βT , βW ≥ 0.

The teacher’s objective is to incentivize the student to learn the material; thus, they want to
set βT and βW such that the student invests their entire budget into x2. Of course, this may not be
possible. For example, if α1T and α3W are significantly larger than α2T and α2W respectively, so
that it is much easier to cheat on the test and copy homework answers than to study, the student
would maximize their utility by investing all of their effort into these undesirable activities.

In fact, we can make this precise as follows. For any unit of effort invested in x2, the student
could instead invest α2T

α1T
and α2W

α3W
units of effort into x1 and x3 respectively without changing the

values of FT and FW . Moreover, if α2T
α1T

+ α2W
α3W

< 1, then this substitution strictly reduces the sum
x1 + x2 + x3, leaving additional effort available (relative to the budget constraint) for raising the
values of FT and FW . It follows that in any solution with x2 > 0, there is a way to strictly improve
it through this substitution. Thus, under this condition, the teacher cannot incentivize the student
to only study. This is precisely the type of “conversion” of effort that we discussed briefly in the
previous section, from the evaluator’s preferred form of effort (x2) to other forms (x1 and x3)

When α2T
α1T

+ α2W
α3W

≥ 1, on the other hand, a consequence of our results is that that no matter
what fT , fW and B are, there exist some βT , βW that the teacher can choose to incentivize the
student to invest all their effort into studying. This may be somewhat surprising – for instance,
consider the case where α1T = α3W = 3 and α2T = α2W = 2, meaning that the best way for the
student to maximize their score on each piece of graded work individually is to invest undesirable
effort instead of studying. Even so, it turns out that the student can still be incentivized to put
all of their effort into studying by appropriately balancing the weight placed on the two pieces of
graded work.

This example illustrates several points that will be useful in what follows. First, it makes
concrete the basic obstacle against incentivizing a particular form of effort: the possibility that it
can be “swapped out” at a favorable exchange rate for other kinds of effort. Second, it shows a
particular kind of reason why it might be possible to incentivize a designated form of effort xi:
if investing in xi improves multiple features simultaneously, the agent might select it even if it is
not the most efficient way to increase any one feature individually. This notion of activities that
“transfer” across different forms of evaluation, versus activities that fail to transfer, arises in the
education literature on testing [27], and our model shows how such effects can lead to valuable
incentives.

2.3 Stating the main results

In our example, it turned out that a linear grading scheme was sufficient for the teacher to incentivize
the student to study. We formalize such mechanisms as follows.

Definition 2. A linear mechanism M : Rn → R is the mapping M(F ) = β>F =
∑n

i=1 βiFi for
some β ∈ Rn such that βi ≥ 0 for all i ∈ {1, ..., n} and

∑n
i=1 βi > 0.

Note that we don’t require
∑n

i=1 βi to be anything in particular; the agent’s optimal behavior
is invariant to scaling β, so we can normalize β to sum to any intended quantity without affecting
the properties of the mechanism. We rule out the mechanism in which all βi are equal to 0, as it
is not a monotone mechanism.

We will say that a mechanism M incentivizes effort profile x if x is an optimal response to M .
Ultimately, our main result will be to prove the following theorem, characterizing when a given
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effort profile can be incentivized. First, we need to define the support of x as

S(x) , {j | xj > 0}. (3)

With this, we can state the theorem.

Theorem 3. For an effort graph G and an effort profile x∗, the following are equivalent:
1. There exists a linear mechanism that incentivizes x∗.

2. There exists a monotone mechanism that incentivizes x∗.

3. For all x such that S(x) ⊆ S(x∗), there exists a linear mechanism that incentivizes x.
Furthermore, there is a polynomial time algorithm that decides the incentivizability of x∗ and pro-
vides a linear mechanism β to incentivize x∗ whenever such β exists.

When there exists a monotone mechanism incentivizing x∗, we’ll call both x∗ and S(x∗) in-
centivizable.2 Informally, when x∗ is not incentivizable, this algorithm finds a succinct “obstacle”
to any solution with support S(x∗), meaning no x such that S(x) = S(x∗) is incentivizable. The
following corollary is a direct consequence of Theorem 3. (We use the notation [m] to represent
{1, 2, . . . ,m}.)

Corollary 4. For a set S ⊆ [m], some x such that S(x) = S is incentivizable if and only if all x
with S(x) = S are incentivizable.

In Section 3, we’ll prove Theorem 3. The proof we give is constructive, and it establishes the
algorithmic result.

Optimizing over effort profiles. It may be the case that the evaluator doesn’t have a single
specific effort profile by the agent that they want to incentivize; instead, they may have an objective
function defined on effort profiles, and they would like to maximize this objective function over effort
profiles that are incentivizable. In other words, the goal is to choose an evaluation rule so that the
resulting effort profile it induces performs as well as possible according to the objective function.

In Section 4, we consider the following formulation for such optimization problems. We assume
that the evaluator wants to maximize a concave function g : Rm → R over the space of effort
profiles, subject to the constraint that the agent only invests effort in a subset D ⊆ [m] of effort
variables. To accomplish this, the evaluator selects an evaluation rule so as to incentivize an effort
profile x∗ with g(x∗) as large as possible. This is what we will mean by optimizing g over the space
of effort profiles. In this setting, we show the following results, which we prove in Section 4.

Theorem 5. Let g be a concave function over the space of effort profiles, and let D be the set of
effort variables in which the evaluator is willing to allow investment by the agent.

1. If there exists an x∗ such that S(x∗) = D and x∗ is incentivizable, then any concave function
g can be maximized over the space of effort profiles in polynomial time.

2. If |D| is constant, then any concave function g can be maximized over the space of effort
profiles in polynomial time.

3. In general, there exist concave functions g that are NP-hard to maximize over the space of
effort profiles subject to the incentivizability condition.

2A closely related notion in the principal-agent literature is that of an implementable action.
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In summary, we establish that it is computationally hard to maximize even concave objectives
in general, although as long as the number of distinct actions the evaluator is willing to incentivize
is small, concave objectives can be efficiently maximized.

The above results characterize optimization over effort profiles; instead, the evaluator may wish
to optimize over the space of mechanisms (e.g., to fit to a dataset). We consider the feasibility of
such optimization in Section 5, showing that the set of linear mechanisms incentivizing particular
actions can be highly nonconvex, making optimization hard in general.

2.4 Principal-Agent Models and Linear Contracts

Now that we have specified the formalism, we are in a position to compare our model with well-
studied principal-agent models in economics to see how our results and techniques relate to those
from prior work. In the standard principal-agent setting, the principal’s objective is to incentivize
an agent to invest effort in some particular way [34, 18]. Crucially, the principal cannot observe
the agent’s action – only some outcome that is influenced by the agent’s action. Thus, while the
principal cannot directly reward the agent based on the action it takes, it can instead provide
rewards based on outcomes that are more likely under desirable actions.

To our knowledge, this framework has yet to be applied to settings based on machine-learning
classifiers as we do here; and yet, principal-agent models fit quite naturally in this context. A
decision-maker wants to evaluate an agent, which it can only observe indirectly through features.
These features, in turn, reflect the actions taken by the agent. In this context, the principal offers a
“contract” by specifying an evaluation rule, to which the agent responds strategically by investing
its effort so as to improve its evaluation. So far, this is in keeping with the abstract principal-agent
framework [34, 18].

Moreover, some of the key results we derive echo known results from previous models, though
they also differ in important respects. Linear contracts, in particular, are often necessary or optimal
in principal-agent contexts for a variety of reasons. In modeling bidding for government contracts,
for example, payment schemes are linear in practice for the sake of simplicity, even though optimal
contracts may be nonlinear [30]. In other models, contracts are naturally linear because agents
maximize reward in expectation over outcomes generated stochastically from their actions [18].

Even when they aren’t necessitated by practical considerations or modeling choices, linear con-
tracts have been shown to be optimal in their own right in some principal-agent models. Holmström
and Milgrom [21, 22] consider the interplay between incentives and risk aversion and characterize
optimal mechanisms in this setting, finding that under a particular form of risk aversion (expo-
nential utility), linear contracts optimally elicit desired behavior. Our models do not incorporate
a corresponding notion of risk aversion, and the role of linear mechanisms in our work arises for
fundamentally different reasons.

Hermalin and Katz provide a model more similar to ours, in which observations result stochas-
tically from agents’ actions [20]. Drawing on basic optimization results that we use here as well
(in particular, duality and Farkas’ Lemma), they characterize actions as “implementable” based on
whether they can be in some sense replaced by other actions at lower cost to the agent. At a high
level, we will rely on a similar strategy to prove Theorem 3.

There are, however, some further fundamental differences between the principal-agent models
arising from the work of Hermalin and Katz and the questions and results we pursue here. In
particular, the canonical models of principal-agent interaction in economics typically only have the
expressive power to to incentivize a single action, which stochastically produces a single observed
outcome. This basic difference leads to a set of important distinctions for the modeling goals we
have: because our goal is to incentivize investment over multiple activities given a multi-dimensional
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feature vector, with the challenge that different mixtures of activities can deterministically produce
the same feature vector, our model cannot be captured by these earlier formalisms.

An important assumption in our model, and in many principal-agent models in general, is that
the principal knows how the agent’s effort affects observations. Recent work has sought to relax
this assumption, finding that linear contracts are optimal even when the principal has incomplete
knowledge of the agent’s cost structure [6]. It would be an interesting subject for future work to
extend our model so that the principal does not know or needs to learn the agent’s cost structure.

3 Incentivizing Particular Effort Profiles

In this section, we develop a tight characterization of which effort profiles can be incentivized and
find linear mechanisms that do so. For simplicity, we’ll begin with the special case where the effort
profile to be incentivized is x∗ = B · ej , with ej representing the unit vector in coordinate j — that
is, the entire budget is invested in effort on action j. Then, we’ll apply the insights from this case
to the general case.

The special case where |S(x∗)| = 1. Recall that in the classroom example, the tipping point
for when the intended effort profile could be incentivized hinged on the question of substitutability :
the rate at which undesirable effort could be substituted for the intended effort. We’ll characterize
this rate as the solution to a linear program. In an effort graph G, recall that α ∈ Rm×n is the
matrix with entries αji. Let α̃j ∈ Rn be the jth row of α. Then, we’ll define the substitutability of
xj to be

κj , min
y∈Rm

y>1 s.t. α>y ≥ α̃j (4)

y ≥ 0

Intuitively, y is a redistribution of effort out of xj that weakly increases all feature values. Note
that κj ≤ 1 because the solution y = ej (the vector with 1 in the jth position and 0 elsewhere)
is feasible and has value 1. In Lemma 6, we’ll use this notion of substitutability to show that
whenever κj < 1, the agent will at optimality put no effort into xj . Conversely, in Lemma 7,
we’ll show that the when κj = 1, there exists a linear mechanism incentivizing β incentivizing the
solution x∗ = B · ej .

It might seem odd that this characterization depends only on κj , which is independent of both
the budget B and effort conversion functions fi; however, the particular mechanisms that incentivize
x∗ will depend on these. This will also be true in the general case: whether or not a particular
effort profile can be incentivized will not depend on B or fi, but the exact mechanisms that do so
will.

Lemma 6. If κj < 1, then in any monotone mechanism M , x∗j = 0.

Proof. Intuitively, this is an argument formalizing substitution: if κj < 1, replacing each unit of
effort in xj with yk units of effort (where y comes from the optimal solution to (4)) on each xk
for k ∈ [m] weakly increases all of the feature values Fi while making the budget constraint slack.
Therefore, any solution with xj > 0 cannot be optimal.

In more detail, consider any solution x with xj > 0. We’ll begin by showing that the agent’s
utility is at least as high in the solution x′ with x′k = xk + ykxj for all k 6= j and x′j = yjxj , where
y is an optimal solution to the linear program in (4). Note that yj ≤ κj < 1, so x′ is different from
x.

10



We know from the constraint on (4) that α>y ≥ α̃j , and therefore

m∑
k=1

αkiyk ≥ αji (5)

for all i. Then, by (5),

fi

(
m∑
k=1

αkixk

)
≤ fi

∑
k 6=j

αkixk + xj

m∑
k=1

αkiyk

 = fi

(
m∑
k=1

αkix
′
k

)

Thus, the value of each feature weakly increases from x to x′, so in any monotone mechanism M ,
the agent’s utility for x′ is at least as high as it is for x. Moreover, the budget constraint on x′ isn’t
tight, since

m∑
k=1

x′k =
∑
k 6=j

(xk + ykxj) + yjxj =
∑
k 6=j

xk + xj

m∑
k=1

yk <

m∑
k=1

xk ≤ B.

By the definition of a monotone mechanism, no solution for which the budget constraint isn’t tight
can be optimal, meaning x′ is not optimal. This implies that x is not optimal.

Thus, κj < 1 implies that xj = 0 in any optimal solution. All that remains to show in this
special case is the converse: if κj = 1, there exists β that incentivizes the effort profile x∗ = B · ej .
To do so, define A(x) ∈ Rm×n to be the matrix with entries [A(x)]ji = αjif

′
i([α

>x]i), and define
aj(x) ∈ Rn to be the jth row of A(x). Then, we can define the polytope

Lj , {β | A(x∗)β ≤ β>aj(x∗) · 1}. (6)

By construction, Lj is the set of linear mechanisms that incentivize x∗. This is because for all
k ∈ [m], every β ∈ Lj satisfies

[A(x∗)β]k ≤ β>aj(x∗)⇐⇒
n∑
i=1

αkiβif
′
i([α

>x∗]i) ≤
n∑
i=1

αjiβif
′
i([α

>x∗]i)⇐⇒
∂H

∂xk

∣∣∣∣
x∗
≤ ∂H

∂xj

∣∣∣∣
x∗

By Lemma 12 in Appendix A, this implies that x∗ is an optimal agent response to any β ∈ Lj .
To complete the proof of this special case of Theorem 3, it suffices to show that Lj is non-empty,
which we do via linear programming duality.

Lemma 7. If κj = 1, then Lj is non-empty.

Proof. Consider the following linear program.

max
β∈Rn

β>aj(x
∗) s.t. A(x∗)β ≤ 1 (7)

β ≥ 0

Clearly, if (7) has value at least 1, then Lj is non-empty because any β achieving the optimum is
in Lj by (6). The dual of (7) is

min
y∈Rm

y>1 s.t. A(x∗)>y ≥ aj(x∗) (8)

y ≥ 0
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We can simplify the constraints on (8): for all i,

[A(x∗)>y]i ≥ [aj(x
∗)]i ⇐⇒

m∑
k=1

αkiykf
′
i([α

>x∗]i) ≥ αjif ′i([α>x∗]i)⇐⇒
m∑
k=1

αkiyk ≥ αji

Thus, (8) is equivalent to (4), which has value κj = 1 by assumption. By duality, (7) also has value
κj = 1, meaning Lj is non-empty.

We have shown that if κj = 1, then any β ∈ Lj incentivizes x∗. Otherwise, by Lemma 6,
there are no monotone mechanisms that incentivize x∗. Next, we’ll generalize these ideas to prove
Theorem 3.

The general case. We’ll proceed by defining the analogue of κj in the case where the effort
profile to be incentivized has support on more than one component. Drawing upon the reasoning
in Lemmas 6 and 7, we’ll prove Theorem 3.

Consider an arbitrary effort profile x∗ such that
∑m

i=1 x
∗
j = B, and let S(x∗) be the support

of x∗. Let αS be α with the rows not indexed by S zeroed out, i.e., [αS ]ji = αji if j ∈ S and 0
otherwise. Let 1S be the vector with a 1 for every j ∈ S and 0 everywhere else, so 1S =

∑
j∈S ej .

Similarly to how we defined κj , define

κS , min
y∈Rm,z∈Rm

y>1 s.t. α>y ≥ α>S z (9)

z>1S ≥ 1

y, z ≥ 0

Intuitively, we can think of the effort given by z as being substituted out and replaced by y.
Note that κS ≤ minj∈S κj , because the special case where zj = 1 yields (4). In a generalization of
Lemma 6, we’ll show that κS < 1 implies that no optimal solution has xj > 0 for all j ∈ S. Lemma 6
formalized an argument based on substitutability, in which the effort invested on a particular node
could be moved to other nodes while only improving the agent’s utility. We generalize this to the
case when effort invested on a subset of the nodes can be replaced by moving that effort elsewhere.

Lemma 8. For any S ⊆ [m], if κS < 1, then any effort profile x such that xj > 0 for all j ∈ S
cannot be optimal.

Proof. The following proof builds on that of Lemma 6. Let y and z be optimal solutions to (9).
We know that for all i,

m∑
j=1

αjiyj ≥
∑
j∈S

αjizj (10)

Let c , minj∈S xj/zj . Note that c > 0 because by assumption, xj > 0 for all j ∈ S. It is well-
defined because z>1S ≥ 1 and z ≥ 0, so zj is strictly positive for some j ∈ S. By this definition,
xj − czj ≥ 0 for all j ∈ S.

We’ll again define another solution x′ with utility at least as high as x, but with the budget
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constraint slack. For all i,

[α>x]i =
m∑
j=1

αjixj

=
∑
j /∈S

αjixj +
∑
j∈S

αjixj

=
∑
j /∈S

αjixj +
∑
j∈S

αji(xj − czj) + c
∑
j∈S

αjizj

≤
∑
j /∈S

αjixj +
∑
j∈S

αji(xj − czj) + c
m∑
j=1

αjiyj (By (10))

=
∑
j /∈S

αji(xj + cyj) +
∑
j∈S

αji(xj + c(yj − zj))

, [α>x′]i,

where we have defined

x′j ,

{
xj + cyj j /∈ S
xj + c(yj − zj) z ∈ S

.

Because xj − czj ≥ 0 for all j ∈ S, x′ is a valid effort profile. Since fi is increasing, fi([α
>x]i) ≤

fi([α
>x′]i). However,

m∑
i=1

x′j =
∑
j /∈S

xj + cyj +
∑
j∈S

xj + c(yj − zj) = x>1 + c(y>1− z>1S) < B.

Thus, the budget constraint for x′ is not tight, and so for any monotone mechanism, there exists a
solution x′′ which is strictly better than x′ and x, meaning x is not optimal.

Lemma 8 tells us which subsets of variables definitely can’t be jointly incentivized. However,
given a subset of variables, it doesn’t a priori tell us if these variables can be jointly incentivized,
and if so, which particular effort profiles on these variables are incentivizable. In fact, we’ll show
that any x∗ such that κS(x∗) = 1 is incentivizable.

Lemma 9. Define

L(x) , {β | A(x)β ≤ 1

B
x>A(x)β · 1} (11)

If κS(x∗) = 1, then L(x∗) is the set of linear mechanisms that incentivize x∗, and L(x∗) is non-
empty.

Proof. Let S = S(x∗). We know that for any z such that z>1S ≥ 1,

κS ≤ κS(z) , min
y∈Rm

y>1 s.t. α>y ≥ α>S z (12)

y ≥ 0
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because we’ve just written (9) without allowing for optimization over z. Therefore, if κS = 1, then
κS(z) = 1 for any z. We can write each constraint [α>y]i ≥ [α>S z]i as

[α>y]i ≥ [α>S z]i ⇐⇒
m∑
j=1

αjiyj ≥
∑
j∈S

αjizj

⇐⇒
m∑
j=1

αjif
′
i([α

>x∗]i)yj ≥
∑
j∈S

αjif
′
i([α

>x∗]i)zj

⇐⇒
m∑
j=1

[A(x∗)]>jiyj ≥
∑
j∈S

[A(x∗)]jizj

Thus, (12) is equivalent to the following optimization, where similarly to the definition of αS , we
define AS(x) to be A(x) with all rows j /∈ S zeroed out.

κS(z) = min
y∈Rm

y>1 s.t. A(x∗)>y ≥ AS(x∗)>z (13)

y ≥ 0

The dual of (13) is

η(z) , max
β∈Rn

β>(AS(x∗)>z) s.t. A(x∗)β ≤ 1 (14)

β ≥ 0

Thus, (14) has value η(z) = κS(z) = 1. Recall that

L(x∗) = {β | A(x∗)β ≤ 1

B
x∗>A(x∗)β · 1}.

Clearly, L(x∗) is non-empty because plugging in z = x∗

B , (14) has value η(z) = 1, meaning there
exists β such that for all j,

η

(
x∗

B

)
=

1

B
β>(AS(x∗)>x∗) = 1 ≥ [A(x∗)β]j (15)

We’ll show that β incentivizes the agent to invest x∗ if and only if β ∈ L(x∗). Note that (15) is
true if and only if

∂H

∂xj

∣∣∣∣
x∗
≤
∑
k∈S

x∗k
B

∂H

∂xk

∣∣∣∣
x∗
. (∀j ∈ [m])

The right hand side is the convex combination of the partial derivatives of H with respect to each
of the k ∈ S. Since this convex combination is at least as large as each partial in the combination,
it must be the case that all of these partials on the right hand side are equal to one another. In

other words, this is true if and only if ∂H
∂xj

∣∣∣
x∗

= ∂H
∂xj′

∣∣∣
x∗

for all j, j′ ∈ S.

By Lemma 12 in Appendix A, this is true if and only if x∗ is an optimal effort profile, meaning
L(x∗) is exactly the set of linear mechanisms that incentivize x∗.

Thus, we’ve shown Theorem 3: for any target effort profile x∗, either κS(x∗) = 1, in which case
any β ∈ L(x∗) incentivizes x∗, or κS(x∗) < 1, in which case no monotone mechanism incentivizes
x∗ by Lemma 8.
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4 Optimizing other Objectives

So far, we have given a tight characterization of which effort profiles can be incentivized. Moreover,
we have shown that whenever an effort profile can be incentivized, we can compute a set of linear
mechanisms that do so. However, this still leaves room for the evaluator to optimize over other
preferences. For instance, perhaps profiles that distribute effort among many activities are more
desirable, or perhaps the evaluator has a more complex utility function over the agent’s effort
investment.

In this section, we consider the feasibility of such optimization subject to the constraints imposed
by incentivizability. We show that optimization over effort profiles is possible in particular instances,
but in general, it is computationally hard to optimize even simple objectives over incentivizable
effort profiles.

Incentivizing a subset of variables. For the remainder of this section, we will assume that the
evaluator has a set of designated effort variables D ⊆ [m], and they want to incentivize the agent
to only invest in effort variables in D. Recall that a set of actions S is incentivizable if and only if
κS = 1, where κS is defined in (9). We define the set system

FD = {S ⊆ D | κS = 1} (16)

By Theorem 3, FD gives the sets of effort variables that can be jointly incentivized. As we will
show, a consequence of our results from Section 3 is that FD is downward-closed, meaning that if
S ∈ FD, then S′ ∈ FD for any S′ ⊆ S.

We begin by characterizing when it is feasible to incentivize some x such that S(x) ⊆ D. As
the following lemma shows, this can be done if and only if some individual j ∈ D is incentivizable
on its own.

Lemma 10. It is possible to incentivize effort in a subset of a designated set of effort nodes D ⊆ [m]
if and only if maxj∈D κj = 1.

Proof. The set system FD is downward closed, since κS∪{j} = 1 implies κS = 1 for all S, j. This is
because any solution to (9) for S is a solution to (9) for S ∪ {j}, so κS ≥ κS∪{j}. Therefore, if x is
such that S(x) ⊆ D is incentivizable, meaning κS(x) = 1, then κj = 1 for all j ∈ S(x). If κj < 1
for all j ∈ D, then no x such that S(x) ⊆ D is incentivizable.

Thus, there exists an incentivizable x such that S(x) ⊆ D if and only if there is some j ∈ D
such that the agent can be incentivized to invest all of its budget into xj .

Objectives over effort profiles. In the remainder of this section, we prove Theorem 5. Lemma 10
shows that if the evaluator wants the agent to only invest effort into a subset D of effort variables,
one solution might be to simply incentivize them to invest all of their effort into a single j ∈ D.
However, this might not be a satisfactory solution — the evaluator may want the agent to engage in
a diverse set of actions, or to invest at least some amount in each designated form of effort. Thus,
the evaluator may have some other objective beyond simply incentivizing the designated forms of
effort D.

We formalize this as follows: suppose the evaluator has some objective g : Rm → R over the
agent’s effort profile x, and wants to pick the x that maximizes g subject to the constraint that x
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is incentivizable and S(x) ⊆ D. Formally, this is

arg max
x∈Rm

g(x) s.t. κS(x) = 1 (17)

S(x) ⊆ D

To make this more tractable, we assume that g is concave, as it will in general be hard to
optimize arbitrary non-concave functions. We will begin by showing that this optimization problem
is feasible when κD = 1, or equivalently, when D ∈ FD. We will extend this to show that when |D|
is small, (17) can can be solved. In general, however, we will show that due to the incentivizability
constraint, this is computationally hard.

First, we consider the case where κD = 1. Here, it is possible to find a mechanism to maximize
g(x) because any x in the simplex {x |

∑
j∈D xj = B} is incentivizable by Theorem 3. Thus, the

evaluator could simply maximize g over this simplex to get some effort profile x∗ and find a linear
mechanism β to incentivize x∗. Extending this idea, if κD < 1 but |D| is small, the evaluator can
simply enumerate all subsets S ⊆ D such that κS = 1, optimize g over each one separately, and
pick the optimal x∗ out of all these candidates.

However, in general, it is NP-hard to optimize a number of natural objectives over the set of
incentivizable effort profiles if κD < 1. From Theorem 3, we know that incentivizable effort profiles
x can be described by their support S(x), which must satisfy κS(x) = 1. The following lemma shows
that this constraint on x makes it difficult to optimize even simple functions because the family of
sets FD = {S ⊆ D | κS = 1} can be used to encode the set of independent sets of an arbitrary
graph. Using this fact, we can show that there exist concave objectives g that are NP-hard to
optimize subject to the incentivizability constraint.

Lemma 11. Given a graph G = (V,E), there exists an effort graph G′ and a set of designated
effort nodes D such that S ⊆ D is an independent set of G if and only if κS = 1 in G′.

Proof. We construct a designated effort node for each v ∈ V , so D = V . We also construct an
undesirable effort node for each e ∈ E, so the total number of effort nodes is m = |V | + |E|. For
ease of indexing, we’ll refer to the designated effort nodes as xv for v ∈ V and the remaining effort
nodes as xe for e ∈ E.

We construct a feature Fv for each vertex v ∈ V . Then, let αv,v = 3 for all v ∈ V and αe,v = 2
for all v ∈ V . For each e ∈ E, this creates the gadget shown in Figure 3.

xu

xe

xv

Fu

Fv

3

2

2

3

Figure 3: Gadget to encode independent sets

First, we’ll show that if (u, v) ∈ E, then any S ⊆ D containing both u and v has κS < 1. Recall
the definition of κS in (9). Consider the solution with zu = zv = 1

2 and ye = 2
3 . This is feasible, so

κS ≤ 2
3 < 1. By the contrapositive, if κS = 1 (meaning S is incentivizable), S cannot contain any

u, v such that (u, v) ∈ E, meaning S forms an independent set in G.
To show the other direction, consider any independent set S in G. By construction, S ⊆ D

because D = V . Then, in the optimal solution (y, z) to (9), we will show that yu = zu for all u ∈ S,
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meaning κS = y>1 ≥ 1. To do so, consider the constraint [α>y]u ≥ [α>S z]u for any u ∈ S. This is
simply 3yu + 2

∑
e=(u,v)∈E ye ≥ 3zu. Because S is an independent set, zv = 0 for any v such that

(u, v) ∈ E, so this is the only constraint in which any such ye appears. Therefore, it is strictly
optimal to choose yu = zu and ye = 0 for all e = (u, v) ∈ E. As a result, yu = zu for all u ∈ S,
meaning κS ≥

∑
u∈S yu =

∑
u∈S zu ≥ 1 by the constraint z>1S ≥ 1.

Thus, if the evaluator wants to find an incentivizable effort profile x such that S(x) ⊆ D (the
agent only invests in designated forms of effort), maximizing an objective like g(x) = ‖x‖0 (the
number of non-zero effort variables) is NP-hard, due to a reduction from the maximum independent
set problem. Note that ‖x‖0 is concave for nonnegative x.

Moreover, other simple and natural objectives are hard to optimize as well. Using a construction
similar to the one in Figure 3, we can create effort graphs with a set of designated effort nodes
D in which S ⊆ D is incentivizable if and only if |S| ≤ k, meaning ‖x‖0 ≤ k. This is known to
make optimizing even simple quadratic functions (e.g. ‖Ax− y‖2 for some matrix A and vector y)
NP-hard [32]. In general, then, it is difficult to find the optimal agent effort profile subject to the
incentivizability constraint.

5 The Structure of the Space of Linear Mechanisms

Thus far, we have seen how to construct linear mechanisms that incentivize particular effort profiles,
finding that the mechanisms that do so form a polytope. Suppose that the evaluator doesn’t have
a particular effort profile that they want to incentivize, but instead wants the agent to only invest
effort in a subset of intended effort nodes D ⊆ [m]. Generalizing the definition of L(x∗) as the set of
linear mechanisms incentivizing x∗, we define L(D) to be the set of linear mechanisms incentivizing
any x such that S(x) ⊆ D.3 In the remainder of this section, we give structural results characterizing
L(D), showing that in general it can be highly nonconvex, indicating the richness of the solution
space of this problem.

In the simplest case where |D| = 1, meaning the evaluator wants to incentivize a single effort
variable, we know by (6) that L(D) is simply a polytope. This makes it possible for the evaluator
to completely characterize L(D) and even maximize any concave objective over it.

However, in general, L(D) can display nonconvexities in several ways. Figure 3 gives an example
such that if the evaluator only wants to incentivize xu and xv, then L(D) = {β | ‖β‖0 = 1}, meaning
β has exactly one nonzero entry. This can be generalized to an example where L(D) = {β | ‖β‖0 ≤
k} for any k, which amounts to a nonconvex sparsity constraint.

This form of nonconvexity arises because we’re considering mechanisms that incentivize x such
that S(x) ⊆ D. In particular, if S and S′ are disjoint subsets of D, then we wouldn’t necessarily
expect the union of L(S) and L(S′) to be convex. However, we might hope that if each L(S) for
S ⊆ D is convex or can be written as the union of convex sets, then L(D) could also be written as
the union of convex sets.

Unfortunately, this isn’t the case. Let L∗(D) be the set of mechanisms incentivizing x such
such that S(x) = D (as opposed to S(x) ⊆ D). L∗(D) may still be nonconvex, depending on the
particular effort conversion functions f(·). Consider the effort graph shown in Figure 4 with B = 1,
f1(y) = f2(y) = 1 − e−y and f3(y) = 1 − e−2y. Let D = {1, 3}. To incentivize x1 > 0 and x3 > 0
simultaneously with x2 = x4 = 0, it must be the case that

∂H

∂x1

∣∣∣∣
x

= β1f
′
1(x1) = β2f

′
2(x3) + β3f

′
3(x3) =

∂H

∂x3

∣∣∣∣
x

.

3With this notation, we could write Lj as defined in Section 3 as L({j}).
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x1

x2

x3

x4

F1

F2

F3

H

1

2

1

1

2

β1
β2

β3

Figure 4: Non-convexity of L∗(D)

To incentivize x2 = x4 = 0, we must also have

∂H

∂x2

∣∣∣∣
x

= 2β2f
′
2(x3) ≤ β2f ′2(x3) + β3f

′
3(x3) =

∂H

∂x3

∣∣∣∣
x

∂H

∂x4

∣∣∣∣
x

= 2β3f
′
3(x3) ≤ β2f ′2(x3) + β3f

′
3(x3) =

∂H

∂x3

∣∣∣∣
x

This is only possible if β2f
′
2(x3) = β3f

′
3(x3), meaning β incentivizes x such that S(x) = {1, 3} if

and only if

β1f
′
1(x1) = β2f

′
2(x3) + β3f

′
3(x3) (18)

β2f
′
2(x3) = β3f

′
3(x3) (19)

Combining (18) and (19), we get β1f
′
1(x1) = 2β2f

′
2(x3), implying

β1f
′
1(x1) = 2β2f

′
2(x3)

β′1e
−x1 = 2β2e

−x3 (20)

β2 =
β1e

x3−x1

2
(21)

Similarly, we can derive

β3 =
β1e

2x3−x1

4
(22)

We’ll show non-convexity by giving two linear mechanisms β and β′ that both incentivize an x
such that S(x) = {1, 3}, but β′′ = 1

2(β + β′) does not incentivize such an x.
Let β and β′ incentivize x = [1/3 0 2/3 0]> and x′ = [2/3 0 1/3 0]> respectively. Without loss of

generality, we can set β1 = β′1 = 1. Using (21) and (22), we get

β =
[
1 e1/3

2
e
4

]>
β′ =

[
1 e−1/3

2
1
4

]>
Then, let β′′ = 1

2(β + β′). If β′′ incentivizes x∗ such that S(x∗) = {1, 3}, then by (19), it must be
the case that

β′′2f
′
2(x
∗
3) = β′′3f

′
3(x
∗
3)

β′′2e
−x∗3 = 2β′′3e

−2x∗3

ex
∗
3 =

2β′′3
β′′2

x∗3 = log

(
e+ 1

e1/3 + e−1/3

)
≈ 0.566
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On the other hand, by (20), we must also have

β′′1f
′
1(x
∗
1) = 2β′′2e

−x∗3

e−x
∗
1 =

e1/3 + e−1/3

2
exp

(
− log

(
e+ 1

e1/3 + e−1/3

))
e−x

∗
1 =

e1/3 + e−1/3

2
· e

1/3 + e−1/3

e+ 1

x∗1 = − log

(
(e1/3 + e−1/3)2

2(e+ 1)

)
≈ 0.511

Such a solution would fail to respect the budget constraint (since x∗1 + x∗3 > 1 = B), meaning β′′

cannot incentivize x∗ such that S(x∗) = {1, 3}. In fact, the above analysis shows that for any x∗

incentivized by β′′, S(x∗) must include either 2 or 4 because β′′ incentivizes neither x∗1 = 1 nor
x∗3 = 1, meaning the only way to use the entire budget is to set x∗2 > 0 or x∗4 > 0. Thus, despite
the fact that both β and β′ incentivize effort profiles with support {1, 3}, a convex combination of
them does not. As a result, the set of linear mechanisms incentivizing a subset of effort variables
may in general exhibit complex structures that don’t lend themselves to simple characterization.

We visualize this nonconvexity in Figure 5, where for clarity we modify the effort graph in
Figure 4 by setting α22 = 0. The yellow region corresponds to (β2, β3) values such that β =
(1 β2 β3)

> incentivizes x such that S(x) = {1, 3}. Note that the upper left edge of this region is
slightly curved, producing the non-convexity. As a result, the set of linear mechanisms incentivizing
a subset of effort variables may in general exhibit complex structures that don’t lend themselves to
simple characterization.

Figure 5: Non-convexity in (β2, β3) pairs

Implications for optimization. The complexity of L(D) has immediate hardness implications
for optimizing objectives over the space of linear mechanisms. For example, mechanisms that
distribute weight on multiple features may be preferable because in practice, measuring multiple
distinct features may lead to less noisy evaluations. We might also consider the case where the
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evaluator has historical data A ∈ Rr×n and y ∈ Rr, where each row of A contains the features F
of some individual and each entry of y contains their measured outcome of some sort. Then, in the
absence of strategic considerations, the evaluator could just choose β that minimizes squared error
‖Aβ−y‖2 between the scores given by the mechanism and the outcomes y in the dataset. As noted
above, there are examples for which L(D) = {β | ‖β‖0 ≤ k}, which is known to make minimizing
squared error NP-hard [32]. However, in the special case when D = {j} (there’s only one effort
node the evaluator wants to incentivize), then if κj = 1, the set of linear mechanisms incentivizing
x∗ = B · ej is just the convex polytope Lj defined in (6). Thus, it is possible to maximize any
concave objective over this set.

6 Conclusion

Strategic behavior is a major challenge in designing simple and transparent evaluation mechanisms.
In this work, we have developed a model in which strategic behavior can be directed toward specified
forms of effort through appropriate designs.

Our results leave open a number of interesting questions. All of our analysis has been for the
case in which an evaluator designs a mechanism optimized for the parameters of a single agent (or
for a group of agents who all have the same parameters). Extending this reasoning to consider the
incentives of a heterogeneous group of agents, where the parameters differ across members of the
group, is a natural further direction. In addition, we have assumed throughout that agents behave
rationally, in that they perfectly optimize their allocation of effort. But it would also be interesting
to consider agents with potential biases that reflect human behavioral principles, resulting in sub-
optimal behavior that follows certain structured properties. Finally, although we have shown that
linear mechanisms suffice whenever a monotone mechanism can incentivize intended behavior, if
the output of the mechanisms is constrained in some way (e.g. binary classification), it is an open
question to determine what types of mechanisms are appropriate.
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A Characterizing the Agent’s Response to a Linear Mechanism.

In this section, we’ll characterize how a rational agent best-responds to a linear mechanism. Its
utility is H = β>F , and therefore we can rewrite the optimization problem (2) with M(F ) = β>F ,
which yields

max
x∈Rm

n∑
i=1

βifi([α
>x]i) (23)

s.t. x ≥ 0
m∑
j=1

xj ≤ B

Note that this is a concave maximization since each fi is weakly concave and [α>x]i is linear in x.
The Lagrangian is then

L(x, λ) =
n∑
i=1

βifi

(
[α>x]i

)
+ λ0

B − m∑
j=1

xj

+
m∑
j=1

λjxj .

By the Karush-Kuhn-Tucker conditions, since (23) is convex, a solution x∗ is optimal if and only if
∇xL(x∗, λ∗) = 0, so for each j ∈ [m],

n∑
i=1

αjiβif
′
i

(
[α>x∗]i

)
− λ∗0 + λ∗j = 0.

Note that we can write this as

λ∗0 =
∂H

∂xj

∣∣∣∣
x∗

+ λ∗j .

By complementary slackness, λ∗j > 0 =⇒ x∗j = 0. Therefore, it follows that at optimality, the
gradients with respect to all nonzero effort components are λ∗0. Furthermore, the gradients with
respect to all effort components are at most λ∗0 since λ∗j ≥ 0 by definition. This proves the following
lemma.

Lemma 12. For any x ∈ Rm such that x ≥ 0, x is an optimal solution to (23) if and only if the
following conditions hold

1.
∑m

j=1 xj = B

2. For all j, j′ such that xj > 0 and xj′ > 0,

∂H

∂xj

∣∣∣∣
x

=
∂H

∂xj′

∣∣∣∣
x

3. For all j such that xj > 0 and for all j′,

∂H

∂xj

∣∣∣∣
x

≥ ∂H

∂xj′

∣∣∣∣
x
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Proof. Choose λ∗0 = ∂H
∂xj

∣∣∣
x

for any j such that xj > 0. Choose λ∗j = λ∗0 − ∂H
∂xj

∣∣∣
x

for all j. Then,

(x, λ∗) satisfies stationarity (since ∇xL(x, λ∗) = 0), primal and dual feasibility by definition, and
complementary slackness (since B −

∑m
j=1 xj = 0). Therefore, x is an optimal solution to (23).

To show the other direction, note that maxj
∂H
∂xj

> 0 because each fi(·) is strictly increasing

and there is some nonzero βi. Therefore, λ0 > 0, and by complementary slackness, every optimal
solution must satisfy

∑m
j=1 xj = B.
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